
ON THE CONSTRUCTION OF COHERENT STATES
OF NEWTON-EQUIVALENT HARMONIC OSCILLATOR

PHADUNGKIAT KWANGKAEW

A Thesis Submitted to Graduate School of Naresuan University
in Partial Fulfillment of the Requirements

of the Master of Science Degree in Theoretical Physics
August 2021

Copyright 2021 by Naresuan University



Thesis entitled “ON THE CONSTRUCTION OF COHERENT STATES OF
NEWTON-EQUIVALENT HARMONIC OSCILLATOR”

by Phadungkiat Kwangkaew
has been approved by the Graduate School as partial fulfillment of the requirements for

the Master of Science in Theoretical Physics of
Naresuan University.

Oral Defense Committee

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advisor

(Assistant Professor Pichet Vanichchapongjaroen, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Committee

(Assistant Professor Seckson Sukhasena, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Committee

(Assistant Professor Sikarin Yoo-Kong, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Examiner

(Assistant Professor Monsit Tanasittikosol, Ph.D.)

Approved

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Professor Paisarn Muneesawang, Ph.D.)

Dean of the Graduate School



ACKNOWLEDGMENT

I would like to thankmy advisor, Assistant Professor Dr. Pichet Vanichchapong-

jaroen, for giving me a good research topic. I would also like to thank him for his sug-

gestions, discussions till I finish my thesis. Thank for his explanation of difficult concept

and his help about Mathematica program.

I would like to thank my friend to help me a lot of things. They made me happy

during my study in master degree.

Finally, I would like to thank my parents, my father and mother, who support

everything to me since when I was study till I graduate now.

Phadungkiat Kwangkaew



LIST OF CONTENTS

Chapter Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II LITERATURE REVIEWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Quantum harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

III NEWTON-EQUIVALENT HAMILTONIANS FOR THE HAR-
MONIC OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Deriving alternative Hamiltonians from the Newton’s equation . . . . 21

IV ONTHECONSTRUCTIONCOHERENTSTATEOFNEWTON-
EQUIVALENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The construction of the coherent states wave functions . . . . . . . . . . . . . 30

V CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



LIST OF TABLES

Table Page

1 The values of (∆y)(λ,N)
α − (∆y)

(λ,N−2)
α and (∆py)(λ,N)

α − (∆py)
(λ,N−2)
α

for α = 0.5 + 0.7i with various values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 The values of (∆y)(λ,N)
α and (∆py)(λ,N)

α for α = 0.5+0.7iwith various
values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 The values of and (∆y)(λ,N)
α (∆py)

(λ,N)
α for α = 0.5+0.7i with various

values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The difference between the uncertainty (∆y)(λ,N)
α (∆py)

(λ,N)
α withN =

25, α = 0, 0.2, 0.4, ..., 2, and the minimal value 0.5 of uncertainty . . . . . . . 36



LIST OF FIGURES

Figure Page

1 The plot of the wave function at each energy level with the potential
V for the Quantum Harmonic oscillator, for x0 =

√
}

mω
is the width

of the ground state in a Gaussian distribution. This figure is adapted
from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



Title ON THE CONSTRUCTION OF COHERENT STATES
OF NEWTON-EQUIVALENT HARMONIC OSCILLATOR

Author Phadungkiat Kwangkaew

Advisor Assistant Professor Pichet Vanichchapongjaroen, Ph.D.

Academic Paper M.S. Thesis in Theoretical Physics,
Naresuan University, 2021

Keywords Newton-equivalent quantum harmonic oscillator,
coherent state, perturbation, uncertainty relation

ABSTRACT

This thesis presents the study of the construction of coherent states of Newton-

Equivalent Quantum Harmonic Oscillator (NEQHO). The coherent states are important

in quantummechanics. They are constructed from quantum harmonic oscillator. The un-

certainty relation for the measurement of position and momentum in coherent state takes

the minimal value. NEQHO stands for the model of one-parameter family of Hamilto-

nians alternative to standard quatum harmonic oscillator. The classical version of these

Hamiltonians gives rise to the Newton’s equation for a particle moving under the har-

monic oscillator potential. However there is no guarantee that the quantum version of

these Hamiltonians would describe the same physics. In this work, we construct the wave

functions of the coherent states of NEQHO and study their uncertianty relations. We fo-

cus on the case of |α| ≤ 2, where α is a complex number characterising coherent states.

Within the scope of our study, the minimal value of uncertianty relations is attained.



CHAPTER I

INTRODUCTION

Coherent states are quantum states of theoretical importance and with wide

range of applications in physics. The simplest examples of coherent states are those

coming from Quantum Harmonic Oscillator (QHO). A coherent state is defined as an

eigenstate of the lowering operator with its corresponding complex eigenvalue. One of

the interesting properties of these states is that they play a role of a ground state which is

shifted in the phase space in such a way that the real part of the eigenvalue is proportional

to the displacement along the x–direction, whereas the imaginary part is proportional to

the displacement along the p–direction. Moreover, these states can be thought to be the

most classical because the minimal value of uncertainty in measurements of position and

momentum is satisfied.

As one has known that there exists the creation or annihilation operators which

create or destroy one photon in a photon number state in the quantisation of the oscillation

of electromagnetic wave. Hence, coherent states arise in this context as superpositions

of photon number states and also being eigenstates of the annihilation operators. The

probability of detecting a number of photons in a coherent state satisfies Poisson distri-

bution. In an example of applications, a laser beam is a coherent state. Laser beams are

stable because of the property of coherent states in which these state remains the same

even after one photon is detected. See [1, 2, 3, 4, 5, 6, 7] for more details on theoretical

importance and applications of coherent states. In this work, the issue is closely related

to QHO coherent states and their uncertainty relations are focused.

Let us turn to discuss about the Hamiltonian in classical mechanics. One usu-

ally considers a Hamiltonian which is a function of generalised coordinates and conjugate

momenta. The dynamics of a classical system can be described by the Hamilton’s equa-

tions. It is possible to derive the Newton’s equations from a given Hamiltonian for a
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system of a particle moving in one dimensional space. Surprisingly, the form of Hamil-

tonian is not unique. In other words, the same Newton’s equations can be obtained from

different Hamiltonians. Although there is no problem in classical physics, these Hamil-

tonians may lead to different physics from one another after quantisation. Hence, it is

very important to be able to distinguish different physical phenomena corresponding to

these Hamiltonians.

For the quantum harmonic oscillator, a one-parameter family of Hamiltonians

is proposed [8]. It is found that the classical version of all the Hamiltonians in the family

gives rise to the same Newton’s equation for the simple harmonic oscillator. The phys-

ical quantities, e.g. the energy spectrum and the corresponding eigenstates have been

investigated which are very important for studying physical phenomena relating to these

Hamiltonians. Unfortunately, not much has been done along this direction. As far as we

are aware, there has been several related works. For example, a mathematical extension

to this work is given in [9], the explanations of related systems are given in [10, 11, 12].

To distinguish from the quantum harmonic oscillator with standard Hamilto-

nian and those with the one-parameter family in [8], let us keep labelling the quantum

harmonic oscillator with standard Hamiltonian as QHO. But for the quantum harmonic

oscillator with the one-parameter family of Hamiltonians, we will call them as Newton-

equivalent quantum harmonic oscillator (NEQHO). We will give more details about the

NEQHO in the main sections.



CHAPTER II

LITERATURE REVIEWS

2.1 Quantum harmonic oscillator

The harmonic oscillator model is an interesting model in physics [13, 14, 15, 16]

because of a lot of systems can be reduced to or described by the simple model of simple

harmonic oscillation. In the classical mechanics, we have seen many such as, spring

oscillation, pendulum and so on. That model can help us to understand the simple model

and can be adapted into the more complicated model. In the quantum mechanics we also

start with the simple model. To study the quantum harmonic oscillator, we have two

ways to analyse the system by starting from the Schrodinger’s equation. The first way

we study in form of hypergeometric equation and the second way we evaluate in form of

eigenvalue equation by writing the position operators and momentum operators in terms

of the ladder operators. Both ways give the same results. Let us proceed to show these.

The Hamiltonian of quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (2.1)

For convenience we will write eq.(2.1) in ladder operator form. Let us start with the

commutaion relation, [x̂, p̂] = i}. Consider R.H.S. of eq.(2.1)

p̂2

2m
+

1

2
mω2x̂2 = }ω

[
p̂2

2m}ω
+
mω

2}
x̂2 − 1

2
+

1

2

]
= }ω

[
p̂2

2m}ω
+
mω

2}
x̂2 +

i

2}
i}+

1

2

]
= }ω

[
p̂2

2m}ω
+
mω

2}
x̂2 +

i

2}
[x̂, p̂] +

1

2

]
= }ω

[
p̂2

2m}ω
+
mω

2}
x̂2 +

i

2}

(
x̂p̂− p̂x̂

)
+

1

2

]
= }ω

[
mω

2}
x̂2 + i

(
1

4}2

) 1
2

x̂p̂− i

(
1

4}2

) 1
2

p̂x̂+
p̂2

2m}ω
+

1

2

]
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= }ω

[(√
mω

2}
x̂− i

√
1

2m}ω
p̂

)(√
mω

2}
x̂+ i

√
1

2m}ω
p̂

)
+

1

2

]

= }ω
(
â†â+

1

2

)
, (2.2)

where

â =

√
mω

2}

(
x̂+

i

mω
p̂

)
, (2.3)

â† =

√
mω

2}

(
x̂− i

mω
p̂

)
, (2.4)

â is the lowering operator, and â† is the raising operator. When we define these operators,

we use the fact that x̂ and p̂ are Hermitian, x̂† = x̂ and p̂† = p̂. The commutation relation

of â and â† can be written as,

[â, â] = [â†, â†] = 0 (2.5)

and

[â, â†] = ââ† − â†â = 1. (2.6)

From â†â = ââ† − 1, the Hamiltonian sastisfies the following commutation relations

[Ĥ, â] = −}ωâ, (2.7)

[Ĥ, â†] = }ωâ†. (2.8)

Consider the eigenvalue equation of Hamiltonian:

Ĥ|n⟩ = En|n⟩. (2.9)

where En is the eigenvalue and |n⟩ is the eigenstate.

To interpret, we rewrite an eigenvalue equation as

â†â|n⟩ =
(
En

}ω
− 1

2

)
|n⟩. (2.10)



5

Let us define N̂ ≡ â†â, which is the number operator. It is satisfies the commutation

relations, which are

[N̂ , â] = −â, (2.11)

[N̂ , â†] = â†. (2.12)

Consider the eigenvalue equation of the number operator N̂

N̂ |n⟩ = n|n⟩. (2.13)

Multiplying with states ⟨n|, we obtain

⟨n|N̂ |n⟩ = n⟨n|n⟩(
⟨n|â†

)(
â|n⟩

)
= n ⟨n|n⟩︸ ︷︷ ︸

̸=0

, (2.14)

which implies

n ≥ 0. (2.15)

Therefore, the lowest possible eigenstate corresponding to the eigenvalue n = 0 satisfies

â|0⟩ = 0. (2.16)

This definition will help us to find the ground state of wave function.

Let us show that, if the state |n⟩ is an eigenstate of N̂ with eigenvalue n, then

the state a|n⟩ is also an eigenstate of N̂ with eigenvalue (n− 1).

Proof. With the aid of eq.(2.11)

N̂ â|n⟩ =
(
âN̂ − â

)
|n⟩

= â
(
N̂ − 1

)
|n⟩

=
(
n− 1

)(
â|n⟩

)
. (2.17)
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Eq.(2.17) suggests that â|n⟩ = n−|n− 1⟩. To find n−, one considers ⟨n|N̂ |n⟩,

⟨n|N̂ |n⟩ = ⟨n|n|n⟩

⟨n|â†â|n⟩ = n⟨n|n⟩(
⟨n|â†

)(
â|n⟩

)
= n. (2.18)

One can also write (
⟨n|â†

)(
â|n⟩

)
=
(
⟨n− 1|n−

)(
n−|n− 1⟩

)
= n2

−. (2.19)

Comparing eq.(2.18) to (2.19), we obtained

n2
− =

√
n. (2.20)

So we can write state of â|n⟩ as

â|n⟩ =
√
n|n− 1⟩. (2.21)

Similarly, if the state |n⟩ is an eigenstate of N̂ with eigenvalue n, then the state a†|n⟩ is

also an eigenstate of N̂ with eigenvalue (n+ 1).

Proof. With the aid of eq.(2.12)

N̂ â†|n⟩ =
(
â†N̂ + â†

)
|n⟩

= â†
(
N̂ + 1

)
|n⟩

=
(
n+ 1

)(
â†|n⟩

)
. (2.22)

Eq.(2.22) suggests that â†|n⟩ = n+|n+ 1⟩. To find n+, one considers ⟨n|N̂ |n⟩,

⟨n|N̂ |n⟩ = ⟨n|n|n⟩

⟨n|â†â|n⟩ = n⟨n|n⟩

⟨n|
(
ââ† − 1

)
|n⟩ = n⟨n|n⟩(

⟨n|â
)(
â†|n⟩

)
=
(
n+ 1

)
. (2.23)
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One can also write (
⟨n|â

)(
â†|n⟩

)
=
(
⟨n+ 1|n+

)(
n+|n+ 1⟩

)
= n2

+. (2.24)

Comparing eq.(2.23) to (2.24), we obtained

n2
+ =

(
n+ 1

)
→

√
n+ 1. (2.25)

So we can write â†|n⟩ as

â†|n⟩ =
√
n+ 1|n+ 1⟩. (2.26)

Eq.(2.16) implies that if the lowering operator acts on the ground state, one

obtains zero because that the operator could not further decrease the state. On the other

hand, if the raising operator acts on the ground state, it should raise up the state too. From

eq.(2.26) if we operate â† operator on the ground state n times, the states |n⟩ is given by

|n⟩ = (â†)n√
n!

|0⟩. (2.27)

By taking the inner product between eq.(2.27) and |x⟩, we obtain the wave function as

ψn(x) ≡ ⟨x|n⟩

= ⟨x|(a
†)n√
n!

|0⟩. (2.28)

Eq.(2.28) allows us to find the wave function of any states once we know the ground

state wave function. To find the wave function of the ground state one uses eq.(2.16),

0 = ⟨x|a|0⟩

=

√
mω

2}

(
⟨x|x̂|0⟩+ i

mω
⟨x|p̂|0⟩

)
. (2.29)

Then we split out x̂ and p̂ from the eigenvalue equation and rewrite eq.(2.29) as

0 =

√
mω

2}

(
x⟨x|0⟩+ }

mω

∂

∂x
⟨x|0⟩

)
= xψ0(x) +

}
mω

∂

∂x
ψ0(x). (2.30)
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This is a first order ODE and we obtain

ψ0(x) = N exp
(
−mω

2}
x2
)
, (2.31)

where N is the normalisation factor, which can be obtained by using ⟨ψ|ψ⟩ = 1. The

ground state wave function is

ψ0(x) =
(mω
π}

) 1
4 exp

(
−mω

2}
x2
)
. (2.32)

We use the similar method to find the wave function of the first excited state

ψ1(x) = ⟨x|a†|0⟩ = ⟨x|1⟩. (2.33)

With the aid of eq.(2.3), eq.(2.33) becomes

ψ1(x) = ⟨x|a†|0⟩

=

√
mω

2}

(
⟨x|x̂|0⟩ − i

mω
⟨x|p̂|0⟩

)
=

√
mω

2}

(
x⟨x|0⟩ − }

mω

∂

∂x
⟨x|0⟩

)
. (2.34)

This time we use eq. (2.31) to find ψ1(x)

ψ1(x) =

√
mω

2}

(
x− }

mω

∂

∂x

)(mω
π}

) 1
4 exp

(
−mω

2}
x2
)

=
2x√
1

√
mω

2}

(mω
π}

) 1
4 exp

(
−mω

2}
x2
)
, (2.35)

or

ψ1(x) = 2x

√
mω

2}
ψ0(x). (2.36)

Similarly, we can obtain the second excited state

ψ2(x) = ⟨x|(a
†)2√
2!

|0⟩

=
1√
2

√
mω

2}

(
⟨x|x̂|1⟩ − i

mω
⟨x|p̂|1⟩

)
=

1√
2

√
mω

2}

(
x⟨x|1⟩ − }

mω

∂

∂x
⟨x|1⟩

)
=

1√
2

√
mω

2}

(
x− }

mω

∂

∂x

)
2x

√
mω

2}

(mω
π}

) 1
4 exp

(
−mω

2}
x2
)
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=
1√
2

√
mω

2}

(
2x2
√
mω

2}

(mω
π}

) 1
4 exp

(
−mω

2}
x2
)

− }
mω

√
mω

2}

(mω
π}

) 1
4 ∂

∂x

(
2x exp

(
−mω

2}
x2
)))

=
1√
2

√
mω

2}

(
2x2
√
mω

2}
ψ0(x)

− }
mω

√
mω

2}

(
2x2
(
− mω

2}
2
)
+ 2
)
ψ0(x)

)

=
1√
2

√
mω

2}

(
4x2 − 2

}
mω

)√
mω

2}
ψ0(x)

=

(
4x2 − 2

}
mω

)
1√
2

√
mω

2}

√
mω

2}
ψ0(x). (2.37)

For the third excited state,

ψ3(x) = ⟨x|(a
†)3√
3!

|0⟩

=
1√
3

√
mω

2}

(
⟨x|x̂|2⟩ − i

mω
⟨x|p̂|2⟩

)
=

1√
3

√
mω

2}

(
x⟨x|2⟩ − }

mω

∂

∂x
⟨x|2⟩

)
=

1√
2

1√
3

(mω
2}

) 3
2
(
x− }

mω

∂

∂x

)(
4x2 − 2

}
mω

)
ψ0(x)

=
1√
2

1√
3

(mω
2}

) 3
2
(
4x3 − 2x

}
mω

− 8x
}
mω

+ 4x3 − 2x
}
mω

)
ψ0(x)

=
1√
2

1√
3

(mω
2}

) 3
2
(
8x3 − 12x

}
mω

)
ψ0(x). (2.38)

The step can be repeated upto thenth order. It is also useful to change the variable

x to y which is dimensionless as

ψn(y) = Hn(y)
( 1

2nn!

) 1
2
(mω
π}

) 1
4 exp

(
− y2

2

)
, (2.39)

where y =
(

mω
}

) 1
2
x and Hn(y) is Hermite polynomials

Hn(y) = (−1)ney
2 dn

dyn
e−y2 .
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Figure 1 The plot of the wave function at each energy level with the potential V for

the Quantum Harmonic oscillator, for x0 =
√

}
mω

is the width of the ground state

in a Gaussian distribution. This figure is adapted from [28].

Eq.(2.39) is an eigenfunction of the Hamiltonian (2.1) with the corresponding eigenvalue

En = }ω
(
n+

1

2

)
. (2.40)

If n is zero,E0 = }ω/2which is known as the energy of the ground state. We can plot the

possible energy eigenvalues (2.40) and the wave functions (2.39) of harmonic oscillator

with potential V (x) = mω2x2/2 in Fig1. The figure shows the discrete energy levels

with the gap of }ω.

In this work, we are particularly intereted in the lowering operator because of

its property. In particular, it has eigenstates which are interstings both in theory and in

applications. These states are called the coherent states. We will discuss about these

states again in the next section.
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2.2 Perturbation Theory

The perturbation theory is a useful approximation to analyse the system in physics,

because in practice a lot of systems are too complicated to explain without approxima-

tion [17, 18, 19, 20, 21]. Complicated systems which are slightly deviated from simple

systems can be studied using the perturbation theories

To study perturbation theory, we start with the time-independent Hamiltonian

Ĥ = Ĥ0 + λĤ1, (2.41)

where Ĥ1 is the perturbed Hamiltonian and λ is the bookkeeping parameter. The eigen-

value equation of the unperturbed system can be written as

Ĥ0|n0⟩ = E0
n|n0⟩. (2.42)

The eigenvalue equation for the full Hamiltonian is

Ĥ|m⟩ = Em|m⟩, (2.43)

where the eigenstates can be written as a linear combination of unperturbed eigenstates

as

|m⟩ =
∑
n

Cnm|n0⟩. (2.44)

To write the full form of perturbation for the eigenvalue equation, we use eqs.(2.41) to

(2.44) (
Ĥ0 + λĤ1

)
|m⟩ = Em|m⟩∑

n

Cnm

(
Ĥ0 + λĤ1

)
|n0⟩ =

∑
n

EmCnm|n0⟩

∑
n

Cnm

(
E0

n − Em + λĤ1
)
|n0⟩ = 0. (2.45)

We need to find the coefficient by multipling ⟨0j| with eq. (2.45),

⟨0j|
∑

Cnm

(
E0

n − Em + λĤ1
)
|n0⟩ = 0

Cjm

(
E0

j − Em + λH1
jj

)
+ λ

∑
n ̸=j

CnmH
1
jn = 0, (2.46)
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where H1
jn = ⟨0j|Ĥ1|n0⟩ and ⟨0j|n0⟩ = δjn. Let us expand Cjn and Em as

Cjm = C0
jm + λC1

jm + λ2C2
jm + · · · , (2.47)

Em = E0
m + λE1

m + λ2E2
m + · · · . (2.48)

Subtituting eq.(2.47) and (2.48) into eq.(2.46)(
E0

j − E0
m

)
C0

jm + λ
[(
H1

jj − E1
m

)
C0

jm +
(
E0

j − E0
m

)
C1

jm

+
∑
n ̸=j

H1
jnC

0
nm

]
+ λ2

[(
H1

jj − E1
m

)
C1

jm +
(
E0

j − E0
m

)
C2

jm

+
∑
n ̸=j

C1
nmH

1
jn − C0

jmE
2
m

]
+O(λ3) = 0. (2.49)

The zeroth order of λ of eq.(2.49) is(
E0

j − E0
m

)
C0

jm = 0, (2.50)

which is trivial ifm = j. Ifm ̸= j, C0
jm then

C0
jm = δjm. (2.51)

Let us next consider the first order of λ of eq.(2.49). It is(
H1

jj − E1
m

)
C0

jm +
(
E0

j − E0
m

)
C1

jm +
∑
n ̸=j

H1
jnC

0
nm = 0. (2.52)

Considering the case j = m and using C0
jm = δjm, it gives,

E1
j = H1

jj . (2.53)

However, when j ̸= m,(
H1

jj − E1
m

)
C0

jm +
(
E0

j − E0
m

)
C1

jm +
∑
n ̸=j

H1
jnC

0
nm −

∑
n=j

H1
jjC

0
jm = 0

(
E0

j − E0
m

)
C1

jm +
∑
n ̸=j

H1
jnδ

0
nm = 0

then,

C1
jm =

H1
jm

E0
m − E0

j

. (2.54)
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Let us finally consider the second order in λ of eq.(2.49). It is

(
H1

jj − E1
m

)
C1

jm +
(
E0

j − E0
m

)
C2

jm +
∑
n ̸=j

C1
nmH

1
jn − C0

jmE
2
m = 0. (2.55)

From the result of the first order and j = m, we obtain

E2
j =

∑
n ̸=j

H1
njH

1
jn

E0
j − E0

n

. (2.56)

When j ̸= m,

(
E0

j − E0
m

)
C2

jm = −C1
jm

(
H1

jj − E1
m

)
−
∑
n ̸=j

C1
nmH

1
jn + C1

jmH
1
jj − C0

jmE
2
m(

E0
j − E0

m

)
C2

jm = C1
jm

(
H1

jj − E1
m

)
+
∑
n ̸=j

C1
nm

( H1
nj

E0
j − E0

n

)
H1

jn + C1
jmH

1
jj

(
E0

j − E0
m

)
C2

jm =
H1

jm

E0
m − E0

j

(
− E1

m

)
+
∑
n ̸=j

H1
nm

E0
m − E0

n

H1
jn

then,

C2
jm =

H1
jmH

1
mm(

E0
j − E0

m

)2 +
∑
n ̸=j

H1
nmH

1
jn(

E0
m − E0

n

)(
E0

j − E0
m

) . (2.57)

Thus,

Em = E0
m + λH1

mm − λ2
∑
n ̸=j

H1
njH

1
jn

E0
j − E0

n

. (2.58)

Actually, the pertubation can be found up to any orders but in our work we are interested

only in the first order.

The pertubation theory will help us analyse the difficult system in the next chap-

ter.
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2.3 Coherent States

The coherent states are important and interested in a wide range of physics.

Furthermore the properties of the coherent states are important in physics [1, 2, 3, 4, 19,

20]. This is because of the properties for those states are useful to help us evaluate a lot

of things in physics. For instance, any states can be expressed as a linear combination

of coherent states. The coherent states arise from the QHO. Let us consider the lowering

operator with eigenvalue equation,

â|α⟩ = α|α⟩, (2.59)

where α ∈ C is eigenvalue of â. The reason that α can be a complex number is beacuse

â is not hermitian. It is in contrast to the number operator because the number operator

is hermitian, yielding a real eigenvalue n . There are two ways to obtain the form of

the coherent states. The first way is by expressing as a linear combination of energy

eigenstates. The second way is by using the displacement operators.

So, let us discuss the first way. Consider

|α⟩ =
∞∑
n=0

cn|n⟩. (2.60)

To find cn, let us substitute eq.(2.60) into eq.(2.59). The L.H.S. is

â|α⟩ =
∞∑
n=0

cnâ|n⟩

=
∞∑
n=1

cn
√
n|n− 1⟩.

The R.H.S. of eq.(2.59)

α|α⟩ = α
∞∑
n=0

cn|n⟩

= α

∞∑
n=1

cn−1|n− 1⟩. (2.61)
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By comparing two sides, we obtain the relations of the coefficients as

cn
√
n = αcn−1.

To solve for cn, we explicitly write eq.(2.61) for first few values of n

n = 1, c1 =
α√
1
c0

n = 2, c2 =
α√
2
c1

c2 =
α√
2

α√
1
c0

n = 3, c3 =
α√
3

α√
2

α√
1
c0

c3 =
α3

√
3!
c0.

We obtain the solution for the recurrence equation as

cn =
αn

√
n!
c0, (2.62)

which is easy to see that this is the case. So, substituting eq.(2.62) into eq. (2.60) gives

|α⟩ = c0

∞∑
n=0

αn

√
n!
|n⟩. (2.63)

To find c0, we need to normalise it, let us use normalisation condition ⟨α|α⟩ = 1. From

eq.(2.63), we obtain,

⟨α| = c∗0

∞∑
n=0

α∗m
√
m!

⟨m|. (2.64)

Then,

⟨α|α⟩ = |c0|2
∞∑

n,m=0

α∗mαn

√
m!

√
n!
⟨m|n⟩ ; ⟨m|n⟩ = δmn

= |c0|2
∞∑
n=0

α∗nαn

n!
;α∗α = |α|2

= |c0|2
∞∑
n=0

|α|2n

n!
;

∞∑
n=0

xn

n!
= exp (x)

= |c0|2 exp
(
|α|2
)
, (2.65)
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By using normalisation condition, we obtain

|c0|2 = exp
(
− |α|2

)
c0 = exp

(
− |α|2

2

)
. (2.66)

Substituting eq.(2.66) into eq.(2.63), we obtain

|α⟩ = exp
(
− |α|2

2

) ∞∑
n=0

αn

√
n!
|n⟩. (2.67)

To check this state, we can substitue eq.(2.67) back into eq.(2.59), we obtain

â|α⟩ = exp
(
− |α|2

2

) ∞∑
n=0

αn

√
n!
â|n⟩

= exp
(
− |α|2

2

) ∞∑
n=0

αn

√
n!

√
n|n− 1⟩

= exp
(
− |α|2

2

) ∞∑
n=1

αn√
(n− 1)!

|n− 1⟩ ;n− 1 = m

= exp
(
− |α|2

2

) ∞∑
m=0

αm+1√
(m)!

|m⟩

= α exp
(
− |α|2

2

) ∞∑
m=0

αm√
(m)!

|m⟩

= α|α⟩. (2.68)

If we substitute eq.(2.27) into eq.(2.67), we rewrite it as,

|α⟩ = exp
(
− |α|2

2

) ∞∑
n=0

(αâ†)n

n!
|0⟩. (2.69)

Let us now discuss the second way to write the form of coherent states. Let us

start from

|α⟩ = D(α)|0⟩, (2.70)

where D(α) = exp
(
αâ† − α∗â

)
is “displacement operator”. The coherent state written

in (2.70) is also called the displacement ground state. Mathematically, from the Baker-

Campbell-Hausdorff formula we can write

exp(Â+ B̂) = exp
(
− 1

2
[Â, B̂]

)
exp(Â) exp(B̂), (2.71)
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where [Â, B̂] ≡ c, where c is a complex number (or [c, Â] = [c, B̂] = 0). For the

displacement operator, we set Â = αâ† and B̂ = −α∗â, we then have

exp
(
αâ† − α∗â)

)
= exp

(
− 1

2
[αâ†,−α∗â]

)
exp

(
αâ†
)
exp

(
− α∗â

)
= exp

(
− |α|2

2
[â†,−â]

)
exp

(
αâ†
)
exp

(
− α∗â

)
= exp

(
− |α|2

2

)
exp

(
αâ†
)
exp

(
− α∗â

)
, (2.72)

where we have used the identities

[αâ†,−α∗â] = |α|2, (2.73)

[αâ†, [αâ†,−α∗â]] = [−α∗â, [αâ†,−α∗â] = 0. (2.74)

Then, we rewrite the displacement operator as

D(α) = exp
(
− 1

2
|α|2
)
exp

(
αâ†
)
exp

(
− α∗â

)
, (2.75)

The properties of the displacement operator are;

I) D†(α) = D−1(α) = D(−α), (2.76)

II) D†(α)âD(α) = â+ α, (2.77)

III)D†(α)â†D(α) = â† + α∗, (2.78)

IV ) D(α + β) = D(α)D(β) exp
(
− i Im(αβ∗)

)
, (2.79)

From eq.(2.70) and eq.(2.75), we have

|α⟩ = exp
(
− |α|2

2

)
exp

(
αâ†
)
exp

(
α∗â
)
|0⟩. (2.80)

Using Taylor expansion in eq.(2.80) gives

|α⟩ = exp
(
− |α|2

2

) ∞∑
n=0

(αâ†)n

n!

(α∗â)n

n!
|0⟩

= exp
(
− |α|2

2

) ∞∑
n=0

(αâ†)n

n!

[
1 + α∗â+

(α∗â)2

2!
+ · · ·

]
|0⟩

= exp
(
− |α|2

2

)[
1 + αâ† +

(αâ†)2

2!
+ · · ·

]
|0⟩. (2.81)
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Since eq.(2.81) is exactly the same as eq.(2.69), the two ways to write coherent

states are indeed coincide. Actually, describing coherent states by using displacment op-

erators are more physically appealing than the first idea, because this way is also used

to describe the coherent of photon like a laser beam. Since they are of physical impor-

tance, let us study the coherent states further by discussing their properties. The first one

is the completeness. We have known that lowering operators are not hermitian so their

eigenvalues are complex numbers. In fact, this also implies that the coherent states are

not orthogonal. Nevertheless, it is possible to express any states as a linear combination

of coherent states by using completeness relation.∫
dα2

π
|α⟩⟨α| = 1. (2.82)

The inner product of |α⟩ and |β⟩ is given by

⟨β|α⟩ = exp
(
− 1

2
|α|2 − 1

2
|β|2
) ∞∑

n=0

∞∑
m=0

β∗α√
n!m!

⟨m|n⟩. (2.83)

From this equation ⟨β|α⟩ ̸= δβα. This result means that coherent states are not orthogonal.

It illustrates that coherent states are overcomplete. It is possible to express a coherent

state as a linear combination of other coherent states.

The wave function of a coherent state is

ψα(x) = ⟨x|α⟩. (2.84)

So, if we substitute eq.(2.81) into eq.(2.84), we obtained

ψα(x) = exp
(
− |α|2

2

)[
⟨x|0⟩+ ⟨x|αa†|0⟩+ ⟨x|(αa

†)2

2!
|0⟩+ · · ·

]
. (2.85)

Substituting eq.(2.39) into eq.(2.85) order by order, we obtain

ψα(y) = exp
(
− |α|2

2

)(mω
π}

) 1
4 exp

(
− y2

2

) ∞∑
n=0

(αn

n!

)
(n! · 2)−

n
2 Hn(y). (2.86)

To simplify eq.(2.86), we use the generating functions for Hermite polynomials,

exp
(
2xt− t2

)
=

∞∑
n=0

Hn(x)
tn

n!
. (2.87)



19

Let

tn =
( α√

2

)n
, (2.88)

then we rewrite eq.(2.86) by using generating functions as

ψα(y) = exp
(
− |α|2

2

)(mω
π}

) 1
4 exp

(
− y2

2

)
exp

(
2y

α√
2
−
(
α√
2

)2 )
. (2.89)

Let us now turn to the measurements of position and momentum of quantum

states, especially coherent states. To do this we use themethods of classical statistics. The

statistical interpretation of the wave function leads to a principal uncertainty to localise

a particle. We cannot predict the definite measurement outcome for a specific particle,

where it is localised at a certain time, thus we cannot assign a path to the particle. For the

uncertainty of observables, we start from position operators and momentum operators

x̂ =

√
}

2mω

(
â+ â†

)
, (2.90)

p̂ = −i
√

}ω
2

(
â− â†

)
. (2.91)

The mean and the mean squared of x̂ are

⟨x̂⟩α ≡ ⟨α|x̂|α⟩, (2.92)

⟨x̂2⟩α ≡ ⟨α|x̂2|α⟩, (2.93)

and the mean-square deviation is

(∆x)2α ≡ ⟨x̂2⟩α − ⟨x̂⟩2α, (2.94)

with

⟨Ô⟩α ≡
√

}
mω

∫ ∞

−∞
Φ(∗)

α (x)ÔΦα(x) dx, (2.95)

the mean-squared deviation of x̂ is the uncertainty of an observables x̂ in the states |α⟩.

The mean-squared deviation of p̂ can be defined in similar way as that of x̂. It can be
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shown that the uncertainty relation for the observables x̂ and p̂ satisfies the inequality,

which is valid for all states,

(∆x̂)2α(∆p̂)
2
α ≥ 1

4
|⟨[x̂, p̂]⟩|. (2.96)

Whenever the commutator of two observables is nonvanishing, there is an uncertainty of

these observables. Since x̂ and p̂ do not commute, we may interpret the uncertainty rela-

tion as follows. Whenever a position measurement is accurate (i.e. precise information

about the current position of a particle), the information about the momentum is inaccu-

rate uncertain and vice versa. The coherent states attain the minimal uncertainty. So they

can be interpreted as being semi-classical. To further see the semi-classical behaviour of

QHO coherent state, it would be useful to investigate time evolution of these states and

compare with classical harmonic oscillator. However, our work do not extend along this

direction but only on the construction of coherent states and check minimal uncertainty

from NEQHO, to be defined in the next section.



CHAPTER III

NEWTON-EQUIVALENT HAMILTONIANS FOR THE
HARMONIC OSCILLATOR

3.1 Deriving alternative Hamiltonians from the Newton’s equation

In classical mechanics, the motion of a particle under the influence of external

force can be determined from the Newton’s second law,

F⃗ =
∂p⃗

∂t
. (3.1)

Alternative to Newton’s second law, other formulations, which are Lagrangian mechan-

ics andHamiltonianmechanics, can also be used to describe dynamics. These two formu-

lations can be used to obtain Newton’s second law. An important quantity in Lagrangian

mechanics is a Lagrangian. Newton’s equation can be obtained by substituting an ap-

propriate Lagrangian into Euler-Lagrange equations. Similarly, an important quantity in

Hamiltonian mechanics is a Hamiltonian. Newton’s equation can be obtained by substi-

tuting an appropriate Hamiltonian into Hamilton’s equations.

Given a Lagrangian or a Hamiltonian a unique Newton’s equation is obtained.

On the other hand, given a Newton’s equation there can be many possible Lagrangians or

Hamiltonians. The problem to determine some or all such Lagrangians or Hamiltonians

is called the inverse problem, which are studied for example in [23, 24, 25, 26, 27].

The reference [8] starts by giving alternative forms of Hamiltonian for a particle

of massmmoving with momentum p in one demesion under a potential V (x). The one-

parameter family of Hamilton functions yielding the Newton’s equation of the harmonic

oscillator is reviewed. For the Newton and Hamilton’s equations described this system

can be written respectively as

m
d2

dt2
x+

d

dx
V (x) = 0, (3.2)
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ẋ =
∂H

∂p
, (3.3)

ṗ = −∂H
∂ẋ

, (3.4)

Here,H is the classical Hamiltonian of this system. Substituting eqs.(3.3),(3.4) to eq.(3.2),

one then obtains

∂2H

∂x∂p

∂H

∂p
− ∂2H

∂p2
∂H

∂x
+

1

m

∂V

∂x
= 0. (3.5)

To solve the Hamiltonian from this equation, it is possible to apply the method of sepa-

ration of variables. In this consideration, we are interested in two ansatz which are the

additive and multiplicative forms.

For the additive form, the Hamiltonian can be written as

H(x, p) = F (p) +G(x). (3.6)

If we substitute eq.(3.6) into eq.(3.5), we obtain

−F ′′
(p)G

′
(x) +

1

m
V

′
(x) = 0, (3.7)

which can be separated into two equations, one involving only functions of x and another

only of p. The solutions are that F (p) can be written as Ap2 + Bp + C and G(x) =

V (x)/(2Am) + D. Here A,B,C and D are arbitrary parameters, for this solution we

substitute back to eq.(3.6). It can be realised as the standard classical Hamitonian form

HE .

Let us turn our attention to the multiplicative Hamiltonian,

H(x, p) = F (p)G(x). (3.8)

Substituting eq.(3.8) into eq.(3.5), we obtain

H(x, p) = c1 cosh
(
c2p+ c3

)(2V (x)

mc21c
2
2

+ c4

)
. (3.9)
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Let us choose c1 = 4mc2, c2 = 1
2mc2

, c3 = 0, c4 = 1 and redefine the Hamiltonian by

subtracting 4mc2. As a result, the Hamiltonian in multiplicative form is expressed as

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2. (3.10)

In the limit of c→ ∞, it reduces to the standand Hamiltonian. It can be shown as follows

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2

= 4mc2
(
1 +

p2

22m2c22!
+

p4

24m4c44!
+ · · ·

)
(
1 +

V (x)

4mc2
− V 2(x)

16m2c42!
+ · · ·

)
− 4mc2

=
p2

2m
+ V (x)− V 2(x)

8mc2
+
p2V (x)

8m2c2
− p2V 2(x)

32m3c4
+

p4

96m3c2

+
p4V (x)

384m4c4
− p4V 2(x)

3072m5c6
+ · · · .

Therefore

lim
c→∞

[Hc(x, p)] =
p2

2m
+ V (x) = HE(x, p). (3.11)

As mentioned we will focus on the harmonic oscillator system. Therefore, the

potential is V (x) = mω2x2/2. By quantising the Hamiltonian with the chosen potential,

one may obtain

Ĥc =
1

2β2m
cosh

(
βp̂
)(

1 + β2m2ω2x̂2
) 1

2
+ (hermitian conjugate), (3.12)

where β = (2mc)−1. In fact there are many possible ways to write the quantum Hamil-

tonian. This is due to the fact that x̂ and p̂ are not commute. Another possible expression

for the Hamiltonian operator is

Ĥ(β) =
1

2β2m

[
(1 + iβmωx̂)

1
2 exp(−i}β∂x)(1− iβmωx̂)

1
2 + (i→ −i)

]
. (3.13)

This Hamiltonian is chosen by [8], because it is inspired by the work [22], which studies

relativistic Calogero-Moser systems. For the eigenvalue equation with eq.(3.13), the

ground state wave function is given by

Ψ
(β)
0 (x) =

[(
Γ

(
1

}β2mω
+
ix

}β

))(
Γ

(
1

}β2mω
− ix

}β

))] 1
2

, (3.14)
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where Γ is Gamma function. The wave function Ψ
(β)
0 (x) satisfies the eigenvalue equa-

tion,

Ĥ(β)Ψ
(β)
0 (x) =

1

β2m
Ψ

(β)
0 (x), (3.15)

which 1/β2m is an energy spectrum or eigenvalue. We will discuss more details about

Hamiltonian operator Ĥ(β) later.

In classical formalism, let us note that the classical version of (2.1) can bewritten

in form of

HE = ωaa∗, (3.16)

which can be seen from

x2 +
p2

m2ω2
=
(
x+ i

p

mω

)(
x− i

p

mω

)
(3.17)

and

p2

2m
+

1

2
mω2x2 =

2

mω2

(
x2 +

p2

m2ω2

)
. (3.18)

Then, we can write a complex function from eq.(3.16) as

a =
(mω

2

) 1
2
(
x+ i

p

mω

)
, (3.19)

a∗ =
(mω

2

) 1
2
(
x− i

p

mω

)
. (3.20)

For the poisson bracket of {a, a∗}

{a, a∗} =
(mω

2

)[ ∂
∂x

(
x+ i

p

mω

) ∂
∂p

(
x− i

p

mω

)
− ∂

∂p

(
x+ i

p

mω

) ∂
∂x

(
x− i

p

mω

)]
=
(mω

2

)[
(1)
(
− i

mω

)
−
( i

mω

)
(1)

]
= −i, (3.21)
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then

{a, a∗} = −i, (3.22)

and

{a,HE} = −iωa, (3.23)

{a∗, HE} = iωa∗. (3.24)

Let us now turn to the one-parameter family Newton-Equivalent Hamiltonians

Hc. Wemay try to define the quatities which are similar to a and a∗ defined from eq.(3.19)

and eq.(3.20). The idea is that the momentum p can be expressed as p = mẋ and that

time derivative of x can be written as ẋ = {x,Hc}. Therefore, the counterpart of a is

A =
(mω

2

) 1
2
(
x+ i

{x,Hc}
ω

)
=
(mω

2

) 1
2

(
x+

i

βmω

(
sinh

(
βp
)(

1 + β2m2ω2x2
) 1

2
))

. (3.25)

We also write the poisson bracket relations. This can be obtained as follows

{A,Hc} =
∂A

∂x

∂Hc

∂p
− ∂A

∂p

∂Hc

∂x

=
(mω

2

) 1
2
( 1

β2m

)[(
1 +

i

βmω

(
sinh

(
βp
)1
2
2xβ2m2ω2×

(
1 + β2m2ω2x2

)− 1
2
)(
β sinh (βp)(1 + β2m2ω2x2)

1
2

))
−
(
0 +

i

βmω
β cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2
)
×(

cosh
(
βp
)1
2
2xβ2m2ω2

(
1 + β2m2ω2x2

)− 1
2
)]

=
(mω

2

) 1
2
( 1

β2m

)[
β sinh

(
βp
)(

1 + β2m2ω2x2
) 1

2

+ iβ2mωx sinh2
(
βp
)
− iβ2mωx cosh2

(
βp
)]
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=
(mω

2

) 1
2
( 1

β2m

)[
β sinh

(
βp
)(

1 + β2m2ω2x2
) 1

2 − iβ2mωx

]

=
(mω

2

) 1
2

[
1

βm
sinh

(
βp
)(

1 + β2m2ω2x2
) 1

2 − iωx

]

= −iω
(mω

2

) 1
2

[
x+

i

βmω
sinh

(
βp
)(

1 + β2m2ω2x2
) 1

2

]

= −iωA. (3.26)

As for {A∗, Hc}, we use a similar method and we will obtain {A∗, Hc} = iωA∗. More-

over, the case of {a, a∗} is generalised to {A,A∗},

{A,A∗} =
∂A

∂x

∂A∗

∂p
− ∂A

∂p

∂A∗

∂x

=
(mω

2

)[(
1 +

i

βmω

(
sinh

(
βp
)1
2
2xβ2m2ω2×

(
1 + β2m2ω2x2

)− 1
2
)(

0− i

mω
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2
)

−
(
0 +

i

mω
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2
)
×(

1− i

βmω

(
sinh

(
βp
)1
2
2xβ2m2ω2

(
1 + β2m2ω2x2

)− 1
2
)]

=
(mω

2

)[
− i

mω
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2

+ xβ sinh
(
βp
)
cosh

(
βp
)
− i

mω
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2

− xβ sinh
(
βp
)
cosh

(
βp
)]

= −i

[
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2

]

= −iβ
2m

β2m

[
cosh

(
βp
)(

1 + β2m2ω2x2
) 1

2

]

= −iβ2mHc. (3.27)

Let us proceed to the quantum level, we recall the lowering operators,

â =
(mω
2}

) 1
2
(
x̂+ i

p̂

mω

)
,
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and all of the commutation relations for [â, â†] = 1, [â, Ĥ] = }ωâ, [â†, Ĥ] = −}ωâ†.

From these commutation relations we will use the same idea, just as at the classical level.

Then, we can realise that p̂ can be written as m ˙̂x = −im}−1[x̂, Ĥ]. So the operator

form of Newton’s equation is [[x̂, Ĥ], Ĥ] = }2ω2x̂. Now we have to check another one

[[x̂, Ĥ(β)], Ĥ(β)] = }2ω2x̂. This is very impressive because the quantum Hamiltonians

Ĥ and Ĥ(β) are once more Newton equivalent. Therefore,

Â =
(mω
2}

) 1
2

[
x̂+ i

1

}ω
[x̂, Ĥ(β)]

]
=
(mω
2}

) 1
2

[
x̂+

i

2βmω

[(
1 + iβmωx̂

) 1
2 exp

(
− i}β∂x

)
×(

1− iβmωx̂
) 1

2 − (i→ −i)
]]
. (3.28)

The commutation relations of lowering operator, raising operator and hamiltonian are

[Â, Ĥ(β)] = }ωÂ, [Â†, Ĥ(β)] = −}ωÂ†, (3.29)

and

[Â, Â†] = β2mĤ(β). (3.30)

To evaluate these commutation relations, we need to use properties of exponential func-

tion of ∂x to shift functions f(x) to f(x∓ a), so all of this is easily verified. It would be

interesting to rederive the above results by using dimensionless variable

λ = β
(
}mω

) 1
2
. (3.31)

Then write

â→ 1√
2

(
ŷ + ip̂y

)
, (3.32)

Ĥ → }ω
2

(
− p̂2y + ŷ2

)
, (3.33)

where p̂y = p̂/
√
mω}, p̂ = −i}∂x.

As for the one-parameter of Ĥ(β), we set new symbols for convenient,

T̂± ≡
(
1± iλŷ

) 1
2 exp

(
± λp̂y

)(
1∓ iλŷ

) 1
2
, (3.34)
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and the relation between T̂± and ŷ can be written in form of commutation relations as,

[T̂±, iŷ] = ±λT̂±, [T̂−, T̂+] = 2λ3iŷ. (3.35)

To keep away from confusion, we switch one-parameter to lower case symbols as,

Â→ â(λ), Â† → â†(λ),
Ĥ(β)

}ω
→ ĥ(λ), (3.36)

Thus, we write it as,

â(λ) = 2−1/2
(
ŷ +

i

2λ

(
T̂+ − T̂−

))
, (3.37)

â†(λ) = 2−1/2
(
ŷ − i

2λ

(
T̂+ − T̂−

))
, (3.38)

ĥ(λ) =
(
2λ2
)−1
(
T̂+ − T̂−

)
. (3.39)

Then we rewrite eq.(3.29), (3.30) into lower case symbols

[â(λ), ĥ(λ)] = â(λ), [â†(λ), ĥ(λ)] = −â†(λ), [â(λ), â†(λ)] = λ2ĥ(λ). (3.40)

In order to explain the relation of â†(λ) and ĥ(λ) to operators â† and ĤE/}ω, we will

expand from (3.34) and limit λ→ 0, for this one we obtain

lim
λ→0

â(λ) = 2−
1
2

(
ŷ + ip̂y

)
= â, lim

λ→0
â†(λ) = 2−

1
2

(
ŷ − ip̂y

)
= â†,

lim
λ→0

ĥ(λ)− λ−2 =
1

2

(
− p̂2y + ŷ2 − 1

)
= (}ω)−1ĤE − 1

2
.

Let us now turn to the ground state wave functions of NEQHO and rewritten in

form of dimensionless as

ψ
(λ)
0 (y) =

[
Γ

(
1

λ2
+
iŷ

λ

)
Γ

(
1

λ2
− iŷ

λ

)] 1
2

, (3.41)

and for the normalisation of ground state is

ψ̂
(λ)
0 (y) =

(
ψ

(λ)
0 (y), ψ

(λ)
0 (y)

)− 1
2
ψ

(λ)
0 (y), (3.42)

where (
ψ

(λ)
0 (y), ψ

(λ)
0 (y)

)
= 21−

2
λπλΓ

( 2

λ2

)
. (3.43)
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It converges to the normalise ground state of the standard harmonic oscillator as λ→ 0:

lim
λ→0

ψ̂
(λ)
0 (y) = π− 1

4 exp
(
− y2

2

)
. (3.44)

In the next chaper, we will use the lowering operators from eq.(3.37) to construst

the coherent states for the one-paremeter family of hamiltonians.



CHAPTER IV

ON THE CONSTRUCTION COHERENT STATE OF
NEWTON-EQUIVALENT

4.1 The construction of the coherent states wave functions

Turning to our work, we will use the method and strategy from the previous

chapter to construct the coherent states of the Newton-Equivalent wave functions. Actu-

ally, the closed form of excited states can be obtained after we operate raising operator

on the ground state for an approprite number of times. In practice, it turns out that this

kind of direct calculation for NEQHO is difficult to do. So we come up with a simpler

method to be described. We will use a process to approximate the coherent state wave

functions. In this chapter, we will explain and justify this process, then use the coherent

state wave functions to compute uncertainty relation and then interpret.

As we mentioned, we try to find coherent states for NEQHO. Let us start with

eigenvalue equations with eq.(3.37), it gives

2−1/2
(
ŷ +

i

2λ

(
T̂+ − T̂−

))
|α⟩ = α|α⟩. (4.1)

From this equation the state |α⟩ should be the functions of λ and we will also find co-

efficient as the functions of λ. We are going to restrict to small values of λ. To find

coefficient, we need to expand T± in λ as

2−1/2

[
ŷ +

i

2λ

[(
1 + iλŷ

) 1
2 exp

(
+ λp̂y

)(
1− iλŷ

) 1
2

−
(
1− iλŷ

) 1
2 exp

(
− λp̂y

)(
1 + iλŷ

) 1
2

]]
= α|α⟩. (4.2)
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Expanding in λ gives

2−1/2

(
ŷ + ip̂y + i

λ2

6

(
p̂3y − 3p̂y − 3iŷ + 3ŷ2p̂y

)
+O(λ3)

)
|α⟩ = α|α⟩ (4.3)

2−1/2

(
ŷ + ip̂y + i

λ2

6

(
p̂3y − 3p̂y − 3iŷ + 3ŷ2p̂y

))(
c0|0⟩+ c1|1⟩+ c2|2 + ...

)
= α

(
c0|0⟩+ c1|1⟩+ c2|2⟩+ ...

)
, (4.4)

for convenient, we multiply with ⟨y| and written as,

2−1/2

(
y + ∂y +

λ2

6

(
− ∂yyy − 3∂y + 3y + y2∂y

))(
c0ψ0(y) + c1ψ1(y)

+c2ψ2(y) + ...
)
= α

(
c0ψ0(y) + c1ψ1(y) + c2ψ2(y) + ...

)
. (4.5)

In this equation, we have made a perturbative expansion of the operator and keep up

to order λ2. Let us make a further approximation of the coherent state by expressing

it as a linear combination from the ground state ψ0(y) up to state ψN(y). For instance,

if we are interested in the N = 2 truncation, we can see that R.H.S. of eq.(4.5) is a

linear combination of ψ0(y), ψ1(y), ψ2(y). However, the L.H.S. is a linear combination

of ψ0(y), ψ1(y), ψ2(y), ψ3(y), ψ4(y), ψ5(y). So in the case, eq.(4.5) gives 6 conditions

for 3 unknowns c1, c2, c3. So to proceed, let us some extra conditions by ignoring the

conditions corresponding to the coeficients of ψ3(y), ψ4(y), ψ5(y). The removal of these

conditions as explained might seem arbitrary. But we expect that as N increases, our

method would not lead to any problem. By following the process, we obtain

c1 → α(α2(−λ2)+2α2+3λ2+4)
(α2+2)(α2+2)

c0, c2 → (
√
2α4+2

√
2α2λ2+2

√
2α2−

√
2λ2)

(α2+2)(α2+2)
c0.

Note that this relation works only for the N = 2 truncation. If we consider larger N , we

should find the similar relations again.

As a result of this, we substitute into the definition of the coherent state wave

functions as,

ψ2
α(y) ≡ ⟨y|α⟩
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=
e−

y2

2

π
1
4

c0

[2(α2y2 +
√
2αy + 1

)
(
α2 + 2

)
− λ2

(
2α2 − 4α2y2 + 2y2 +

√
2α3y − 3

√
2αy − 1

)
(
α2 + 2

)2 ]
, (4.6)

then we can compute the variance of position and momentum for the state described by

this wave function by using

(∆y)(λ,2)α =

√
⟨ŷ2⟩(λ,2)α −

(
⟨ŷ⟩(λ,2)α

)2
, (4.7)

(∆py)
(λ,2)
α =

√
⟨p̂2y⟩

(λ,2)
α −

(
⟨p̂y⟩(λ,2)α

)2
. (4.8)

As an example result, for consider the case N = 2, α = 0.5. We obtain, presenting up

to 3 significant figures,

(∆y)
(λ,2)
0.5 = 0.681− 0.0234λ2, (4.9)

(∆p)
(λ,2)
0.5 = 0.741− 0.0169λ2, (4.10)

then if we write the uncertainty relation from two variance, we obtain

(∆y)
(λ,2)
0.5 (∆p)

(λ,2)
0.5 = 0.504− 0.0059λ2. (4.11)

It can be expected that the result of eq.(4.11) does not accurately respresent the

uncertainty relation of the NEQHO coherent states because ψ2
α(y) is expressed as a linear

combination of only the states |0⟩, |1⟩, |2⟩. If we needmore accuracy, we should addmore

state into the linear combination. If we include states up to |N⟩, we may follow above

steps which eventually give

(∆y)(λ,N)
α =

√
⟨ŷ2⟩(λ,N)

α −
(
⟨ŷ⟩(λ,N)

α

)2
, (4.12)

(∆p)(λ,N)
α =

√
⟨p̂2⟩(λ,N)

α −
(
⟨p̂⟩(λ,N)

α

)2
, (4.13)

where the expectation value of the operator is

⟨Ô⟩α = (

√
}
mω

)

∫ ∞

−∞
dyψ(λ,N)∗

α (y)Ôψ(λ,N)
α (y). (4.14)
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By following the algorithm outlined, we have computed (∆y)(λ,N)
α , (∆py)

(λ,N)
α ,

and (∆y)
(λ,N)
α (∆py)

(λ,N)
α for various α and N . For any fixed N , these quantities are

expressible as Taylor series expansion in λ up to the order of λ2 such that each coefficient

is a function of α. After substituting in a numerical value for α, these coefficients are

given by some numerical values. Since these coefficients are mathematical functions,

their values can be given precisely (i.e. up to any significant figures), as long as we give

a precise value of α. Correspondingly, the programming language that we have used in

the calculation allows arbitrary precision, andwe havemade the full use of this capability.

As an example result, let us consider the cases with fixed α = 0.5 + 0.7i and

vary order of truncation N = 2, 4, 6, ..., 26. These results can be read from Table 1,

Table 1 The values of (∆y)(λ,N)
α − (∆y)

(λ,N−2)
α and (∆py)

(λ,N)
α − (∆py)

(λ,N−2)
α for α =

0.5 + 0.7i with various values of N

N (∆y)
(λ,N)
α − (∆y)

(λ,N−2)
α (∆py)

(λ,N)
α − (∆py)

(λ,N−2)
α

4 −8.97× 10−2 + 1.65× 10−1λ2 −2.02× 10−2 − 1.41× 10−1λ2

6 −7.34× 10−3 + 1.14× 10−1λ2 1.29× 10−3 − 7.66× 10−2λ2

8 −1.86× 10−4 + 8.58× 10−3λ2 7.31× 10−5 − 4.30× 10−3λ2

10 −2.31× 10−6 + 2.62× 10−4λ2 1.20× 10−6− 1.08× 10−4λ2

12 −1.71× 10−8 + 4.41× 10−6λ2 1.03× 10−8 − 1.86× 10−6λ2

14 −8.31× 10−11 + 4.54× 10−8λ2 5.51× 10−11 − 2.18× 10−8λ2

16 −2.87× 10−13 + 3.05× 10−10λ2 2.03× 10−13 − 1.66× 10−10λ2

18 −7.40× 10−16 + 1.42× 10−12λ2 5.48× 10−16 − 8.56× 10−13λ2

20 −1.48× 10−18 + 4.79× 10−15λ2 1.13× 10−18 − 3.12× 10−15λ2

22 −2.35× 10−21 + 1.22× 10−17λ2 1.85× 10−21 − 8.44× 10−18λ2

24 −3.04× 10−24 + 2.42× 10−20λ2 2.45× 10−24 − 1.75× 10−20λ2

26 −3.27× 10−27 + 3.84× 10−23λ2 2.69× 10−27 − 2.89× 10−23λ2
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From the results, it can also be seen that the values of (∆y)(λ,N)
0.5+0.7i−(∆y)

(λ,N−2)
0.5+0.7i ,

(∆py)
(λ,N)
0.5+0.7i − (∆py)

(λ,N−2)
0.5+0.7i converge as N is increased.

Table 2 The values of (∆y)(λ,N)
α and (∆py)(λ,N)

α for α = 0.5+0.7iwith various values

of N

N (∆y)
(λ,N)
α (∆py)

(λ,N)
α

2 0.804− 0.026λ2 0.726− 0.040λ2

4 0.715 + 0.139λ2 0.706− 0.181λ2

6 0.707 + 0.253λ2 0.707− 0.257λ2

8 0.707 + 0.261λ2 0.707− 0.262λ2

10 0.707 + 0.262λ2 0.707− 0.262λ2

12 0.707 + 0.262λ2 0.707− 0.262λ2

14 0.707 + 0.262λ2 0.707− 0.262λ2

16 0.707 + 0.262λ2 0.707− 0.262λ2

18 0.707 + 0.262λ2 0.707− 0.262λ2

20 0.707 + 0.262λ2 0.707− 0.262λ2

22 0.707 + 0.262λ2 0.707− 0.262λ2

24 0.707 + 0.262λ2 0.707− 0.262λ2

26 0.707 + 0.262λ2 0.707− 0.262λ2

We have checked that for other values of α with |α| ≤ 1, the behaviours are

also qualitatively the same. That is, when N is large enough the values of (∆y)(λ,N)
α ,

(∆py)
(λ,N)
α and (∆y)

(λ,N)
α (∆py)

(λ,N)
α converge as Table 2 and Table 3. We suppose that

other values of α also share this behaviour.

We therefore choose the value of N sufficiently large enough. In particular, we

choose N = 25 which is useful to study coherent state wave functions with |α| ≤ 2.

Larger values of α can also be studied accurately, provided that we increase N to an
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Table 3 The values of and (∆y)
(λ,N)
α (∆py)

(λ,N)
α for α = 0.5+0.7i with various values

of N

N (∆y)
(λ,N)
α (∆py)

(λ,N)
α

2 0.584− 5.12× 10−2λ2 +O(λ3)

4 0.504− 3.10× 10−2λ2 +O(λ3)

6 0.500− 3.20× 10−3λ2 +O(λ3)

8 0.500− 1.12× 10−4λ2 +O(λ3)

10 0.500− 1.83× 10−6λ2 +O(λ3)

12 0.500− 1.68× 10−8λ2 +O(λ3)

14 0.500− 9.88× 10−11λ2 +O(λ3)

16 0.500− 4.00× 10−13λ2 +O(λ3)

18 0.500− 1.18× 10−15λ2 +O(λ3)

20 0.500− 2.67× 10−18λ2 +O(λ3)

22 0.500− 4.73× 10−21λ2 +O(λ3)

24 0.500− 6.77× 10−24λ2 +O(λ3)

26 0.500− 7.97× 10−27λ2 +O(λ3)

appropriate value. It is a well-known result that coherent states for standard QHO has

the minimal value of uncertainty. See Equation (2.96). As for the coherent states of

NEQHO, however, it is non-trivial whether these states give the minimal value of uncer-

tainty. So we study the values (∆y)(λ,N)
α (∆py)

(λ,N)
α for N = 25, |α| ≤ 2, and compare

with the minimal value of uncertainty, which is 0.5. In particular, Table 4 demonstrates

the difference in each of the cases where α = 0, 0.2, 0.4,…, 2. The differences for other

cases with |α| ≤ 2 (recall that α is a complex number) also share the same feature as

those presented in Table 4. That is, the coefficients of the 0th and 2nd order of λ are very

small. As a result of Table 4, we see that when α are increased, the difference between
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Table 4 The difference between the uncertainty (∆y)
(λ,N)
α (∆py)

(λ,N)
α with N = 25,

α = 0, 0.2, 0.4, ..., 2, and the minimal value 0.5 of uncertainty

α (∆y)
(λ,25)
α (∆py)

(λ,25)
α − 0.5

0.0 0

0.2 2.79× 10−62 − 2.22× 10−55λ2 +O(λ3)

0.4 1.11× 10−46 − 5.66× 10−41λ2 +O(λ3)

0.6 1.31× 10−37 − 1.36× 10−32λ2 +O(λ3)

0.8 3.11× 10−26 − 1.07× 10−26λ2 +O(λ3)

1.0 2.37× 10−26 − 3.51× 10−22λ2 +O(λ3)

1.2 2.00× 10−22 − 1.51× 10−18λ2 +O(λ3)

1.4 3.60× 10−19 − 1.56× 10−15λ2 +O(λ3)

1.6 2.05× 10−16 − 5.52× 10−13λ2 +O(λ3)

1.8 4.75× 10−14 − 8.43× 10−11λ2 +O(λ3)

2.0 5.32× 10−12 − 6.51× 10−9λ2 +O(λ3)

the uncertainties are further away from the minimal value 0.5 of uncertainty. We expect

these differences are just errors which result from using truncation N = 25. If N is in-

creased, we expect that these differences would be decreased and eventually disappears

as N → ∞. We propose that the greater error for greater value of α can be interpreted

as follows. For the standard coherent states, the real part of α is the expectation value

in position of the coherent state, whereas the imaginary part is the expectation value in

momentum of the coherent state. We expect that this would be similar for our case. So

this means that the errors would be related to the distance of the expectation values from

the origin of phase space.



CHAPTER V

CONCLUSIONS

We may conclude that in order to obtain coherent state wave function, we write

lowering operator up to the second order in λ. NEQHOwave function coherent states are

obtained as eigenstate of lowering operator. According to QHO, the uncertainty between

position and momentum of coherent state satisfies minimum value.

According to NEQHO coherent states with |α| ≤ 2, the uncertainties are ap-

proximately equal to the minimal value, see table 3. So by using this consideration, it is

not a simple matter to distinguish them from the coherent states for QHO.

We expect that even for |α| ≥ 2, the uncertainties of NEQHO coherent states

are still approximately equal to the minimal value. Nevertheless, this should still be

investigated. Because, error between (∆y)
(λ,25)
α (∆py)

(λ,25)
α − 0.5 tends to be larger for

|α| ≥ 2, see table 4. We leave this verification to future works.

It is also interesting to go beyond the second order in λ to see whether the un-

certainties of NEQHO coherent states still have the minimal value. We also leave this

varification to future work. Furthermore, other physical phenomena relating to coherent

states should also be investigated to see whether it is possible to distinguish NEQHO

coherent states from their QHO counterparts. One of the phenomena to be checked is the

noise in the time evolution of coherent states.
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