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Abstract
We present a formalism for calculating the probability distribution of the most
massive primordial black holes (PBHs) expected within an observational vol-
ume. We show how current observational upper bounds on the fraction of PBHs
in dark matter translate to constraints on extreme masses of primordial black
holes. We demonstrate the power of our formalism via a case study, and argue
that our formalism can be used to produce extreme-value distributions for a wide
range of PBH formation theories.
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1 INTRODUCTION

Primordial black holes (PBHs) originate from large infla-
tionary perturbations that subsequently collapse into
black holes in the early Universe (for reviews, see
Carr et al. (2016); García-Bellido (2017); Kashlinsky
et al. (2019); Sasaki et al. (2018)). LIGO gravitational wave
events1 over the past few years have given rise to the
resurgence of PBHs not only as a viable dark matter can-
didate, but also as potential pregenitors of massive black
holes (≳30 M⊙) that can typically give rise to the observed
amplitude of gravitational waves.

Given an inflationary scenario, it would be useful to
predict the mass of the most massive PBHs expected within
a given observational volume. Such a calculation would
serve as an additional observational test of competing
inflationary theories. The primary aim of this work is
to present such a framework, while demonstrating the
method for a particular model of PBH formation.

The framework discussed is based on previous work
by one of us (Chongchitnan 2015; Chongchitnan &
Hunt 2017) in the context of extreme cosmic voids, as
well as previous work by Harrison & Coles (2011, 2012)

1https://www.ligo.org/detections.php

on extreme galaxy clusters. Our main result will be the
probability density function (pdf) for the most massive
PBHs expected in an observational volume. We will apply
the framework to a simple model of PBH formation and
demonstrate the soundness of the calculations.

Throughout this work, we will use the cosmological
parameters for the LCDM model from Planck (Plank Col-
laboration 2018).

2 FRACTION OF THE UNIVERSE
IN PBHS

In this section, we will derive an expression for the cosmo-
logical abundance of PBHs, namely

ΩPBH = 𝜌PBH

𝜌crit
, (1)

where 𝜌PBH is the mean cosmic density in PBHs, and
𝜌crit is the critical density. Typically, we will be interested
in the abundance of PBHs within a certain mass range
(say, Ωpbh(>M), i.e. the fraction of the Universe in PBHs
of mass greater than M). The PBH abundance naturally
depends on how primordial perturbations were gener-
ated (e.g. the shape of the primordial power spectrum
of curvature perturbations), details of the PBH collapse
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mechanism (e.g. structure formation theory), and thermo-
dynamical conditions during the radiation era when PBHs
were formed. We will obtain an expression for ΩPBH that
depends on all these factors.

One viable approach to begin modeling the PBH abun-
dance is to use the Press–Schechter (PS) theory (Press &
Schechter 1974), but with a modification of the collapse
threshold. This approach has been widely used in previ-
ous work to model PBH abundances (e.g. Ballesteros &
Taoso (2018); Byrnes et al. (2018b); Chongchitnan & Efs-
tathiou (2007a); Wang et al. (2019); Young et al. (2014)). We
present the key equations below. In Section 6.1, we present
a different approach based on Peak Theory.

In the PS formalism, the probability that a region
within a window function of size R, containing mass M,
has density contrast in the range [𝛿, 𝛿 + d𝛿] is given by the
Gaussian distribution

P(𝛿)d𝛿 = 1√
2𝜋

1
𝜎

e−𝛿2∕2𝜎2d𝛿, (2)

where 𝜎 is the variance of the primordial density per-
turbations 𝛿 smoothed on scale R. Assuming that PBHs
originate from Fourier modes that re-entered the Hubble
radius shortly after inflation ends (i.e. during radiation era,
when R becomes comparable to k−1 = (aH)−1), 𝜎 can be
expressed as Liddle & Lyth (2000).

𝜎2(k) = ∫
∞

−∞
W2(qk−1)𝛿(q)d In q (3)

= ∫
∞

−∞

16
81

W2(qk−1)(qk−1)4T2(q, k−1)(q)d In q. (4)

In the above equations, 𝛿 and  are, respec-
tively, the primordial density and curvature power spec-
tra; W is the Fourier-space window function chosen to
be Gaussian2 (W(x) = e−x2∕2); T is the transfer function
given by:

T(q, 𝜏) = 3
y3 (sin y − y cos y), y ≡ q𝜏√

3
. (5)

Numerical simulations suggest that the initial mass,
M, of a PBH formed when density perturbation of
wavenumber k re-enters the Hubble radius, is known to be
a fraction of the total mass, MH , within the Hubble volume
(MH is usually called the “horizon mass”). In this work, we
follow Musco & Miller (2013) in modeling M as

M = K(𝛿 − 𝛿c)𝛾MH . (6)

2See Ando et al. (2018) for an interesting study of how window
functions affect the inferred PBH abundances.

where we take 𝛿c = 0.45 (the threshold overdensity for
collapse into a PBH during radiation era), with K = 3.3
and 𝛾 = 0.36. (see Section 6.2 for further discussion of the
values of 𝛿c and K.)

For a given Hubble volume with horizon mass MH , the
corresponding temperature, T, satisfies the equation

MH = 12

(
mPl√

8𝜋

)3(
10

g∗,𝜌(T)

)1∕2

T−2, (7)

(Wang et al. 2019) where mPl is the Planck mass, and
the effective degree of freedom g*,𝜌(T), corresponding to
energy density 𝜌, can be numerically obtained as described
in Saikawa & Shirai (2018). The latter reference also
gave the fitting function for the effective degree of free-
dom g*,s(T) corresponding to entropy s, which we will
also need.

Using the extended PS formalism, one obtains the fol-
lowing expression for 𝛽MH , the fraction of PBHs within a
Hubble volume containing mass MH (Byrnes et al. 2018b;
Niemeyer & Jedamzik 1998)

𝛽MH = 2∫
∞

𝛿c

M
MH

P(𝛿)d𝛿

= ∫
∞

−∞
BMH (M)d In M. (8)

The factor of 2 is the usual Press–Schechter cor-
rection stemming from the possibility of PBHs formed
through a cloud-in-cloud collapse (Bond et al. 1991). The
integrand BMH (M) can be interpreted as the probability
density function (pdf) for PBH masses on logarithmic
scale at formation time. Using Equations (2) and (6),
one finds

BMH (M) = K√
2𝜋𝛾𝜎(kH)

𝜇1+1∕𝛾 exp
(
− 1

2𝜎2(kH)
(𝛿c + 𝜇1∕𝛾 )2

)
.

(9)

𝜇 ≡ M
KMH

. (10)

kH

Mpc−1 = 3.745 × 106
(

MH

M⊙

)−1∕2[g∗,𝜌(T(MH))
106.75

]1∕4

· · ·

×
[

g∗,s(T(MH))
106.75

]−1∕3

. (11)

We next consider an important quantity f (M), the
present-day fraction of dark matter in the form of PBHs of
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mass M. For our purposes, the expression for f (M) can be
expressed as follows (Byrnes et al. 2018a):

f (M) ≡ 1
ΩCDM

dΩPBH

d log M

= Ωm

ΩCDM ∫
∞

−∞
𝜏(MH)BMH (M)d log MH (12)

𝜏(MH) ≡ g∗,𝜌(T(MH))
g∗,𝜌(Teq)

g∗,s(Teq)
g∗,s(T(MH))

T(MH)
Teq

, (13)

where ΩCDM and Ωm are the cosmic density parameters
for cold dark matter and total matter (CDM+ baryons),
respectively. The first integral Equation (12) is an inte-
gration over all horizon masses. Since a range of PBH
masses are expected to form within a given horizon mass
MH , this integral picks out the fraction of those PBHs
with mass M. The thermodynamic factor, 𝜏(MH), relates
the formation-time variables to present-day observables.
Using standard expressions for the evolution of cosmic
densities during the matter and radiation era, and the
fact that 𝜌PBH/𝜌∼T−1 up to matter-radiation equality, we
can intuitively understand the appearance of temperature
at matter-radiation equality (Teq) and at formation time
(T(MH)) in Equation (13). See Inomata et al. (2017) for a
detailed derivation.

Once we have calculated the PBH fraction, f (M), the
total present-day fraction of PBHs in dark matter can be
calculated by integrating over all PBH masses,

fPBH = ∫
∞

log Mmin

f (M)d log M, (14)

(we will discuss Mmin in the next section). Finally, the frac-
tion of the Universe in PBHs of mass >M can simply be
integrated as follows:

ΩPBH(> M) = ΩCDM ∫
∞

log M
f (M′)d log M′. (15)

3 PBH NUMBER COUNT

In analogy with the abundance of massive galaxy clus-
ters (see e.g. Mo et al. (2010) for a pedagogical treat-
ment), the differential number density of PBHs at present
time (i.e. the PBH “mass function”) can be expressed as
follows:

dn
d log M

= − 𝜌

M
dΩPBH(> M)

d log M
= 𝜌

M
ΩCDMf (M), (16)

F I G U R E 1 The dashed lines show the theoretical values of
the PBH to CDM ratio, f PBH (Equation 14) as a function of the
parameters A and MH in the log-𝛿 model. The thick line indicates
the observational upper bound f PBH,max (Equation 22) converted
from monochromatic constraints in the literature

where 𝜌 is the present-day mean cosmic density. In an
observational volume covering the fraction f sky of the sky
up to redshift z, we would find the total number of PBHs
to be

Ntot(z) = fsky∫
z

0
(1 + z′)3dz′∫

∞

log Mmin(z′)
d log M dV

dz′
dn

d log M
,

(17)
where dV/dz is the Hubble volume element given by

dV
dz

= 4𝜋
H(z)

(
∫

z

0

dz′
H(z′)

)2

(18)

H(z) ≈ H0[Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ]1∕2, (19)

where the cosmic densities Ωi have their usual meaning.
In this work, we will assume that f sky = 1.

The lower bound in the d log M integration in
Equation (17) is the minimum PBH mass (at formation
time) below which a PBH would have evaporated by red-
shift z. For z = 0, it is well known that

Mmin(z = 0) = 5.1 × 1014g ≈ 2.6 × 10−19M⊙, (20)

(Hawking 1974). At higher redshifts, the minimum initial
mass can be estimated by assuming some basic properties
of black holes. We outline the calculations in Appendix A.
We found that Mmin remains within the same order of mag-
nitude for a wide range of redshift (see Figure 1 therein).
Therefore, for models that generate an observationally
interesting abundance of PBHs, it is sufficient to make the
approximation Mmin(z)≈Mmin(0) in Equation 17. We have
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checked that this makes no numerical difference for the
models studied in this work.

4 PBH FORMATION: A CASE
STUDY

4.1 The log-𝛅 model

It is well known that the simplest models of single-field
slow-roll inflation cannot produce observable abundance
of PBHs unless the primordial power spectrum is very
blue (although this has firmly been ruled out by CMB
constraints). Viable inflation models, which generate an
interesting density of PBHs, are potentials that typically
produce sharp features in the primordial power spec-
trum, so as to generate power at small scales (see Drees
& Erfani (2011); García-Bellido & Ruiz Morales (2017);
Kawasaki et al. (1998); Mishra & Sahni (2019); Pi
et al. (2018) for some theoretical models). In this work, we
will represent a generic primordial power spectrum with a
sharp feature using a delta function spike in ln k, i.e.

(k) = A𝛿D(In k − In k0), (21)

where 𝛿D is the Dirac delta function. The constants A and
k0 parametrize the amplitude and location of the spike in
the resulting matter power spectrum. This log 𝛿-function
model was previously studied in Wang et al. (2019) in the
context of gravitational wave production by PBHs.

4.2 Observational constraints

A range of observational constraints, including CMB
anisotropies (Aloni et al. 2017; Poulter et al. 2019)
and microlensing observations (Green 2016; Niikura
et al. 2019), have placed upper bounds on f (M), i.e. the
PBH fraction in CDM (see, for example, Carr et al. (2017);
Carr et al. (2010)). Nevertheless, the published bounds
assume that all PBHs have the same mass. These so-called
monochromatic constraints on f (M) were traditionally the
main quantity of interest in the literature, as there is a wide
range of observational techniques that can place upper
bounds on f (M) over several decades of M.

If we now assume that PBHs are formed across a
spectrum of masses, the monochromatic upper bounds,
denoted f mono

max (M), must be corrected using procedures
such as those previously presented in Azhar & Loeb (2018);
Carr et al. (2017); Kühnel & Freese (2017); Lehmann
et al. (2018). These studies have only relatively recently
gained traction, but are nevertheless indispensable if PBHs
were to be taken as a serious candidate for dark matter and
GW sources.

The upshot from these studies is that the corrected
upper bound for the total PBH fraction in CDM, f PBH,max,
is given by

fPBH,max =
(
∫

f (M)
f mono
max (M)

d log M
)−1

(22)

Carr et al. (2017). The result from applying this correc-
tion to monochromatic constraints on the log-𝛿 model is
shown in Figure 1. The figure shows the contour lines of
constant PBH fraction f PBH (Equation 14), as a function
of model parameter A (vertical axis) and k0 (horizontal
axis, converted to the corresponding horizon mass through
Equation (11)). The thick line shows the corrected upper
bound f PBH,max. In other words, the region below the thick
line is the allowed parameter space for the log-𝛿 model
given current observations.3

The upper bound is increasing in the domain shown,
until MH ∼ 102M⊙, where the dip corresponds to the more
stringent constraint from the CMB anisotropies, since PBH
accretion effects can significantly alter the ionization and
thermal history of the Universe (Ricotti et al. 2008).

Another interesting observation from the figure is the
values of f pbh along the thick line. The maximum occurs
when the spike is at MH = 10−8M⊙, with f PBH ≈ 0.46,
and the minimum at MH = 103M⊙, with f PBH ≈ 1.6× 10−3.
This means that present constraints allow the log-𝛿 model
to consolidate almost half of all dark matter into PBHs.
However, this comes from imposing a spike at very
small scales where the additional nonlinear effects (which
have been unaccounted for) become significant. These
small-scale effects include large PBH velocity dispersion,
accretion, and clustering effects seen in previous numer-
ical investigations (e.g. Hütsi et al. (2019); Inman &
Ali-Haïmoud (2019)). These effects will weaken the valid-
ity of the upper bounds on f pbh at such small scales.

5 EXTREME PBHS

Having established a method to calculate the PBH num-
ber count and mass function, we now set out to derive
the probability distribution of the most massive PBHs
expected in an observational volume. Our calculation is
based on the exact extreme-value formalism previously
used in the context of massive galaxy clusters (Harrison &
Coles 2011, 2012) and cosmic voids (Chongchitnan 2015;
Chongchitnan & Hunt 2017). We summarize the key con-
cepts and equations in this section.

3We use observational constraints summarized in fig. 3 of Carr
et al. (2016), and interpolated the upper bounds to obtain an
approximate functional form for f mono

max (M).
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Using the most massive PBHs to constrain their cos-
mological origin is motivated by the same reasons that the
most massive galaxy clusters and the largest cosmic voids
can be used to constrain cosmology: the largest and most
massive structures can typically be observed more easily
while smaller objects are more dynamic and their obser-
vation typically suffers from larger systematic errors. In
terms of PBHs, extreme-value probabilities can, at least,
constrain the parameters of the underlying inflationary
theory, or shed light on their merger history, or, at best,
rule out the formation theory altogether. While a com-
plete mass distribution of PBHs within an observational
volume would be an even more powerful discriminant of
PBH formation theories, in practice it would be extremely
challenging to determine with certainty which black holes
are primordial and which are formed through a stellar col-
lapse or a series of mergers (see Chen & Huang (2019);
García-Bellido (2017) for some novel methods).

5.1 Exact extreme-value formalism

From the PBH number count Equation (17), we can con-
struct the probability density function (pdf) for the mass
distribution of PBHs with mass in the interval [log M, log
M + d log M] within the redshift range [0, z] as

f<z(M) =
fsky

Ntot ∫
z

0
dz dV

dz
dn

d log M
. (23)

To verify that this function behaves like a pdf, one can
see that by comparing Equations (17) and (23), we have the
correct normalization

∫
∞

−∞
f<z(M) d log M = 1.

The cumulative probability distribution (cdf), F(M),
can then be constructed by integrating the pdf as usual:

F(M) = ∫
log M

log Mmin

f<z(m)d log m. (24)

This gives the probability that an observed PBH has
mass ≤M.

Now consider N observations of PBHs drawn from a
probability distribution with cdf F(M). We can ask: what
is the probability that the observed PBH will all have mass
≤M*? The required probability, Φ, is simply the product of
the cdfs:

Φ(M∗,N) =
N∏

i=1
Fi(M ≤ M∗) = FN(M∗) (25)

F I G U R E 2 The extreme-value probability density function
for PBHs assuming the log-𝛿 model with spike at MH = 102M⊙,
assuming that N = 10, 102, 103 observations up to z = 0.2

assuming that PBH masses are independent, identically
distributed variables. As Φ is another cdf, the pdf of
extreme-mass PBH can be obtained by differentiation:

𝜙(M∗,N) = d
d log M∗ FN(M∗) = Nf<z(M∗)[F(M∗)]N−1

(26)
It is also useful to note that the peak of the

extreme-value pdf (the turning point of𝜙) is attained at the
zero of the function

X(M) = (N − 1)f 2
<z + F

df<z

d log M
, (27)

as can be seen by setting d𝜙/d log M* = 0.
In summary, starting with the PBH mass function,

one can derive the extreme-value pdf for PBHs using
Equation 26.

5.2 Application to the log-𝛅 model

Figure 2 shows the pdfs of extreme-mass PBHs given
for N = 102, 103, and 104 observations up z = 0.2 (this
figure summarizes the key results of this work). We
assume the log-𝛿 model with the power-spectrum spike
at MH = 102M⊙. The pdfs are not symmetric but have a
positive skewness, consistent with previous derivations of
extreme-value pdfs by Chongchitnan (2015); Chongchit-
nan & Hunt (2017). As N increases, the peaks of the pdf
naturally shift toward higher values of M*, with increasing
kurtosis (i.e. more sharply peaked).

When we vary the location of the spike (while keep-
ing N fixed, and using values of A that saturate the upper
bound shown in Figure 1), we obtain an almost linear
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F I G U R E 3 Profile of the extreme-value pdf peaks (solid line)
and the 5th/95th percentiles (dashed lines) for the log-𝛿 model as
the spike location is varied (horizontal axis), assuming 100
observations of PBHs up to z = 0.2. The vertical axis shows the
location of the peaks. The relationship is linear to a good
approximation (Equation 28)

variation as shown in Figure 3 (in which N = 100). Each
vertical slice of this figure can be regarded as the profile
of the extreme-value pdf, with the peak of the pdf being
along the solid line, while the 5th and 95th percentiles
are shown in dashed lines. The band is linear to a good
approximation, with the peak M∗

peak satisfying the relation

M∗
peak ≈ 2.3MH . (28)

The percentile band spans a narrow range of loga-
rithmic masses. We see that the log-𝛿 model can pro-
duce massive PBHs with masses of order ∼30M⊙, using
spikes at MH ∼ 10M⊙ (the former being within the 5th
and 95th percentile band). It is possible to integrate the
extreme-value pdfs in Figure 2 to calculate the proba-
bility that the extreme-mass PBH at redshift 0.2 is, say,
>30M⊙.

It is also interesting to consider how tightening obser-
vation bounds will affect the extreme-value pdfs. Figure 4
shows what happens in this situation in the model with
MH = 103M⊙ (with N = 100), supposing that the upper
bound on f pbh is tightened to 50% of the current values (a
realistic prospects for future experiments such as Euclid
[Habouzit et al. 2019]). We see that, in line with expecta-
tion, the pdf shifts to smaller masses by ∼20%, while the
distance between the 5% and 95% percentiles shrinks by
∼30%.

Finally, one might ask what value of N should be used
in this kind of study. Although from a statistical point of
view, N is defined as the number of distinct samples drawn
the pdf f (M), in practice it is unclear how to quantify

F I G U R E 4 Extreme-value pdfs for the log-𝛿 model with
MH = 103M⊙ given current constraints (thick line) and futuristic
constraints. The pair of vertical dotted lines on each pdf indicates
the 5th and 95th percentiles. If observational constraints on f pbh

were tightened to 50% the current values, the peak of the
extreme-value pdf would shift downwards by 20%, while the
inter-percentile distance would shrink by ∼30%

the true number of PBH observations and especially given
the additional complication of various selection biases.
Individually identified PBHs can be detected using differ-
ent probes such as microlensing and gravitational wave
emission, but the observable number of PBHs detectable
by one particular method is much smaller than the total
number that would be theoretically observable. Thus, to
minimize the effect of selection bias, it is more precise to
define N as the observed observable number of PBHs from
a particular choice of observation.

6 DISCUSSION ON RECENT
THEORETICAL DEVELOPMENT

6.1 Peak theory

To complete our investigation, we consider an alternative
to calculating PBH abundances using Peak Theory, which
postulates that PBHs result from peaks in the primordial
overdensity field exceeding a threshold value (see Bardeen
et al. (1986); Green et al. (2004) for reviews). It is well
known that the PS and Peak Theory do not agree, although
previous authors have suggested that Peak Theory is
grounded on a firmer theoretical footing, and is more sen-
sitive to the shape of the inflationary power spectrum (Ger-
mani & Musco 2019; Kalaja et al. 2019; Young et al. 2019).
Nevertheless, there are still conceptual issues with both
PS and Peak Theory, with a number of extensions having
been recently proposed (Germani & Sheth 2020; Suyama &
Yokoyama 2020).
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F I G U R E 5 The extreme-value probability density function
from Peak Theory, assuming the log-𝛿 model with spike at
MH = 102M⊙, assuming that N = 10, 102, 103 observations up to
z = 0.2. In contrast with the pdfs in Figure 2 (obtained using PS
theory), the Peak-Theory pdfs attain maxima at lower M*, and have
skewness of the opposite sign

In this section, we recalculate the extreme-value distri-
bution 𝜙(M) shown previously in Figure 2 using Peak The-
ory in the formulation proposed by Young & Byrnes (2019).
Using their formalism, we found the PBH fraction f (M)
(see Equation 16) for the log-𝛿 model to be4

fpeak(M) = Ωm

ΩCDM ∫
∞

a(M)
𝜏(MH)Bpeak

MH
(M)d log MH (29)

Bpeak
MH

(M) = M
3𝜋MH

(
k0

aH

)3

v3e−v2∕2, (30)

v = 𝛿(M)
𝜎(MH)

=

(
M

KMH

)1∕𝛾
+ 𝛿c

𝜎(MH)
(31)

a(M) = log
⎛⎜⎜⎜⎝

M

K
(

2
3
− 𝛿c

)𝛾

⎞⎟⎟⎟⎠ , (32)

where 𝜏(MH) is given in Equation (13) .
Some extreme-value pdfs from Peak Theory are shown

in Figure 5. This should be compared with the same distri-
butions calculated using PS formalism in Figure 2.

With N ≳ 100 observations, the extreme-value pdfs
from both formalisms attain similar profiles. We observed
that the Peak Theory pdfs attain maxima at a slightly

4We note that the power spectrum of the log-𝛿 model significantly
reduces the complicated integrals obtained in Young et al. (2019). For
example, in their, we find a simple relation 𝜇 = k0𝜎.

lower M* values compared to the Press–Schechter pdfs.
With N = 100, a similar numerical analysis of the relation
between the maxima of the extreme-value-pdf (M∗

peak−PT))
and the location of the spike is found to be:

M∗
peak−PT ≈ MH . (33)

(compare with Equation 28). Although we did observe that
the two formalisms predict total PBH number counts that
are different by a few orders of magnitude (as corrobo-
rated by previous studies), the extreme-value pdfs are not
so drastically different. This is because the extreme pdfs are
integrated over redshifts and masses, thus when the pdfs
are normalized, the effects from large differences in N tot
are suppressed.

It is also interesting to note that the different func-
tional forms of BMH lead to different skewness in the
extreme-value pdfs (where the skewness is calculated on
semilog scale as shown). The Peak-Theory pdfs are neg-
atively skewed while the PS pdfs are positively skewed.
See Appendix B for an analytic explanation. It may be
possible to use this property to distinguish between the
peak-theory and Press–Schechter-like formalism of PBH
formation.

6.2 The overdensity profile

The shape and height of the profile of density peaks are
governed by the constant K and the critical density 𝛿c in
Equation 6. Both quantities can vary depending on typi-
cal profiles of the density perturbation (see Musco (2019)
for a comprehensive theoretical study). To this end, we
re-evaluate the Peak Theory pdfs using the values K = 4
and 𝛿c = 0.55 as proposed by Young et al. (2019), instead of
the fiducial values K = 3.3 and 𝛿c = 0.45. Figure 6 shows
the comparison between the two sets of parameters for the
model with MH = 102M⊙ assuming N = 103. It appears that
the extreme-value pdfs only depend weakly to changes in K
and 𝛿c: Increasing these parameters (by ∼30%) only results
in a few-percent shift of the pdf to higher logarithmic
masses.

7 CONCLUSION

In this work, we have established a framework to calcu-
late the mass distribution of most massive PBHs expected
within a given observational volume. The calculations
were based mainly on four main ingredients:

• the PBH formation mechanism (e.g. details of inflation
or the shape of (k)).
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F I G U R E 6 The effect of changing K and 𝛿c on the
extreme-value probability density function from Peak Theory,
assuming the log-𝛿 model with spike at MH = 102M⊙, assuming
that N = 103 observations up to z = 0.2. Changing (K, 𝛿c) from
(3.3,0.45) to (4,0.55) (solid and dashed lines respectively) shifts the
pdf to higher M* by a few percent

• the abundance of massive objects (e.g. Press–Schechter
or Peak Theory).

• the exact extreme-value formalism.
• the observational constraints on f pbh (the PBH fraction

in CDM).

We applied our formalism to the log-𝛿 model, a pro-
totype of models with a spike in the power spectrum.
Such spikes are generically associated with inflationary
models that produce interesting densities of PBH (e.g.
via a phase transition in the early Universe). Our main
results are the extreme-value pdfs shown in Figures 2
and 5. The fact that the location of the power-spectrum
spike is close to the peak of the resulting extreme-value
pdf gives assurance that our calculations are sound, and
can thus be applied to many inflationary models known
to produce PBHs. In future work, we will present a sur-
vey of extreme-value pdfs for a range of inflationary
scenarios.

Some avenues for further investigation include study-
ing the effect of changing the mass function (for
example, extending the Sheth–Tormen mass function to
PBHs [Chongchitnan & Efstathiou 2007b]), as well as
understanding the role of PBH clustering and merger
(Kohri & Terada 2018; Raidal et al. 2017, 2019; Tada &
Yokoyama 2015; Young & Byrnes 2019), which will serve
to strengthen the validity of the extreme-value formalism
presented here. We envisage that there are other uses for
the extreme-value pdfs that the formalism presented can
be adapted, for instance, to quantify distribution of the
most massive intermediate-mass black holes that could

subsequently seed supermassive black holes at galactic
centers (Dolgov 2020).
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APPENDIX A. THE MINIMUM INITIAL
MASS OF AN UNEVAPORATED BLACK HOLE
AT REDSHIFT Z

Consider a Schwarzschild black hole. Its decay rate
depends on three variables, namely, (1) the spin (s)
of the particles it decays into, (2) the energy (E) of
those particles, and (3) the instantaneous mass (M) of
the black hole. By summing over all the emitted par-
ticles, the decay rate of a black hole can be expressed
as follows:

dM
dt

= − 1
2𝜋ℏc2

∑
j

Γj ∫ dE E
exp(8𝜋GEM∕ℏc3) − (−1)2sj

,

(A1)
where the sum is taken over all emitted particle species.
The integral is taken over (0,∞) for massless particles, or
(𝜇j,∞) for massive particles with rest energy 𝜇j. Γj is the
dimensionless absorption probability, and sj is the spin of
the jth species.

MacGibbon (1991) showed that Equation (A1) can be
written as follows:

dM
dt

= −5.34 × 1022femit(M)M−2kgs−1. (A2)

The function f emit(M) is given in a rather complicated
piecewise form in Equation (7) in MacGibbon (1991).
Equation (A2) can be inverted and integrated to yield the
evaporation timescale, 𝜏evap, as follows:

𝜏evap = (1.87266 × 10−23 s kg−1)∫
Mi

Mf

dMf(M)−1M2, (A3)

where Mi is the initial mass of the black hole and Mf is the
final mass. Letting Mf = 0 and Mi = M*, we can obtain M*
as a function of z by solving the nonlinear equation:

𝜏evap(z)|Mf =0,Mi=M∗ = tuniv(z), (A4)

https://doi.org/10.1088/1475-7516/2019/10/031
https://doi.org/10.1088/1475-7516/2019/10/031
https://doi.org/10.1088/14757516/2019/11/012
https://doi.org/10.1002/asna.202113826
https://doi.org/10.1002/asna.202113826
https://doi.org/10.1002/asna.202113826
https://doi.org/10.1002/asna.202113826
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where tuniv is the age of the universe at redshift z. The
minimum initial black hole mass as a function of red-
shift is shown in Figure A1. The figure closely resem-
bles fig. 1 of MacGibbon (1991), although we believe that
the labeling of the two curves in that figure should be
exchanged.

APPENDIX B. SKEWNESS OF THE
EXTREME-VALUE DISTRIBUTION (PRESS–
SCHECHTER VS. PEAK-THEORY)

Let us explore a simple analytic approximation of the
extreme-value pdf in order to show that the skewnesses
(on log mass scale) calculated using the above theories
are of opposite signs. To this end, we will study the sim-
plest case N = 1, in which case the extreme-value pdf is
𝜙(M) = f <z(M)∼ f (M)/M (using Equations (16), (23), and
(26)). Here, f (M) are the PBH fractions given in 12 and 29
for the two formalisms respectively. We will focus on the
evolution in M only.

B.1 Press–Schechter
We make the approximation for the variance of
PBH-forming overdensity: 𝜎 ∼R−2) where R is the scale of
the window function. Thus, in terms of mass within the
filter, 𝜎 ∼M−2/3. The mass-dependent terms in the mass
fraction 12 can then be expressed as

fPS(M) ∼ M4 ∫ x−13∕3 exp(−x4∕3[𝛿c +
M3

x3 ]2)dx.

F I G U R E A1 Minimum initial mass of a black hole, which
has not evaporated, observed at redshift z. The solid line is the result
assuming the LCDM universe with Planck 2018 parameters. For
comparison, the dashed line assumes the Einstein–de Sitter (EdS)
cosmology (Ωm = 1,ΩΛ = 0)

F I G U R E B1 The simplified extreme-value pdf for the
Press–Schechter and Peak-Theory formalisms, normalized so that
the maximum is at 𝜙 = 1. Their skewnesses (on log mass scale) are
evidently of opposite signs

We approximate the integral in two regimes. When M
is small, the M dependence in the integral is negligible,
so f PS ∼M4. When M is large, the M dependence can be
removed from the integral via a substitution t = M6x−14/3,
leaving a gamma function and an overall M dependence of
f PS ∼M−2/7. In summary, we find

𝜙PS(M) ∼

{
M3 ,M ≪ 1,
M−9∕7 ,M ≫ 1.

B.2 Peak-theory
A similar approximation scheme [but this time retain-
ing the integral due to the M dependence in the lower
limit of Equation (29)] shows that the mass fraction can
be approximated by an incomplete gamma function. One
then obtains:

𝜙peak(M) ∼ M3∕2Γ(25∕8,M4∕3)

The functions 𝜙PS and 𝜙peak are plotted in Figure B1
below on a semilog scale. Evidently, their skewnesses differ
in sign, as can be confirmed numerically. For larger N, the
extreme-value pdfs retain their respective sign as seen in
the main text.


