Spin Correlations in $e^{+} e^{-}$Pair Creation by Two-Photons and Entanglement in QED

N. Yongram

Received: 27 September 2010 / Accepted: 7 December 2010 / Published online: 16 December 2010
© Springer Science+Business Media, LLC 2010

Abstract

Spin correlations of $e^{+} e^{-}$pair productions of two colliding photons are investigated and explicit expressions for their corresponding probabilities are derived and found to be energy (speed) dependent, for initially linearly and circularly polarized photons, different from those obtained by simply combining the spins of the relevant particles, for initially polarized photons. These expressions also depend on the angles of spin of e^{+}(and/or of e^{-}, for initially linearly polarized photons, but not for circularly polarized photons, as a function of the energy. It is remarkable that these explicit results obtained from quantum field theory show a clear violation of Bell's inequality of Local Hidden Variables theories at all energies beyond that of the threshold one for particle production, in support of quantum field theory in the relativistic regime. We hope that our explicit expression will lead to experiments, of the type described in the bulk of this paper, which can monitor energy (and speed) in polarization correlation experiments.

Keywords Entanglement and quantum nonlocality • Quantized fields • Quantum electrodynamics (QED) in particle physics • Relativistic scattering theory

1 Introduction

There have been many investigations over the years of particles's polarizations correlations [1-5] in the light of Bell's inequality, and Bell-like experiments have been proposed recently in high energy physics context [6-12]. We have been interested in studying joint polarization correlation probabilities of particles produced by initially polarized as well as unpolarized

[^0]particles in fundamental processes of quantum electrodynamics (QED) and the electro-weak theory [13-17]. Such studies, based on explicit computations in quantum field theory, show that the mere fact that particles emerging from a process have non-zero speeds upon reaching the detectors, imply, in general, that their polarization correlations depend on speed [13-17] and may also depend on the underlying couplings [17]. The explicit expressions of polarization correlations based on dynamical computations following from field theory, are non-speculative, involving no arbitrary input assumptions, and depend on speed, and possibly on the couplings as well. These are unlike formal arguments based simply on combining the spins of the particles in question, which are of kinematical nature. In the limit of low energies, our earlier expressions [13-17] for the polarization correlations were shown to be reduced to the simple method just mentioned by combining spins. In one of our previous investigations [17], in which $\mu^{+} \mu^{-}$pair production in $e^{+} e^{-}$scattering was considered in the electro-weak theory. It was noted that, due to the threshold needed to create such a pair, the zero-energy limit may not be taken, and that the study of polarization correlations by simply combining spins (without recourse to quantum field theory) has no meaning. The focus of this paper is the derivation of the explicit polarization correlation probabilities of simultaneous measurements of spin of $e^{+} e^{-}$pair production of two colliding photons, as well as the corresponding probabilities when only one of the polarization of emerging e^{+} (or e^{-}) is measured, in QED, for initially linearly polarized as well as circularly polarized photons, and particulary with initially unpolarized photons, with emphasis put on the energy available in the process so that a detailed study can be carried out in the relativistic regime as well. Since the production of $e^{+} e^{-}$pair by the collision of two photons ($\gamma \gamma \rightarrow e^{+} e^{-}$) was originally proposed by Breit and Wheeler [18], is so called "Breit-Wheeler process". In the present paper, in the spirit of Bell type experiments, we are interested in joint conditional probability distributions of spin measurements rather than of cross sections [19]. Conditional in the sense that given such a process has occurred, then we ask as to what is the probability distribution of spin measurements correlations. It has still not being directly observed because of a relatively high energy threshold which is about 1.022 MeV . With the continuous effort of the experimental verification on Earth-based experiments, using the technology based on free electron X-ray laser and its numerous applications, some first indications of its possible verification, have been reached. it also is one of most relevant elementary processes in high-energy astrophysics as well as in cosmology [20]. The QED calculations have been performed in stimulated Breit-Wheeler cross section [21, 22] as well. The reasons for our present investigation are two fold. First several theoretical [23-25] and experiments on $\gamma \gamma \rightarrow e^{+} e^{-}$have been carried out over the years [26], and it is expected that our explicit new expression for the polarization correlations obtained, depending on energies, may lead to new experiments on spin correlations which monitor the energy (speed) of the underlying particles. Second, such a study may be relevant to experiments in the light of Bell's theorem (monitoring speed) as mentioned above and discussed below.

The relevant quantity of interest here in testing Bell's inequality [6,7] is, in a standard notation,

$$
\begin{align*}
S= & \frac{p_{12}\left(a_{1}, a_{2}\right)}{p_{12}(\infty, \infty)}-\frac{p_{12}\left(a_{1}, a_{2}^{\prime}\right)}{p_{12}(\infty, \infty)}+\frac{p_{12}\left(a_{1}^{\prime}, a_{2}\right)}{p_{12}(\infty, \infty)}+\frac{p_{12}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)}{p_{12}(\infty, \infty)} \\
& -\frac{p_{12}\left(a_{1}^{\prime}, \infty\right)}{p_{12}(\infty, \infty)}-\frac{p_{12}\left(\infty, a_{2}\right)}{p_{12}(\infty, \infty)} \tag{1}
\end{align*}
$$

as is computed from QED. Here $a_{1}, a_{2}\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ specify directions along which the polarizations of two particles are measured, with $p_{12}\left(a_{1}, a_{2}\right) / p_{12}(\infty, \infty)$ denoting the joint probability, and $p_{12}\left(a_{1}, \infty\right) / p_{12}(\infty, \infty), p_{12}\left(\infty, a_{2}\right) / p_{12}(\infty, \infty)$ denoting the probabilities when

Fig. 1 The figure depicts $e^{+} e^{-}$ pair production by two-photons, with the initially photons moving along the z-axis, while the emerging electron and positron moving along the x-axis. The angle χ_{1} measured relative to the z-axis, denotes the orientation of spin of one of the emerging positron may make. The unit vectors $\vec{e}^{(1)}$ and $\vec{e}^{(2)}$ are in x and y-axis, respectively

the polarization of only one of the particles is measured. [$p_{12}(\infty, \infty)$ is normalization factor.] The corresponding probabilities as computed from QED will be denoted by $P\left[\chi_{1}, \chi_{2}\right]$, $P\left[\chi_{1},-\right], P\left[-, \chi_{2}\right]$ with χ_{1}, χ_{2} denoting angles specifying directions along which spin measurements are carried out with respect to certain axes spelled out in the bulk of the paper. To show that the QED process is in violation with Bell's inequality of LHV, it is sufficient to find one set of angles $\chi_{1}, \chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$, such that S, as computed in QED, leads to a value of S outside the interval $[-1,0]$. In this work, it is implicitly assumed that the polarization parameters in the particle states are directly observable and may be used for Bell-type measurements as discussed. We show a clear violating of Bell's inequality for all speeds in support of quantum theory in the relativistic regime, i.e., of quantum field theory.

We consider the process of $e^{+} e^{-}$pair production of the collision of two photons, $\gamma\left(k_{1}\right) \gamma\left(k_{2}\right) \rightarrow e^{+}\left(p_{1}\right) e^{-}\left(p_{2}\right)$, in the center of mass frame of the process (see Fig. 1), given by the amplitude of the process is well known [27], up to an overall multiplicative factor irrelevant for the problem at hand.

$$
\begin{equation*}
\mathcal{A} \propto \bar{u}\left(p_{2}\right)\left[\frac{\gamma^{\mu} \gamma k_{1} \gamma^{\nu}}{2 p_{1} k_{1}}+\frac{\gamma^{\nu} \gamma k_{2} \gamma^{\mu}}{2 p_{1} k_{2}}+\frac{\gamma^{\mu} p_{1}^{\nu}}{p_{1} k_{1}}+\frac{\gamma^{v} p_{1}^{\mu}}{p_{1} k_{2}}\right] v\left(p_{1}\right) e_{1}^{v} e_{2}^{\mu} \tag{2}
\end{equation*}
$$

where $e_{1}^{\mu}=\left(0, \vec{e}_{1}\right), e_{2}^{\mu}=\left(0,-\vec{e}_{2}\right)$ are the polarizations of two photons \vec{k}_{1} and \vec{k}_{2}, respectively. It is convenient to compute the amplitude of the process above, be rewritten as ($j=1,2$)

$$
\begin{equation*}
\vec{e}_{j} \equiv\left(e_{j}^{(1)}, e_{j}^{(2)}, e_{j}^{(3)}\right) \tag{3}
\end{equation*}
$$

and these polarizations will be specified later. For the four momenta of the initially photons and the emerging $e^{+}\left(e^{-}\right)$, respectively, given by

$$
\begin{align*}
& \vec{k}_{1}=\omega(0,0,1)=-\vec{k}_{2} \tag{4}\\
& \vec{p}_{1}=\omega \sqrt{1-\left(\frac{m_{e}}{\omega}\right)^{2}}(1,0,0)=-\vec{p}_{2} \tag{5}
\end{align*}
$$

where ω is the energy of the photons, m_{e} denote the mass of an electron and positron. The measurement of the spin projection of the positron is taken along an axis making an angle
χ_{1} with the z-axis and lying in parallel to the $x-z$ plane, as shown in Fig. 1 ,

$$
\begin{equation*}
v\left(p_{1}\right)=\sqrt{\frac{\omega}{m_{e}}}\binom{\rho \sigma_{1} \xi_{1}}{\xi_{1}} \quad \text { and } \quad u\left(p_{2}\right)=\sqrt{\frac{\omega}{m_{e}}}\binom{\xi_{2}}{-\rho \sigma_{1} \xi_{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\frac{\sqrt{1-\left(m_{e} / \omega\right)}}{\sqrt{1+\left(m_{e} / \omega\right)}} \tag{7}
\end{equation*}
$$

and the direction of the spin of the electron makes an angle χ_{2} with the z-axis. For the two-spinors, we have

$$
\begin{equation*}
\xi_{1}=\binom{-\mathrm{i} \cos \chi_{1} / 2}{\sin \chi_{1} / 2} \quad \text { and } \quad \xi_{2}=\binom{-\mathrm{i} \cos \chi_{2} / 2}{\sin \chi_{2} / 2} \tag{8}
\end{equation*}
$$

A straightforward computation gives the matrix elements as follows:

$$
\begin{align*}
\bar{u}\left(\gamma^{i} \gamma^{0} \gamma^{j}\right) v \sim & 2 \rho \mathrm{i} \varepsilon_{i j k}\left[\xi_{2}^{\dagger} \sigma_{k} \sigma_{1} \xi_{1}\right] \tag{9}\\
\bar{u} \gamma^{i} v \sim & \left(1-\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{1} \xi_{1}\right] \delta^{i 1}+\left(1+\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{2} \xi_{1}\right] \delta^{i 2} \\
& +\left(1+\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{3} \xi_{1}\right] \delta^{i 3} \tag{10}\\
\bar{u}\left(\gamma^{i} \gamma^{m} \gamma^{j}\right) v \sim & \left(-\delta^{m j} \delta^{i 1}-\delta^{m i} \delta^{j 1}+\delta^{j i} \delta^{m 1}\right)\left(1-\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{1} \xi_{1}\right] \\
& +\left(-\delta^{m j} \delta^{i 2}-\delta^{m i} \delta^{j 2}+\delta^{j i} \delta^{m 2}\right)\left(1+\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{2} \xi_{1}\right] \\
& +\left(-\delta^{m j} \delta^{i 3}-\delta^{m i} \delta^{j 3}+\delta^{j i} \delta^{m 3}\right)\left(1+\rho^{2}\right)\left[\xi_{2}^{\dagger} \sigma_{3} \xi_{1}\right] \\
& -\mathrm{i}\left(1-\rho^{2}\right) \varepsilon_{m j i}\left[\xi_{2}^{\dagger} \xi_{1}\right] \tag{11}
\end{align*}
$$

where $k=1,2,3$. The matrix element above and (3) give the amplitude \mathcal{A} in (2) as

$$
\begin{align*}
\mathcal{A} \propto & -\mathrm{i}\left(1-\rho^{2}\right) \vec{k} \cdot\left(\vec{e}_{1} \times \vec{e}_{2}\right)\left[\xi_{2}^{\dagger} \xi_{1}\right] \\
& +\left(1-\rho^{2}\right) \sqrt{1-\left(\frac{m_{e}}{\omega}\right)^{2}}\left(e_{1}^{(1)} e_{2}^{(1)}+e_{2}^{(1)} e_{1}^{(1)}\right)\left[\xi_{2}^{\dagger} \sigma_{1} \xi_{1}\right] \\
& +\left(1+\rho^{2}\right) \sqrt{1-\left(\frac{m_{e}}{\omega}\right)^{2}}\left(e_{1}^{(2)} e_{2}^{(1)}+e_{2}^{(2)} e_{1}^{(1)}\right)\left[\xi_{2}^{\dagger} \sigma_{2} \xi_{1}\right] \tag{12}
\end{align*}
$$

which depends on the specification of the polarization of the initial photons in the process.
In Sect. 2, the amplitude in (12) is applied to compute exact joint probabilities of simultaneous measurement of spins of $e^{+} e^{-}$pair productions of two colliding linear and circular polarized, as well as unpolarized photons. It is also applied to compute of the corresponding probabilities of one of spin of e^{+}(or e^{-}). We then simulated our computation to show violation of Bell's inequality of LHV theories, which may lead to new experiments on spin correlations which monitor the energy (speed) of the underlying particles in Sect. 3. Finally, we conclude our results in Sect. 4.

2 Polarization Correlations in Breit-Wheeler Process

2.1 Initially Linearly Polarized Photons

Now we consider the process, $\gamma \gamma \rightarrow e^{+} e^{-}$, with linear polarization of initial photons. The photon polarization vector \vec{e}_{j} is given by $(j=1,2)$

$$
\begin{equation*}
\vec{e}_{j}=\cos \phi_{j} \vec{e}^{(1)}+\sin \phi_{j} \vec{e}^{(2)} \tag{13}
\end{equation*}
$$

where $\vec{e}^{(1)}$ and $\vec{e}^{(2)}$ are unit vectors in the plane of interaction and perpendicular to it, respectively. These photon linear polarization vectors are given by

$$
\begin{equation*}
\vec{e}^{(1)}=(1,0,0) \quad \text { and } \quad \vec{e}^{(2)}=(0,1,0) \tag{14}
\end{equation*}
$$

and ϕ is the angle between \vec{e} and the $\vec{e}^{(1)}$ axis, as shown in Fig. 1. In this case, the planes of photon polarization at an angle of ϕ_{1} and ϕ_{2} are equal to $\pi / 4$ with x-axis, then (13) gives the polarization of the initial photons as $\vec{e}_{1}=\frac{1}{\sqrt{2}}(1,1,0)=-\vec{e}_{2}$. By substituting the polarization state of initial photons in (12), we have the amplitude of the process of the initial linear polarized photons, given by

$$
\begin{equation*}
\mathcal{A}_{\text {linear }} \propto \frac{\mathrm{i} m_{e}}{\omega\left[1+\left(\frac{m_{e}}{\omega}\right)\right]} \sin \left(\frac{\chi_{1}-\chi_{2}}{2}\right)-\frac{1}{\left[1+\left(\frac{m_{e}}{\omega}\right)\right]} \sin \left(\frac{\chi_{1}+\chi_{2}}{2}\right) \tag{15}
\end{equation*}
$$

Using notation $F\left[\chi_{1}, \chi_{2}\right]$ for the absolute value square of the right-hand side of (15), the conditional joint probability distribution of spin measurements along the directions specified by angle χ_{1}, χ_{2} is given by

$$
\begin{equation*}
P\left[\chi_{1}, \chi_{2}\right]=\frac{F\left[\chi_{1}, \chi_{2}\right]}{N(\omega)} \tag{16}
\end{equation*}
$$

The normalization factor $N(\omega)$ is obtained by summing over all the polarizations of the emerging particles. This is equivalent to summing of $F\left[\chi_{1}, \chi_{2}\right]$ over the pairs of angles

$$
\begin{equation*}
\left(\chi_{1}, \chi_{2}\right), \quad\left(\chi_{1}+\pi, \chi_{2}\right), \quad\left(\chi_{1}, \chi_{2}+\pi\right), \quad\left(\chi_{1}+\pi, \chi_{2}+\pi\right) \tag{17}
\end{equation*}
$$

This leads to

$$
\begin{align*}
N(\omega) & =F\left[\chi_{1}, \chi_{2}\right]+F\left[\chi_{1}+\pi, \chi_{2}\right]+F\left[\chi_{1}, \chi_{2}+\pi\right]+P\left[\chi_{1}+\pi, \chi_{2}+\pi\right] \\
& =\frac{2\left[1+\left(\frac{m_{e}}{\omega}\right)^{2}\right]}{\left[1+\left(\frac{m_{e}}{\omega}\right)\right]^{2}} \tag{18}
\end{align*}
$$

giving

$$
\begin{equation*}
P\left[\chi_{1}, \chi_{2}\right]=\frac{m_{e}^{2}}{2 \omega^{2}\left[1+\left(\frac{m_{e}}{\omega}\right)^{2}\right]} \sin ^{2}\left(\frac{\chi_{1}-\chi_{2}}{2}\right)+\frac{1}{2\left[1+\left(\frac{m_{e}}{\omega}\right)^{2}\right]} \sin ^{2}\left(\frac{\chi_{1}+\chi_{2}}{2}\right) \tag{19}
\end{equation*}
$$

If only one of the spins is measured corresponding to χ_{1}, the probability can be written as

$$
\begin{align*}
P\left[\chi_{1},-\right] & =P\left[\chi_{1}, \chi_{2}\right]+P\left[\chi_{1}, \chi_{2}+\pi\right] \\
& =\frac{1}{2} \tag{20}
\end{align*}
$$

Similarly, if only one of the spins is measured corresponding to χ_{2}, the probability can be written as

$$
\begin{align*}
P\left[-, \chi_{2}\right] & =P\left[\chi_{1}, \chi_{2}\right]+P\left[\chi_{1}+\pi, \chi_{2}\right] \\
& =\frac{1}{2} \tag{21}
\end{align*}
$$

2.2 Initially Circularly Polarized Photons

Here we turn to consider the production of two initially photons \vec{k}_{1} and \vec{k}_{2} in the process, with the right-handed and left-handed circular polarization, are specified by the vectors

$$
\begin{equation*}
\vec{e}_{1}=\frac{1}{\sqrt{2}}(1, \mathrm{i}, 0) \quad \text { and } \quad \vec{e}_{2}=\frac{1}{\sqrt{2}}(1,-\mathrm{i}, 0) \tag{22}
\end{equation*}
$$

respectively, producing $e^{+} e^{-}$pairs, and place detectors for the latter at opposite end of the x-axis, as in Fig. 1, this gives

$$
\begin{equation*}
\mathcal{A}_{\text {cir }} \propto \omega \cos \left(\frac{\chi_{1}-\chi_{2}}{2}\right)+\mathrm{i} \sqrt{1-\left(\frac{m_{e}}{\omega}\right)^{2}} \sin \left(\frac{\chi_{1}-\chi_{2}}{2}\right) \tag{23}
\end{equation*}
$$

By using notations in (16)-(18) to compute the joint probability of spin correlations of $e^{+} e^{-}$ produced by two circularly polarized photons, this gives

$$
\begin{align*}
& P\left[\chi_{1}, \chi_{2}\right]=\frac{\omega^{2}+\left[\left(1-\omega^{2}\right)-\left(\frac{m_{e}}{\omega}\right)^{2}\right] \sin ^{2}\left(\frac{\chi_{1}-\chi_{2}}{2}\right)}{2\left[2 \omega^{2}+\left[\left(1-\omega^{2}\right)-\left(\frac{m_{e}}{\omega}\right)^{2}\right]\right]} \tag{24}\\
& P\left[\chi_{1},-\right]=\frac{1}{2} \tag{25}\\
& P\left[-, \chi_{2}\right]=\frac{1}{2} \tag{26}
\end{align*}
$$

2.3 Initially Unpolarized Photons

Finally, we consider the process $\gamma \gamma \rightarrow e^{+} e^{-}$, in the c.m., with initially unpolarized photons with some over all polarization of the photons

$$
\begin{equation*}
\sum_{\mathrm{pol}} e_{2}^{i} e_{1}^{j}=\delta^{i j}-n_{2}^{i} n_{1}^{j} \tag{27}
\end{equation*}
$$

where $\vec{n}=\vec{k} /|\vec{k}|$ and $i, j=1,2$, using the identity $\sum_{\mathrm{pol}} \vec{k} \cdot\left(\vec{e}_{1} \times \vec{e}_{2}\right)=0$, this gives

$$
\mathcal{A}_{\text {unpol }} \propto \xi_{2}^{\dagger} \xi_{1}\left\{\binom{1}{0}_{2}\left(\begin{array}{ll}
0 & 1
\end{array}\right)_{1}+\binom{0}{1}_{2}\left(\begin{array}{ll}
1 & 0 \tag{28}
\end{array}\right)_{1}\right\}
$$

(see Fig. 1), generating an energy independent (normalized) entangled state for $e^{+} e^{-}$given by

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\binom{1}{0}_{2}\left(\begin{array}{ll}
0 & 1
\end{array}\right)_{1}+\binom{0}{1}_{2}\left(\begin{array}{ll}
1 & 0 \tag{29}
\end{array}\right)_{1}\right]
$$

Therefore the joint probability of spin correlations of $e^{+} e^{-}$is given by

$$
\begin{align*}
P\left[\chi_{1}, \chi_{2}\right] & =\| \xi_{2}^{\dagger} \xi_{1}|\psi\rangle \|^{2} \\
& =\frac{1}{2} \sin ^{2}\left(\frac{\chi_{1}-\chi_{2}}{2}\right) \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
& P\left[\chi_{1},-\right]=\| \xi_{1}|\psi\rangle \|^{2}=\frac{1}{2} \tag{31}\\
& P\left[-, \chi_{2}\right]=\| \xi_{2}^{\dagger}|\psi\rangle \|^{2}=\frac{1}{2} \tag{32}
\end{align*}
$$

$P\left[\chi_{1},-\right]$ is also equivalently obtained by summing $P\left[\chi_{1}, \chi_{2}\right]$ over

$$
\begin{equation*}
\chi_{1}, \quad \chi_{2}+\pi \tag{33}
\end{equation*}
$$

for any arbitrarily chosen χ_{2}, i.e., as in (20) and similarly for $P\left[-, \chi_{2}\right]$. As the result of our calculation, we found that the joint polarization correlation probabilities of the initial unpolarized photons are independent of energy, as in the combining spin of the kinematic considerable.

3 Simulations and Discussions

In this section, we simulate the joint polarization correlation probabilities of $e^{+} e^{-}$pair productions of two colliding photons, for initially linearly and circularly polarized photons, computed in the previous section to show a clear violation of the relevant Bell-like inequality as a function of the energy of initially photons. We note the important statical property that

$$
\begin{equation*}
P\left[\chi_{1}, \chi_{2}\right] \neq P\left[\chi_{1},-\right] P\left[-, \chi_{2}\right] \tag{34}
\end{equation*}
$$

in general, showing obvious correlations occurring between the two spins. The indicator S in (1) computed according to the probabilities of simultaneous measurement of the spins of $e^{+} e^{-} P\left[\chi_{1}, \chi_{2}\right]$ in (19), (24), (30), and the corresponding probabilities when only one of the spins of e^{+}(or e^{-}) $P\left[\chi_{1},-\right]$ in (20), (25), (31), as well as $P\left[-, \chi_{2}\right]$ in (21), (26), (32), may be readily evaluated. To show violation of Bell's inequality of LHV theories, it is sufficient to find four angles $\chi_{1}, \chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$ at accessible energies, for which S falls outside the interval $[-1,0]$. We perform such a simulation fitting, presenting our results, and discussing their physical implications.

As shown in Table 1, we found that the deriving probabilities in Sect. 2.1, for initially linearly polarized photons, give S outside the interval $[-1,0]$ from below for four angles χ_{1}, $\chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$ at accessible energies. The plotting in Fig. 2 show that the probability $P\left[\chi_{1}^{\prime}, \chi_{2}^{\prime}\right]$ in (19) is a varying function of the energy of initial photons. These probabilities, for the set of angles ($180^{\circ}<\chi_{1}^{\prime}<360^{\circ}, 0^{\circ} \leq \chi_{2}^{\prime} \leq 360^{\circ}$) and ($0^{\circ} \leq \chi_{1}^{\prime} \leq 360^{\circ}, 180^{\circ}<\chi_{2}^{\prime}<360^{\circ}$), are rapidly increasing, $\omega \leq 3.5 \mathrm{MeV}$, after that they are slightly increasing with energy of the initially photons. On the other hand, for the set of angles ($0^{\circ}<\chi_{1}^{\prime}<180^{\circ}, 0^{\circ} \leq \chi_{2}^{\prime} \leq$ 360°) and ($0^{\circ} \leq \chi_{1}^{\prime} \leq 360^{\circ}, 0^{\circ}<\chi_{2}^{\prime}<180^{\circ}$), they are slightly decreasing with energy of the initially photons. However, we found that S are varying functions of the set of angles χ_{1}^{\prime},

Table 1 The indicator S computed according to the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding linearly polarized photons are simulated. For example, the four angles $\chi_{1}=0^{\circ}$, and $\chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$ are shown in a following table. R, B, G and O denotes Red, Blue, Green and Orange, respectively

Line	$\omega(\mathrm{MeV})$	χ_{2} (degree)	χ_{1}^{\prime} (degree)	χ_{2}^{\prime} (degree)	S
-	1.05	45	15	180	-1.37576
R	1.05	45	30	140	-1.36279
B	1.05	45	30	153.5	-1.35814
G	1.05	45	67	213	-1.30592
O	1.05	45	90	270	-1.03585
-	5.00	45	15	180	-1.39234
-	10.00	45	15	180	-1.39304
-	35.00	45	15	180	-1.39326
-	46.60×10^{3}	45		-1.39328	

Fig. 2 The probabilities of simultaneous measurement of spin correlations of $e^{+} e^{-}$pair productions of two-colliding linearly polarized photons, $P\left[\chi_{1}^{\prime}, \chi_{2}^{\prime}\right]$, as a function of the energies of photons. The dashed-dotted line (O) is for the set of angles $\chi_{1}^{\prime}=67^{\circ}, \chi_{2}^{\prime}=213^{\circ}$. The solid line (G) is for the set of angles $\chi_{1}^{\prime}=90^{\circ}, \chi_{2}^{\prime}=270^{\circ}$. The dotted line (R) is for the set of angles $\chi_{1}^{\prime}=30^{\circ}, \chi_{2}^{\prime}=140^{\circ}$. The dashed line (B) is for the set of angles $\chi_{1}^{\prime}=30^{\circ}, \chi_{2}^{\prime}=153.5^{\circ}$
χ_{2}^{\prime} when angles $\chi_{1}=0^{\circ}, \chi_{2}=45^{\circ}$ and the energy are fixed which can see are decreasing functions of the energy of the initially photons when the angles are fixed (as shown in Fig. 4). Such the results as the probabilities and the indicator S depend on the angles of spin of $e^{+} e^{-}$ and the energy of initially photons in processes.

As shown in Table 2 we found that the deriving probabilities in Sect. 2.2, for initially circularly polarized photons, gives S outside the interval $[-1,0]$ from below for four angles $\chi_{1}, \chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$ at accessible energies. The plotting in Fig. 3 show that the probability $P\left[\chi_{1}^{\prime}, \chi_{2}^{\prime}\right]$ in (24) is a varying function of the energy of initially photons. These probabilities, for four set of angles χ_{1}^{\prime} and χ_{2}^{\prime} (see in Table 2), are rapidly increasing, $\omega \leq 5 \mathrm{MeV}$, after that they are slightly increasing with the energy of the initially photons. These plotting lies on the same line, even though the set of angles χ_{1}^{\prime} and χ_{2}^{\prime} were changed. We also found that S are varying functions of angles $\chi_{1}^{\prime}, \chi_{2}^{\prime}$ when angles $\chi_{1}=0^{\circ}, \chi_{2}=155^{\circ}$ and the energy are fixed. These S are a rapidly decreasing with the increasing energy of initially photons when angles $\chi_{1}=0^{\circ}, \chi_{2}=155^{\circ}, \chi_{1}^{\prime}=15^{\circ}$ and $\chi_{2}^{\prime}=50^{\circ}$ are fixed as shown in Table 3, and plotted in Fig. 4. Such the results as the indicator S depend on the angles of the measurement of

Table 2 The indicator S computed according to the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding circularly polarized photons are simulated. For example, the four angles $\chi_{1}=0^{\circ}$, and $\chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$ are shown in a following table. $\mathrm{R}, \mathrm{B}, \mathrm{G}$ and O denotes Red, Blue, Green and Orange, respectively

Line	$\omega(\mathrm{MeV})$	χ_{2} (degree)	χ_{1}^{\prime} (degree)	χ_{2}^{\prime} (degree)	S
R	1.05	155	15	50	-1.32878
G	1.05	155	45	10	-1.30828
B	1.05	155	85	50	-1.05177
O	1.05	155	90	55	-1.01432

Table 3 The indicator S computed according to the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding circularly polarized photons are simulated. For example, the four angles $\chi_{1}=0^{\circ}$, and $\chi_{2}=155^{\circ}, \chi_{1}^{\prime}=15^{\circ}, \chi_{2}^{\prime}=50^{\circ}$ and varying photon energies are shown in a following table

$\omega(\mathrm{MeV})$	S
1.05	-1.3287849599597406
5.00	-1.3287849599604962
10.00	-1.3287849599605301
35.00	-1.3287849599605410
46.60×10^{3}	-1.3287849599605420

Fig. 3 The probabilities of simultaneous measurement of spin correlations of $e^{+} e^{-}$pair productions of two-colliding circularly polarized photons, $P\left[\chi_{1}^{\prime}, \chi_{2}^{\prime}\right]$, as a function of the energies of photons. We have taken the angles as in Table 2

Table 4 The value of the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding circularly polarized

Variables	Probabilities
σ	0.4547880110720782
2σ	0.4547880110721606
3σ	0.4547880110722077
4σ	0.4547880110722416

spin of $e^{+} e^{-}$and the energy of initially photons, but the probabilities only depend on the energy of initially photons in processes.

In Table 4 we found that the deriving probabilities in Sect. 2.3, for initially unpolarized photons, also give S outside the $[-1,0]$ from below for four angles $\chi_{1}, \chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$, and independent on energies (shown in Table 5). These S are plotted in Fig. 4 as well. The

Table 5 The indicator S computed according to the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding unpolarized photons are simulated. For example, the four angles $\chi_{1}=0^{\circ}$, and $\chi_{2}, \chi_{1}^{\prime}$, χ_{2}^{\prime} are shown in a following table

$\omega(\mathrm{MeV})$	χ_{2} (degree)	χ_{1}^{\prime} (degree)	χ_{2}^{\prime} (degree)	S
Independent	85	25	181	-1.14675
Independent	67	55	181	-1.34218
Independent	23	45	180	-1.46192

Fig. 4 The plotting of the indicator S as a functions of the energy of initially photons, for four set of angles $\chi_{1}=0^{\circ}, \chi_{2}=45^{\circ}, \chi_{1}^{\prime}=15^{\circ}, \chi_{2}^{\prime}=140^{\circ}$ of spin of $e^{+} e^{-}$for initially linearly polarized photon, as well as for four set of angles $\chi_{1}=140^{\circ}, \chi_{2}=155^{\circ}, \chi_{1}^{\prime}=15^{\circ}, \chi_{2}^{\prime}=50^{\circ}$ of spin of $e^{+} e^{-}$for initially circularly polarized photon. In particular for four set of angles $\chi_{1}=140^{\circ}, \chi_{2}=23^{\circ}, \chi_{1}^{\prime}=67^{\circ}, \chi_{2}^{\prime}=132^{\circ}$ of spin of $e^{+} e^{-}$for initially unpolarized photon
indicator S and the probability $P\left[\chi_{1}, \chi_{2}\right]=(1 / 2) \sin ^{2}\left[\left(\chi_{1}-\chi_{2}\right) / 2\right]$ are independent of the energy of initially photons, but they only depend on the angles χ_{1}, χ_{2} of the measurement of $e^{+} e^{-}$spins respectively. Finally, we have plotted the indicator S as a functions of the energy of initially photons, for four set of angles $\chi_{1}, \chi_{2}, \chi_{1}^{\prime}, \chi_{2}^{\prime}$, as shown in Fig. 4. Such the result as the indicator S for initially linearly polarized photons is faster decreasing with the energy than that of initially circularly polarized photons when set of angles is fixed.

4 Conclusions

We have investigated and derived, in detail, the explicit polarization correlation probabilities of simultaneous measurement of spins of $e^{+} e^{-}$pair productions by two colliding photons for initially linearly and circularly polarized photons, emphasizing their dependence on energy for initially polarized photons. The expressions were obtained in the (relativistic) QED

Table 6 The value of the probabilities of spin correlations of $e^{+} e^{-}$pair productions of two-colliding circularly polarized photons are shown in Fig. 4

Variables	The indicator (S)
Δ	-1.3287849599605240
2Δ	-1.3287849599604287
3Δ	-1.3287849599603334
4Δ	-1.3287849599602382
5Δ	-1.3287849599601430

setting. The necessity of such a study within the realm of quantum field theory cannot be overemphasized, as estimates of such correlations from simply combining spins (as is often done), have no meaning, as they do not involve dynamical considerations. The relevant dynamics is, of course, dictated directly from quantum field theory. The explicit expression for the polarization correlation obtained is interesting in its own right, and they may also lead to experiments that investigate such correlations by monitoring energy (speed), for initially linearly and circularly polarized photons, but not for unpolarized ones. The simulation study carried out in Sect. 3, shows that these expressions also depend on the angles of spin of e^{+} (and/or e^{-}), for initially linearly polarized photons, but not for circularly polarized photons, as a function of the energy. Our results may also be relevant in the realm of Bell's inequality with emphasis on relativistic aspects of quantum theory, that is, of quantum field theory. Our expressions have shown clear violations of Bell's inequality of LHV theories, in support of quantum theory in the relativistic regime. In recent years, several experiments have been already performed (cf. [8-12]) on particles' polarization correlations. It is expected that the novel properties recorded here by explicit calculations following directly from field theory (which is based on the principle of relativity and quantum theory) will lead to new experiments on polarization correlations for monitoring speed in the light of Bell's theorem. We hope that these computations, within the general setting of quantum field theory, will also be useful in areas of physics such as quantum teleportation and quantum information.

Acknowledgements I would like to thank Prof. Dr. E.B. Manoukian, Dr. Burin Gumjudpai and Dr. Ongon Topon for discussions, guidance and for carefully reading the manuscript. I also thanks Mr. Chakkrit Kaeonikhom for correcting graph. I would like to acknowledge the Thailand Research Fund for a New Researchers Grant (MRG5080288), the Thailand Center of Excellence in Physics and the Faculty of Science of Naresuan University for supports.

References

1. Manoukian, E.B.: Field-Theoretical view of the angular correlation of photons. Phys. Rev. A 46, 2962 (1992)
2. Manoukian, E.B.: Particle correlation in quantum field theory I. Fortschr. Phys. 42, 743 (1994)
3. Manoukian, E.B.: Particle correlation in quantum field theory II. Fortschr. Phys. 46, 189 (1998)
4. Manoukian, E.B., Ungkitchanukit, A.: Photon-photon angular correlation in $e^{+} e^{-}$collision in QED. Int. J. Theor. Phys. 33, 1811 (1994)
5. McMaster, W.H.: Matrix representation of polarization. Rev. Mod. Phys. 33, 8 (1961)
6. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526 (1974)
7. Clauser, J.F., Shimoney, A.: Bell's theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978)
8. Aspect, A., Dalibard, J., Roger, G.: Experimental test of bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)
9. Fry, E.S.: Bell inequalities and two experimental tests with mercury. J. Opt. B, Quantum Semiclass. Opt. 7, 229 (1995)
10. Kaday, L.R., Ulman, J.D., Wu, C.S.: Angular correlation of Compton-scattered annihilation photon of hidden variable. Nuovo Cimento B 25, 633 (1975)
11. Osuch, S., Popskiewicz, M., Szeflinski, Z., Wilhelmi, Z.: Experimental test of Bell's inequality using annihilation photons. Acta Phys. Pol. A 27, 567 (1996)
12. Irby, J.D.: Physical limitations on quantum nonlocality in the detection of photons emitted from positronelectron annihilation. Phys. Rev. A 67, 034102 (2003)
13. Manoukian, E.B., Yongram, N.: Joint probabilities of photon polarization correlations in $e^{+} e^{-}$annihilation. Int. J. Theor. Phys. 42, 1775 (2003)
14. Manoukian, E.B., Yongram, N.: Speed dependent polarization correlations in QED and entanglement. Eur. Phys. J. D 31, 137 (2004)
15. Manoukian, E.B., Yongram, N.: Polarization correlations in pair production from charged and neutral strings. Mod. Phys. Lett. A 20, 979 (2005)
16. Yongram, N.: Spin correlations in elastic $e^{+} e^{-}$scattering in QED. Eur. Phys. J. D 47, 71 (2008)
17. Yongram, N., Manoukian, E.B., Siranan, S.: Polarization correlations in muon pair production in the electroweak model. Mod. Phys. Lett. A 21, 1 (2006)
18. Breit, G., Wheeler, J.A.: Collision of two light quanta. Phys. Rev. 46, 1087 (1934)
19. Darbinian, S.M., Ispririan, K.A., Ispririan, R.K.: Polarization effects in elastic and inelastic scattering of light by light. Europhys. Lett. 30, 513-518 (1995)
20. Nikishov, A.I.: Absorption of high-energy photons in the universe. J. Exp. Theor. Phys. 41, 549-550 (1961)
21. Chen, P., Tauchit, T., Yokoya, K.: Simulations on pair creation from beam-beam interaction in linear colliders. In: Proceedings of the 2007 Particle Accelerator Conference (PAC07) (1991)
22. Hartin, A.: The stimulated Breit-Wheeler process as a source of background $E+E-$ pairs at the ILC. In: Proceedings of EPAC 2006, Edinburgh, Scotland (EPAC 2006), pp. 727-729 (2006)
23. Motz, J.W., Olsen, H., Koch, H.W.: Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36, 881 (1964)
24. Motz, J.W., Olsen, H., Koch, H.W.: Pair production by photons. Rev. Mod. Phys. 41, 581 (1969)
25. Page, L.A.: Electron and positron polarization. Rev. Mod. Phys. 31, 759 (1959)
26. Maximon, L.C., Olsen, H.: Measurement of linear photon polarization by pair production. Phys. Rev. 126, 310 (1962)
27. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

[^0]: N . Yongram (\boxtimes)
 Department of Physics, Naresuan University, Phitsanulok 65000, Thailand
 e-mail: nattapongy@nu.ac.th
 N. Yongram

 Thailand Center of Excellence in Physics, CHE Ministry of Education, Bangkok 10400, Thailand
 N. Yongram

 The Tah Poe Institute for Fundamental Study (TPTP-IF), Naresuan University, Phitsanulok 65000, Thailand

