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The brane world description of our Universe entails a large extra dimension and a fundamental scale of
gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence
of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational
field equations, which often have properties quite distinct from the standard black hole solutions of general
relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid,
governed by the barotropic, polytropic, strange quark “bag” model and Hagedorn equations of state, is
investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-
density limit, determine the equation which governs the formation of apparent horizons and investigate the
conditions for the formation of naked singularities. Though, naively, one would expect the increased
effective energy density on the brane to favor the formation of black holes over naked singularities, we find
that, for the types of fluid considered, this is not the case. However, the black hole solutions differ
substantially from their general-relativistic counterparts and brane world corrections often play a role
analogous to charge in general relativity. As an astrophysical application of this work, the possibility that
energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in
the brane world is also considered.
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I. INTRODUCTION

Fundamental results in superstring theory and M theory
suggest that our four-dimensional world is embedded into a
higher-dimensional space-time. Inparticular, ten-dimensional
E8 ⊗ E8 heterotic superstring theory is obtained as the
low-energy limit of eleven-dimensional supergravity, under
the compactification scheme M10 × S1=Z2 [1,2]. In order
for this result to be compatible with the basic observation
thatweappear to live in a large, four-dimensional universe, the
remaining ten-dimensional space-time must be decomposed
as thecrossproductofa four-dimensionalmanifold,with three
large spatial dimensions and one dimension of time, and a
six-dimensional spacelike manifold, compactified on a much
smaller hierarchy of length-scales, M4 × CY6 × S1=Z2,
implying that our Universe exists as a ð3þ 1Þ-dimensional
“brane” embedded into a higher-dimensional bulk space.
In this paradigm, standard model particles are described by
open stringmodes, inwhich the string end points are confined
to the brane world, while gravitons are described by closed
strings which propagate freely within the bulk [3].

In light of these fundamental results, numerous string-
inspired phenomenological models of higher-dimensional
cosmology have been devised [4–50]. Among the collec-
tion of brane world scenarios, the Randall-Sundrum type-II
model has the virtue of providing a new kind of compacti-
fication of gravity [51,52]. In this scenario, standard four-
dimensional gravity is recovered as the low-energy limit of
the theory, in which a three-brane of positive tension is
embedded in a five-dimensional anti–de Sitter bulk space.
The covariant formulation of the brane world model, given
by Shiromizu, Maeda and Sasaki [53], leads to a modifi-
cation of the standard Friedmann equations on the brane. In
this scenario, the dynamics of the early universe may be
substantially altered by the presence of additional quadratic
terms in the energy density, resulting from the brane
tension, as well as by the effects of nonzero components
of the bulk Weyl tensor, which both give contributions to
the effective, four-dimensional, energy-momentum tensor.
For general reviews of brane world gravity and resulting
cosmologies, see [54–62].
Similarly, these effects imply a modification of the basic

equations describing cosmological and astrophysical
dynamics, which have been extensively studied in the
literature [63]. Specifically, several classes of static, spheri-
cally symmetric, solutions of the vacuum field equations on
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the brane have been obtained [64–67]. As a possible
physical application of these solutions the behavior of the
angular velocity, vtg, of test particles in stable circular orbits
has been considered [66–71]. The general form of the
solution, together with the specific values of the two,
arbitrary, constants of integration, uniquely determines
the rotational velocity of the particle. Interestingly, for a
particular range of values in the parameter space, the angular
velocity tends to a constant for large radial distances. This
behavior is typical for massive particles (e.g. hydrogen
clouds) orbiting the outer regions of galaxies, and is usually
explained by postulating the existence of the dark matter.
The exact galactic metric, dark radiation, dark pressure and
lensing effect in the flat rotation curves region of the brane
world scenario were determined in [67]. Brane world dark
energy has been studied in [72–75].
For standard, general-relativistic, spherical compact

objects, the exterior space-time is described by the
Schwarzschild metric. However, in five-dimensional brane
world models, the brane-tension corrections to the energy
density, together with the Weyl stresses from bulk grav-
itons, imply that, on the brane, the exterior metric of a static
star is no longer Schwarzschild [76]. The presence of the
Weyl stresses also means that the matching conditions do
not have a unique solution on the brane. In general, a
knowledge of the five-dimensional Weyl tensor is required
as a minimum condition for uniqueness. Static, spherically
symmetric, exterior vacuum solutions to the brane world
field equations were first studied by Dadhich et al. [76] and
Germani and Maartens [77]. The first of these solutions,
obtained in [76], has the mathematical form of the
Reissner-Nordstrom solution, in which a tidal Weyl param-
eter plays the role of the electric charge in the general-
relativistic solution and was obtained by imposing the null
energy condition on the three-brane for a bulk having
nonzero Weyl curvature. The exterior geometry can be
matched to the interior solution, corresponding to a brane
world star of constant density. A second exterior solution,
which also matches a constant-density interior, was derived
in [77].
Two further classes of spherically symmetric vacuum

solutions in the brane world model (with gtt ≠ −1=grr),
parametrized by the Arnowitz-Deser-Misner mass and a
parameterized post-Newtonian parameter, β, were found by
Casadio, Fabri and Mazzacurati [78]. Nonsingular black
hole solutions have also been considered in [79], by
relaxing the condition of zero scalar curvature but retaining
the null energy condition. The “on-brane,” four-dimen-
sional, Gauss-Codazzi equations for an arbitrary, static,
spherically symmetric star in the Randall-Sundrum type-II
model have been completely solved by Visser andWiltshire
[80]. The on-brane boundary may also be used to determine
the full, five-dimensional, space-time geometry and this
procedure can be generalized to solid objects such as
planets. A method to extend asymptotically flat, static,

spherically symmetric brane world metrics into the bulk
was proposed by Casadio and Mazzacurati [81], where the
exact integration of the field equations along the fourth
spatial coordinate was done by using the multipole (1=r)
expansion. These results suggest that the shape of the
horizon for brane black holes is very likely to be a flat
“pancake” for astrophysical sources.
In [82], the general solution to the trace condition of the

four-dimensional Einstein equations for static, spherically
symmetric, configurations was used to construct a general
class of black hole metrics containing one arbitrary
function, gtt ¼ AðrÞ, which vanishes at some distance, r ¼
rh > 0 (the horizon radius). Under certain reasonable
restrictions black hole metrics were shown to exist, either
with or without matter. Depending on the boundary
conditions, these metrics can be asymptotically flat, or
have any other prescribed asymptotic behavior.
The formation of compact objects, gravitational collapse

and singularity formation in the brane world have been
extensively studied in recent years, from a number of
perspectives. On-brane solutions corresponding to brane
world stars [83–88] and collapse solutions ending in both
black holes [89–113] and naked singularities [114,115]
have been found, though the latter seem to have been
comparatively neglected in the literature. Among the black
hole solutions obtained, a class of topologically charged
black holes exists in which bulk effects play a nontrivial
role [116,117] and bulk black hole solutions which
effectively localize to the brane have been studied in
[118]. Certain aspects of the causal structure of on-brane
and bulk black hole solutions have been studied by
analyzing their timelike geodesics [119,120] though, again,
comparatively little work has been done in this area. For a
review of the black hole properties and of lensing effects in
brane world models, see [91]. Further work on lensing in
brane worlds is presented in [121–125] and current obser-
vational constraints on the model parameters from classical,
solar system tests are contained in [126,127].
Investigating the final fate of the collapse of an initially

regular distribution of matter, in the framework of four-
dimensional general relativity, is also one of the most active
fields in contemporary gravitational research. One would
like to know whether, and under what initial conditions,
gravitational collapse results in black hole formation. One
would also like to know if there are physical solutions that
lead to naked singularities. If found, such solutions would
be counterexamples of the cosmic censorship hypothesis,
which states that curvature singularities in asymptotically
flat space-times are always shrouded by event horizons.
This idea, also known as the cosmic censorship con-

jecture, was first proposed by Penrose [128] and can be
formulated in both a strong sense (in a reasonable space-
time we cannot have a naked singularity), or a weak sense
(even if such singularities occur they are safely hidden
behind an event horizon and cannot communicate with

TIBERIU HARKO AND MATTHEW J. LAKE PHYSICAL REVIEW D 89, 064038 (2014)

064038-2



outside observers). Since Penrose’s initial proposal, there
have been numerous attempts to try to prove the conjecture
in a general sense (see [129] and references therein), but,
unfortunately, none have been successful so far.
Since due to the complexity of the full Einstein equa-

tions, the general problem appears (for the time being) to be
intractable, metrics with specific symmetries must be used
to construct concrete models of gravitational collapse
whose properties, such as the existence of horizons,
can then be determined. One such example is the two-
dimensional reduction of general relativity obtained by
imposing spherical symmetry. Even with this scenario,
however, very few inhomogeneous, exact, nonstatic sol-
utions have been found. One well-known example is the
Vaidya metric [130], which describes the gravitational field
associated with the eikonal approximation of an isotropic
flow of unpolarized radiation, or, in other words, a null
fluid. It is asymptotically flat and is employed in modeling
the external field of radiating stars and evaporating black
holes. A second example is the Tolman-Bondi metric [131],
which gives the gravitational field associated with dust
matter and is frequently applied either in cosmological
models or in describing the collapse of a star to form a
black hole. Tolman-Bondi space-times include the
Schwarzschild solution, the Friedman-Robertson-Walker
metric and the Oppenheimer-Snyder collapse, as well as
inhomogeneous expansions and collapses, which may also
lead to naked singularities [132].
At first sight these two metrics are completely different.

Do the naked singularities that form in the collapse of null
radiation and in the collapse of dust bear any relation to
each other? Are there any features common to both
solutions? And, if so, what are the implications for cosmic
censorship? As shown by Lemos [133], the naked singu-
larities that appear in the Vaidya and Tolman-Bondi space-
times are of the same nature. Various important features
such as the degree of inhomogeneity necessary to produce a
naked singularity, the Cauchy horizon equation, the ap-
parent horizon equation, the strength of the singularity and
the stability of the space-time have a mutual correspon-
dence in both metrics. For cosmic censorship, this result
implies that, if the shell-focusing singularities arising from
the collapse of a null fluid are not artifacts of some
(eikonal) approximation, then the shell-focusing singular-
ities arising from the collapse of dust are, likewise, not
artifacts, and vice versa. Conversely, if the naked singu-
larities are artifacts of an eikonal approximation in one
metric, they must also be artifacts in the other.
Thus the Vaidya solution belongs to the Tolman-Bondi

family and the most unbound case yields the Vaydia metric,
as originally discovered in [130]. It is therefore reasonable
to expect that major features that arise in one may also
appear in the other. One example of such a result is the fact
that the strength of singularity in the Vaidya metric depends
on the direction from which the geodesics enter [133].

Null fluids, are, in principle, easier to treat than matter
fields. A null fluid is the eikonal approximation of a
massless scalar field. Thus if one shows that the naked
singularities arising in the Vaidya metric can be derived
from more fundamental (massless) fields, then the naked
singularities which form in the Tolman-Bondi collapse may
also be derived from more fundamental (massive) fields.
The same types of relations and conclusions hold for
charged radiation and charged pressureless matter (i.e.
dust). The structure and properties of singularities arising
from gravitational collapse in Vaidya space-times have
been analyzed, from different points of view, in [134–138].
Within the framework of various physical models,

spherically symmetric gravitational collapse has been
analyzed in many papers. The role of initial density and
velocity distributions towards determining the final out-
come of spherical dust collapse and the causal structure of
the singularity has been examined in terms of the evolution
of apparent horizons in [139,140]. This collapse is
described by the Tolman-Bondi metric with two free
functions and can end in either in the formation of a black
hole or a naked singularity. The occurrence and nature of
naked singularities in the Szekeres space-times, represent-
ing irrotational dust, were investigated in [141]. The
Szekeres space-times have no Killing vectors and are the
generalizations of the Tolman-Bondi solutions. Naked
singularities that satisfy both the limiting focusing con-
dition and the strong limiting focusing condition also exist.
The role of the initial state of a collapsing dust cloud in
determining its final fate has been considered in [142]. For
an arbitrary matter distribution at t ¼ 0, there is always the
freedom to choose the rest of the initial data, namely the
initial velocities of the collapsing spherical shells, so that,
depending on this choice, the collapse could result in either
a black hole or a naked singularity. Thus, given the initial
density profile, to achieve the desired end state of the
gravitational collapse one has to give a suitable initial
velocity distribution to the cloud. The expression for the
expansion of outgoing null geodesics in spherical dust
collapse was derived in [143] and the limiting values of the
expansion in the approach to singularity formation were
computed. Using these results one can show that the
horizon-shielded, as well as the naked singularity, solutions
arising in spherical dust collapse are stable with respect to
small perturbations in the equation of state.
The growth of the Weyl curvature is examined in two

examples of naked singularity formation in spherical
gravitational collapse (collapsing dust and the Vaidya
space-time), in [144]. The Weyl scalar diverges along
outgoing, radial, null geodesics as they meet the naked
singularity in the past. Although general relativity admits
naked singularities arising from gravitational collapse,
the second law of thermodynamics could forbid their
occurrence in nature. A simple model for the corona of
a neutrino-radiating star showing critical behavior is
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presented in [145] and the conditions for the existence, or
absence, of a bounce (i.e. explosion) are discussed. The
charged Vaidya metric was extended to cover the whole
space-time in [146] and the Penrose diagram for the
formation and evaporation of a charged black hole was
therefore obtained. The covariant equations characterizing
the strength of a singularity in spherically symmetric space-
times and a slight modification to the definition of
singularity strength were derived in [147]. The idea of
probing naked space-time singularities with waves rather
than with particles was also proposed in [148]. For some
space-times, the classical singularity becomes regular if
probed with waves, while stronger classical singularities
remain singular.
In order to obtain the correct energy-momentum tensor

for the collapse of a null fluid in a spherically symmetric
geometry, an inverted approach was proposed by Husain
[149]. In this method, the general form of the stress-energy
tensor is determined from the general formof themetric. The
equation of state and an appropriate set of energy conditions,
for example the dominant energy conditions (DEC), orweak
energy conditions (WEC), are then imposed on its eigen-
values. This leads to a set of partial differential equations for
the metric function, which determines the mass within a
given radius, at any given time. The precise form of the
stress-energy tensor is then displayed. Using this approach,
two classes of solutions, describing the collapse of a null
fluid satisfying the barotropic and polytropic equations of
state, were obtained in [149]. Within a similar framework, a
large class of solutions, including those for the collapse of
type-II fluids [150,151] and most of the known solutions of
the Einstein field equations, was derived, in four dimen-
sions, by Wang and Wu [152], and in N ≥ 4 dimensions by
Villas da Rocha [153]. The radiating Vaidya metric has also
been extended to include both a radiation field and a string
fluid by Glass and Krisch [154,155] and by Govinder and
Govender [156].
Further work on inhomogeneous, nonstatic, spherically

symmetric solutions in general relativity is presented in
[157–159], including one class of solutions extended to
include shear [159], and recent results regarding the
formation of singularities, both naked and clothed, are
contained in [160–163]. Interestingly, the radiation spectra
emitted from dust clouds collapsing to form both black
holes and naked singularities are studied in [163] and found
to be in qualitative agreement, suggesting it may be
difficult, even in principle, for observational tests to
distinguish between the two, at least within the context
of a four-dimensional Einstein universe. Similar classes of
solutions, generalized to higher-dimensional space-times,
are given in [164–166].
When nuclear matter is compressed to a sufficiently high

density, a phase transition is thought to occur which
converts neutron matter into free, three-flavor, (strange)
quark matter, due to the fact that the latter is expected to be

more stable than the former. The collapse of the quark
fluid, described by the bag model equation of state,
p ¼ ðρ − 4BÞ=3, with B ¼ const ≈ 1014 gcm−3, was stud-
ied in general relativity by Harko and Cheng [167] and the
conditions for the formation of a naked singularity were
obtained. This solution was later generalized to arbitrary
space-time dimensions and to a more general linear
equation of state by Ghosh and Dadhich [168,169]. The
nucleation of quark matter in neutron star cores, again in
the context of general relativity, was considered in [170]
and observational consequences of quark star remnants
(within the same paradigm) are discussed in [171]. Quark-
hadron phase transitions in brane world models were also
studied in [172].
In 1965 Hagedorn [173] postulated that, for large masses

m, the spectrum of hadrons, ρðmÞ, grows exponentially
according to ρðmÞ ∼ exp ðm=THÞ, where TH, known as the
Hagedorn temperature, is a scale parameter. The hypothesis
was based on the observation that, at some point, a further
increase of energy in proton-proton and proton-antiproton
collisions no longer raises the temperature of the resulting
fireball but, instead, results in increased particle production.
Thus there is a maximum temperature TH that a hadronic
system can achieve. This statistical model of hadrons has
been used, phenomenologically, to describe matter at
densities exceeding the nuclear density [174–177]. A
Hagedorn-type phase transition also occurs naturally in
theories containing fundamental strings, since these have a
large number of internal degrees of freedom [178]. As a
result of the existence of many oscillatory modes, the
density of states grows exponentially with the energy of a
single string. Thermodynamical quantities, such as the
entropy, diverge at the Hagedorn temperature. If one
considers an ensemble of weekly interacting strings at a
finite temperature, the behavior of the density of states is
thought to lead either to a limiting temperature, or to a
phase transition in which the string configuration changes
to one which is dominated by a single long string [179].
The high-density Hagedorn phase of matter has also been
extensively used in cosmology to describe the very early
phases of the evolution of the Universe [180–183] and the
spherically symmetric collapse of a Hagedorn fluid in the
Vaidya geometry has been studied in [184].
The aim of the present work is to study the spherically

symmetric collapse of various types of cosmological and
astrophysical fluid in the brane world scenario. In order to
simplify the mathematical formalism, we adopt the
assumption that the high-density fluid moves along the
null geodesics of a Vaidya-type space-time. The Vaidya
geometry, which also permits the incorporation of radiative
effects, offers a more realistic background than static
geometries, where all back reaction is ignored.
The structure of the paper is then as follows. In Sec. II we

review the basic mathematical formalism of brane world
models and determine the conditions under which nonlocal
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bulk effects may be ignored, leading to isotropic, quadratic,
corrections to the effective energy density and pressure on
the brane. The effective values are found to be functions of
only the physical energy density and pressure of the brane
world matter but also depend on the value of the (constant)
brane tension. In Sec. III we consider the high-density limit
of these functions, before substituting an appropriate equa-
tion of state to obtain the (approximate) brane world field
equations. Exact solutions to the approximate field equations
are then found, in terms of two arbitrary integration
functions, and an appropriate set of energy conditions is
applied, constraining their general forms. The behavior of
null geodesics is then investigated in order to determine the
equation which governs the formation of apparent horizons
for each fluid type. This, in turn, allows us to specify the
conditions necessary for the formation of naked singularities
in each collapse scenario. Sections IV–VII deal with null
fluids satisfying the barotropic, polytropic, strange quark
“bag” model and Hagedorn equations of state, respectively.
As an astrophysical application of this work, in Sec. VIII we
consider the possibility that energy emission from a
Hagedorn fluid, collapsing to form a naked singularity,
may be a source of GRBs in the brane world and compare
these results to those obtained from a similar analysis in four-
dimensional general relativity [184]. Section IX contains a
summary of our results and a brief discussion of their overall
relation to their general-relativistic counterparts.

II. THE FIELD EQUATIONS FOR STATIC,
SPHERICALLY SYMMETRIC VACUUM BRANES

In this section we briefly review the basic mathematical
formalism of brane world models, present the field equa-
tions for a static, spherically symmetric vacuum brane, and
discuss some of their consequences. We begin by consid-
ering a single, four-dimensional brane, on which matter is
confined, embedded within a five-dimensional bulk. Thus,
the brane world ðð4ÞM; gμνÞ is localized on a hypersurface
(BðXAÞ ¼ 0, with coordinates XA; A ∈ f0; 1; 2; 3; 4g) in the
bulk space-time ðð5ÞM; gABÞ. The induced four-dimensional
coordinates on the brane are labelled xμ; μ ∈ f0; 1; 2; 3; 4g.
The action of the system is given by [53]

S ¼ Sbulk þ Sbrane; (1)

where

Sbulk ¼
Z

ð5ÞM

ffiffiffiffiffiffiffiffiffiffiffi
−ð5Þg

q �
1

2k25
ð5ÞRþ ð5ÞLm þ Λ5

�
d5X; (2)

and

Sbrane ¼
Z

ð4ÞM

ffiffiffiffiffiffiffiffiffiffiffi
−ð5Þg

q �
1

k25
K� þ Lbraneðgαβ;ψÞ þ λb

�
d5X;

(3)

where k25 ¼ 8πG5 is the five-dimensional gravitational
constant, ð5ÞR and ð5ÞLm are the five-dimensional scalar
curvature and the matter Lagrangian in the bulk,
Lbraneðgαβ;ψÞ is the four-dimensional Lagrangian, which
is given by a generic functional of the brane metric gαβ and
the matter fields ψ ,K� is the trace of the extrinsic curvature
on either side of the brane, and Λ5 and λb (the constant
brane tension) are the negative vacuum energy densities in
the bulk and on the brane, respectively.
The Einstein field equations in the bulk are given by [53]

ð5ÞGIJ ¼ k25
ð5ÞTIJ; (4)

where

ð5ÞTIJ ≡ −2ffiffiffiffiffiffiffiffiffiffiffi−ð5Þg
p δðð5ÞLm

ffiffiffiffiffiffiffiffiffiffiffi−ð5Þg
p

Þ
δð5ÞgIJ

¼ −Λ5
ð5ÞgIJ þ δðBÞ½−λbð5ÞgIJ þ TIJ� (5)

is the energy-momentum tensor of the bulk matter fields,
while Tμν is the energy-momentum tensor localized on the
brane, which is defined by

Tμν ≡ −2ffiffiffiffiffiffi−gp δðLbrane
ffiffiffiffiffiffi−gp Þ

δgμν
: (6)

The delta function δðBÞ denotes the localization of brane
contribution. In the five-dimensional space-time the position
of the brane represents the fixed point of a Z2 symmetry and
the on-brane values of basic fields are obtained by projec-
tions from the bulk onto the four-dimensional hypersurface
it occupies. In particular, the induced four-dimensional
metric is given by gIJ ¼ ð5ÞgIJ − nInJ, where nI is the
spacelike unit vector field normal to the brane hypersurface,
ð4ÞM. In the following we assume that the matter content of
the bulk, outside the brane hypersurface is zero, ð5ÞLm ¼ 0,
for the sake of simplicity. Since the entire matter content of
the theory is confined to the four-dimensional brane world,
in this scenario, only gravity can probe the extra dimensions.
Assuming a metric of the form ds2 ¼ ðnInJ þ gIJÞ

dxIdxJ, where nI denotes the unit normal to the set of
χ ¼ const. hypersurfaces, nIdxI ¼ dχ, and gIJ is the
induced metric on these hypersurfaces, the effective
four-dimensional gravitational equation on the brane takes
the form [53]:

Gμν ¼ −Λgμν þ k24Tμν þ k45Sμν − Eμν; (7)

where Sμν is the local quadratic energy-momentum
correction,

Sμν ¼
1

12
TTμν − 1

4
Tμ

αLνα þ
1

24
gμνð3TαβTαβ − T2Þ; (8)

and Eμν is the nonlocal effect from the free bulk gravita-
tional field, given by the transmitted projection of the bulk
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Weyl tensor (CIAJB), EIJ ¼ CIAJBnAnB, which obeys the
property EIJ → Eμνδ

μ
I δ

ν
J as χ → 0. Here, k4 denotes

the four-dimensional coupling constant, which is related
to the usual, four-dimensional, gravitational constant
via k24 ¼ 8πG.
The effective four-dimensional and fundamental five-

dimensional cosmological constants, Λ and Λ5, and the
four-dimensional and five-dimensional coupling constants,
k4 and k4, are related to each other, and to the intrinsic
brane tension, λb, via Λ ¼ k25ðΛ5 þ k25λ

2
b=6Þ=2 and

k24 ¼ k45λb=6, respectively. Therefore, in the limit
λ−1b → 0, we recover the action and equations of motion
of standard general relativity on the brane [53].
The brane tension λb is an important parameter in

determining the properties of brane world models. Its
numerical value is constrained by the validity of
Newtonian gravity, in four dimensions, on length scales
smaller than 0.1 mm [185]. The minimum bound on λb
from such experiments is given by λb ≥ ð100 GeVÞ4
[186,187]. If certain stringent conditions on the brane
tension were satisfied, post-inflationary brane cosmology
would always deviate from the standard Big Bang cosmol-
ogy. For example, the necessity of nucleosynthesis on the
brane leads to a constraint on the brane tension of λb >
ð1 MeVÞ4 [188]. Furthermore, if we do not want to plague
the inflaton potential with nonrenormalizable quantum
corrections, inflation is required to begin at a scale below
the four-dimensional Planck mass, thus constraining the
brane tension to 1064 ðGeVÞ4 < λb < 1 ðMeVÞ4 [188]. In
brane world models the reheating temperature Treh satisfies,
to a very good approximation, the relation Treh ≈ λ1=4b
[189,190] and this imposes the constraint 0.891 ×
1025 ðGeVÞ4 ≥ λb ≥ 14.26 × 1025 ðGeVÞ4 [190].
The five-dimensional gravitational coupling constant k5

and the five-dimensional cosmological constant ð5ÞΛ
are constrained by the present value of the gravitational

constant G via ðk45=6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2b − 6ð5ÞΛ=k25

q
≈ k35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ð5ÞΛ=6
p

¼
8πG ≈ 1.68 × 10−55 eV−2, while the five-dimensional cos-
mological constant is also constrained by ðk25=2Þð5ÞΛ ≈
−6=ð0.1 mmÞ2 ≈ −2.3 × 10−5 eV2 [62]. From these
two conditions, we obtain k45 ≈ 3.6 × 10−105 eV−6 and
ð5ÞΛ ≈ −7.7 × 1046 eV5. In addition, the value of the brane
tension λb can be estimated from the value of the present
day dark energy density, ρdark ≈ 10−12 eV4 [191] via
k45λb=12 ¼ 8πGρdark ≈ 1.6 × 10−67 eV2, giving λb ≈ 1.6 ×
1019 eV4 [192].
The Einstein equation in the bulk, together with the

Codazzi equation, also imply the conservation of the
energy-momentum tensor for the matter on the brane,
DνTμ

ν ¼ 0, where Dν denotes the brane covariant deriva-
tive. Moreover, from the contracted Bianchi identities on
the brane, it follows that the projected Weyl tensor obeys
the constraint DνEμ

ν ¼ k45DνSμν.

The symmetry properties of Eμν imply that, in general,
we can decompose it irreducibly with respect to a chosen
4-velocity field, uμ, according to [56]

Eμν ¼ −κ4
�
U

�
uμuν þ

1

3
hμν

�
þ Pμν þ 2QðμuνÞ

�
; (9)

where κ ¼ k5=k4 and hμν ¼ gμν þ uμuν projects orthogonal
to uμ. Here, U ¼ −κ−4Eμνuμuν is a scalar “dark radiation”
term, Qμ ¼ κ−4hαμEhαiβuβ is a spatial vector and Pμν ¼
−κ−4½hðμαhνÞβ − 1

3
hμνhαβ�Eαβ is a spatial, symmetric, and

trace-free tensor.
For the vacuum state, we have ρ ¼ p ¼ 0, so that Tμν ≡

0 and, consequently, Sμν ≡ 0. In this case the field equation
describing a static brane takes the form

Rμν ¼ −Eμν þ Λgμν; (10)

with the trace, R, of the Ricci tensor, Rμν, satisfying the
condition R ¼ Rμ

μ ¼ 4Λ.
In the vacuum case, the constraint on Eμν reduces to

DνEμ
ν ¼ 0. Since, in an inertial frame at any point on the

brane we have that uμ ¼ δμ0 and hμν ¼ diagð0; 1; 1; 1Þ, for a
static vacuum, Qμ ¼ 0, the constraint takes the form [77]

1

3
DμU þ 4

3
UAμ þDνPμν þ AνPμν ¼ 0; (11)

where Aμ ¼ uνDνuμ is the 4-acceleration. In the static,
spherically symmetric, case we may choose Aμ ¼ AðrÞrμ
and Pμν ¼ PðrÞðrμrν − 1

3
hμνÞ, where AðrÞ and PðrÞ (the

“dark pressure”) are some scalar functions of the radial
distance r, and rμ is a unit radial vector [76].
The general form of the brane energy-momentum tensor

for any matter fields (scalar fields, perfect fluids, kinetic
gases, dissipative fluids etc.), including a combination of
different fields, can be written covariantly as

Tμν ¼ ρuμuν þ phμν þ πμν þ qμuν þ qνuμ; (12)

where ρ and p are the energy density and the isotropic
pressure, respectively. The energy flux obeys qμ ¼ qhμi,
and the anisotropic stress obeys πμν ¼ πhμνi, where the
angled brackets denote the projected, symmetric and
trace-free part, so that Vhμi ¼ hνμVν and Whμνi ¼ ½hαðμhβνÞ−ð1=3Þhαβhμν�Wαβ, respectively, with round brackets
denoting symmetrization. Therefore, in an inertial frame
at any point on the brane, we have that qμ ¼ ð0; qiÞ
and πμ0 ¼ 0.
The local and nonlocal bulk corrections may be com-

bined into an effective total energy-density, pressure,
anisotropic stress and energy-flux, so that the modified
field equations of the brane world models can be written in
the standard form

TIBERIU HARKO AND MATTHEW J. LAKE PHYSICAL REVIEW D 89, 064038 (2014)

064038-6



Gμν ¼ −Λgμν þ k24T
eff
μν ; (13)

where the components of k24T
eff
μν are

ρeff ¼ ρþ 1

4λb
ð2ρ2 − 3πμνπ

μνÞ þ 6

κ4λb
U; (14)

peff ¼ pþ 1

4λb
ð2ρ2 þ 4ρpþ πμνπ

μν − 4qμqμÞ þ
2

κ4λb
U;

(15)

πeffμν ¼ πμν þ
1

2λb
½−ðρþ 3pÞπμν þ παhμπανi þ qhμqνi�

þ 6

κ4λb
Pμν; (16)

qeffμ ¼ qμ þ
1

4λb
ð4ρqμ − πμνqνÞ þ

6

κ4λb
Qμ: (17)

For a perfect fluid, we have that qμ ¼ 0, πμν ¼ 0, and, in
this case,

qeffμ ¼ 6

k4λb
Qμ; πeffμν ¼ 6

κ4λb
Pμν: (18)

Finally, assuming that the bulk curvature is small, we
may also neglect terms in Pμν, Qμ and U, so that

ρeff ≈ ρþ 1

2λb
ρ2; (19)

peff ≈ ρþ 1

2λb
ρ2 þ 1

λb
ρp; (20)

qeffμ ≈ πeffμν ≈ 0: (21)

Since the anisotropic stress is zero and the effective energy
density and pressure on the brane, ρeff and peff , are then
functions only of the physical energy density and pressure
of the brane world matter, ρ and p, and of the constant
brane tension, λb, the resulting field equations simplify
considerably. In the high-density limit, where we may also
neglect linear terms in ρ, their form is simplified even
further. In the next section, we will use the formalism and
approximations outlined above to obtain exact solutions to
the (approximate) field equations, obtained by substituting
Eqs. (19)–(21) into Eq. (13), for four types of null fluid of
particular astrophysical or cosmological interest.

III. COLLAPSING NULL FLUIDS IN THE
BRANE-WORLD MODELS

In ingoing Bondi coordinates ðu; r; θ;φÞ and using
the advanced Eddington time coordinate, u ¼ tþ r (with
the radial coordinate r ≥ 0 decreasing towards the future),

the line element describing the radial collapse of a coherent
stream of matter can be represented in the form [149], [167]

ds2 ¼ −
�
1 − 2mðu; rÞ

r

�
du2 þ 2dudr

þ r2ðdθ2 þ sin2θdφ2Þ: (22)

where mðu; rÞ is the mass function, which gives the
gravitational mass within a given radius r for any value
of u. In the following we use the natural system of units
with 8πG ¼ c ¼ 1.
The matter energy-momentum tensor on the brane can be

written in the form [149,152]

Teff
μν ¼ TðnÞ

μν þ TðmÞ
μν ; (23)

where

TðnÞ
μν ¼ μeffðu; rÞlμlν; (24)

is the component of the matter field that moves along the
null hypersurfaces u ¼ const:, and

TðmÞ
μν ¼ ðρeff þ peffÞðlμnν þ lνnμÞ þ peffgμν; (25)

represents the energy-momentum tensor of the collapsing

matter. Here, lμ and nμ are two null vectors, given by lμ ¼
δð0ÞðμÞ and nμ ¼ 1

2
½1 − 2mðu;rÞ

r �δð0ÞðμÞ − δð1ÞðμÞ, so that lαlα ¼
nαnα ¼ 0 and lαnα ¼ −1. The energy density and pressure
in Eq. (25) are obtained by diagonalizing the energy-
momentum tensor obtained from the metric [149].
For the effective energy-momentum tensor given in

Eq. (23) the gravitational field equations take the general
form [167]

2

r2
∂mðu; rÞ

∂u ¼ μeffðu; rÞ; (26)

2

r2
∂mðu; rÞ

∂r ¼ ρeffðu; rÞ; (27)

− 1

r
∂2mðu; rÞ

∂r2 ¼ peffðu; rÞ: (28)

Taking the general assumptions made in deriving
Eqs. (19)–(20), namely that the collapsing matter is a
perfect fluid and that the bulk curvature is small, the
equations of motion then become

2

r2
∂mðu; rÞ

∂r ≈ ρþ αρ2; (29)

− 1

r
∂2mðu; rÞ

∂r2 ≈ ρþ αρ2 þ 2αρp: (30)
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where

α ¼ 1

2λb
¼ 1

12

k45
k24

: (31)

The next step is to impose an equation of state relating p
and ρ. The field equations may then be solved and the form
of mðu; rÞ determined up to arbitrary functions of u. This
gives us a general model for the spherically symmetric
collapse of a null fluid governed by our chosen equation of
state in which specific solutions can be chosen by speci-
fying the forms of the remaining functions. In practice
however, we may first simplify the above field equations
even further by considering the high-density limit ρ → ∞
in which αρ2 >> ρ. This assumption is valid in most
astrophysical situations and allows us to neglect linear
terms in ρ. Substituting the expression formðu; rÞ back into
the metric then allows us to investigate the properties of
outgoing null geodesics near r ¼ 0 and to calculate the
positions of any horizons which may be present. In
particular we would like to know if brane-world corrections
to the standard field equations favour the formulation of
naked singularities or black holes, in contrast to the
corresponding cases in four-dimensional general relativity,
and if any violations of the cosmic censorship conjecture
may occur. Naively however, we would expect gravity to be
stronger on smaller scales in the brane-world model,
therefore favouring the formation of black holes as opposed
to naked singularities. We must also impose an appropriate
set of energy conditions on the components of the energy
momentum tensor, which imply constraints on the form of
mðu; rÞ. The stress-energy tensor Eq. (25) satisfies the
dominant energy condition (DEC), if the following three
conditions are met,

peff ≥ 0; ρeff ≥ p; Teff
μνwμwν ≥ 0; (32)

where wa is an arbitrary timelike (or null) four-vector. The
first two of these conditions imply that ∂m∂r ≥ 0 and ∂2m

∂r2 ≤ 0.
The former just says that the mass function either increases
with r or is a constant, which is a natural physical
requirement. Substituting wμ ¼ nμ, we see that the final
condition implies μeffðu; rÞ ≥ 0, which in turn requires
∂m
∂u ≥ 0. A less stringent set of constraints, known as the
weak energy conditions (WEC), which represent the
minimal physical requirements, are

peff ≥ 0; ρeff ≥ 0: (33)

To satisfy either the WEC or the DEC one must therefore
impose an appropriate equation of state for the collapsing
matter.
In the following four sections we investigate the

collapse of four types of null fluid in the high-density
limit. Sections IV and V deal with “generic” null fluids
governed by the one-parameter barotropic and

two-parameter polytropic equations of state with param-
eters 0 ≤ k ≤ 1 and 0 ≤ k ≤ 1, a > 0, (a ≠ 1), respec-
tively. In Sec. VI we investigate collapsing strange quark
matter using the MIT bag model. As mentioned above,
this case is of particular astrophysical interest as free
strange matter is expected to be the most stable form of
matter at the high temperatures present in the cores of
massive neutron stars. Finally, in Sec. VII, we investigate
the collapse of a Hagedorn fluid. The Hagedorn equation
of state may be used to model ordinary matter at energy
densities much higher than the nuclear density ρn≈
2 × 1014 gcm−3. As also stated in the Introduction, in
the Hagedorn scenario increasing the energy density only
increases the temperature of the system up to a certain
maximum temperature known as the Hagedorn temper-
ature, TH ≈ 150−190 MeV. Increasing the energy den-
sity beyond this point leads to the production of new
particles but not to an increase in the kinetic energy of the
system due to the presence of a large number of baryonic
resonances at high energies. The Hagedorn equation of
state may therefore be appropriate for describing ordinary
matter at high densities in the early universe and the
dynamics of a collapsing Hagedorn fluid could have
important cosmological implications.
In each of the four cases, since the gravitational field

equations are second order, each model depends on two
arbitrary functions, which we label fiðuÞ, and giðuÞ, where
i ∈ fb; p; s; Hg denotes barotropic, polytropic, strange
quark and Hagedorn, respectively. Since it is also instruc-
tive to compare the solutions obtained for the brane-world
with the corresponding solutions for each type of fluid in
general relativity, we will do so in each section. In order to
avoid confusion between quantities and expressions in
general relativity and in the brane world, we will denote
the former with the additional subscript GR. In cases where
additional emphasis is desirable, we will also denote the
latter with the subscript BW, though this will be dropped
where such emphasis is unnecessary.

IV. SOLUTION OF THE FIELD EQUATIONS
FOR THE BAROTROPIC EQUATION

OF STATE

Given the field equations, Eqs. (26)–(28), we now
impose the one-parameter barotropic equation of state,

p ¼ kρ (34)

where 0 ≤ k ≤ 1 is a dimensionless parameter. In the high-
density limit ρ → ∞we have that αρ2 >> ρ and neglecting
linear terms in ρ leads to the approximate, but easily
solvable equations

2

r2
∂mðu; rÞ

∂r ¼ αρ2 (35)
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− 1

r
∂2mðu; rÞ

∂r2 ¼ ð2kþ 1Þαρ2: (36)

Substituting for αρ2 from Eq. (35) into Eq. (36) gives

Z ∂2m
∂r2

�∂m
∂r

�−1
dr ¼ −2ð2kþ 1Þ

Z
dr
r
; (37)

yielding

∂mðu; rÞ
∂r ¼ gbðuÞ

r4kþ2
; (38)

where gbðuÞ is an arbitrary function of u. Integrating once
more we obtain an explicit expression for mðu; rÞ in terms
of two arbitrary functions, fbðuÞ and gbðuÞ,

mðu; rÞ ¼ fbðuÞ − gbðuÞ
ð4kþ 1Þr4kþ1

: (39)

It is instructive at this point to compare the solution in
Eq. (38) to that obtained in the corresponding case for
general relativity. For a perfect fluid governed by the
barotropic equation of state, Hussain [149] obtained the
solution

mðGRÞðu; rÞ ¼
�
fbðuÞ − gbðuÞ

ð2k−1Þr2k−1 ; k ≠ 1=2

fbðuÞ þ gbðuÞ lnðrÞ; k ¼ 1=2
(40)

(using the notation adopted here). Note that in the brane-
world scenario 4kþ 1 ≠ 0, for all k in the range 0 ≤ k ≤ 1,
so that we have no need to consider a critical case in which
neither the dominant nor the weak energy conditions can be
satisfied. By contrast this occurs in the general relativistic
solution when k ¼ 1=2. As we will see, in the brane- world
model, both sets of energy conditions can always be satisfied
for all values of k and we now relate the energy density
ρðu; rÞ and pressure pðu; rÞ to the arbitrary functions which
result from the integration of the field equations by imposing
either the DEC or the WEC. Using the first field equation,
Eq. (35), and the solution given in Eq. (38), we see that

ρðu; rÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gbðuÞ
αr4kþ4

r
: (41)

The physical requirement that ρðu; rÞ is real and positive,
ρðu; rÞ ≥ 0, which is common to both sets of energy
conditions, then implies that gbðuÞ ≥ 0, and that we must
take the positive square root in the equation above. The
WEC are therefore automatically satisfied for the baro-
tropic equation of state for all possible values of k,
0 ≤ k ≤ 1, by imposing gbðuÞ ≥ 0, which ensures that
ρðu; rÞ is real and positive, while the form of fbðuÞ is left
unconstrained. This result mirrors that obtained in general
relativity [149], namely that gbðuÞ ≥ 0 is sufficient to
ensure positive energy density and pressure, thus satisfying

the WEC, although slightly different arguments have been
used. The second part of the DEC, ρeffðu; rÞ ≥ pðu; rÞ,
requires ρðu; rÞ ≥ k=α, or

gbðuÞ ≥
1

2
k2r4kþ4; (42)

so that, if RðuÞ represents the time-dependent maximal
radius of the collapsing barotropic fluid, we have

gbðuÞ ≥
1

2
k2RðuÞ4kþ4: (43)

This condition has no analogue in general relativity, since
the DEC there simply require, ρðu; rÞ ≥ pðu; rÞ, which is
automatically satisfied for ρðu; rÞ ≥ 0, (gbðu; rÞ ≥ 0) for a
fluid obeying the barotropic equation of state. However, by
Eq. (43) we see that the function gbðuÞ characterizes the
time-dependent radius of the collapsing sphere. Imposing
the third component of the DEC results in the condition
μeffðu; rÞ ¼ ð2=r2Þ∂mðu; rÞ=∂r ≥ 0, or equivalently,

∂fbðuÞ
∂u ≥

1

ð4kþ 1Þr4kþ1

∂gbðuÞ
∂u : (44)

In principle this constraint still allows for cases in which
the derivatives of both functions are either positive or
negative (or zero); ∂fðuÞ=∂u ≥ 0, ∂gðuÞ=∂u ≥ 0 or
∂fðuÞ=∂u ≤ 0, ∂gðuÞ=∂u ≤ 0, so long as the inequality
is still obeyed. However, by far the simplest way to satisfy
Eq. (44) is by setting ∂fðuÞ=∂u ≥ 0 and ∂gðuÞ=∂u ≤ 0, for
all u. The general class of space-times corresponding to the
spherically symmetric collapse of a null fluid, governed by
the barotropic equation of state, Eq. (34), in the brane world
are therefore described by metrics of the form,

ds2 ¼ −
�
1 − 2fbðuÞ

r
þ 2gbðuÞ
ð4kþ 1Þr4kþ2

�
du2

þ 2dudrþ r2ðdθ2 þ sin2θdϕ2Þ; (45)

where the functions fbðuÞ and gbðuÞ determine both the
initial (generally inhomogeneous) distribution of matter
and the time-dependent dynamics of the collapse. This,
in turn, determines the key properties of the space-time,
including the strength of the singularity, the positions of
any horizons and the asymptotic geometry.
As in the case of spherically symmetric collapse in

general relativity we see that setting ρðu; rÞ ¼ pðu; rÞ ¼ 0
implies gbðuÞ ¼ 0 which results the Vaidya metric. This
metric is recovered in the brane-world model when
ρðu; rÞ ¼ 0, as expected, because the ρ2ðu; rÞ terms which
contribute the brane-world corrections to the field
equations vanish, along with the neglected linear terms.
It is interesting to note that we may also reproduce the
charged Vaidya metric by setting k ¼ 0. This corresponds
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physically to the collapse of a fluid with positive energy
density and zero pressure (i.e. a null dust) and contrasts
with the general relativistic solution in which k ¼ 1 is
required. That is, the collapse of a null dust with
ρðu; rÞ ≥ 0, pðu; rÞ ¼ 0 in the brane-world scenario yields
the same space-time, described by the charged Vaidya
metric, as the collapse of a null fluid with ρðu; rÞ ¼
pðu; rÞ ≥ 0 in general relativity. In particular the
Reisner-Nordstrom metric may be recovered by the choos-
ing fbðuÞ ¼ M, 2gbðuÞ ¼ Q2 and k ¼ 0, as opposed
to k ¼ 1.
In general, however, at time u, the singularity at the

center of the collapsing region will have multiple horizons
given by the positive, real solutions of

rCBWþ1 − fbðuÞrCBW þ gbðuÞ
CBW

¼ 0; (46)

where CBW ¼ 4kþ 1, whereas the analogous equation in
general relativity is

rCGRþ1 − fbðuÞrCGR þ gbðuÞ
CGR

¼ 0; (47)

where CGR ¼ 2k − 1. For the same initial density profile
and with identical time-dependence in the collapse dynam-
ics (i.e. with identical forms of the functions fbðuÞ and
gbðuÞ), the causal structure of the singularity in the brane
world will be the same as that given by the standard
Einstein equations when CGR ¼ CBW, i.e. when

kBW ¼ 1

2
ðkGR − 1Þ; (48)

where the subscripts BW and GR again refer to the values
of k in the brane world and in general relativity, respec-
tively. From this point on these subscripts will be used
whenever it is necessary to emphasize that we are referring
to the value of k in a specific theory, but will be dispensed
with whenever such emphasis is unnecessary. However,
since in both cases the parameter k is limited to the range
k ∈ ½0; 1�, we see that

−1 ≤ CGR ≤ 1; 1 ≤ CBW ≤ 5: (49)

Equivalence, therefore, occurs only for the specific value
CGR ¼ CBW ¼ 1, when kGR ¼ 1 and kBW ¼ 0, which
corresponds to the case of the charged Vaidya metric
discussed above. It is also clear that a whole range of
possible solutions, corresponding to −1 ≤ CGR < 0, (i.e.
0 ≤ kGR < 1=2), have no analogue on the brane. Physically
however, such solutions are very interesting, since they
represent the evolution of either flat space or of a naked
singularity into a black hole embedded in a cosmology
[149]. By contrast, all metrics of the form given in Eq. (45)
are asymptotically flat, for all possible values of k. A metric

is asymptotically flat if its components obey the following
relation as r → ∞,

gμν → ημν þ
αμνðxc=r; tÞ

r
þO

�
1

r1þϵ

�
; (50)

where αμν is an arbitrary symmetric tensor, xc is a flat
coordinate system at radial infinity, ϵ > 0 is a constant and
ημν is the Minkowski metric. For the metric in Eq. (45) this
requires that CBW ≥ 0, which is true for all kBW in the range
0 ≤ kBW ≤ 1. Likewise, a whole range of solutions corre-
sponding to 1 < CBW ≤ 5, (i.e. to all values of kBW not
equal to zero), are inaccessible in general relativity.
In general, the position of any horizons, in either model,

at a given time u, will be given by the positive, real
solutions of the equation

rCþ1 − 2rCfbðuÞ þ
2gbðuÞ

C
¼ 0; (51)

where C ¼ CGR or C ¼ CBW. We may now investigate the
properties of specific solutions within the class of spheri-
cally symmetric collapse models by choosing two functions
fbðuÞ and gbðuÞ which satisfy either the WEC or the DEC,
(though if the DEC are satisfied, the WEC are satisfied
automatically). One interesting choice of functions
which satisfy the DEC; that is, for which gbðuÞ ≥ 0,
∂gbðuÞ=∂u < 0, and ∂fbðuÞ=∂u > 0 for all u, originally
suggested by Hussain in the general-relativistic case
[149], is

fbðuÞ ¼
1

2
A½1þ tanhðuÞ�; (52)

gbðuÞ ¼
1

2
½1 − B tanhðuÞ�; (53)

where A and B are constants such that A ≥ 0 and
0 ≤ B ≤ 1. With this choice, Eq. (51) reduces to

rCþ1 ¼ − ð1þ BÞ
C

; (54)

for u → −∞, so that, for −1 < C < 0, there are no real
solutions and there exists a naked singularity at past null
infinity. For u → ∞, the position of the horizons are given
by the positive real solutions of

rCþ1 − 2ArC þ ð1þ BÞ
C

¼ 0: (55)

Equations (54)–(55) recover the results obtained by
Hussain in [149] when C ¼ CGR ¼ 2kGR − 1. He showed
that, for values of kGR in the range 1=2 < kGR < 1, there
exists a naked singularity at r ¼ 0 in the limit u → −∞ but
that, in the limit u → ∞, there may exist horizons
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depending on the relative values of A and B. For kGR ¼ 1
these appear at r ¼ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B − 1

p
, which are the

solutions of Eq. (55) for C ¼ 1. The key physical feature
of this solution is that, for A ≠ 0, a black hole with nonzero
mass first forms when A2 ¼ 1 − B, creating a mass gap
between black hole and naked singularity solutions which
contrasts with critical behavior solutions found in previous
work [193–196]. In accordance with Eq. (48), we confirm
the existence of identical solutions (within the limit of
the approximations taken here), in the brane world for
kBW ¼ 0. Crucially, whilst similar solutions exist for
kGR > 1=2 but not for kGR < 1=2 (or for the critical case
of kGR ¼ 1=2Þ, in general relativity, asymptotically flat
space-times are obtained in the brane world for all values of
kBW. Specifically, setting kBW ¼ 0, A ¼ 0 and B ¼ 1
describes the evolution of a naked singularity at u → −∞
into flat space at u → ∞, which mirrors the corresponding
result for kGR ¼ 1 given in [149].
Another feature that the metric Eq. (45) has in common

with the equivalent general-relativistic case is that it permits
the existence of black holes with null fluid hair. In the
standard scenario, choosing metric functions of the of the
form given in Eq. (52), which allow the DEC to be satisfied,
lead to the existence hairy black holes at u → ∞ for kGR
in the range 1=2 < kGR < 1. This is true for any other choice
of fbðuÞ and gbðuÞ that reach nonzero limiting values as
u → ∞ and these metrics “lie between” the Schwarzschild
and Reissner-Nordstrom solutions in the sense that
the exponent of the second r-dependent term in grr,−ðCGR þ 1Þ ¼ −2kGR, lies between −1 and −2. However,
as discussed above, for similar choices of fbðuÞ and gbðuÞ
in the metric, Eq. (52), a Reissner-Nordstrom-type solution
is obtained at u → ∞ only for kBW ¼ 0, (1 − B ¼ Q2).
Whilst values of kBW in the range 0 < kBW ≤ 1 also give rise
to black holes with null fluid hair therefore, these solutions
automatically “exceed” the Reissner-Nordstrom solution in
that the exponent of the second r-dependent term in grr,−ðCBW þ 1Þ ¼ −ð4kGR þ 2Þ is less than−2. It is interesting
that, both in general relativity and in the brane-world model,
arguably the most realistic scenario for the gravitational
collapse of compact objects in the early universe, the collapse
of radiation with p ¼ ð1=3Þρ, leads generically to the exist-
ence of hairy black holes at future null infinity for reasonable
choices of the functions characterizing the initial distribution
and injection of the null fluid. However, as shown above, the
horizon structure differs considerably between the two cases.

V. SOLUTION OF THE FIELD EQUATIONS FOR
THE POLYTROPIC EQUATION OF STATE

We now consider the case where the energy density
ρðu; rÞ and the pressure pðu; rÞ are related by the poly-
tropic equation of state,

p ¼ kρa; (56)

where 0 ≤ k ≤ 1 and a > 0, (a ≠ 1). Whereas k is a
dimensionless constant in the barotropic equation of state,
it now has units of ½l�4ða−1Þ. Substituting for p from Eq. (56)
into Eq. (30) and neglecting linear terms in ρ, then yields

− 1

r
∂2m
∂r2 ¼ αρ2 þ 2αkρ1þa; (57)

so that substituting for ρ from Eq. (35) gives

∂2m
∂r2 þ 2

r
∂m
∂r þ 2βk

ra

�∂m
∂r

�1þa
2 ¼ 0; (58)

where

β ¼ α

�
2

α

�1þa
2

: (59)

The solution then proceeds as follows; making the
change of variables zðu; rÞ ¼ ð∂m=∂rÞ1−a2 allows Eq. (58)
to be rewritten as

∂z
∂rþ

ð1 − aÞ
r

zþ ð1 − aÞβk
ra

¼ 0: (60)

Now, since zðu; rÞ ¼ CðuÞra−1, where CðuÞ is an arbitrary
function of u, is a solution of the homogenous equation
∂z
∂r þ ð1−aÞ

r z ¼ 0, we may use the method of the variation of
constants to search for a solution of the form

zðu; rÞ ¼ Cðu; rÞra−1 (61)

to the inhomogenous equation. Substituting Eq. (61) back
into Eq. (60) and integrating with respect to r gives

Cðu; rÞ ¼ − 1

2
βkr−2aþ2 þ gpðuÞ; (62)

so that the general solution for zðu; rÞ is

zðu; rÞ ¼ − 1

2
βkr1−a þ gpðvÞr−ð1−aÞ: (63)

Finally,

∂m
∂r ¼

�
gpðuÞr−ð1−aÞ − 1

2
βkr1−a

� 2
1−a
; (64)

so that

mðu; rÞ ¼ fpðuÞ þ
Z

dr
r2

�
gpðuÞ − 1

2
βkr2ð1−aÞ

� 2
1−a
: (65)
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Then, rewriting β using Eq. (59) gives

mðu; rÞ ¼ fpðuÞ

þ
Z

dr
r2

�
gpðuÞ −

�
α

2

�1−a
2

kr2ð1−aÞ
� 2

1−a
; (66)

where we recall that α ¼ 1=ð2λbÞ ¼ k45=ð12k24Þ by Eq. (31).
This solution may be compared with the equivalent
one obtained in general relativity and quoted in [149]
(here converted to the units and notation adopted in
this paper),

mðu; rÞ ¼ fpðuÞ

þ
Z

dr

�
gpðuÞ −

�
k24
2

�
1−a

kr2ð1−aÞ
� 1

1−a
: (67)

Considering appropriate energy conditions, we see
immediately that the WEC and first condition of the
DEC are automatically satisfied for the polytropic equation
of state for ρðu; rÞ ≥ 0, (∂m=∂r ≥ 0), which requires

gpðuÞ ≥
�
α

2

�1−a
2

kr2ð1−aÞ; (68)

and that the second condition of the DEC gives
ρ2−aðu; rÞ ≥ k=α, requiring

gpðuÞ ≥
1

2
α

�
k
α

� 1
2−a
r4kþ4: (69)

Which of these is the most stringent constraint will
depend on the precise values of k and a but, in principle,
both can be satisfied simultaneously. As with the bar-
otropic fluid, we may again consider the maximum
radius of the collapsing sphere, RðuÞ, and choose this
function so as to satisfy the inequalities in Eqs. (68)–(69)
so that, in effect, gpðuÞ characterizes the maximal radius
of the collapsing polytropic fluid. Since the final con-
dition reduces to μeffðu; rÞ ≥ 0, or equivalently
∂m=∂u ≥ 0, this requires

dfpðuÞ
du

þ 2

1 − a

dgpðuÞ
du

×
Z

dr
r2

�
gpðuÞ −

�
α

2

�1−a
2

kr2ð1−aÞ
�1þa

1−a
≥ 0; (70)

which is also closely analogous to the equivalent condition
in GR,

dfpðuÞ
du

þ 1

1 − a

dgpðuÞ
du

×
Z

dr

�
gpðuÞ −

�
k4
2

�
1−a

kr2ð1−aÞ
� a

1−a
≥ 0. (71)

For a < 1, these constraints can, in principle, be satisfied
if either dfpðuÞ=du ≤ 0 or dgpðuÞ=du ≤ 0 for some values
of u, but by far the simplest way to satisfy them is to set
dgpðuÞ=du ≥ 0, dgpðuÞ=du ≥ 0 for all u, in both general
relativity and in the brane world. In the former, imposing
a < 1 to satisfy the DEC leads to cosmological metrics,
whereas imposing only the WEC allows a > 1 but gives
asymptotically flat metrics [149]. In the latter however,
although the allowed values of a are the same when
imposing either the DEC or the WEC, the additional factor
of r−2 multiplying the terms inside the square brackets in
the integral ensures that the resulting metrics are asymp-
totically flat, regardless of how large a becomes. As for the
collapse of a null fluid governed by the barotropic equation
of state therefore, the brane-world scenario seems to favor
the formation of asymptotically flat metrics, in accordance
with our physical intuition regarding the effect of increased
effective pressure.

VI. SOLUTION OF THE FIELD EQUATIONS FOR
FREE STRANGE QUARK MATTER

An equation of state for deconfined quark matter may be
obtained from perturbation theory in QCD. Neglecting
quark masses in the first order perturbation, the relation
between pressure and energy density is given by

pðu; rÞ ¼ 1

3
½ρðu; rÞ − 4B�; (72)

where B ≈ 57 MeV fm−3 ≈ 1014 gcm−3 is the difference in
energy density between the perturbative and the nonpertur-
bative QCD vacuums. This model is known as the MIT bag
model and the constant B is called the bag constant. The
collapse of a null quark fluid is of special interest to
astrophysics as it is predicted that the temperature and
pressure in the cores of some neutron stars is sufficient to
induce a neutron-quark matter phase transition. The most
stable form of matter in these cores is expected to be a
plasma of deconfined strange quarks and the metric corre-
sponding to the collapse of a null fluid governed by Eq. (72)
provides a model for the collapse of a neutron star core. We
begin again by substituting for pðu; rÞ into Eq. (30) from our
equation of state. However, the density of strange matter in
the core is expected to be of order ρ ≈ 5 × 1014 gcm−3,
which is comparable to the magnitude of the bag constant.
We must therefore be careful to keep both αρ2ðu; rÞ and
Bρðu; rÞ terms in the high-density limit and neglect only the
other ρðu; rÞ terms in Eq. (30), yielding
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− 1

r
∂2m
∂r2 ¼ αρ2 þ 2

3
αðρ − 4BÞρ: (73)

Substituting for ρðu; rÞ from Eq. (35) and rearranging gives

∂2m
∂r2 þ 10

3r
∂m
∂r − 8

3

ffiffiffiffiffiffi
2α

p
B

ffiffiffiffiffiffiffi∂m
∂r

r
¼ 0: (74)

Using the change of variables yðu; rÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂m=∂rp
=r, this

equation may be rewritten in the form

∂y
∂r þ η

y
r
− γ

r
¼ 0; (75)

where η ¼ 8=3 and γ ¼ 4
ffiffiffiffiffiffi
2α

p
B=3. Making the further

substitution ΘðrÞ ¼ lnðrÞ allows a separation of variables
so that

Z
dy

γ − ηy
¼

Z
dθ; (76)

and

yðu; rÞ ¼ γ

η
þ gsðuÞr−η: (77)

We then have

∂m
∂r ¼

�
γ

η
rþ gsðuÞr1−η

�
2

; (78)

and

mðu; rÞ ¼ fsðuÞ þ
1

3

�
γ

η

�
2

r3 þ 2

ð3 − ηÞ
γ

η
gsðuÞr3−η

þ g2sðuÞ
ð3 − 2ηÞ r

3−2η; (79)

so that, including the explicit values of η and γ, the
expression for the mass profile in terms of the constants
α and B is

mðu; rÞ ¼ fsðuÞ þ
1

6
αB2r3 þ 6

ffiffiffi
α

2

r
BgsðuÞr13 − 3

7

g2sðuÞ
r
7
3

:

(80)

Finally, substituting for α ¼ 1=ð2λbÞ and absorbing a factor
of 3B=

ffiffiffiffiffi
λb

p
into the definition of gsðuÞ gives

mðu; rÞ ¼ fsðuÞ þ
1

6
B

�
B
2λb

�
r3

þ gsðuÞr13 − 1

21

λb
B2

g2sðuÞ
r
7
3

: (81)

This may be compared with the corresponding expression
for the mass profile of a collapsing mixture of strange quark
fluid and radiation in general relativity, obtained by Harko
and Cheng [167],

mðu; rÞ ¼ fsðuÞ þ
4π

3
Br3 þ gsðuÞr13 − q2ðuÞ

2r
; (82)

where the function qðuÞ characterizes the evolution of the
vector potential, Aμðu; rÞ ¼ ðqðuÞ=rÞδuμ. Ignoring factors
of 8π etc., which depend on the conventional choice of
units, we see that, for qðuÞ ¼ 0, the two expressions
differ in regard to the dimensionless multiplying factor
of the Br3 term and via the presence of an additional
term in the brane world, caused by the ρ2ðu; rÞ contri-
butions to the effective energy-momentum tensor on the
brane. Whilst a term proportional to Br3 is present in the
mass profile in both cases, in the general-relativistic
solution its multiplying factor is of order unity, whereas,
in the brane world, its magnitude in characterized by
the ratio

Γ ¼ B
2λb

: (83)

For Γ ∼Oð1Þ, (λb ∼ B) the dynamics and profile of strange
quark fluid in the two scenarios is similar for large r, given
equivalent choices of fsðuÞ and gsðuÞ, but the evolution
close to the centre of the collapsing region is profoundly
modified by the brane-world corrections to the gravitational
field equations. This solution is consistent with our earlier
results in the sense that setting B ¼ 0 in Eq. (81) and
identifying

g2sðuÞ↔gbðuÞ (84)

recovers the solution for the barotropic equation of state
with k ¼ 1=3. Written explicitly, the fluid flow along the
outgoing, radial, null geodesics, the effective energy-
density and the effective pressure are

μeffðu; rÞ ¼ 2

r2

�
dfsðuÞ
du

þ dgsðuÞ
du

r
1
3

− 2

21
gsðuÞ

dgsðuÞ
du

r−7
3

�
; (85)

ρeffðu; rÞ ¼ 2

r2

�
1

2
B

�
B
2λb

�
r2 þ 1

3
gsðuÞr−2

3

þ 1

9

λb
B2

g2sðuÞr−10
3

�
; (86)
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peffðu; rÞ ¼ 2

r2

�
− 1

2
B

�
B
2λb

�
r2 þ 1

9
gsðuÞr−2

3

þ 5

27

λb
B2

g2sðuÞr−10
3

�
; (87)

which may be compared with their counterparts in
general relativity, obtained in [167]

μðu; rÞ ¼ 1

4πr2

�
dfsðuÞ
du

þ dgsðuÞ
du

r
1
3 − qðuÞ

r
dqðuÞ
du

�
; (88)

ρðu; rÞ ¼ 1

4πr2

�
4πBr2 þ 1

3
gsðuÞr−2

3 þ q2ðuÞ
2r2

�
; (89)

pðu; rÞ ¼ 1

12πr2

�
−12πBr2 þ 1

3
gsðuÞr−2

3 þ q2ðuÞ
2r2

�
; (90)

by setting qðuÞ ¼ 0. Alternatively, we note that the addi-
tional terms coming from the ρ2ðu; rÞ corrections to the
gravitational field equations on the brane play a similar role
to the gauge field terms for qðuÞ ≠ 0 in the general-
relativistic case. Roughly speaking, replacing qðuÞ ≠ 0
in the expression for mðu; rÞ, ρðu; rÞ, pðu; rÞ or μðu; rÞ
in the latter with ðλb=B2Þg2sðuÞr−4

3, yields the equivalent
expression for mðu; rÞ, ρeffðu; rÞ, peffðu; rÞ or μeffðu; rÞ in
the former, with qðuÞ ¼ 0. We now consider the energy
conditions. The first component of either the WEC or the
DEC, peffðu; rÞ ≥ 0, requires

r
16
3 − 2

9

�
2λbgsðuÞ

B2

�
r
8
3 − 5

27

�
2λbgsðuÞ

B2

�
2

≤ 0: (91)

Setting X ¼ r
8
3 and AðuÞ ¼ 2λbgsðuÞ=B2, this may be

rewritten as a quadratic,

X2 − 2

9
AðuÞX − 5

27
A2ðuÞ ≤ 0; (92)

from which we see that the condition in Eq. (91) holds
within the region X ∈ ½−AðuÞ=3; 5AðuÞ=9�. Setting
gsðuÞ ≥ 0, so that AðuÞ ≥ 0 for all u, then, if the strange
quark fluid initially extends from r ¼ 0 to some maximal
radius R, the condition peffðu; rÞ ≥ 0 reduces to AðuÞ ≥
ð3=5ÞR8

3 and, in general, if the time-dependent radius of the
collapsing fluid is given by RðuÞ, we require

AðuÞ ≥ 9

5
R

8
3ðuÞ: (93)

As before, strictly speaking, in this case we require an
appropriate set of matching conditions in order to construct
a regular solution for the region containing both the
collapsing stellar core and the surrounding inter-stellar
medium. Since, in this paper, we are interested mainly in

the core collapse, we leave such a solution to a future
publication, though its construction should not pose any
major theoretical problems. In principle, the first compo-
nent of the energy conditions may also be satisfied if
gsðuÞ ≤ 0 for all u. In this case, −AðuÞ ≤ 3R

8
3ðuÞ is

required instead of Eq. (93) though, in either case, it
may be seen that gsðuÞ characterizes the time-dependent
radius of the collapsing fluid. The second component of the
WEC, ρeffðu; rÞ ≥ 0, reduces to

X2 þ 2

3
AðuÞX þ 1

9
A2ðuÞ ≤ 0; (94)

which is satisfied for X ≥ −AðuÞ=3. Therefore, setting
gsðuÞ ≥ 0, (AðuÞ ≥ 0), and adopting the constraint in
Eq. (93) is the simplest way of satisfying the WEC
for all r in the range 0 ≤ r ≤ RðuÞ. For ρeffðu; rÞ
≈αρ2ðu; rÞ ≥ 0, the second component of the brane-world
DEC, ρeffðu; rÞ ≥ pðu; rÞ, requires

αρ2 − 1

3
ρþ 1

3
B ≥ 0; (95)

which is satisfied for ρðu; rÞ in the range ρðu; rÞ
∈ ½ðλb=3Þð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6B=λb
p Þ; ðλb=3Þð1 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6B=λb
p Þ�.

Assuming the reality of ρðu; rÞ, this yields a condition on
the functions fsðuÞ and gsðuÞ, but it is interesting that the
reality condition itself requires Γ ≤ 1=12 or, equivalently,

B ≤
k24
k45

: (96)

However, we must be careful in considering the approxima-
tions we have made to obtain the solution, Eqs. (85)–(87).
Adopting instead the (more accurate) approximation ρeff≈
ρðu; rÞ þ αρ2ðu; rÞ, the condition ρeffðu; rÞ ≥ pðu; rÞ
reduces to

αρ2 þ 2

3
ρþ 1

3
B ≥ 0; (97)

which is trivially satisfied for ρðu; rÞ ≥ 0. This is, in turn, is
automatically satisfied by the condition in Eq. (93), as
long as we define ρðu; rÞ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρeffðu; rÞ=α

p
. Therefore,

although the high-density approximation ρeffðu; rÞ≈
αρ2ðu; rÞ, rather than ρeffðu; rÞ ≈ ρðu; rÞ þ αρ2ðu; rÞ was
used to obtain Eqs. (85)–(87) and Eq. (93), it is still
physically reasonable to assume that the second part of the
DEC is trivially satisfied, given the fulfillment of the WEC,
for a strange quark fluid in the brane world. Finally, the
third component of the DEC, μeffðu; rÞ ≥ 0, implies

dfsðuÞ
du

þ dgsðuÞ
du

r
1
3 ≥

2

21
gsðuÞ

dgsðuÞ
du

r−7
3: (98)
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For small values of r, the right-hand side of Eq. (99)
dominates and the DEC cannot hold, unless we assume that
the function gsðuÞ behaves such that dg2sðuÞ=du → 0 as
r → 0. In general relativity, a similar problem occurs for
charged quark matter, where the condition μðu; rÞ ≥ 0
reduces to

dfsðuÞ
du

þ dgsðuÞ
du

r
1
3 ≥

qðuÞ
r

dqðuÞ
du

; (99)

and it is necessary to assume that dq2ðuÞ=du → 0 as r → 0,
though for qðuÞ ¼ 0, the DEC are easily satisfied by setting
dfsðuÞ=du ≥ 0 and dgsðuÞ=du ≥ 0 [167]. Alternatively, in
both scenarios, we may assume that, at small radii, matter is
converted to strange quark matter so as to satisfy the final
part of the DEC.
Having seen that both the WEC and the DEC may be

satisfied for appropriate physical assumptions and choices
of the arbitrary functions fsðuÞ and gsðuÞ, we now wish to
investigate the final state of the collapsing quark fluid. In
particular, we will attempt to identify under what circum-
stances, if any, a naked singularity, rather than a black hole,
can occur, as well as to identify the causal structure of black
hole solutions and any null fluid “hair” they may posses.
Assuming that, for u → ∞, the functions fsðuÞ and gsðuÞ
reach finite limiting values,

lim
u→∞

fsðuÞ ¼ fs ¼ const:; lim
u→∞

gsðuÞ ¼ gs ¼ const:;

(100)

the positions of any apparent horizons are given by the real,
positive solutions of the equation r ¼ 2limu→0mðu; rÞ, i.e.,

r ¼ 2fs þ
1

3
B

�
B
2λb

�
r3 þ gsr

1
3 − 2

21

λb
B2

g2s
r
7
3

; (101)

which, setting χ ¼ r
1
3, reduces to the following polynomial

of order sixteen in χ,

ðΓBÞ2χ16 − 3ðΓBÞχ10 þ 3ðΓBÞgsχ8

þ ðΓBÞfsχ7 − 3

21
g2s ¼ 0: (102)

The physical nature of the central singularity can then be
recognized by evaluating the curvature tensor, RμνRμν,
given by

RμνRμν ¼ 4

r2

�
BΓþ gsðuÞr−8

3 þ 2

9

g2sðuÞ
BΓ

r−10
3

�
; (103)

which diverges as r → 0. However, to determine under
what (if any) circumstances the shell-focussing singularity
is naked, we must investigate the outgoing, radial, null
geodesics for specific choices of the arbitrary functions

fsðuÞ and gsðuÞ. In the general-relativistic case, Harko and
Cheng [167] showed that setting

fsðuÞ¼
α0u
2

; gsðuÞ¼
β0u

2
3

2
; qðuÞ¼ γ0u; (104)

with α0 > 0, β0 > 0, and γ0 ≥ 0, respectively, the geodesic
equation, dvμ=ds ¼ Γμ

νσvνvσ ¼ 0, with vμ ¼ nμ ¼
½−1;−ð1=2Þð1 − 2m=rÞ; 0; 0�, gives

du
dr

¼ 1

1 − α0ðurÞ − β0ðurÞ
2
3 − γ0ðurÞ2 − 8πB

3
r2
: (105)

For the geodesic tangent to be uniquely defined at the
singular point r ¼ 0, u ¼ 0, the condition

X0 ¼ lim
u;r→0

u
r
¼ lim

u;r→0

du
dr

; (106)

must hold [129]. When the limit X0 exists and is real and
positive, the singularity is, at least locally, naked. For a
geodesic equation of the form Eq. (105), the condition in
Eq. (106) leads to the following algebraic equation

γ0X3
0 þ α0X2

0 þ β0X
5
3

0 − X0 þ 1 ¼ 0; (107)

which, setting χ0 ¼ X
1
3

0 and using Eq. (83), may be
rewritten as a ninth order polynomial,

fðχ0Þ ¼ γ0χ
9
0 þ α0χ

6
0 þ β0χ

5
0 − χ30 þ 1 ¼ 0: (108)

Likewise, in [167] it was found that, in the general-
relativistic case for qðuÞ ≠ 0, the horizon equation reduced
to a ninth order polynomial of the same form as that given
in Eq. (108), again highlighting the similarities between the
presence of the brane-world corrections and a charged fluid
in four-dimensional general relativity. As also discussed in
[167], due to a theorem by Poincaré, the number of positive
roots of a polynomial equation fðχ0Þ is equal to the number
of changes in sign in the sequence of non-negative
coefficients of the polynomial gðχ0Þ ¼ ð1þ χ0Þkfðχ0Þ,
[204] and, by this criterion, the polynomial in Eq. (108)
has two positive roots. A similar result can be obtained by
using Descartes’ rule of signs, according to which the
number of positive roots of a single-variable polynomial
with real coefficients ordered by descending variable
exponent is either equal to the number of sign differences
between consecutive nonzero coefficients, or is less than it
by an even number [205]. Therefore, in the general-
relativistic case, it is always possible for the collapse of
strange quark matter to lead to the existence of a (locally)
naked singularity. In the brane-world scenario, the same
choice of functions, given in Eq. (104), (with γ0 ¼ 0),
leads to
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du
dr

¼ 1

1 − α0ðurÞ − β0ðurÞ
2
3 − 1

3
BΓr2 þ β2

0

84BΓ ðurÞ
4
3
1
r2

; (109)

so that the limit in Eq. (106) is not well defined. However, if
instead we make the choice

fsðuÞ¼
α0u
2

; gsðuÞ¼
β0u

5
3

2
; α0>0; β0>0; (110)

then

du
dr

¼ 1

1 − α0ðurÞ − β0uðurÞ
2
3 − 1

3
BΓr2 þ β2

0

84BΓ ðurÞ
10
3

; (111)

which reduces to a thirteenth order polynomial in χ0,

ϵ0χ
13
0 − α0χ

6
0 þ χ30 − 1 ¼ 0; (112)

where ϵ0 ¼ β20=84BΓ. Again, by the theorem quoted above,
or by Descartes’ rule of signs, Eq. (112) has at least a single
real, positive root.
In the brane world, therefore, it is also possible for the

collapse of a strange quark fluid to end in the formation of a
locally naked singularity. However, for collapse ending in a
black hole, the null fluid hair given by the causal structure
of the horizons differs from that given by the collapse of a
pure strange matter fluid (with equivalent initial condi-
tions), in the general-relativistic case. Instead, it resembles
the collapse of a neutral strange matter/charged matter
mixture in the latter, (for a particular choice of qðuÞ). As in
four-dimensional general relativity, the metrics produced
by the spherically symmetric collapse of strange matter in
the brane world are cosmological.

VII. SOLUTION OF THE FIELD EQUATIONS
FOR A HAGEDORN FLUID

The Hagedorn equation of state can be used to model
ordinary matter at very high densities such as those found
in the early universe. As already mentioned above, in the
Hagedorn model it is proposed that there exists an effective
highest temperature for any system called the Hagedorn
temperature TH. This is based on the assumption that, at
high densities, a large number of baryonic resonant states
arise. In this case, increasing the pressure and energy
density beyond the critical values corresponding to TH,
labelled p0 and ρ0, respectively, increases the number of
particles but not the kinetic energy/temperature of the
system. The equation of state is then

pðu; rÞ ¼ p0 þ ρ0 ln

�
ρðu; rÞ
ρ0

�
: (113)

Empirically fitting the model to data, the values of the
above parameters are estimated to be TH ≈ 150−190 MeV,

p0 ≈ 0.314 × 1014 gcm−3 and ρ0 ≈ 1.253 × 1014 gcm−3
and it is thought that the equation of state, Eq. (113) could
hold for densities as high as ten times the nuclear density
ρn ¼ 2 × 1014 gcm−3. Following the same type of pro-
cedure used in the previous section, i.e. substituting for
pðu; rÞ in Eq. (30) while neglecting linear terms of order
ρðu; rÞ, but keeping those in ρ0ρðu; rÞ and p0ρðu; rÞ,
we have

− 1

r
∂2m
∂r2 ¼ αρ2 þ 2αp0ρþ 2αρ0ρ ln

�
ρ

ρ0

�
; (114)

which, substituting for ρðu; rÞ from Eq. (35), yields

∂2m
∂r2 þ 2

r
∂m
∂r þ 2

ffiffiffiffiffiffi
2α

p

×

�
p0 þ ρ0 ln

�
1

ρ0r

ffiffiffi
2

α

r ffiffiffiffiffiffiffi∂m
∂r

r �� ffiffiffiffiffiffiffi∂m
∂r

r
¼ 0: (115)

We note that the condition ρðu; rÞ ≥ 0 implies ∂m=∂r ≥ 0
and that we must take the positive square root, yielding the
equation above. Again making the change of variables
yðu; rÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂m=∂rp

=r, Eq. (115) may be rewritten as

∂y
∂r þ

2y
r
þ

ffiffiffiffiffiffi
2α

p

r

�
p0 þ ρ0 ln

� ffiffiffi
2

α

r
y
ρ0

��
¼ 0; (116)

and, again using the substitution θðrÞ ¼ lnðrÞ, and defining

zðu; rÞ ¼ ρðu; rÞ
ρ0

¼
ffiffiffi
2

α

r
yðu; rÞ
ρ0

; (117)

we may perform a separation of variables so that

1

2

Z
dθ ¼ − 1

2

Z
dz

zþ 2 ln ðzÞ þ 2q
; (118)

where

q ¼ p0

ρ0
≈
1

4
: (119)

Finally, defining

wðu; rÞ ¼ ln

�
ρðu; rÞ
ρ0

�
¼ ln ðzðu; rÞÞ (120)

gives

1

2

Z
dθ ¼ − 1

2

Z
ew

ew þ 2wþ 2q
dw; (121)

and performing the integral on the left-hand side yields
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r
gHðuÞ

¼ exp

�
− 1

2

Z
ew

ew þ 2wþ 2q
dw

�

¼ exp

�
− 1

2
FðwÞ

�
: (122)

Returning to the gravitational field equation for ρeffðu; rÞ,
Eq. (35) we have,

2

r2
∂m
∂r ¼ αρ20e

2w; (123)

so that the final solution for mðu; rÞ is

mðu; rÞ ¼ fHðuÞ − δ

2
g3HðuÞKðwÞ; (124)

where we have defined

KðwÞ ¼
Z

exp ½3w − 3
2
FðwÞ�

ew þ 2wþ 2q
dw (125)

and

δ ¼ αρ20
2

: (126)

This may be compared with the analogous solution
obtained in general relativity [184],

mGRðu; rÞ ¼ fHðuÞ − ρ0
2
g3HðuÞKGRðwÞ; (127)

where

FGRðwÞ ¼
Z

ew

ew þ wþ q
dw (128)

and

KGRðwÞ ¼
Z

exp ½3w − 3
2
FGRðwÞ�

ew þ wþ q
dw: (129)

The full solution in brane world is then given by
Eq. (124), plus

ρeffðwÞ ¼ 2δe2w; (130)

peffðwÞ ¼ 2δe2wðew þ 2wþ 2qÞ; (131)

and

μeffðu; rÞ ¼ 2

g2HðuÞ
dfHðuÞ
du

eFðwÞ − 3δ
dgHðuÞ
du

eFðwÞKðwÞ

þ δ
dgHðuÞ
du

exp ½3w − FðwÞ�
ew þ 2wþ 2q

dH
dη

; (132)

where we have defined ηðu; rÞ ¼ r=gHðuÞ and w ¼ HðηÞ.
The functions FðwÞ and KðwÞ and the ratio ηðu; rÞ ¼
r=gHðuÞ are all expandable as power series in w ¼ wðu; rÞ,
giving

FðwÞ ¼
Z

ew

ew þ 2wþ 2q
dw

≈
w

1þ 2q
þ 2ð−1þ qÞ
2ð1þ 2qÞ2 w

2 þOðw3Þ þ � � � (133)

KðwÞ ¼
Z

exp ð3w − 3
2
FðwÞÞ

ew þ 2wþ 2q
dw

≈
w

e
3
2ð1þ 2qÞ þ

11þ 8ð−1þ 3qÞ
8e

3
2ð1þ 2qÞ2 w2 þOðw3Þ þ � � �

(134)

r
gHðuÞ

¼ exp

�
− 1

2
FðwÞ

�

≈ 1 − w
2ð1þ 2qÞ þ

5 − 4q
8ð1þ 2qÞ2 w

2 þOðw3Þ þ � � � :

(135)

From Eq. (135) it follows that

r
∂w
∂r ¼ −2 ðe

w þ 2wþ 2qÞ
ew

; (136)

so that, in the limit of very high densities,
ρ → ∞, (w → ∞),

wðu; rÞ ≈ ln

�
GHðuÞ
r2

�
; (137)

where GHðuÞ is an arbitrary function of u with dimensions
½l�2, and the solution takes an exceptionally simply form,

mðu; rÞ ≈ FHðuÞ − δ
G2

HðuÞ
r

; (138)

ρeffðu; rÞ ≈ 2δ
G2

HðuÞ
r4

≈ 2δ
GHðuÞ
r2

; (139)

peffðu; rÞ ≈ 2δ
G2

HðuÞ
r4

þ 4δ
GHðuÞ
r2

�
qþ ln

�
GHðuÞ
r2

��
;

(140)

μeffðu; rÞ ≈ 2

r2
dFHðuÞ

du
− 4δ

r3
GHðuÞ

dGHðuÞ
du

; (141)

where we have used GHðuÞ=r2 ≈ ew ≈ 1þ wðu; rÞ þ
Oðw2ðu; rÞÞ in Eq. (139). Comparing this to the solution
obtained in general relativity in the ρ → ∞ limit,
Eqs. (142)–(145), we see that the higher-order corrections
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to the effective density and pressure in the brane world
significantly affect the r dependence of the mass profile for
a collapsing Hagedorn fluid. From [184]

mGRðu; rÞ ≈ FHðuÞ þ ρ0GHðuÞr − q2ðuÞ
r

; (142)

ρðu; rÞ ≈ ρ0
GHðuÞ
r2

; (143)

pðu; rÞ ≈ ρ0

�
qþ ln

�
GHðuÞ
r2

��
; (144)

μðu; rÞ ≈ 1

r2
dFHðuÞ

du
þ 2ρ0

r
dGHðuÞ

du
− 2

r3
qðuÞ dqðuÞ

du
:

(145)

Interestingly, as in the case of the strange quark fluid, we
again see that the additional terms generated by corrections
to the gravitational field equations on the brane seem to
play a similar role to the additional terms generated by the
presence of an electromagnetic field, with vector potential
Aμ ¼ ðqðuÞ=rÞδuμ, in the general-relativistic case. This
time the quantity αρ20GHðuÞ in the expressions for
mðu; rÞ, ρeffðu; rÞ, peffðu; rÞ and μeffðu; rÞ in Eqs. (138)–
(141) plays almost the same role as ρ0qðuÞ in the
expressions for mðu; rÞ, ρðu; rÞ, pðu; rÞ and μðu; rÞ in
Eqs. (142)–(145), though the expressions for peffðu; rÞ and
μeffðu; rÞ are not identical to those for pðu; rÞ and μðu; rÞ
under this correspondence due to the differing number of
terms contained in each.
Since it is appropriate to take the ρ → ∞ limit for r → 0,

the solution in Eqs. (138)–(141) should be accurate close to
the core of the collapsing fluid. In order to find the behavior
of the general solution, given by Eq. (124) together with
Eqs. (130)–(132), in the opposite limit, i.e. for large, but
finite r, we also follow an analogous procedure to that
outlined in [184]. We begin by noting that the boundary of
the Hagedorn fluid is defined by the equation pðu; rÞ ¼ 0
or, equivalently wðu; rÞ ¼ −q. Therefore, we define the
critical value of wðu; rÞ, beyond which the solution
becomes unphysical, as ws ¼ −q and search for a solution
of the form

wðu; rÞ ¼ ws þ w1ðu; rÞ; jw1ðu; rÞj << ws; (146)

close to the boundary. Substituting Eq. (146) into Eq. (136),
we obtain

r
∂w
∂r ¼ −2 ð2w1 þ ewsew1Þ

ewsew1
: (147)

Rewriting s ¼ ews , expanding ew1 to linear order and
integrating, this gives

s
2þ s

w1þ
2s

ð2þ sÞ2 lnðsÞþ
2s

ð2þ sÞ2 ln
�
1þ sþð2þ sÞ

s
w1

�

¼ ln

�
GHðuÞ
r2

�
: (148)

Expanding the final logarithm of the left-hand side of
Eq. (148), the approximate solution for wðu; rÞ close to the
boundary of the Hagedorn fluid is simply

wðu; rÞ ¼ w0 þ ln

�
GHðuÞ
r2

�
; (149)

where we have defined

w0 ¼
1 − 2s
ð2þ sÞ2 : (150)

The expressions for the physically relevant quantities are

mðu; rÞ ≈ FHðuÞ − δ
G2

HðuÞ
r

e2w0 ; (151)

ρeffðu; rÞ ≈ 2δ
G2

HðuÞ
r4

e2w0 ; (152)

peffðu; rÞ ≈ 2δ
G2

HðuÞ
r4

e2w0

þ 4δ
GHðuÞ
r2

ew0

�
qþ w0 þ ln

�
GHðuÞ
r2

��
;

(153)

μeffðu; rÞ ≈ 2

r2
dFHðuÞ

du
− 4δ

r3
GHðuÞ

dGHðuÞ
du

ew0 : (154)

Again, we must now consider an appropriate set of energy
conditions. The WEC, peffðu; rÞ ≥ 0, ρeffðu; rÞ ≥ 0, are
trivially satisfied for all r and u. The second component of
the DEC, ρeffðu; rÞ ≥ pðu; rÞ, requires

G2
HðuÞ ≥

ρ0
α
e−2w0r4

�
qþ w0 þ ln

�
GHðuÞ
r2

��
; (155)

and the third component, μeffðu; rÞ ≥ 0, yields

dFHðuÞ
du

≥ 2δGHðuÞ
dGHðuÞ

du
ew0

r
; (156)

close to the boundary, while equivalent expressions with w0

set equal to zero are valid close to the core. Yet again, the
brane-world corrections seem to mirror the contribution of
an electromagnetic component in general relativity and
Eq. (156) closely resembles the equivalent result, obtained
in [184], for qðuÞ ≠ 0,
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dFHðuÞ
du

þ ρ0
dGHðuÞ

du
≥ 2qðuÞ dqðuÞ

du
1

r
; (157)

which requires matter to be converted close to r ¼ 0, unless
dq2ðuÞ=du → 0 for r → 0. In the brane world, we must
assume dG2

HðuÞ=du → 0 for r → 0, or that matter is
likewise converted near to the core of the collapsing region.
We can now examine the structure of the apparent horizons
and the singularity and determine the conditions under
which naked singularities can occur for specific choices of
FHðuÞ and GHðuÞ. Assuming that these functions reach
constant limiting values at future full infinity,

lim
u→∞

FHðuÞ ¼ FH; lim
u→∞

GHðuÞ ¼ GH; (158)

the positions of the apparent horizons are given by the
positive real solutions of the equation,

FH ¼ δ

2
G3

HKðwÞ þGHe−
1
2
FðwÞ; (159)

which, in general, will have multiple solutions. The
expression in Eq. (159) is completely analogous to that
obtained in general relativity (though, this time, for qðuÞ ¼
0 [184]), namely

FH ¼ ρ0
2
G3

HKGRðwÞ þ GHe−
1
2
FGRðwÞ; (160)

where FGRðwÞ and KGRðwÞ are defined as in Eqs. (128)–
(129), above. The physical nature of the central singularity
can again be recognized by evaluating the explicit expres-
sion for the curvature tensor RμνRμν,

RμνRμν ¼ 16G2
sðuÞ
r8

; (161)

which diverges for r → 0.
For the spherically symmetric collapse of a Hagedorn

fluid in the brane world, the equation for outgoing, radial,
null geodesics is

du
dr

¼ 1

1 − 2FHðuÞ
r − δGHðuÞKðwÞ

r

; (162)

and the corresponding expression for general relativity is
obtained simply by replacing δ ¼ αρ20=2 with ρ0=2 and the
functions FðwÞ with FGRðwÞ and KðwÞ with KGRðwÞ,
according to their respective definitions. Therefore, setting

FHðuÞ ¼
α0u
2

; GHðuÞ ¼ β0u; α0 > 0; β0 > 0;

(163)

as in [184] and again assuming the limit given in Eq. (106),
the singularity is locally naked if the equation,

β0X2
0 − X0 þ 1 ¼ 0; (164)

admits positive, real solutions. Since the roots of
Eq. (164) are

X0 ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4β0
p
2β0

; (165)

for β0 < 1=4 a naked singularity is formed, whereas β0 ≥
1=4 leads to the formation of a black hole, which mirrors
the result for qðuÞ ¼ 0 obtained in [184]. Essentially, this
result shows that the collapse of a Hagedorn fluid in the
brane world does not favor the formation of black holes
over naked singularities, as we may have naively expected
due to the increased effective density and pressure.
However, these corrections do lead, in the ρðu; rÞ → ∞
limit, to the creation of asymptotical flat metrics, rather
than the cosmological metrics obtained in four-dimensional
general relativity.

VIII. COLLAPSING HAGEDORN MATTER
AS A POSSIBLE SOURCE OF GRBS

IN THE BRANE WORLD

In [184], the gravitational collapse of Hagedorn matter in
the Vaidya geometry, ending in a naked singularity, was
investigated as a possible source of gamma-ray bursts
(GRBs). GRBs are cosmic gamma-ray emissions with
typical fluxes of the order 10−5 to 5 × 10−4 erg cm−2
and durations from 10−2 to 103 s [197]. Since their
distribution is isotropic, they are believed to have a
cosmological origin and it has been suggested that they
may occur at extra-galactic distances [197]. The widely
accepted interpretation of this phenomenology is that the
observable effects of GRBs are due to the dissipation of
kinetic energy from a relativistically expanding compact
object, though the underlying progenitor model is, as yet,
unknown. Proposed models include the merger of binary
neutron stars [197], the capture of neutron stars by black
holes [198], energy emission from differentially rotating
neutron stars [199], neutron star-quark star conversions
[200], the gravitational collapse of rapidly rotating massive
bodies, such as binaries and stellar cores, to form black
holes [201], the formation of naked singularities [202–207]
and core-collapse supernova explosions [208], though this
interpretation remains disputed [209,210]. However, to
date, such models have mainly been investigated within
the context of general relativity [211].
More recently, spurred by the advent of better observa-

tional data resulting from several experimental coalitions
[212–214], a plethora of alternative theories have arisen
(again within general relativity), including “cocoon emis-
sion” models [215], gamma-ray emission from first gen-
eration stars [216], collisional heating in a relativistically
expanding jet of e� plasma [217], collisional heating in
magnetized jets [218], inter-collision induced magnetic
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reconnection and turbulence (ICMART) models [219] and
emissions from active galactic nuclei [220]. What is clear,
however, is that most cosmological GRBs may be separated
into two distinct classes characterized by either long
durations and soft emission spectra, or short durations
and hard emission spectra [221–223], where an observer
frame time of 2 s is usually taken as the separation line (see
[224–226] for reviews). Since, for long GRBs, the host
galaxies are typically irregular, with intense star formation,
the favored interpretation is that most (if not all) are
produced during the core collapse of massive stars (col-
lapsars). In contrast, short GRBs are usually found to
originate from nearby early-type galaxies, with little star
formation, which is in good agreement with the conjecture
that they originate from mergers of compact binaries.
However, this simple paradigm is challenged by a few
unusual GRBs, so that more exotic models, such as energy
emission from superconducting cosmic strings [227–229],
or from the collapse of ultra-high-density stars described by
a Hagedorn fluid [184], may be viable progenitors for
explaining anomalous results.
Here, we extend the investigation of naked singularities

as GRB sources to the brane-world scenario by considering
the energy emission and timescale of collapse of a
Hagedorn fluid for physically reasonable choices of
FHðuÞ and GHðuÞ with appropriate parameter values.
The method of analysis follows that presented in [184],
but is applied instead to the solutions of the brane-world
field equations obtained in the ρðu; rÞ → ∞ limit, rather
than to the general-relativistic solution. For comparison to
the data, we again choose the GRB observations,
GRB 971214 and GRB 990123, with isotropic energy
losses of order 1053 and 1054 erg, respectively [230], and
explicitly include factors of c in our analysis.
Recall that in this limit, the mass profile mðu; rÞ is given

by Eq. (138). Assuming that dG2
HðuÞ=du → 0 faster than r,

as r → 0, the time derivative of the mass at the center of the
collapse, in CGS units, is

�
dm
dt

�
r¼0

¼ c3

2G

�
dFHðuÞ

du

�
r¼0

: (166)

Now, if tff is the time taken for a matter element at the
surface of the collapsing star at t ¼ 0 to reach the center
then, denoting Mjr¼0 ¼ mðtffÞjr¼0 and assuming that
mð0Þjr¼0 ¼ 0, we have

Mjr¼0 ¼
c3

2G

Z
tff

0

�
dFHðuÞ

du

�
r¼0

dt: (167)

The integral may be evaluated approximately by using the
first mean value theorem, which states that, for any function
fðtÞ, R b

a fðtÞdt ¼ ðb − aÞfðcÞwhere c ∈ ða; bÞ and fðcÞ is
the average value of fðtÞ in the region ða; bÞ. Hence, in the
following analysis, we will approximate the derivatives of

the arbitrary function and the functions themselves by their
average values over the region of integration. So, denoting

F0 ¼ hFHðuÞir¼0; Φ0 ¼
�
dFHðuÞ

du

�
r¼0

; (168)

etc., Eq. (167) yields

tff ¼ 2G
c3F0

Mjr¼0: (169)

The initial mass distribution of the Hagedorn fluid can be
obtained from

�
dm
dr

�
t¼0

¼ c3

2G

�
dFHðuÞ

du
þ 2δ

r
GHðuÞ

dGHðuÞ
du

�
t¼0

; (170)

which, if we assume that dG2
HðuÞ=du → 0 faster than r, as

r → 0 (as mentioned above), gives

mðrÞjt¼0 ¼
c3

2G
H0r; (171)

where H0 is the average value of the r-dependent function
HðrÞ ¼ ½dFH=duþ ð2δ=rÞGHðuÞdGHðuÞ=du�t¼0. This
implies a linear profile for the initial mass distribution of
the Hagedorn fluid, which is in agreement with the general-
relativistic case for qðuÞ ¼ 0 [184].
The difference between the brane-world scenario and the

corresponding situation in general relativity is that, in the
former, the function GHðuÞ plays the role of an effective
charge, qðBWÞðuÞ, at least with respect to the mass function,
Eq. (138), even if the physical fluid is charge neutral.
Though we are of course free to set GHðuÞ ¼ 0, we cannot
do so independently, in the same way that we may set
qðuÞ ¼ 0 without affecting the value of GHðuÞ when
considering an uncharged Hagedorn fluid in a four-
dimensional universe. However, since, for collapse on
the brane, we are already forced to assume that dG2

HðuÞ=
du → 0 faster than r, as r → 0 (unless matter is converted
near the core), in order to satisfy the DEC, it seems
reasonable to assume an initially linear mass distribution,
as in Eq. (171), even in the brane-world case.
Hence, if the initial radius of the collapsing region is

R, then

H0 ¼
2GMjt¼0

c2R
; (172)

whereMjt¼0 is the initial total mass of the star. The change
in mass at a point r over a timescale Δt may be estimated
according to
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Δ
�
2Gm
c2

�
≈
�
dFHðuÞ

du
Δuþ 2δ

r
GHðuÞ

dGHðuÞ
du

Δu

þ δG2
HðuÞ

Δr
r2

�

≈
�
dFHðuÞ

du
þ 2δ

r
GHðuÞ

dGHðuÞ
du

þ δG2
HðuÞ
rr

vf
c

�
1þ vf

c

�−1�
c

�
1þ vf

c

�
Δt;

(173)

where vf ≈ Δr=δt is the speed of collapse measured by a
local observer. Evaluating Eq. (173) close to r ¼ 0 then
gives the approximate energy release in the collapse as

ΔEBW
r

Δt
≈
c5

4G

�
F 0þH0

vf
c

�
1þvf

c

�−1��
1þvf

c

�
; (174)

where F 0 ¼ ðc3=2GÞF0 is simply the average value of
FHðuÞ in CGS units. This may be compared with the
corresponding expression obtained in [184]

ΔEGR
r

Δt
≈
c5

2G

�
F 0þ4πh0

vf
c

�
1þvf

c

�−1��
1þvf

c

�
; (175)

where h0 is the average value of the function hðrÞ ¼ ½dFH=
duþ ρ0rdGHðuÞ=du�t¼0.
Therefore, although the r-dependent term of the mass

profile for a collapsing sphere of Hagedorn fluid in the
brane world is characterized by the ratio δ ¼ ρ20=ð4λbÞ,
rather than ρ0, as in general relativity, and, although, even
for a uncharged fluid, it is proportional to r−1 in the former
(rather than r), which corresponds to the contribution from
a nonzero charge, qðuÞ, in the latter, there is sufficient
freedom in choosing the arbitrary functions FHðuÞ and
GHðuÞ, and hence the approximate average values of the
compound functions HðrÞ and hðrÞ, which contribute to the
energy release in the brane world and general-relativistic
universes, respectively, for the general forms of the expres-
sions for ΔEBW

r =Δt and ΔEGR
r =Δt, Eqs. (174)–(175), to

remain the same.
For Δt ∼ 10−4, comparable to the rise time of GRBs

971214 and 990123 [230], we obtain an energy emission of

ΔEBR
γ ≈

�
F 0 þH0

vf
c

�
1þ vf

c

�−1�
× 1055 erg (176)

in the brane world and

ΔEGR
γ ≈

�
F 0 þ h0

vf
c

�
1þ vf

c

�−1�
× 1055 erg (177)

for the collapse of a Hagedorn fluid in general relativity.
Clearly, since the constants F 0, H0 and h0 can be tuned to

be of order unity in either case, collapsing spheres of
Hagedorn matter remain as viable as progenitor models for
the source of gamma-ray bursts in brane-world cosmology
as they do in general relativity. Considering the analysis
presented above from a purely from a mathematical point of
view, this may not seem very surprising, given the freedom
allowed in choosing the arbitrary functions. However,
physically, it is important to consider two things. Firstly,
to establish whether the higher order corrections to the
gravitational field equations on the brane favor the exist-
ence of black holes over naked singularities, as may be
expected naively. The work presented in Sec. III D shows
that, counter to our intuition, this is not the case. Secondly,
since we may also imagine intuitively that the increased
effective density and pressure in the brane world could lead
to greater energy emission in a gravitational collapse, it is
important to establish whether this is necessarily true under
generic conditions. The work presented in this section
shows that it is not. Therefore, naked singularities as GRB
sources (at least from a collapsing Hagedorn fluid) are
neither favored nor disfavored by brane-world cosmology
as opposed to general relativity.

IX. CONCLUSIONS

We solved the approximate gravitational field equations on
the brane, in the high-density limit, for spherically symmetric
null fluids described by the barotropic, polytropic, strange
quark “bag” model and Hagedorn equations of state. For
barotropic fluids, the brane world and general-relativistic
solutions coincide only for the single parameter choice, k ¼ 0
on the brane (corresponding to the collapse of a null dust), and
k ¼ 1 in general relativity, both of which give rise to the
charged Vaidya metric. While values of k in the range 0 ≤
k < 1=2 give rise to cosmological metrics and 1=2 < k ≤ 1
produces asymptotically flat space-times (with k ¼ 1=2
corresponding to the critical case in which no reasonable
set of energy conditions can be fulfilled), in the general-
relativistic solution, bycontrast, theρ2ðu; rÞ corrections to the
effective energy density on the brane ensure that all the space-
times produced by the collapse of a barotropic fluid are
asymptotically flat and no critical case exists. However, while
these corrections are enough to provide asymptotic flatness,
they are not sufficient to rule out the formation of locally
naked singularities, which remain as viable on the brane as in
the standard scenario.We also confirm the existence of amass
gap between black hole and naked singularity solutions in the
brane-world model, analogous to that found by Hussain in
general relativity [149]. Themetrics obtained for the collapse
of a fluid governed by the polytropic equation of state on the
brane also closely resemble those obtained in the standard
case, but again, they are always asymptotically flat, whereas
the former may be cosmological for appropriate parameter
choices [149].
For collapsing strange quark matter, the formation of
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world as in general relativity and, in this case, the metrics
obtained remain cosmological, as they are in the latter. In
the case of strange matter collapse to form a black hole, the
causal structure of the horizons (for equivalent initial
conditions and collapse profiles) or, in other words, the
null fluid hair possessed by the black hole, differs pro-
foundly between the two scenarios. In principle, it is also
possible for the same initial data to lead to black hole
production in one scenario, but the formation of a naked
singularity in the other.
Interestingly, the brane-world corrections for a strange

quark fluid seem to play a similar (though not identical)
role to the presence of a charged fluid, governed by an
arbitrary function qðuÞ, in the general-relativistic scenario.
However, for the collapse of a neutral fluid, either on the
brane or in general relativity, the solution is characterized
by two independent functions of u, whereas, for a collaps-
ing charged fluid, it contains three (including qðuÞ).
Therefore, even if the precise form of the terms in the
metric introduced by the ρ2ðu; rÞ corrections to the field
equations on the brane and those containing qðuÞ in the
general-relativistic solution were identical, the collapse of

an uncharged quark fluid in the brane-world scenario could
only be equivalent to the collapse of a charged quark fluid
in general relativity if some additional constraint existed
relating qðuÞ to the other functions.
Similar results hold true for the collapse of a Hagedorn

fluid, in that the existence of naked singularities again
remains as viable on the brane as in general relativity, though
the structure of null fluid hair in black hole solutions differs
between the two models, for identical initial conditions and
collapse profiles. As in the case of the quark fluid, the brane-
world corrections play a similar, though again not identical,
role to the presence of a charged fluid component, governed
by qðuÞ, but contain only two independent arbitrary func-
tions.Unlike for strangematter collapse, however, themetrics
obtained for the collapse of a Hagedorn fluid on the brane are
all asymptotically flat, as opposed to cosmological in the
general-relativistic case. Finally, we investigated the pos-
sibility of naked singularity formation, from the collapse of a
Hagedorn fluid on the brane, as a source of GRB emissions
and found that this remains as viable a progenitor model as in
general relativity, being neither more nor less favored by
current observational data.
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