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with pure radiation. The temperature and entropy of the degenerate AdS star in the bulk

conformal limit is zero in contrast to the radiation star. Holographically, the universal

mass limit corresponds to the upper limit of the deconfinement temperature in the dual

gauge picture. The QGP at this temperature is dual to the large black hole and the heat

capacity is positive. When the fermion mass increases, the mass limit falls into the range

of the small black holes. We found that even though the small black hole has negative

heat capacity, the AdS box allows possibilities that it remains in thermal equilibrium

with the radiation as long as the size of the black hole is not smaller than a critical size.

Consequently, the dual QGP with negative heat capacity can be produced and remains

stable thermodynamically at temperature below a saturation temperature T2. The QGP

with negative heat capacity produced at higher temperature will still condensate completely

into a gas of confined hadron.
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1 Introduction

Holographic duality is one of the most exciting and rapidly advancing area of theoretical

physics in recent years. The idea of holographic duality was originated when Bekenstein

argued that a black hole should possess entropy proportional to its horizon area instead

of volume of the black hole [1]. Intriguingly, the entropy associated with the horizon is

measured in the unit of the Planck area, l2P , signalling the quantum gravity effect even for a

macroscopically large black hole. It was proposed by ’t Hooft [2] that the quantum gravity

effect is revealed by the reduction of dimension occurring at the horizon. Within a region

of space, a finite amount of energy can be filled before it undergo a gravitational collapse.

Since the entropy of a black hole is determined by the horizon area, the gravitational

collapse gives the upper bound on the amount of entropy or information we can store

in a region of space. It is given by the entropy of the black hole filling up the entire

region, proportional to the horizon area in the unit of Planck area. In this sense, all of

the information in a region of space can be encoded in the boundary of the region, a

holographic relation [3].
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View from the observer hovering in the spacetime outside a black hole, the horizon is an

effective boundary of the space. Namely, any object falling to the black hole will appear ever

more frozen and smeared as it approaches the horizon and nothing will pass through. The

holographic relation between the bulk space and its boundary can be naturally generalized

to the other cases where there is no black hole in a bounded space. One notable situation

is the AdS space. The gravity of the background AdS space pulls everything back to the

center. The massless particles can reach the infinity but they will go back to the original

point in finite time. The AdS space thus acts like a confining box and the infinity can be

thought of as the boundary of the space. In context of the string theory, the evidences of

the duality between gravitational physics in the bulk and the gauge theory on the boundary

of the AdS space were found by many authors [4–7] which ultimately lead to the AdS/CFT

correspondence conjecture by Maldacena [8, 9].

An extension to finite temperature duality can be achieved by performing the path

integral of the partition function in the Euclideanized time [10]. If the AdS/CFT cor-

respondence is correct, the partition function of the gravity theory in the AdS will be

the same as the partition function of the gauge theory on the boundary. By identify-

ing the regulated gravity action with the free energy (modulo a β factor) of the ther-

mal gravity system [11], we can study thermodynamics of the dual gauge theory on the

boundary. It is known that AdS space has 3 thermal phases; pure radiation, small black

hole (SBH), and large black hole (LBH). On the boundary, the bulk thermal phases

of radiation and black holes correspond to the confined and deconfined phases of the

strongly interacting gauge matter. Holographically, radiation in the thermal AdS cor-

responds to the gas of confined hadrons whilst the radiation in the AdS-BH background

corresponds to the gas or soup (due to the strong coupling) of deconfined quarks and glu-

ons which henceforth we will simply refer to as the QGP. The Hawking-Page transition

of the pure radiation to the black hole in the bulk AdS space is dual to the deconfine-

ment phase transition of the confined gauge matter to the quark-gluon plasma (QGP) on

the boundary.

The transition from the pure radiation to BHs can occur both classically by gravita-

tional collapse and quantum mechanically by tunneling. Conventional viewpoint when the

back-reaction of the Hawking radiation is neglected is the following. When the tempera-

ture is sufficiently large, i.e. above the critical temperature (Tcrit given by eq. (5.4) in this

article), the pure radiation inevitably collapses to form a BH. If the temperature is lower

than Tcrit but larger than a minimum temperature Tmin (given by eq. (4.9) in our text), a

tunneling from pure radiation to BH could occur with a probability.

Classical transition by gravitational collapse is a general phenomena not limited to the

pure radiation. We can consider AdS star with arbitrary particle content, fermions and

bosons, and study its collapse. Holographic duality should apply to any of these AdS stars.

A pioneering work on the holographic degenerate star with fermion content has been done

in ref. [12, 13] where the authors successfully construct multitrace composite operators in

the CFT side as the dual of the bulk fermionic star. AdS/CFT dictionary leads to the

exact matching of the conformal dimension of the composite operator and the ADM mass

of the AdS star when self-gravity is neglected.
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Holographically, gravitational collapse of an AdS star is dual to the thermalization

process of the gauge matter on the boundary [14–20]. The mass limit of the AdS star

corresponds to the minimal amount of energy density required for the dual gauge matter

to initiate the thermalization process. Additionally, the temperature of the resulting QGP

is also determined by the mass limit of the pre-collapsed star. Investigation on the condi-

tions of the AdS star before the gravitational collapse could arguably reveal the necessary

conditions for the formation of the deconfined QGP in the dual picture.

In this article, we extend the investigation of the fermionic AdS star to the bulk

conformal limit where the bulk fermion mass is vanishing. By numerically solving the

Tolman-Oppenheimer-Volkoff (TOV) equation, we study the effects of various parameters

to the mass limit of the degenerate AdS star. Notably by varying the fermion mass, the

corresponding mass limit ranges from LBH to SBH. In the bulk conformal limit, the mass

limit saturates to a maximum value specific to each dimension. We demonstrate that the

maximal mass limit is exactly the same as the mass limit of the pure radiation as a result

of the bulk conformal symmetry. In contrast to the radiation star, the degenerate star of

massless fermion has zero bulk temperature and entropy. We interpret the maximal mass

limit as the universal conformal dimension of the composite operators in the CFT side

above which deconfinement phase transition is inevitable. A remarkable linear relationship

between the mass limit and total particle number is also found in the bulk conformal limit.

Bulk and boundary explanations are given.

The article is organized as the following. In section 2, we briefly review the TOV equa-

tion and the equations of state of the degenerate star in the AdS space. For completeness,

we also review the construction of the composite multitrace operators dual to the degen-

erate star. Rigorous calculations of the mass of the AdS star neglecting self-gravity are

demonstrated to be exactly the same as given via the AdS/CFT dictionary. In section 3,

we present the main results of this article. Numerical results are interpreted in terms of the

CFT on the gauge theory side. Section 4 reviews the thermodynamics of the AdS space in

generic d dimensions, eq. (4.11) is a new result suitable for calculating tunneling rate of the

quantum mechanical phase transition. The bulk conformal limit is discussed in section 5.

We also argue the possibility of stable SBH phase when the back reaction of the Hawking

radiation is included. Section 6 concludes our article.

2 Holographic degenerate star in the AdS space

In this section, we consider degenerate star in the AdS space. Since we are interested in the

construction of the gravity dual of the charge-neutral gauge matter living on the boundary,

we will assume that the star content is purely fermionic with no charges. The fermion has

no other interactions except gravity, both from the background AdS and the self-gravity.

The AdS star has been studied extensively in ref. [13] for zero temperature and in ref. [21]

for finite temperature with external magnetic field. In this section, we will review the

basic of the AdS star at zero temperature and discuss the situation when self-gravity is

negligible. In subsequent sections, we extend the investigation to include self-gravity and

explore the limit when the fermion has zero mass.
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We also review the construction of the composite operator in the dual CFT side as

suggested by ref. [13] and demonstrate in details the exact agreement between the confor-

mal dimension of the composite operator and mass of the AdS star when self-gravity is

neglected. The review content will be extended to describe the duality in the zero-fermion-

mass limit in subsequent sections, especially in the double scaling limit of the CFT side.

2.1 The equations of hydrostatic equilibrium for a spherical symmetric star

in d dimensions

The equations of motion of our system are derived from the Einstein’s field equation in

d-dimensional AdS space. Starting from a generic spherically symmetric line element in

d-dimension

ds2 = A2(r)dt2 −B2(r)dr2 − r2dθ21 − r2 sin2 θ1



dθ22 +
d−2
∑

j=3

j−1
∏

i=2

sin2 θidθ
2
j



 , (2.1)

We assume the energy-momentum tensor of the fermion is given by the perfect fluid form,

Tµν = (ρ+ P )uµuν + Pgµν , (2.2)

where uµ, ρ, and P are the 4-velocity, energy density, and pressure respectively. Solving

the Einstein’s field equation (see e.g. ref. [21]), we obtain the Tolman-Oppenheimer-Volkoff

equation (the TOV equation)

dP

dr
+

1

A

dA

dr
(ρ+ P ) = 0, (2.3)

and the coupled equations between mass and chemical potential

M ′ (r) = Vd−2ρ (r) r
d−2, (2.4a)

µ′ (r) = µ (r)

(

B′(r)

B(r)
− Vd−2Cd−1

2

(

ρ (r) c2 + Pr (r)
)

rB2 (r)

)

, (2.4b)

where

B(r) =

(

1− M(r)Cd−1

rd−3
+

r2

ℓ2

)−1/2

, (2.5a)

A2(r) =
e2χ(r)

B2(r)
, (2.5b)

χ(r) =
Vd−2Cd−1

2

∫

(ρ+ P ) rB2(r)dr. (2.5c)

The parameter ℓ, Vd−2, Cd−1 =
16πG

(d−2)Vd−2c4
,1 and M(r) are the radius of the AdS space, the

area of Sd−2, a constant and the accumulated mass of the star respectively. The chemical

potential is naturally redshifted by the metric as

µ =
ǫF
A(r)

, (2.6)

1The gravitational constant G here is chosen to be 2/(d− 2) of the constant used in ref. [21] so that it

is in the same convention as the one in eq. (4.1).
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where we identify the central chemical potential with the Fermi energy ǫF for empty AdS

with A(0) = 1.

For a fermionic star, the density and pressure of the fermion gas at zero temperature

are given by

ρ =
gfVd−2

(2π)d−1

∫ µ

m
µ2(µ2 −m2)(d−3)/2 dµ, (2.7)

P =
gfVd−2

(d− 1)(2π)d−1

∫ µ

m
(µ2 −m2)(d−1)/2 dµ, (2.8)

where gf is the number of internal degrees of freedom such as spin, flavour and colour of

the fermion. Note that for m = 0 (conformal limit), the density and pressure become

ρ =
gfVd−2

(2π)d−1

µd

d
, P =

ρ

d− 1
, (2.9)

a linear equation of state. In m = 0 limit, the AdS star behaves like a radiation star (at

zero temperature, this is possible for a fermionic star or a Bose-condensate star). The

radiation star in the AdS space turns out to have a finite mass limit but infinite radius as

we will see later. Because of the infinite radius, the radiation star can be thought of as a

thermal phase of the AdS space, i.e. the AdS space filling with radiation. The temperature

profile of the radiation star is given by T (r) = T (0)/A(r). We will assume that T = 0

when we consider the AdS star and only turn on the temperature when we compare the

AdS-BH with the thermal AdS in subsequent section.

2.2 Mass of degenerate star between bulk and boundary in the absence of

self-gravity

According to the usual AdS/CFT dictionary, the conformal dimension of the fermionic

single trace operator ∆0 is related to the mass of the bulk fermion m by

∆0 =
d

2
+

√

d2

4
+ (mℓ)2. (2.10)

For large m ≫ d/2ℓ, ∆0 ≃ mℓ, the conformal dimension of an operator can be thought of

as a scaled mass in the bulk.

By using the dictionary above, Arsiwalla et al. [13] found a perfect matching between

the bulk mass of a spherical symmetric AdS star and the conformal dimension of the multi-

trace operator in the boundary description when the self-gravity of the bulk is neglected.

Let us briefly review how they construct the composite operators and count the conformal

dimensions of such operators. Exclusion principle demands that the composite operators,

Φ, should contain derivatives of the single-trace fermionic operators, Ψ (since the CFT

exists in (d− 1)-dimensions, the number of possible derivatives is d− 1). The most generic

and simplest form is given by

Φ = Ψ
∏

i

∂iΨ
∏

{i,j}

∂i∂jΨ . . .
∏

{i1,i2,...,in}

∂i1∂i2 . . . ∂inF
Ψ (2.11)
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where the product over all possible permutation of the derivatives is included for a given

number of derivatives. Each product contains different numbers of derivatives of the single-

trace operator and we call them a “shell”. The last shell contains permutation of n deriva-

tives at the most and nF is the maximal number of derivatives in the last shell. The

composite operator thus depends only on nF and the number of possible configuration

for a fixed nF is one. The entropy of each nF -operator is zero so we call it a degener-

ate multi-trace operator. A degenerate multi-trace operator is a good candidate for the

corresponding dual of the degenerate fermion gas (at zero temperature) in the bulk.

The number of fields Ψ in the shell with n derivatives is given by

(

n+ d− 2

d− 2

)

,

which is equal to the number of particles in the bulk. For a fixed nF , the total number of

fields corresponding to the total number of bulk particles is therefore

NF =

nF
∑

n=0

(

n+ d− 2

d− 2

)

=

(

nF + d− 1

d− 1

)

. (2.12)

In order to estimate the bulk mass, we need to calculate the conformal dimension of the

composite operator Φ for a certain nF . Since each derivative increases conformal dimension

by one, the conformal dimension of Φ is

∆ =

nF
∑

n=0

(n+∆0)

(

n+ d− 2

d− 2

)

= (d− 1)

(

nF + d− 1

d

)

+∆0

(

nF + d− 1

d− 1

)

.(2.13)

By using the approximate correspondence (valid only when m ≫ d/2ℓ)

m ≃ ∆0

ℓ
,M ≃ ∆

ℓ
, ǫF ≃ nF +∆0

ℓ
, (2.14)

we find an approximate relation between the bulk mass, the Fermi energy and the bulk

fermion mass to the leading order of ℓ as the following

M =
(d− 1) ℓd−1

d!
(ǫF −m)d +

mℓd−1

(d− 1)!
(ǫF −m)d−1 . (2.15)

where
(

nF + d− 1

d

)

≃ nd
F

d!
,

(

nF + d− 1

d− 1

)

≃ nd−1
F

(d− 1)!
(2.16)

are used. The term proportional to m corresponds to the rest energy and the term pro-

portional to d − 1, originated from derivatives, corresponds to the kinetic energy of the

fermion in the bulk.

– 6 –
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On the other hand, the gravitational mass of the AdS star in the bulk can be calculated

via eq. (2.4a). Integrating by parts and using thermodynamic relation dρ = µ dn, we have

M =
Vd−2 ρ r(d−1)

(d− 1)

∣

∣

∣

R

0
−
∫ ρ(r=R)

ρ(r=0)

Vd−2 r(d−1)

(d− 1)
dρ = −

∫ m

ǫF

Vd−2 r(d−1)

(d− 1)
µ
dn

dµ
dµ.

The number density in d-dimension is given by

n =
Vd−2

(d− 1)(2π)(d−1)

(

µ2 −m2
)

(d−1)
2 . (2.17)

Using (2.6) and solving r(µ) when ignoring self-gravity, i.e. χ(r) = 0, r = ℓ

√

(

ǫF
µ

)2
− 1,

we get

M = − (Vd−2)
2 ℓd−1

(d− 1) (2π)(d−1)

∫ m

ǫF

(

(

ǫF
µ

)2

− 1

)
d−1
2

µ2
(

µ2 −m2
)

d−3
2 dµ. (2.18)

After performing the integration,

M =
(Vd−2)

2mdℓd−1

(d− 1) (2π)(d−1)

√
π
(

ǫF
m − 1

)d−1

4Γ
(

d
2 + 1

)

(

1 + (d− 1)
ǫF
m

)

Γ

(

d− 1

2

)

, (2.19)

where Γ (z) is a gamma function. By using properties of Gamma function

z Γ(z) = Γ(z + 1), Γ(z) Γ

(

z +
1

2

)

= 21−2z√π Γ(2z), (2.20)

and Vd−2 = 2π(d−1)/2/Γ((d−1)/2), the AdS mass can be calculated to be exactly the same

expression as the right-hand side of eq. (2.15), i.e.

M =
(d− 1) ℓd−1

d!
(ǫF −m)d +

mℓd−1

(d− 1)!
(ǫF −m)d−1 . (2.21)

This is an amazing result showing the correspondence between the conformal dimension of

multitrace operator in the CFT and the mass of the AdS fermionic star in the bulk. We

should remark that the calculation of the bulk mass depends crucially on the functional

form of the chemical potential with respect to the radial coordinate, µ(r) = ǫF /A(r) =

ǫF /
√

1 + r2/ℓ2 for the AdS space. This is the main reason why there is an exact matching

between the bulk mass and the mass calculated from conformal dimension via the dictionary

of the AdS/CFT correspondence.

We can rescale the total bulk mass of the AdS star in terms of the bulk fermion mass

m as the following

M =
1

ℓ

(mℓ)d

d!
(x0 − 1)d−1(1 + (d− 1)x0); x0 ≡

µ0

m
, (2.22)

where the central chemical potential, µ0, is identified with the Fermi energy ǫF . The mass is

an increasing function of µ0 and contains no information of the mass limit of the degenerate

– 7 –
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star. It neglects the effect of self-gravity and is not suitable for the gravitational collapse

situation where self-gravity dominates and competes with the degenerate pressure. We will

consider the situation when self-gravity is included in the next section.

If we consider d = 4 and 5 cases, we obtain the mass in the AdS4 and AdS5

MAdS4 =
l3

24
(ǫF −m)3 (3ǫF +m) , (2.23a)

MAdS5 =
l4

120
(ǫF −m)4 (4ǫF +m) , (2.23b)

respectively.

The total particle number NF can also be integrated with respect to the curved spatial

volume by using the number density given by eq. (2.17),

NF = Vd−2

∫ R

0
n(r)B(r)rd−2 dr. (2.24)

Substitute B(r) = µ/ǫF (since when self-gravity is neglected AB = 1) and change the

integration variable to µ, we obtain

NF = − (Vd−2)
2 ℓd−1

(d− 1) (2π)(d−1)

∫ m

ǫF

(

(

ǫF
µ

)2

− 1

)
d−3
2

µ−2
(

µ2 −m2
)

d−1
2 dµ, (2.25)

=
(Vd−2)

2 ℓd−1ǫd−1
F

(d− 1) (2π)(d−1)

√
π
(

1− m
ǫF

)d−1

2Γ
(

d
2

) Γ

(

d− 1

2

)

,

=
ℓd−1

(d− 1)!
(ǫF −m)d−1, (2.26)

where we have used the identities of Gamma function, eq. (2.20), in the last step as before.

Again this is in exact agreement with the total particle number given by eq. (2.12), (2.16)

and (2.14) in the boundary theory. Remarkably, we can define the density of states g(ǫ) ≡
ℓd−1(ǫ−m)d−2/(d− 2)! for the “boundary free field” Ψ [13] for which

NF =

∫ ǫF

m
g(ǫ) dǫ, M =

∫ ǫF

m
ǫ g(ǫ) dǫ. (2.27)

It is interesting to compare the integrand of eq. (2.18), (2.25), and (2.27) since they are

integrated within the same range of energy variable. It is quite intriguing that different

functions of integrand give exactly the same result, bulk and boundary. The boundary

description has a statistical interpretation in terms of the density of states g(ǫ) while we

cannot define a density-of-states function in the bulk, i.e. the integrand in eq. (2.25) does

not lead to the correct integrand of mass in eq. (2.18) when multiplied by µ. Nevertheless,

an obvious relationship is established between the bulk mass and particle number as we

can derive from differentiating eq. (2.27) with respect to ǫF on the boundary

dM

dǫF
= ǫF

dNF

dǫF
. (2.28)

– 8 –
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The same relationship can also be obtained by using the Einstein equations as pointed out

in ref. [13].

In fact, since the chemical potential is determined as a function of the radial coordinate

r as

µ(r) =
ǫF

√

1 + r2

ℓ2

, (2.29)

the accumulated mass M(r) can be directly integrated out to be a function of r,

M(r) =
(Vd−2)

2 ℓd−1ǫdF

(d− 1) (2π)(d−1)

∫ 1

u

(

1

u2
− 1

)
d−1
2

u2
(

u2 − u2R
)

d−3
2 du, (2.30)

where u ≡ µ(r)/ǫF , uR ≡ µ(R)/ǫF = m/ǫF . For example, when d = 5 the integrand

becomes a polynomial and the accumulated mass is given by

M(r)AdS5 =
ℓ4ǫ5F
16

(u− 1)3

15u

(

5u2R(3 + u)− u(3u2 + 9u+ 8)
)

, (2.31)

with u = 1/
√

1 + r2/ℓ2. Similarly for the particle number accumulated from r = 0 to r,

NF (r) =
(Vd−2)

2 ℓd−1ǫd−1
F

(d− 1) (2π)(d−1)

∫ 1

u

(

1

u2
− 1

)
d−3
2

u−2
(

u2 − u2R
)

d−1
2 du. (2.32)

For d = 5, the polynomial integral is simplified to

NF (r)AdS5 =
ℓ4ǫ4F
16

(u− 1)2

3u3
(

u3(u+ 2)− 6u2Ru
2 + u4R(2u+ 1)

)

, (2.33)

with u(r) given above.

It is apparent from eq. (2.21) and (2.26) that both the total mass and particle number of

the AdS star are increasing functions of ǫF when the self-gravity is neglected (and µ0 = ǫF ).

Consequently, there is no mass limit in this case. The mass and particle number continue

to increase without bound as the central chemical potential grows. Naturally, neglecting

self-gravity leaves us with only the gravity generated from the AdS background metric. The

AdS star can attain any large masses which are determined from the equilibrium between

the background gravity and the degenerate pressure. Since the background gravity is always

bounded (i.e. no coordinate singularities), there is no possibility of gravitational collapse

signalling the appearance of the event horizon, therefore the absence of the mass limit.

3 AdS stars with self-gravity

In section 2.2, it is demonstrated that the correspondence between conformal dimension of

the boundary operator and the mass of semiclassical bulk field lead to an exact matching

between the conformal dimension of the multitrace fermionic operator and the bulk mass

of the fermionic degenerate star, eq. (2.21), in the absence of self-gravity. In obtaining the

correspondence, we have made certain approximation m ≫ d/2ℓ, ∆0 ≃ mℓ that the mass

is large. It is also taken that nF is large comparing to d.

– 9 –
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In the presence of strong self-gravity, there is a possibility of coordinate singularities

appearing in the metric, eq. (2.5). Strong gravity limits the maximal possible mass of the

star when the internal pressure becomes inevitably smaller than the strength of gravity.

The result is the Chandrasekhar/TOV mass limit of a degenerate star. Certainly, when the

self-gravity is strong, the basic fermionic operator, Ψ, must interact strongly to one another,

changing the conformal dimension of the composite multitrace operator, Φ, in the process.

There has been attempt to find a new conformal dimension of the strongly coupled com-

posite operator in order to match with the mass of the AdS star in the presence of strong

self-gravity [13]. Apparently in the Newtonian limit, the self-gravity contributes a negative

amount of mass, roughly −GM2/r which corresponds to correction to the conformal di-

mension ∆int. ∼ −∆2/N2 in the ’t Hooft limit since M ∼ ∆/ℓ, r ∼ ℓ,G ∼ G10/ℓ
6 ∼ ℓ2/N2.

We also have to multiply bulk energy by ℓ in order to obtain the conformal dimension

according to eq. (2.14). Consquently, the conformal dimension of Φ corresponding to the

bulk mass of the AdS star in the presence of self-gravity becomes approximately

∆ +∆int. ∼ ∆− (Const.)
∆2

N2
. (3.1)

On the boundary, the change in the conformal dimension of the composite operator Φ is

due to the 4-point interaction between the constituent operator Ψ which can be extracted

from the OPE of the 4-point function of the operator Ψ. At the leading order of 1/c-

expansion (c :central charge of the boundary CFT), the interaction is the exchange of the

stress tensor as well as its crossing channel and thus it is universal just like gravity in the

bulk.

3.1 Large ℓ limit

When the radius of AdS space is large, the central charge of the dual CFT, c ∼ N2 ∼
ℓd−2/G will be large. If ∆, NF ,∆0 are fixed, the fermionic operator Ψ can be approximated

by a “free field” with negligible interaction. On the other hand, if we also scale ∆/c = f

to be a finite constant not much different from O(1), we will have

∆

c
∼ MℓG

ℓd−2
∼ f. (3.2)

In the bulk from eq. (2.5), this would correspond to the situation where self-gravity of the

bulk fermion gas can no longer be neglected. Namely,

R2

ℓ2
≃ GM

Rd−3
∼ O(1). (3.3)

In this “double scaling limit” [13], since kF ≃ ǫF we have

R

ℓ
=

kF
m

≃ nF

∆0
≃ g(const), (3.4)

therefore

∆ ∼ ∆0n
d−1
F ,

– 10 –
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or

nF ∼ ∆0 ∼ c1/d,

where eq. (2.14), (2.15), and (2.16) have been used. It also implies the scaling of the total

particle number, eq. (2.12), with respect to the central charge

NF ∼ (ℓǫF )
d−1 ∼ ∆d−1

0 ∼ c(d−1)/d.

In the bulk picture, the scaling ∆0 ∼ c1/d corresponds to the relation

mℓG1/d

ℓ(d−2)/d
∼ finite const, (3.5)

which demands that as ℓ → ∞, the Newton constant must scale as G → (const.)/ℓ2 in any

dimensions. By requiring the invariance of the bulk equations of motion eq. (2.4a), (2.4b),

(2.5) and (2.7) under scaling r → rr0,M → MM0,m → mm0, ρ → ρρ0, G → GG0, the

scales must satisfy the relations

ρ0 = md
0 =

1

r20G0
,M0 =

rd−3
0

G0
. (3.6)

Choosing r0 = ℓ and applying Gℓ2 = const. result in the relation

M

ℓd−1
= const. (3.7)

For a fixed m, this is exact regardless of ℓ as long as we choose G = const./ℓ2. For large

ℓ, we have ∆ ∼ c ∼ ℓd,∆0 ∼ ℓ,NF ∼ ℓd−1 on the boundary CFT. Consequently for a

given m, we can choose sufficiently large ℓ so that M is larger than m. Another prediction

is that M/NF = const. since both quantities are of order ℓd−1 and the constant f, g are

not sensitive to m (when m is small). We will see that this is actually the case when we

numerically calculate the mass limit and NF of the AdS star with self-gravity in the next

section, as shown in figure 6.

3.2 Fixed ℓ case

Generically, the AdS/CFT correspondence should be valid even when ℓ is fixed to some

finite constant. In this section we will explore this possibility by setting ℓ = 1 and argue

that it could lead to the quark-gluon plasma with negative heat capacity. Increasing ℓ

will increase the mass limit of the fermion star for a fixed m but we can always increase

m so that the mass limit becomes substantially smaller, even smaller than m itself. In

this section, we numerically solve the coupled equations of motion, eq. (2.4a), (2.4b), by

setting G, ℓ = 1. As long as we keep Gℓ2 fixed at a specific value of m, the results remain

unchanged for any other values of G and ℓ.
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Figure 1. Relation between mass limit and fermion mass in AdS4 and AdS5.

3.3 Relations between mass limit, fermion mass and radius

In this section, we will discuss the relationship between the mass limit, radius, and mass of

the fermions in the AdS star as a result of the numerical solutions to the TOV equations.

We have chosen gf = 2 for all of the plots except stated otherwise (plots involving binding

energy have gf = 1). First, the mass limit of the AdS star is found to be a decreasing

function ofm as shown in figure 1. A quantum property of fermion gas which determines the

mass limit of the star is the degenerate pressure. Even massive fermions at zero temperature

are forced to possess kinetic energy due to exclusion principle and thus they inevitably exert

pressure against the gravity. As m → 0, most of the energy of the fermions becomes kinetic,

resulting in the highest possible degenerate pressure and mass limit. Higher pressure also

implies bigger star as we can see from figure 2. Another crucial feature is that the mass

limit is not sensitive to m when m is small as we can see from the saturation of the mass

limit for m → 0 and ever increasing R.

Figure 2 shows the relation between mass limit and radius of AdS stars in four and

five dimensions. By varying the fermion mass m = 0.001− 0.5, we numerically obtain the

mass limit and the corresponding radius of the AdS star at each m. AdS star with large m

has lower mass limit and smaller radius. There is a possibility for M < m as m increases.

It is originated from the choice of units when we set G = 1, ℓ = 1. For a fixed m,Gℓ2; ℓ

can always be chosen to be so large, G to be so small that M ℓd−1 becomes larger than

m and vice versa. As m → 0, the radius continues to grow but the mass limit saturates

at an upper bound mass. For AdS4,5, the upper bound Mlimit(m → 0) = 0.459, 0.913

respectively.

Accordingly on the boundary, the conformal dimension of the corresponding composite

operator has an upper bound at Mlimitℓ in the relativistic fermion limit. The lesser the

conformal dimension of the constituent fermionic operator Ψ, the higher the conformal

dimension of the composite Φ before the deconfinement occurs. Existence of the upper

bound implies that the deconfinement is inevitable provided that the energy density (and

consequently ∆) is sufficiently large. Injecting mass to the bulk until it exceeds the mass

limit and the AdS star inevitably collapses corresponds to the deconfinement of the CFT

– 12 –
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Figure 2. Relation between mass limit and radius in AdS4 and AdS5.
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Figure 3. Relation between Fermi energy and fermion mass in AdS4 and AdS5.

matter on the AdS boundary when the energy density exceeds a critical value (larger and

larger number of Ψ accumulates to form Φ until reaching critical value).

3.4 Relations between Fermi energy and fermion mass

At center of the star, gravitational force from both the AdS background and the self-gravity

become zero. Therefore the chemical potential at r = 0 is simply the Fermi energy ǫF . The

chemical potential gets redshifted as r increases and becomes m at the surface of the star.

Each class of star with a given value of m has a mass limit at a particular µ(r = 0) = ǫF .

Numerical results are presented in figure 3. The Fermi energy or central chemical potential

at the mass limit is found to be an increasing function of the fermion mass.

On the boundary, this result is consistent with relation ǫF ℓ = (∆0 + nF ). The de-

pendence of ǫF and m is almost linear at the critical ∆ = Mlimitℓ where deconfinement

occurs. We can interpret that nF at the deconfinement is also a slowly increasing function

of ∆0 ≃ mℓ.
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3.5 Binding energy

The binding energy of the AdS star can be calculated from the difference between the mass

with and without the self-gravity at the fixed total particle number. We can numerically

calculate the mass of the AdS star from the coupled equations (2.4a), (2.4b) in the presence

of self-gravity, and analytically from eq. (2.21) when self-gravity is neglected. However,

these masses are determined at a fixed µ0 (figure 4), consequently they correspond to

different particle numbers. In order to obtain the binding energy of the star, we need to

subtract the masses at a fixed particle number NF (figure 5 (a) and (b)).

From figure 5 (c) and (d), the binding energy fraction is smaller for smaller fermion

mass m. As the fermion mass approaches zero, the binding energy saturates. We can also

see the saturation phenomenon in figure 2 (as the radius grows with diminishing m) and

figure 1. The implication for the conformal physics on the boundary is the following. For

operator Ψ with small conformal dimension ∆0, the deconfinement transition occurs when

the conformal dimension of the composite operator Φ is relatively larger than when ∆0 is

large. However, even when ∆0 becomes very small (m → 0 in the bulk) the deconfinement

still occurs at a saturated value of ∆, the conformal dimension of the composite Φ. There

is an upper bound on the critical conformal dimension ∆c (corresponding to Mlimit) above

which deconfinement is inevitable. For a given fermion mass m, the mass limit of the AdS

star would correspond to the critical conformal dimension ∆c ≡ ∆c,0+∆int. of the operator

Φ while ∆c,0 would be given by the mass of the AdS star neglecting self-gravity at the same

total particle number, M0(sameNF ). Namely, we have the following relations

M0ℓ = ∆, (3.8)

Mlimitℓ = ∆+∆int.. (3.9)

From figure 2, 1 and 5 (ℓ = 1), the estimated values of the critical conformal dimensions are

∆c(m → 0) ≃ 0.459, 0.913 (forAdS4,5), (3.10)

∆c,0 ≃ ∆c

1− α
, (3.11)

= 0.476, 0.924, (forAdS4,5), (3.12)

where we have used the binding energy fraction at the mass limit α ≡ (M0−M)/M0(m →
0) = 0.0358, 0.0125 for d = 4, 5 respectively. The quantity ∆c(m → 0) is the upper bound

for ∆c at other arbitrary fermion masses. Certainly in the zero fermion mass limit, the

corresponding conformal dimension is given by eq. (2.10), ∆0(m → 0) = d, not zero while

the latter two relations of eq. (2.14) remain valid.

3.6 Relation between mass limit and total particle number

An interesting result is found between the mass limit and corresponding total particle

number as is shown in figure 6. For sufficiently small m, the relation between Mlimit

and NF converges to a linear function for both AdS4,5. For larger m, both Mlimit and

NF approach zero. This result is intriguing considering the fact that for small m, most

fermions are kinetical and the rest energy is negligible. We do not expect the total mass
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Figure 4. Mass limit curve of AdS stars for fermion mass m = 0.1 in AdS4 and AdS5. Note that

gf = 1 for these plots.

to be proportional to the number of particle especially when the chemical potential is

redshifted along the radial coordinate, see e.g. figure 5 (a), (b) (see also figure 8 of ref. [13]).

Numerically, we can understand this result from the behaviour of binding energy shown

in figure 5. As m → 0, the binding energy fraction becomes negligible, therefore the

expression of mass and particle number without self-gravity given by eq. (2.21), (2.26) can

be used. Setting m = 0, we obtain the linear relation M = (d− 1)NF /d.

On the boundary, we can understand this behaviour in the large ℓ limit as discussed

in section 3.1. Since ∆ ∼ c ∼ ℓd,∆0 ∼ ℓ,NF ∼ ℓd−1, hence both Mlimit and NF are of

order ℓd−1. Additionally, ∆, NF are not sensitive to small m in the double scaling limit

as is also confirmed by the bulk result in figure 2. Consequently, we expect the relation

between Mlimit and NF to be linear when ℓ is large and m is small. This result remains

valid for smaller ℓ and larger G as long as Gℓ2 is fixed as we can see from figure 6.

Lastly, let us comment on the bulk conformal limit, m → 0 of the AdS star. As expected

from the linear equation of state, eq. (2.9), the conformal breaking factor ρ − (d − 1)P

approaches zero as m → 0. This is shown in figure 7. In this bulk conformal limit, the

relation between the mass limit and the total particle number (at the mass limit) becomes

linear as is shown in figure 6. The relationship is not obvious due to the extra B(r) in the

definition of NF comparing to M .

3.7 gf factor and internal degrees of freedom

The spin degrees of freedom can be included in the analysis as a gf factor multiplying to

the density and pressure of the fermion content of the star. Incidentally, this factor can

actually represent all other internal degrees of freedom of the bulk fermion such as the colour

and flavour as long as a universal mass (and chemical potential) is assumed among those

degrees of freedom. The dependence on the number of internal degrees of freedom is shown

in figure 8. The mass limit is found to be a slowly decreasing function of gf even though

the pressure and density are increased. Such paradoxical behaviour can be understood

by considering the equation of motion of the chemical potential, eq. (2.4b). Increasing
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Figure 5. (a) and (b): mass and total particle number of the AdS stars for m = 3.0. The curves

with self-gravity are truncated at the mass limit. (c) and (d): binding energy of AdS stars for

fermion mass m = 0.001, 0.1, 0.3, 0.5, 3.0 (lower to upper curves respectively) in AdS4 and AdS5.

Note that gf = 1 for all plots.

both the density and pressure with a factor gf will make µ(r) decreases more rapidly with

respect to r, consequently the star radius becomes smaller making the accumulated mass

smaller. We also found that the central chemical potential µ0 at the mass limit decreases

with increasing gf for a fixed m.

For both bulk and boundary picture, gf represents the same localized degrees of free-

dom. If there are more colour and flavour degeneracy of CFT “nucleon” (or more generi-

cally “multiquark”), the deconfinement could occur at slightly lower ∆ (and lower energy

density) according to figure 8.

4 Small and large AdS black holes

In this section, we briefly review the thermodynamics of black holes in the AdS space. We

will present the results in general dimension. The analysis is based on the Euclideanized

time action which neglects the effects of self-gravity of the radiation in the AdS space.
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Figure 6. Mass limit and total particle number at the mass limit for varying m. As m → 0, the

relationship converges to a linear function. The mass and particle number reach maximal values at

m = 0.
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Figure 7. Conformal breaking factor profile ρ − (d − 1)P for m = 0.001, 0.1, 0.5 (lower to upper

curve) of the AdS stars at the mass limit in d = 4, 5.

There are two possibilities of static black holes in the AdS space, a small and large

one [11]. A small black hole (SBH) is defined to be the branch which the Hawking tempera-

ture decreases as the black hole mass grows and thus it has a negative heat capacity. A large

AdS black hole (LBH), on the other hand, is the black hole in the positive heat capacity

branch with the Hawking temperature an increasing function of the black hole mass. Quan-

tum fluctuations near the horizon of a black hole generate Hawking radiation at a fixed tem-

perature which is related to the Bekenstein entropy in a standard thermodynamical manner.

The heat capacity of a black hole can be defined once its temperature is determined.

Starting with the classical action of AdS-Schwarzschild spacetime in d dimension,

I = − 1

16πG

∫

dn+1x
√
−g

(

R+
n(n− 1)

ℓ2

)

, (4.1)

=
n

8πGℓ2

∫

dn+1x
√
−g, (4.2)
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Figure 8. Relation between mass limit and spin factor representing the number of internal degrees

of freedom of the fermion for m = 0.1.

proportional to the volume of the spacetime. In the presence of a black hole, we set

χ(r) = 0,M(r) = M in eq. (2.5) for the metric. Both the volume factor of the AdS and the

AdS-Schwarzschild spacetime are infinite but the difference is finite, the regulated action

obtained by substracting the two at the same asymptotic radius is [10]

Ireg =
Vn−1

4G

(ℓ2 − r2+) r
n−1
+

n r2+ + (n− 2)ℓ2
, (4.3)

where n = d− 1 is the dimension of the boundary spacetime and r+ is the horizon radius

of the black hole. The cosmological constant is related to the AdS radius ℓ by

Λ = −n(n− 1)

2 ℓ2
. (4.4)

The corresponding Hawking temperature TH = 1/β is a function of the horizon radius as

β =
4πℓ2r+

n r2+ + (n− 2)ℓ2
. (4.5)

The total energy (mass) of the AdS-BH can be calculated thermodynamically to be

E =
∂I

∂β
=

Vn−1(n− 1)

4G

(ℓ2 + r2+) r
n−2
+

4π ℓ2
, (4.6)

with the heat capacity

CV =
Vn−1

4G

(n− 1)rn−1
+ (n r2+ + (n− 2)ℓ2)

n r2+ − (n− 2)ℓ2
. (4.7)

The heat capacity is negative when r+ < ℓ
√

(n− 2)/n ≡ rc and positive for r+ >

ℓ
√

(n− 2)/n respectively. As a demonstration of the holographic principle, we also calcu-

late the entropy of the AdS-BH,

S = βE − I =
Vn−1

4G
rn−1
+ =

An−1(r+)

4G
, (4.8)

where An−1(r+) is area of the event horizon of the black hole.
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Figure 9. Temperature versus mass of the AdS-BH.

The minimal Hawking temperature occurs when r+ = rc,

Tmin =

√

n(n− 2)

2πℓ
=

1

2π

√

−2(n− 2)Λ

n− 1
. (4.9)

For d = 4, 5 (n = 3, 4), this is equal to
√
−Λ/2π,

√

−4Λ/3/2π respectively. Above the min-

imal temperature, AdS-BH branches into small and large ones with negative and positive

heat capacity as shown in figure 9. The critical mass distinguishing small and large black

holes is at r+ = rc

Mc =
Vn−1ℓ

n−2

8πG

(n− 1)2

n

(

n− 2

n

)(n−2)/2

(4.10)

In d = 4, 5 (n = 3, 4), the critical mass is

2 ℓ

3
√
3 G

,
9π ℓ2

32 G

or 0.385, 0.884 for ℓ,G = 1 respectively. Classically, both small and large black holes

can exist in the AdS space in any dimensions. Semiclassically, however, thermal fields in

small (large) AdS-BH spacetime is thermodynamically less (more) preferred than pure radi-

ation in the AdS space. The free energy of the fields in the AdS-Schwarzschild background

at finite temperature could be identified with the gravity action in the Euclideanized time.

From eq. (4.3), (4.5), the regulated gravity action is related to the temperature T = 1/β by

I± =
Vn−1

4G

β

4π

(

4πℓ2

2n

)n−2
(

1− β2
c

n− 2

n

(

1

β
±
√

1

β2
− 1

β2
c

)2)(

1

β
±
√

1

β2
− 1

β2
c

)n−2

(4.11)

where βc ≡ 2πℓ/
√

n(n− 2) and the +(−) sign corresponds to the LBH(SBH) respec-

tively. The free energy of the AdS-BH can be calculated from the partition function
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F = −T logZ = TI,

F =
Vn−1r

n−2
+

16πG

(

1−
r2+
ℓ2

)

, (4.12)

which is positive (negative) when r+ < (>)ℓ. At r+ = ℓ, the BH temperature is (n −
1)/2πℓ ≡ T1 > Tmin. By comparing the free energy of the BH in thermal equilibrium with

radiation and the thermal AdS without self-gravity, we thus conclude that for

Tmin < T < T1, (4.13)

the BH (regardless of the size) in thermal equilibrium is less preferred thermodynamically

than the pure thermal AdS without self-gravity. For higher temperature T > T1 (the

Hawking-Page temperature), the free energy of the LBH (SBH) becomes negative (pos-

itive). LBH becomes more preferred than the pure thermal radiation while the SBH is

the least preferred. Note that the self-gravity of the radiation has been neglected in this

consideration for both thermal AdS and BH in thermal equilibrium.

5 Self-gravity effects of the radiation and the bulk conformal limit

In this section we consider effects of self-gravity of the radiation and matter in the AdS

space. For AdS space without BH, this is simply the “radiation” star with infinite radius.

For the star of massless fermion, the AdS space behaves like a box. As a consequence,

the fermions develop nonzero chemical potential even at zero temperature within the star.

As we have numerically demonstrated, the fermionic AdS star in m → 0 limit at zero

temperature has a finite mass limit with an infinite radius! In this sense, it is a “radiation”

star at zero temperature. On the other hand, the conventional radiation star with zero

chemical potential (and thus nonzero temperature) in the AdS space has been studied a

couple of times, e.g. ref. [22, 23]. Starting from the number density of the massless particle

specie i given by

ni =

∫

dn~pi
(2π)n

(eβEi ± 1)−1 (5.1)

where the sign is +(−) for fermion(boson), we obtain

ρb =
Tn+1

2n−1πn/2

Γ(1 + n)

Γ(n/2)
ζ(1 + n) (5.2)

for boson and ρf = (1− 2−n)ρb for fermion. The total energy density of radiation is thus

ρ = gbρb + gfρf ≡ geffρ
b ≡ g∗T

n+1, (5.3)

summing over all species of particle and the radiation pressure is given by P = ρ/(d− 1).

It has been shown in ref. [22, 23] that the radiation star in the AdS space even with infinite

radius generically has mass limit above which gravitational collapse to BH is inevitable.

The mass limit corresponds to the critical maximal temperature of the radiation at the
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center, r = 0 of the AdS space. The radiation with central temperature higher than this

value is unstable under radial perturbation.

It is interesting to compare the mass limit obtained from the conventional radiation star

and the mass limit with m → 0 obtained in section 3. The former has µ = 0, T > 0 while

the latter has T = 0, µ > 0. As is demonstrated in appendix A of ref. [21] (eq. (A.32)), the

equation of motion of T (r) and µ(r) are identical, i.e. T ′/T = µ′/µ = −A′/A. Therefore,

there is a symmetry under T and µ exchange in the system if the density ρ and pressure

P have the same dependence between T and µ. This is exactly the case when m = 0,

the bulk conformal symmetry demands that ρ, P can only depend on a single dimensionful

quantity, either T or µ. Dimensional analysis implies that ρ, P will have exactly the same

independence on T or µ; for conventional radiation star, they are given by eq. (5.2), (5.3),

for fermionic star with m = 0, they are given by eq. (2.9). Consequently, both cases will

give exactly the same mass limit ! This remarkable result implies that the upper mass limit

we found in section 3 is actually the same as the mass limit of the radiation in the AdS

space with the self-gravity, a genuine universal mass limit of the AdS space.

Numerically, we found that the critical central temperature at the mass limit (g∗ =

2) of the thermal AdS space is 0.622(0.776) for AdS4(5) respectively. The mass limit

is 0.459(0.913) for AdS4(5), exactly the same as the mass limit of the fermionic star in

section 3 as expected from the symmetry between T and µ of the two cases in the bulk

conformal limit. Another remarkable behaviour is the scaling invariance of the mass limit

with respect to T or µ. Since the expression of ρ and P does not change form under

rescaling T or µ (due to bulk conformal symmetry), the mass limit curve only shifts in the

T or µ direction under the rescaling. The mass limit remains the same. As a consequence,

the mass limit does NOT depend on g∗ (or gf ) since we can rescale T → Tg
1/d
∗ (or µ) to

eliminate g∗ from the equation of motion. Certainly, the critical T or µ at the mass limit

will be shifted with a factor g
−1/d
∗ accordingly.

On the boundary, the universal mass limit can be interpreted to be the dual of univer-

sal critical temperature of the strongly coupled CFT matter above which deconfinement

should occur. The critical temperature in the gauge picture is the Hawking temperature

of the AdS-BH with mass equal to the universal mass limit of the AdS star given by

eq. (4.5), (4.6) (see also figure 9). For AdS4,5,

Tcrit = 0.277, 0.450 (5.4)

respectively. Note that Tcrit is slightly larger than Tmin. Since the mass limits are larger

than Mc, these are LBH dual to the QGP with positive heat capacity.

A remark on the different behaviour of entropy should be emphasized here. The m → 0

fermionic AdS star at zero temperature at any µ has vanishing entropy while the radiation

star generically has positive entropy for T > 0. The gravitational collapse of the AdS star

of massless fermions evolves the entropy from zero to the Bekenstein-Hawking entropy (BH

entropy) of the BH at the end of the collapse. The collapse of the radiation star or thermal

AdS space, on the other hand, evolves the entropy from finite positive value to the same

BH entropy. It appears that the m → 0 fermionic AdS star at zero temperature or the
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“radiation” star is another thermodynamical phase of the AdS space, a possibly true ground

state with zero entropy.

All the fermionic stars we explored in section 3 are actually in the ground state with

zero entropy. The mass limit ranges from the LBH in the bulk conformal limit to the SBH as

m increases. For suffciently large m, the dual QGP to the SBH has negative heat capacity.

Imagine adiabatically injecting fermionic mass into the center of the AdS space until it

reaches the mass limit. Inevitable gravitational collapse of the AdS star into a BH for any

m implies that it is possible to form a QGP with negative heat capacity in the dual CFT

side. Once the BH is formed, it starts to radiate at the Hawking temperature. The Hawking

radiation will gradually populate the AdS box but it will not be in thermal equilibrium

since the SBH becomes hotter as it radiates. Conventional argument when the self-gravity

of the radiation is neglected is that the SBH with radiation is unstable since the regulated

free energy, eq. (4.12), is positive. In a closed system at a fixed temperature (canonical

ensemble), it would radiate or tunnel into the pure radiation. The gauge dual of the pure

radiation in the AdS space is the gas of the conformal cousin of some confined “hadrons”.

The “hadron” gas is weakly interacting with less number of degrees of freedom comparing

to the QGP. Therefore the typical scenario without self-gravity would be that the QGP

with negative heat capacity, once being formed, will eventually radiate (or condensate) into

the “hadron” gas. The SBH is also interpreted to be the bounce solution giving tunneling

probability of the transition between the thermal AdS and the LBH [24, 25],

Γ ∝ e−B, (5.5)

where B = I− − I+(I−) for T < (>)T1 respectively. The regulated action I± is given by

eq. (4.11).

At some point, however, the incoming radiation flux becomes equivalent to the outgoing

flux and the SBH should settle in a thermal equilibrium with the radiation confined in the

AdS space. On the boundary, the dual picture is the QGP with negative heat capacity gets

hotter and hotter after its formation. Then after the SBH reaches thermal equilibrium with

the radiation, the dual QGP would remain at a constant temperature. It is interesting to

obtain a more quantitative picture of the evolution of this QGP with negative heat capacity.

In the following section, we investigate the BH in equilibrium with radiation in the AdS

box to see under which condition the back-reaction becomes important.

5.1 Radiation outside AdS-BH

One way to find the proportion of radiation and BH energy in a box is to consider the

maximal entropy state of the isolated system [26]. In a microcanonical ensemble of BH

and radiation with fixed total energy E = Er + Ebh, the total number of configurations

of the system with radiation energy (entropy) Er (Sr) and black hole energy (entropy)

Ebh (Sbh) is exp(Sr +Sbh). The most probable state will be the state which maximizes the

total entropy Sr + Sbh. The general conditions are

∂S

∂Er
= 0,

∂2S

∂E2
r

< 0. (5.6)
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Under the constraint E = Er + Ebh, the first condition gives Tr = Tbh since

T−1 =
∂S

∂E
.

Using Er = aT d, the second condition yields

C−1
V > − Tr

dEr
,

where CV is the heat capacity of the BH. For LBH in the AdS space with positive heat

capacity, the condition is trivially satisfied but for SBH, it becomes

CV < −Erd

Tr
= −daT d−1. (5.7)

The constant a can be determined when the self-gravity of the radiation is negligible since

Er =

∫ ∞

0
g∗T

1+nVn−1r
n−1 dr,

= g∗Vn−1

√
π

2

Γ(n/2)

Γ((n+ 1)/2)
ℓnT 1+n = aT 1+n,

where g∗ is given by eq. (5.3). Substituting CV , T from eq. (4.7), (4.5), we obtain the

condition on the polynomial

F (ℓ, n)z2n−1 −
(

nz2 + (n− 2)
)n−1 (

(n− 2)− nz2
)

> 0, (5.8)

where z ≡ r+/ℓ and

F (ℓ, n) ≡ (4π)nVn−1(n− 1)ℓ2n−1

4G(n+ 1)a
. (5.9)

This is the condition on the size, z, of the SBH in equilibrium with the radiation in the

AdS box when self-gravity of the radiation is neglected. If we fix z, it can also be served

as the condition on the radius ℓ (thus effective volume) of the AdS space. Moreover, we

can rewrite the condition in terms of the radiation energy and mass of the BH as

Er <
M

n+ 1

(nz2 + n− 2)2

(1 + z2)(n− 2− nz2)
, (5.10)

where M is mass of the BH. This form is convenient when taking the flat space limit,

ℓ → ∞, giving

Er < M

(

n− 2

n+ 1

)

. (5.11)

The condition (5.8) can also be translated into a condition on the temperature, T < T2,

where T2 is the saturation temperature. The radiation and the SBH can be in equilibrium

only for temperature lower than this saturation temperature. For G, ℓ = 1; gb,f = 2,

the inequality can be solved numerically giving T2 = 0.315, 0.484 correspoding to the

SBH with size z2 = 0.341, 0.480 for n = 3, 4 respectively. Note that there is a hierachy

T2 > Tmin(= 0.276, 0.450 for n = 3, 4) and T2 → Tmin as geff → ∞.
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When an SBH in the AdS is in thermal equilibrium with the radiation under the

condition (5.6), the total heat capacity is still constrained to be negative and so is the dual

QGP. This can be shown from eq. (5.6) under constraint E = Er + Ebh,

∂2S

∂E2
r

=
∂2Sr

∂E2
r

+
∂2Sbh

∂E2
bh

,

=
∂

∂Er

(

1

Tr

)

+
∂

∂Ebh

(

1

Tbh

)

,

= − 1

T 2
r

∂Tr

∂Er
− 1

T 2
bh

∂Tbh

∂Ebh
= − 1

T 2

(

Cr
V + Cbh

V

Cr
V Cbh

V

)

< 0.

Since Cbh
V < 0 for the SBH, the total heat capacity must be negative.

Quantum fluctuations force BH to emit Hawking radiation but after some time, the

amount of radiation in the AdS space would saturate the bound given by the condi-

tion (5.10), i.e. approaching the point where the total heat capacity is zero. We would

expect the same thing to happen to the dual QGP at the boundary. Once the QGP with

negative heat capacity is formed below the temperature T2, it will radiate away its energy

until the temperature reaches T2 saturating the bound given by (5.10). At this configura-

tion, the QGP even with negative heat capacity (but the total heat capacity of both BH

and radiation is zero) remains marginally stable with the surrounding radiation.

On the contrary, if the formed SBH has corresponding temperature T > T2 or is smaller

than the critical size z2, it will radiate away all of the energy and the AdS space will be

in the radiation phase. In the dual picture, the QGP will undergo a phase transition

and become a gas of confined hadron. Recall that the parameter which determines the

size of the BH is the bulk fermion mass m, also the quantity signifying the degree of

bulk non-conformality. When m is very small, the mass limit approaches the universal

mass limit Mlimit(m → 0) = 0.459, 0.913 (n = 3, 4). The corresponding BH above this

mass limit is an LBH. However, since Mlimit is a decreasing function with respect to m,

it will drop below Mc for sufficiently large m. Numerical results for gf = 2 from figure 1

shows that for m > 0.113, 0.017 (n = 3, 4), Mlimit corresponds to an SBH with mass less

than Mc = 0.385, 0.884 (n = 3, 4). The investigation of the AdS star reveals that not

only it is possible to form the QGP with negative heat capacity, it can become stable

thermodynamically around T . T2 if the temperature at the formation is smaller than T2.

On the other hand, the QGP with negative heat capacity being formed at T > T2 will

quickly evaporate (and condensate) completely into the gas of confined hadron.

The shear viscosity of the positive-CV QGP is given by ref. [27, 28] (taking the limit

1/b2 → 0 of the results in ref. [28], since the metric of LBH in global AdS can be well

approximated by the planar AdS-BH metric)

η =
An−1(r+)

16πGV
. (5.12)

For the planar AdS-BH background, the graviton absorption cross section of the BH is

proportional to the correlator of the boundary stress tensor while the shear viscosity is

directly related to the correlator in the zero frequency limit. As a result, the shear viscosity
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of the dual QGP of the planar AdS-BH and the LBH in AdS is proportional to the horizon

area of the BH. Due to the universality of the equivalence between the low-energy graviton

absorption cross section and the horizon area of a BH [29], it is reasonable to speculate that

the shear viscosity of the exotic negative-CV QGP is also proportional to the horizon area

of the dual SBH. If that is the case, the exotic QGP should have smaller shear viscosity (η)

than the positive-CV QGP at the same temperature while preserving the ratio η/s since

the entropy density s ≡ S/V is also proportional to the horizon area An−1.

Holographically, if the SBH coexists with radiation in the AdS space, the dual QGP will

also coexist with certain amount of bounded quarks in the form of hadron gas. The mixed

phase of QGP soup and hadron gas will gradually change into the QGP with less proportion

of hadron gas as we add energy to the system. At first, temperature will decrease slightly

then bounce to increase with the addition of energy after the temperature reaches Tmin.

This picture suggests that the deconfinement phase transition should be continuous and

even though the binding potential between quarks and gluons are screened in the QGP

phase, there should remain certain bound states in the system. This is consistent with

previous investigations on the meson melting, see e.g. ref. [30] and references therein.

6 Conclusions

A static holographic star with spherical symmetry will collapse under its own gravity above

a certain mass limit. We study the dependence of the mass limit on the fermion mass of

the degenerate fermionic AdS star and the implications to the QGP in the dual picture

at the AdS boundary. The relationship between the fermion mass and the mass limit

is numerically established for both AdS4 and AdS5. We found that the mass limit is a

decreasing function with respect to the fermion mass and the black hole at the mass limit

could be both a small and large black hole in the AdS space. When the fermion mass

approaches zero, the mass limit becomes identical to the mass limit of the radiation star

due to the bulk conformal symmetry. In this bulk conformal limit, the mass limit of the

AdS star is maximal and universal, suggesting a universal phase transition in the dual

gauge picture. The AdS star with zero fermion mass has zero bulk entropy in contrast

to the radiation star which has considerably large entropy. The multiplicity of the bulk

systems corresponding to the same boundary configuration suggests that there might be a

multiplicity in the AdS/CFT correspondence mapping, especially when the bulk symmetry

is present.

The fact that gravitational collapse of the AdS star could result in both small and

large black hole implies that the QGP formation in the dual gauge picture could result in

the QGP with both negative and positive heat capacity. We thus explore the condition

when the QGP with negative heat capacity could be in equilibrium with the radiation

using the dual gravity picture. It is found that a negative-CV QGP with temperature

less than a saturation temperature T2 could evolve into a negative-CV QGP at T2 and

become stable thermodynamically without undergoing a confinement phase transition. On

the other hand, the negative-CV QGP with temperature higher than T2 will eventually

condensate completely into the gas of confined hadron.
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The possibility of the coexistence of the SBH and radiation in the AdS space holo-

graphically implies the mixed phase of exotic QGP and hadron gas. It is interesting to

experimentally verify if there is a QGP formed in the heavy ion collisions with such prop-

erties. First, it is produced at certain temperature then becomes hotter and eventually

saturates at the saturation temperature T2 > Tcrit & Tmin. Addition of energy to the

negative-CV QGP will make it colder. The temperature will continue to drop until it

reaches Tmin then start to raise with the energy. It is also possible that the exotic QGP

could have smaller shear viscosity than the positive-CV QGP at the same temperature with

η ∝ An−1(r+) = Vn−1r
n−1
+ (however, the mixture of hadron gas will increase the viscos-

ity). It will also have smaller entropy density by the same proportion, s ∝ A(r+), while

preserving the ratio η/s of the conventional QGP. Finally, existence of the mixed phase

suggests that the deconfinement transition is continuous. Throughout the transition, the

population of the hadron gas will gradually decrease with the temperature.
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