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ABSTRACT

In this thesis, we study cosmological scaling solutions in two cosmological mod-

els. We first consider the scaling solutions in the modified theory of gravity, and then

study this type of solution in the coupled dark energy model. The modified theory of gra-

vity used in our study is a subclass of Degenerate Higher-Order Scalar-Tensor (DHOST)

theory which satisfies gravitational wave constraints. The coupled dark energy model

used in our work is constructed from the general conformal transformation in which the

coefficient of the conformal transformation depends on both the scalar field and its ki-

netic term. Under this transformation, the action for the subclass of the DHOST theory

mentioned above is related to the Einstein-Hilbert action.

We use autonomous system to analyze the cosmic evolution. We study theDHOST

theory having the scaling solutions in which the Lagrangians have been derived in lit-

erature. To obtain the scaling solutions satisfying the cosmic acceleration at late time,

we assume coupling between a scalar degree of freedom in the DHOST theory and mat-

ter. In this model, the coupling term is inspired from simple conformal transformation.

We find that for some ranges of the parameters, both scaling and field dominated points

can be attractors. The deviation from the Einstein theory of gravity needs to be small to

prevent the density parameter of dark matter larger than unity. Similar to coupled dark

energy model in Einstein gravity, the background universe cannot evolve from radiation



domination through ϕ-matter-dominated epoch (ϕMDE) towards acceleration epoch, the

coincidence problem in this DHOST model cannot be alleviated.

In the coupled dark energy model with general conformal coupling, we find that

the late-time scaling point can be an attractor, while ϕMDE can be a saddle point for

some choices of parameters. In this model, the cosmic evolution from radiation domina-

tion through ϕMDE towards acceleration epoch can be realized. Therefore coincidence

problem can be alleviated. Based on our results, the coincidence problem cannot be alle-

viated in both DHOST theory and coupled dark energy model if coupling term is inspired

from conformal transformation. For the general conformal transformation, it is possible

to alleviate the coincidence problem.



CHAPTER I

INTRODUCTION

1.1 Background and Motivation

The General Relativity (GR) was proposed by Albert Einstein in 1915 [1]. This

theory is a geometrical theory of gravity in four-dimensional spacetime that has changed

our viewpoint about nature of gravity. This theory successfully describes phenomena in

laboratory and Solar system, but cannot describe the acceleration of the present universe

without introducing mysterious form of energy that has a negative pressure called dark

energy. The simplest model of dark energy is cosmological constant. By putting a posi-

tive cosmological constant into the Einstein-Hilbert action, the acceleration of the present

universe can be realized. However, the value of cosmological constant is extremely fine-

tuned which is known as fine-tuning problem or cosmological constant problem. To

avoid the mentioned problem, dark energy has to evolve in time. However for evolving

dark energy models, there is the coincidence problem that questions the moment in the

cosmic history at which the accelerated expansion occurs [2]. The coincidence prob-

lem can be alleviated if the evolution of dark energy has suitable fixed points in phase

space [2, 3]. For alternative way, the accelerating universe can be achieved by assum-

ing that physics of gravity on large scale deviates from Einstein theory. These theories

are called the modified theory of gravity. The simplest modified theory of gravity can

be constructed by adding the scalar field into the action for gravity. These theories are

called scalar-tensor theories of gravity. The additional scalar field can be field of grav-

ity, if scalar field, ϕ, couples non-minimally to Ricci scalar, R. This is a fundamental

construction of Brans Dickes theory. Besides non-minimally coupling between ϕ and

R, there is non-minimal derivative coupling between ϕ and curvature tensors. The most

general actions in four-dimensional spacetime for scalar-tensor theories containing both

forms of non-minimally coupling and having second order equations of motion (EOMs)
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is Horndeski theory [4]. Because this theory contains up to second order derivative in

EOMs, it is free fromOstrogradsky instability. The simple example for such Lagrangians

are L ∝ f(ϕ)R and L ∝ Gµνϕµν . The full Lagrangians of Horndeski theory will present

in section 3.2.

In the modern view points, the Horndeski theory can be also reconstructed from

Galileon theory in four dimensions [5, 6]. However, in more general case, there also

exist viable theories which do not suffer from the Ostrogradsky instability even though

the corresponding field equations are higher order. It will be presented in section 3.3 that

this theory can be constructed by suitable combination of Galileon actions. This theory

is beyond Horndeski or GLPV theory [7]. Such theories have interesting consequences

for cosmology and astrophysics. In particular, it leads to a breaking of the Vainshtein

mechanism inside matter, which can modify the structure of nonrelativistic stars as well

as that of relativistic ones. Theories which the Lagrangians are degenerate, have been

studied. Although the equations of motion are higher order derivative, these theories

propagate at most three degrees of freedom without Ostrogradsky instability, because

extra degrees of freedom can be eliminated by constraints arising from degeneracy con-

ditions. These theories is Degenerate Higher-Order Scalar-Tensor (DHOST) theories in

which Horndeski and GLPV theories are included [8].

The detection of the gravitational wave (GW) emitted from neutron binary stars,

shows that the speed of gravitational waves, cGW , is the same as the speed of light (clight =

1) [9, 10]. This implies very restrictions on form of scalar-tensor theories in particular

DHOST theories. Hence, DHOST theories satisfying the constraint cGW = 1, have the

corresponding Lagrangians as [11]

LDHOST
cGW=1 = P +Q2ϕ+ f (4)R + α3ϕ

µϕνϕµν2ϕ

+
1

8f

[
48f 2

,X − 8(f −Xf,X)α3 −X2α2
3]ϕ

µϕµνϕλϕ
λν
)

+
1

2f
(4f,X +Xα3)α3(ϕµϕ

µνϕν)
2 ,

(1.1)

where P , Q, f and α3 are arbitrary functions depending on scalar field, ϕ and X ≡
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−∇µϕ∇µϕ. The termsP ,Q, f (4)R andα3 represent the Lagrangian of scalar field, the co-

efficient of cubic Galileon Lagrangian, non-minimally coupling term and the coefficient

of L3 in higher-order scalar-tensor Lagrangians respectively. (4)R is four-dimensional

Ricci scalar. A subscript ,X denotes derivative with respect to X . Moreover, we have

used ϕµ ≡ ∇µϕ, ϕµν ≡ ∇ν∇µϕ and 2ϕ ≡ ∇µ∇µϕ.

There are many attempts to study whether these theories are suitable as dark en-

ergy candidates [11]. The scaling solutions during the matter dominated epoch and de

Sitter solutions at late time have been found without the cosmological constant, realizing

self-acceleration. The quasi-static perturbations around the self-accelerating solutions

are evaluated. It is shown that, for this theory the stricted constraints coming from astro-

physical objects and gravitational waves can be satisfied.

Besides the constraint on propagation speed, there is another constraint which

come from the requirement that GW in DHOST theories does not decay to dark energy

perturbations, i.e., graviton is stable [12]. This constraint together with the constraint

on propagation speed of GW tightly constrain form of the Lagrangian for the DHOST

theories.

Scaling behaviour for the cosmic evolution is the interesting feature arising in

some models of dark energy and modified theories of gravity, because it is possible sce-

narios, among many others, that could lead to fixed points which become attractors for

some ranges of model parameters [13, 14, 15, 16, 17, 18, 19, 20]. The scaling behaviour

is the constancy of the ratio between energy density of dark energy and dark matter du-

ring some period of time. Since scaling behaviour could lead to fixed point corresponding

to matter domination and attractor corresponding to late-time acceleration that satisfies

the observations, the coincidence problem could be alleviated. The scaling point that

can represent the matter dominated epoch is the ϕMDE point in which there is a small

fraction of dark energy during matter domination. The coincidence problem could be

alleviated if the universe can evolve from radiation domination through ϕMDE toward
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acceleration epoch at late time.

Possible dark energy models having scaling behaviour can be constructed by as-

suming interaction between dark energy and dark matter [21, 22, 23, 24, 25]. Due to such

interaction, the ratio of the energy density of dark energy to that of dark matter can be

constant with time during the scaling regime. Possible models of coupled dark energy are

inspired from the frames transformation in theories of gravity. The interaction between

dark energy and cold dark matter (CDM) can be inspired from the conformal transfor-

mation [26, 27, 28, 29, 30] and disformal transformation [31, 32, 33, 34, 35, 36, 37].

Scaling solutions in the DHOST theories which satisfy the above two constraints

on GW have been discussed. Demanding the existence of the scaling solution, the suit-

able form of the Lagrangians has been derived [38]. The scaling solutions can satisfy the

cosmic acceleration at late time if the coupling between a scalar degree of freedom in the

DHOST theory and dark matter is assumed. In this model, the coupling term between

the scalar degree of freedom and dark matter is inspired from conformal transformation

in which the coefficient of the conformal transformation depends only on scalar field.

The evolution of background universe for this class of DHOST theories is studied in

this thesis [39]. Our results show that, for this DHOST model, cosmic evolution cannot

evolve from radiation domination through ϕMDE towards acceleration epoch. This be-

haviour is similar to that of coupled dark energy model in Einstein gravity [23] with the

same coupling between dark components as in the DHOST model considered here. This

implies that the coincidence problem cannot be alleviated in this form of coupling. The

sequence of cosmic evolution through suitable fixed points can be realized in the coupled

dark energy model in which the coupling term consists of Z ≡ uµ∂µϕ, where such term

can lead to pure momentum transfer between the dark components [25]. Here, uµ is a

four velocity of CDM and ∂µϕ is a derivative of scalar field. We will show in this thesis

that the proper sequence of cosmic evolution can be achieved in the model of coupled

dark energy inspired from the general conformal transformation in which the coefficient
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of the transformation depends on both the scalar field and its kinetic term [40].

1.2 Objectives

1.2.1 To study background evolution of the universe in DHOST theories with

scaling solutions.

1.2.2 To study cosmic evolution in coupled dark energy model with general con-

formal coupling.

1.3 Frameworks

The scope of this work is to perform dynamical analysis for DHOST theories with

scaling solutions and coupled dark energy model with general conformal coupling. The

cosmic evolutions based on the fixed points found in the analysis are discussed.



CHAPTER II

FUNDAMENTAL COSMOLOGY

2.1 The Einstein Theory of Gravity

Let us start from the Einstein-Hilbert action in the form

SEH =
1

2κ2

∫
d4x

√
−gR , (2.1)

where κ ≡
√
8πG ≡ 1/Mp ,G is Newton’s gravitational constant,Mp is reduced Planck

mass, g is a determinant of the metric tensor gαβ , R is the Ricci scalar defined by R ≡

gαβRαβ , and Rαβ is the Ricci tensor defined by

Rαβ = ∂αΓ
λ
βλ − ∂λΓ

λ
αβ + Γσ

αλΓ
λ
βσ − Γλ

αβΓ
σ
λσ . (2.2)

The Christoffel symbol, Γλ
αβ can be computed by the relation

Γλ
αβ =

1

2
gλρ (∂βgαρ + ∂αgβρ − ∂ρgαβ) , (2.3)

where gλρ is the inverse of metric tensor. In order to describe matter in gravity, we add a

matter action to the above action. Now we have

S = SEH + Sm =

∫
d4x

√
−g
{

1

2κ2
R + Lm [gαβ, ψ]

}
, (2.4)

where ψ denotes the matter field. Using the variational method with respect to gαβ , it

follows that

δS = δSEH + δSm =

∫
d4x

{
1

2κ2
δ
(√

−gR
)
+

δ

δgαβ
(√

−gLm

)
δgαβ

}
. (2.5)

The energy-momentum tensor, Tαβ is defined by

Tαβ = − 2√
−g

δ(
√
−gLm)

δgαβ
or Tαβ =

2√
−g

δ(
√
−gLm)

δgαβ
. (2.6)

Considering the variation of the Einstein-Hilbert action in Eq. (2.5), we obtain

δSEH =
1

2κ2

∫
d4x

δ√−ggαβRαβ︸ ︷︷ ︸
δS1

+
√
−gδgαβRαβ︸ ︷︷ ︸

δS2

+
√
−ggαβδRαβ︸ ︷︷ ︸

δS3

 . (2.7)
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Using the relation

δ
√
−g = −1

2

√
−ggαβδgαβ , (2.8)

the first and second terms (δS1 and δS2 ) in Eq. (2.7) can be written as

δS1 + δS2 =
1

2κ2

∫
d4x

√
−g
{
Rαβ −

1

2
gαβR

}
δgαβ . (2.9)

In order to calculate the expression of the last term (δS3), we need to derive the variation

of the Ricci tensor δRαβ as follows

δRαβ = δ
(
∂αΓ

λ
βλ − ∂λΓ

λ
αβ + Γσ

αλΓ
λ
βσ − Γλ

αβΓ
σ
λσ

)
= ∂αδΓ

λ
βλ − ∂λδΓ

λ
αβ + δΓσ

αλΓ
λ
βσ + Γσ

αλδΓ
λ
βσ − δΓλ

αβΓ
σ
λσ − Γλ

αβδΓ
σ
λσ

= ∂αδΓ
λ
βλ + Γσ

αλδΓ
λ
βσ − Γλ

αβδΓ
σ
λσ −

(
∂λδΓ

λ
αβ − δΓσ

αλΓ
λ
βσ + δΓλ

αβΓ
σ
λσ

)
= ∂αδΓ

λ
βλ + Γσ

αλδΓ
λ
βσ − Γλ

αβδΓ
σ
λσ − Γλ

ασδΓ
σ
λβ

−
(
∂λδΓ

λ
αβ − δΓσ

αλΓ
λ
βσ + δΓλ

αβΓ
σ
λσ − Γλ

ασδΓ
σ
λβ

)
= ∇βδΓ

λ
αλ −∇λδΓ

λ
αβ , (2.10)

where δΓλ
αβ can be written as

δΓλ
αβ =

1

2
gλρ (∇βδgαρ +∇αδgβρ −∇ρδgαβ) . (2.11)

Now we rewrite the δS3 as

δS3 =
1

2κ2

∫
d4x

√
−ggαβ

[
∇βδΓ

λ
αλ −∇λδΓ

λ
αβ

]
,

=
1

2κ2

∫
d4x

√
−g∇σ

[
gασ(δΓλ

αλ)− gαβδ(Γσ
αβ)
]
,

=
1

2κ2

∫
d4x

√
−g∇ρ

[
δρα∇βδg

αβ − gαβg
µρ∇µδg

αβ
]
,

=
1

2κ2

∫
d4x

√
−g∇ρξ

ρ ,

=
1

2κ2

∮
dS3

√
−gξρnρ , (2.12)

where ξρ = δρα∇βδg
αβ−gαβgµρ∇µδg

αβ is a unit vector normal to hypersurface enclosing

entire spacetime. The quantity ξσnσ in the last line is evaluated on the hypersurface.
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Hence, the term in the above equation corresponds to a boundary contribution at infinity

which can be set to zero by demanding ∇βδg
αβ = 0 in stead of δgαβ = 0. Finally, we

obtain the Einstein field equation as

Rαβ −
1

2
gαβR = Gαβ = κ2Tαβ , (2.13)

where Gαβ is Einstein tensor which represents the gravitational interaction in terms of

the spacetime curvature. This equation describes the dynamics of the gravity due to the

matter field. We take the covariant derivative of the above equation,

∇αG
αβ = κ2∇αT

αβ . (2.14)

Since the left-hand side of this equation is zero because of the twice contracted Bianchi

identity, the right-hand side satisfies

∇αT
αβ = 0 . (2.15)

This corresponds to the energy and momentum conservation of the total matter field. In

general, the energy-momentum tensors conserve if system is invariant under coordinate

transformation.

2.2 The Friedmann-Lemaître-Robertson-Walker Metric

In cosmology, cosmological principle provides the symmetries of spacetime. Cos-

mological principle is the notion that the universe is homogeneous and isotropic in three-

dimensional space. Isotropy means that the universe we look at does not have special

direction. Homogeneity means the average density on large scales is about the same

everywhere in the universe. The metric that satisfies homogeneity and isotropy of the

three-dimensional space is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric.

To ensure that the homogeneity and isotropy of the three-dimensional space are time

invariance, we write the time-dependent part of the spatial metric in the form of time-

dependent factor as

ds2 = −dt2 + a(t)2γijdx
idyj , (2.16)
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where a(t) is scale factor and γij is metric tensor in spatial components. We start with a

three-dimensional space in Cartesian coordinate embedded in four-dimensional space

x2 + y2 + z2 ± α2 = ±R2 , (2.17)

where R is a constant radius of a three-dimensional space in Cartesian coordinate and

α is the fourth component of Cartesian coordinate. The above equation corresponds to

flat space if R → ∞, corresponds to 3-sphere if the sign in front of R2 is positive and

becomes hyperboloid if the sign in front of R2 is negative. From the above expression,

we can rewrite as

r2 ± α2 = ±R2 , (2.18)

or

α2 = ±
(
−r2 ±R2

)
, (2.19)

where r2 ≡ x2 + y2 + z2. The differentiation of Eq. (2.18) gives

2rdr = ∓2αdα → r

α
dr = ∓dα . (2.20)

Squaring both sides of the above equation, then we get

r2

α2
dr2 = dα2 . (2.21)

Inserting Eq. (2.19) into the above equation, it yields

± r2

−r2 ±R2
dr2 = dα2 . (2.22)

From Eq. (2.16), we can write

ds2 = −dt2 + a2dl2 , (2.23)

where for Cartesian coordinate, we have

dl2 ≡ dx2 + dy2 + dz2 ± dα2 , (2.24)

and for spherical coordinate, we have

dl2 ≡ dr2 + r2dθ2 + r2 sin2 θdϕ2 ± dα2 . (2.25)
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Inserting Eq. (2.22) into the above equation, we then obtain

dl2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 +
r2

−r2 ±R2
dr2 .

=

(
1 +

r2

−r2 ±R2

)
dr2 + r2dθ2 + r2 sin2 θdϕ2 ,

=
±R2

−r2 ±R2
dr2 + r2dθ2 + r2 sin2 θdϕ2 ,

=
dr2(

1− r2

∓R2

) + r2dθ2 + r2 sin2 θdϕ2 . (2.26)

Considering the case of flat spaceR → ∞, the above equation reduces to

dl2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 . (2.27)

Inserting the above expression into Eq. (2.23), we obtain the FLRW metric for spatially

flat space in spherical coordinate as

ds2 = −dt2 + a2
[
dr2 + r2dθ2 + r2 sin2 θdϕ2

]
, (2.28)

where δij is the Kronecker delta. From the above equation, the dimension of radial coor-

dinate r is length while the scale factor a(t) is dimensionless. we also write the FLRW

metric for spatially flat space in Cartesian coordinate as

ds2 = −dt2 + a2δijdx
idxj . (2.29)

We now consider the case of ±R2 corresponding to 3-sphere and hyperboloid.

For convenience we can rescale

r̃ → r

±R
. (2.30)

Eq. (2.26) becomes

dl̃2 =
dr̃2

(1− kr̃2)
+ r̃2dθ2 + r̃2 sin2 θdϕ2 , (2.31)

where l̃ = l/R and k = 1,−1 represent closed (spherical) space and open (hyperbolic)

space respectively. From Eqs. (2.23) and (2.31), the FLRW metric for curved space in

spherical coordinate yields

ds2 = −dt2 + ã(t)2
[

dr̃2

(1− kr̃2)
+ r̃2

(
dθ2 + sin2 θdϕ2

)]
, (2.32)
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where ã(t) = a(t)R. From the above equation, the radial coordinate r̃ is dimensionless

while the scale factor ã(t) is length. In general, we can write Eqs. (2.28) and (2.32) in

unified form by omitting tilde from a and r as

ds2 = −dt2 + a(t)2
[

dr2

(1− kr2)
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (2.33)

where dimensionless k = 1, 0,−1 represent closed space, flat space and open space re-

spectively. If k = 0, Eq. (2.33) satisfies Eq. (2.28) which the scale factor a(t) is dimen-

sionless while dimension of radial coordinate r is length. If k = 1 and −1, Eq. (2.33)

satisfies Eq. (2.32) which dimension of the scale factor a(t) is length while the radial

coordinate r is dimensionless. The metric tensor gαβ in Eq. (2.33) can be read as

gαβ = diag

(
−1,

a2

1− kr2
, a2r2, a2r2 sin2 θ

)
. (2.34)

From the FLRWmetric that we have mentioned, we can compute the Christoffel symbols

using Eq. (2.3). From the relation

gαβg
βρ = δρα , (2.35)

where δρα is kronecker delta, the inverse of metric tensor for the FLRWmetric can be read

as

gαβ = diag

(
−1, (

a2

1− kr2
)−1, (a2r2)−1, (a2r2 sin2 θ)−1

)
. (2.36)

From Eqs. (2.3), (2.34) and (2.36), we obtain the only non-zero Christoffel symbols as

Γ0
ij =

ȧ

a
gij = Hgij, Γi

0j =
ȧ

a
δij = Hδij ,

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin2 θ ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
,

Γ2
33 = − sin θ cos θ, Γ3

23 = Γ3
32 = cot θ , (2.37)

where a dot denotes derivative with respect to time t,H ≡ ȧ/a is Hubble parameter and

index i = 1, 2, 3 represented coordinate r, θ, ϕ respectively.
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From Eq. (2.2), we can compute the non-zero components of the Ricci tensor for

the FLRW metric as

R00 = −3
ä

a
, (2.38)

R11 =
2aä+ 2ȧ2 + 2k

1− 2kr2
, (2.39)

R22 = r2(2aä+ 2ȧ2 + 2k) , (2.40)

R33 = r2(2aä+ 2ȧ2 + 2k) sin2 θ , (2.41)

and we can obtain the Ricci scalar for the FLRW metric as

R = 6

(
ä

a
+
ȧ2

a2
+
k

a2

)
=

(
6Ḣ + 12H2 +

6k

a2

)
. (2.42)

From the observational data, the universe is quite spatially flat (k ≈ 0) [41].

2.3 Perfect Fluid

The energy-momentum tensor Tαβ that satisfies the requirement of the isotropy

and homogeneity is in the form of a perfect fluid. It can be written as

Tαβ = (ρ+ p)uαuβ + pgαβ , (2.43)

or

Tα
β = (ρ+ p)uαuβ + pδαβ , (2.44)

where ρ and p are energy density and pressure of the fluid respectively and uµ is four-

velocity of the fluid. To satisfy the homogeneity of space, both ρ and p are only functions

of time t. Moreover, the spatial components of the four-velocity have to vanish. In

the comoving flame, uµ = (1, 0, 0, 0). A perfect fluid is idealized fluid in which shear

stress, viscosity or heat transfer are neglected such that T0i = Ti0 = Tij = 0. These

requirements satisfy the isotropy of space. Therefore, we can write Eqs. (2.43) and (2.44)
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as

Tαβ =



ρ 0 0 0

0 pg11 0 0

0 0 pg22 0

0 0 0 pg33


and Tα

β =



−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


. (2.45)

Additionally, we can calculate the trace of Tαβ as

T = Tα
α = −ρ+ 3p . (2.46)

The evolution of energy density can be calculated by the conservation equation for energy-

momentum tensor as follows

∇αT
α
β = 0 . (2.47)

The component β = 0 of the above equation corresponds to the energy conservation

while β = i corresponds to the momentum conservation. Since T i
0 = 0 and ∂ip = 0 in

the background universe, the evolution of the energy density is only considered by the

component β = 0

∇αT
α
0 = 0 . (2.48)

From the expression of the covariant derivative, the above equation can be written as

∂αT
α
0 + Γα

αλT
λ
0 − Γλ

α0T
α
λ = 0 . (2.49)

Because of the isotropy of the space, T i
0 = 0. Eq. (2.49) reduces to

∂0T
0
0 + Γi

i0T
0
0 − Γi

j0T
j
i = 0 . (2.50)

Using Eqs. (2.37) and (2.45), the above equation becomes

−ρ̇−Hδii ρ−Hδij T
j
i = 0 ,

ρ̇+Hδii ρ+HT i
i = 0 ,

ρ̇+ 3H(ρ+ p) = 0 , (2.51)
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where δii is trace of kronecker delta in three-dimensional space. This is the conservation

equation of the energy density for the perfect fluid in the spatially flat Friedmann uni-

verse. If we know the relation between ρ and p, we can solve Eq. (2.51) in terms of ρ(a).

For the simple perfect fluid, the relation between ρ and p is characterized by the equation

of state

p = wρ , (2.52)

where w is the equation of state parameter. Substituting Eq. (2.52) into Eq. (2.51), we

obtain
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.53)

For simplicity, we set w to be a constant value. Then Eq. (2.53) yields

ρ ∝ a−3(1+w) . (2.54)

We know how the energy density changes when the universe expands or shrinks through

determining the equation of state parameter w. The universe is filled by a mixture of

different matters. The classification of such matters depends on w as follows.

• Matter, w = wm = 0

For all forms of the matter, the pressure is much less than the energy density |p| ≪

ρ. The main matter components in the universe are dark matter and baryons which

are non-relativistic particles. The energy density of the matter obeys

ρm ∝ a−3 , (2.55)

where the subscript m denotes the matter.

• Radiation, w = wγ = 1/3

The radiation is relativistic particles such as photons and neutrinos. For the radia-

tion, the energy density obeys

ργ ∝ a−4 , (2.56)

where the subscript γ denotes the radiation.
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• Dark energy, w = wd ≈ −1

The dark energy is unknown form of energy with negative pressure. The dark

energy is introduced for describing the accelerated expansion of the universe at

late time. In general, wd is not necessarily constant. For simple cases, the dark

energy can be in the form of the cosmological constant Λ (wΛ = −1) or the scalar

field ϕ. In the following notations, we denote the subscript d as the dark energy

and the subscript Λ as the cosmological constant.

Since scalar field is one of candidates for the dark energy, we will study the energy-

momentum tensor of the scalar field. For the scalar field in the gravity, its dynamics is

described by the action

Sϕ =

∫
d4x

√
−g
(
−1

2
∇αϕ∇αϕ− V (ϕ)

)
, (2.57)

where V (ϕ) is the potential of the scalar field. We note that the metric signature is

(−,+,+,+). The energy-momentum tensor for the scalar field can be derived from

Eq. (2.6) as

T ϕ
αβ = ∇αϕ∇βϕ+

(
−1

2
∇ρϕ∇ρϕ− V (ϕ)

)
gαβ . (2.58)

The EOM of the scalar field can be calculated by varying Eq. (2.57) with respect to ϕ.

Hence, we obtain the EOM of the scalar field as

∇α∇αϕ− V,ϕ = 0 , (2.59)

where subscript ,ϕ denotes derivative with respect to ϕ. This equation can be also derived

from the conservation of the energy-momentum tensor for the scalar field. If the scalar

field is static and space independent, the energy-momentum tensor canmimic the energy-

momentum tensor for the cosmological constant,

T ϕ
αβ = −gαβV (ϕ) , (2.60)

where in this case V (ϕ) is constant both space and time. In the Friedmann universe, the

scalar field satisfies the properties of perfect fluid. Hence, Eq. (2.44) and Eq. (2.58) give

ρϕ =
1

2
ϕ̇2 + V (ϕ) and pϕ =

1

2
ϕ̇2 − V (ϕ) , (2.61)
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where ρϕ and pϕ are the energy density and pressure of the scalar field respectively.

2.4 The Coupled Fluid

In general, the total energy-momentum tensor conserves according to diffeomor-

phism invariance. If all matters interact only through the gravity, the energy-momentum

tensor of all matters conserves separately. If matter interacts with other matter additional

to the gravity, the energy-momentum tensor of each coupled matter does not conserve,

∇αT
αβ
(I) = Qβ

(I) , (2.62)

where subscript (I) denotes matter involving the additional interaction. Qβ
(I) describes

the energy and momentum transfer between matter. In the Friedmann universe, Qj
(I)

corresponding to the momentum transfer has to vanish because of the isotropy of the

space. For component β = 0, Eq. (2.62) gives

∇αT
α0
(I) = Q0

(I) , (2.63)

where Q0
(I) describes the energy transfer between matter. According to the conservation

of total energy-momentum tensor, we have

∇αT
α0 =

∑
I

∇αT
α0
(I) +

∑
U

∇αT
α0
(U) = 0 , (2.64)

where index U runs over uncoupled matter. Since the energy-momentum tensors of un-

coupled matter separately conserved, e.g.,∇αT
α0
(U) = 0, Eqs. (2.63) and (2.64) give∑

I

∇αT
α0
(I) =

∑
I

Q0
(I) = 0 . (2.65)

Since the properties of the dark energy and the dark matter have not been clearly known,

one could assume direct interaction between them. From the above equation, we obtain

Q ≡ Q0
m = −Q0

d . (2.66)

For this reason, Eq. (2.64) gives

∇αT
α0
m = Q and ∇αT

α0
d = −Q . (2.67)
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Hence, in the Friedmann universe, the above equations become

ρ̇m + 3H(ρm + pm) = Q and ρ̇d + 3H(ρd + pd) = −Q . (2.68)

2.5 The Friedmann Equation

From the Einstein equation Eq. (2.13), the Ricci tensor, and the Ricci scalar for

the FLRW metric in Eqs. (2.38) - (2.42), we obtain for the component αβ = 00 as

G00 = κ2T00 . (2.69)

By using Eqs. 2.13) and ((2.45), the above equation can be written as

R00 −
1

2
g00R = κ2T00 ,

−3
ä

a
− 1

2
(−1)

(
6
ä

a
+ 6

ȧ2

a2
+

6k

a2

)
= κ2ρ ,

3
ȧ2

a2
+

3k

a2
= κ2ρ ,

3H2 +
3k

a2
= κ2ρ ,

H2 =
κ2

3
ρ− k

a2
, (2.70)

where ρ in this equation is the total energy density of all matters in the universe. For the

component αβ = ii, we obtain

Gii = κ2Tii ,

Rii −
1

2
giiR = κ2Tii ,(

aä+ 2ȧ2 + 2k
) gii
a2

− 1

2
gii

(
6
ä

a
+ 6

ȧ2

a2
+

6k

a2

)
= κ2giip ,(

aä+ 2ȧ2 + 2k
) 1

a2
− 1

2

(
6
ä

a
+ 6

ȧ2

a2
+

6k

a2

)
= κ2p ,

−2ä

a
− ȧ2

a2
− k

a2
= κ2p ,

−2ä

a
−H2 − k

a2
= κ2p ,

2ä

a
+H2 = −κ2p− k

a2
, (2.71)
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where p is the total pressure of all matters in the universe. Inserting Eq. (2.70) into

Eq. (2.71), we obtain the acceleration equation written as

ä

a
= −κ

2

6
(ρ+ 3p) . (2.72)

Usually, we call Eq. (2.70) as the Friedmann equation and call Eq. (2.72) as the accelera-

tion equation. We use these equations to describe the evolution of the universe in which

the spacetime is FLRW metric and the matters are modeled by the perfect fluid. This is

the Friedmann universe. Using Eq. (2.52), the above equation becomes

ä

a
= −κ

2

6
ρ (1 + 3wτ ) , (2.73)

where wτ is the total equation of state parameter defined by

wτ =
pτ
ρτ

=
pγ + pm + pd
ργ + ρm + pd

. (2.74)

From Eq. (2.73), we can see that the total equation of state parameter has to be less than

−1/3 to obtain an accelerated expansion of the universe. Differentiating Eq. (2.70) with

respect to time and using Eq. (2.53), we obtain

Ḣ = −κ
2

2
ρ (1 + wτ ) +

k

a2
. (2.75)

Ignoring the last term, this equation tells us that if Ḣ < 0, Ḣ = 0 and Ḣ > 0, the

universe is dominated by the ordinary matter (wτ > −1), contains only the cosmological

constant (wτ = −1) and is dominated by the phantom field (wτ < −1) respectively. The

Friedmann equation Eq. (2.70) can be written as

Ωτ + Ωk = 1 , (2.76)

where

Ωτ ≡ κ2

3H2
ρ and Ωk ≡

k

(aH)2
. (2.77)

Here Ωk is the density parameter of the curvature, while Ωτ is the total density parameter

of all matters which can be written as

Ωτ = Ωγ + Ωm + Ωd , (2.78)



19

where

Ωγ ≡ κ2

3H2
ργ , Ωm ≡ κ2

3H2
ρm and Ωd ≡

κ2

3H2
ρd . (2.79)

From observations, the universe is filled with the radiation, matter and dark energy which

|Ωk 0| ∼ 0.01 , Ωγ 0 ∼ 10−4 , Ωm 0 ∼ 0.31 and Ωd 0 ∼ 0.69 . (2.80)

The subscript 0 denotes the values at the present time. From observations, the present

universe is in the dark energy dominated epoch. However, the dark energy slowest decays

and the radiation fastest decays. Hence, when we look back in the past, we first see the

matter dominated epoch in which the energy density ρm > ρd > ργ . If we further look

back in the past, we will see the radiation dominated epoch in which ργ > ρm > ρd.



CHAPTER III

REVIEWS OF THE LITERATURE

3.1 Galileon Theories

Mostly, the fundamental theories in physics provide equations of motion up to

second-order time derivative of dynamical variables such as Newton’s law because their

Lagrangians depend on first-order time derivative of dynamical variables. In general,

if Lagrangian includes second-order time derivative of dynamical variables, the equa-

tions of motion become fourth-order time derivative of dynamical variables. This leads

to the Ostrogradsky instability because the corresponding Hamiltonian contains linear

conjugate momentum. However for some special forms of Lagrangians, the equations

of motion are still second order differential equation even though second order deriva-

tives appear in the Lagrangians. The theories which have such properties are for example

Galileon theory and some of its extension.

Galileon theories are the most general scalar field theories in flat Minkowski

spacetime which action contains second order time derivative of scalar field but can pro-

vide the equations of motion up to second order derivative of scalar field. The theories

have under the following transformation [42]

ϕ(x) → ϕ(x) + bµx
µ + c , (3.1)

where bµ and c are arbitrary constants. It follows from the above transformation that

ϕµ → ϕµ + bµ , (3.2)

where ϕµ ≡ ∂µϕ in flat Minkowski spacetime.

This symmetry suggests that the the Lagrangians of Galileon theories are inva-

riant under the above transformation, i.e.,

ϕµν → ∂µ (ϕν + bν) = ϕµν , (3.3)
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where ϕµν ≡ ∂ν∂µϕ. Let us first start our consideration from the case where the La-

grangian depends on the generic function of ϕµν as

L = L (ϕ, ϕµ, ϕµν) , (3.4)

so that the Euler-Lagrange equation is

∂L
∂ϕ

− ∂µ
∂L
∂ϕµ

+ ∂µ∂ν
∂L
∂ϕµν

= 0 . (3.5)

Generally if Lagrangians depend on second order derivative of dynamical variables, the

EOMs become fourth order derivative of dynamical variables. This leads to the Ostro-

gradsky instability. However for some special forms of Lagrangian, the EOMs are still

second order differential equation even though second order derivatives appear in the

Lagrangians. To prove the above viewpoint, we suppose L is quadratic in ϕµν and takes

the form

L = T α1α2β1β2ϕα1β1ϕα2β2 . (3.6)

For simplicity, we suppose tensor T α1α2β1β2 depends on only ϕµ. To guarantee that the

Euler-Lagrange equation is second order differential equation, we require

T α1α2β1β2 ≡


totally antisymmetric underα1 ↔ α2 and β1 ↔ β2 ,

symmetric underα1 ↔ β1 andα2 ↔ β2 .

Inserting the Eq. (3.6) into Eq. (3.5), we obtain

0 = ∂µ∂ν
∂L
∂ϕµν

− ∂µ
∂L
∂ϕµ

,

= ∂µ∂ν
∂
(
T α1α2β1β2ϕα1β1ϕα2β2

)
∂ϕµν

− ∂µ
∂
(
T α1α2β1β2ϕα1β1ϕα2β2

)
∂ϕµ

. (3.7)

From Eqs. (A.1) and (A.2) in appendix, Eq. (3.7) becomes

0 = 2ϕµβ2ϕνα2ϕα1β1

(
∂2T α1α2β1β2

∂ϕµ∂ϕν

)
− ϕα1β1ϕα2β2ϕµν

(
∂2T α1α2β1β2

∂ϕµ∂ϕν

)
. (3.8)

Eq. (3.8) can be up to second order derivative if tensor T α1α2β1β2 takes the form

T α1α2β1β2 (ϕµ) ≡ Aα1α2α3β1β2β3ϕα3ϕβ3 , (3.9)
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where Aα1α2α3β1β2β3 is tensor that is defined as general form in Eq. (3.12). Inserting the

above expression into Eq. (3.8) and following calculation in Eq. (A.3), we obtain

0 = −4ϕα1β1ϕα2β2ϕα3β3Aα1α2α3β1β2β3 . (3.10)

From Eq. (A.3), one can extend to D-dimensional flat spacetime in which Galileon the-

ories can be defined in several ways. We start from the Galileon Lagrangian given by

LGal,1
N =

(
Aα1α2...αn+1β1β2...βn+1

(2n+2) ϕαn+1ϕβn+1

)
ϕα1β1ϕα2β2 . . . ϕαnβn . (3.11)

This is called the type-1 Galileon Lagrangian. The 2m-contravariant tensor A(2m) is

defined by

Aα1α2...αmβ1β2...βm

(2m) ≡ 1

(D −m)!
εα1α2...αmσ1σ2...σD−m εβ1β2...βm

σ1σ2...σD−m
, (3.12)

and the totally antisymmetric Levi-Civita tensor is given by

εα0α1...αD−1 = − 1√
−g

δ
[α0

0 δα1
1 . . . δ

αD−1]
D−1 , (3.13)

where N indicates N-times multiplication of ϕ, while n indicates the number of ϕµν .

Then we have

N = n+ 2 . (3.14)

Since the maximum number of the indices of Levi-Civita tensor are restricted by D in-

dices, we obtain

n+ 1 ≤ D → N ≤ D + 1 . (3.15)

When D = 4, N can take four possible values, e.g., N = 2, 3, 4, 5. Thus there are only

four possible non-trivial Galileon Lagrangians of the above form in four dimensions,

and these were shown respectively in [43]. To obtain the EOM of the type-1 Galileon

Lagrangian, we replace Lagrangian in Eq. (3.11) into Eq. (3.5) and follow Eq. (A.4). The

result is

0 = − (2 + n)Aα1α2...αn+1β1β2...βn+1

(2n+2) ϕα1β1ϕα2β2 . . . ϕαnβnϕαn+1βn+1 . (3.16)
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Other forms of Galileon Lagrangians can be written as

LGal,2
N =

(
Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
λ
β1

)
ϕα2β2ϕα3β3 . . . ϕαnβn , (3.17)

LGal,3
N =

(
Aα1α2...αnβ1β2...βn

(2n) ϕλϕ
λ
)
ϕα1β1ϕα2β2 . . . ϕαnβn . (3.18)

We call the above equations as the type-2 and type-3 Galileon Lagrangian respectively.

We will also perform Euler-Lagrange equation to make sure that their EOMs are still up

to second order derivative. Let us start from the type-2 Galileon Lagrangian. Substituting

Eq. (3.17) into Eq. (3.5), we obtain

0 = ∂µ∂ν
∂L
∂ϕµν

− ∂µ
∂L
∂ϕµ

,

= ∂µ∂ν
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
λ
β1

)
ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµν

−∂µ
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
λ
β1

)
ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµ

. (3.19)

Substituting Eqs. (A.6) and (A.7) in appendix into Eq. (3.19), there are several terms

which cancel each other. Finally, we obtain

0 = −nAα1α2...αnβ1β2...βn

(2n) ϕλ
β1
ϕλα1ϕα2β2ϕα3β3 . . . ϕαnβn

+Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn . (3.20)

In order to obtain the EOMof the type-3Galileon Lagrangian, we replace Eq. (3.18)

into Eq. (3.5). We obtain

0 = nAα1α2...αnβ1β2...βn

(2n) ϕλ
α1
ϕλβ1ϕα2β2ϕα3β3 . . . ϕαnβn

−Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn . (3.21)

We can see that three types of Galileon have purely second order derivative equa-

tions of motion on flat spacetime that have already shown in Eq. (3.16), Eq. (3.20) and

Eq. (3.21). They definitely have invariance under the Galileon symmetry in Eq. (3.2).

In fact, there are relations among three types of Galileon Lagrangian that were shown in
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[44]. To prove these relations, let us define

Jα
N = XAαα2...αnβ1β2...βn

(2n) ϕβ1ϕα2β2ϕα3β3 . . . ϕαnβn . (3.22)

Here in this chapter we define X ≡ ϕµϕ
µ. Following in Eq. (A.10) in the appendix, we

get

∂αJ
α
N = 2LGal,2

N + LGal,3
N . (3.23)

From the above equation, we can see that

LGal,2
N = −1

2
LGal,3

N +
1

2
∂αJ

α
N . (3.24)

This shows that LGal,2
N is equal to −1

2
LGal,3

N up to a total derivative. Moreover, By using

Eq. (3.12) together with Eq. (3.13), we can rewrite

A α1α2...αn

(2n) β1β2...βn
= − 1

(D − n)!
δ
α1α2...αnσ1σ2...σD−n

β1β2...βnσ1σ2...σD−n
,

= −δα1α2...αn

β1β2...βn
. (3.25)

Likewise, we can rewrite

A α1α2...αn+1

(2n+2) β1β2...βn+1
= −δα1α2...αn+1

β1β2...βn+1
,

= −
n+1∑
i=1

(−1)i−1 δα1
βi
δ
α2α3...αn+1

β1β2...βi−1βi+1...βn+1
,

= −δα1
β1
δ
α2α3...αn+1

β2β3...βn+1

−
n+1∑
i=2

(−1)i−1 δα1
βi
δ
α2α3...αi−1αi+1...αn+1

β1β2...βi−1βi+1...βn+1
. (3.26)

On using the above expression, LGal,1
N in Eq. (3.11) can be rewritten as

LGal,1
N = −δα1

β1
δ
α2α3...αn+1

β2β3...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1

−
n+1∑
i=2

(−1)i−1 δα1
βi
δ
α2α3...αi−1αi+1...αn+1

β1β2...βi−1βi+1...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
. (3.27)

Considering the first term on the right-hand side of the above equation which is shown

in Eq. (A.11) in the appendix, we can obtain

−δα1
β1
δ
α2α3...αn+1

β2β3...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
= LGal,3

N . (3.28)
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For the second term of Eq. (3.27), starting at i = 2 we now obtain

δα1
β2
δ
α2α3...αn+1

β1β3...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
= −LGal,2

N . (3.29)

At i = 3, it yields

−δα1
β3
δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕα1ϕ

β1ϕβ2
α2
ϕβ3
α3
. . . ϕβn+1

αn+1
= −LGal,2

N . (3.30)

Eq. (3.29) and Eq. (3.30) are shown the calculation in Eq. (A.12) and Eq. (A.13). While

i = 4, 5, 6, . . . , n+1, we still obtain the same results. Since the second term in Eq. (3.27)

is sum from i = 2 to i = n+ 1 that are n times, it can be rewritten as

−
n+1∑
i=2

(−1)i−1 δα1
βi
δ
α2α3...αi−1αi+1...αn+1

β1β2...βi−1βi+1...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
= −nLGal,2

N . (3.31)

Substituting Eq. (3.28) and Eq. (3.31) into Eq. (3.27), we obtain the following relation

LGal,1
N = LGal,3

N − nLGal,2
N . (3.32)

Substituting Eq. (3.14) into the above relation, it yields

LGal,1
N = LGal,3

N − (N − 2)LGal,2
N . (3.33)

We can write LGal,3
N in terms of LGal,1

N and LGal,2
N as

LGal,3
N = LGal,1

N + (N − 2)LGal,2
N , (3.34)

or LGal,2
N in terms of LGal,1

N and LGal,3
N as

LGal,2
N =

1

N − 2

(
LGal,3

N − LGal,1
N

)
. (3.35)

Substituting the last two equations into Eq. (3.24), Thus we respectively have

LGal,1
N = −NLGal,2

N + ∂αJ
α
N , (3.36)

LGal,1
N = −N

2
LGal,3

N +
N − 2

2
∂αJ

α
N . (3.37)



26

From Eq. (3.24), Eq. (3.36) and Eq. (3.37), we can see that three types of Galileon La-

grangian are related up to total derivative. Since the type-3 Galileon Lagrangian is more

compact, we are going to use it via this thesis.

As we have already mentioned at the beginning of this section, there are 4 possible La-

grangians in caseD = 4. Therefore, we are going to write down for 4 possible ones from

the simplest Galileon Lagrangian in Eq. (3.18) together with Eq. (3.25).

For N = 2, it yields

LGal,3
N=2 = X . (3.38)

For N = 3, its expression is

LGal,3
N=3 = A α1

(2n=2) β1
ϕλϕ

λϕβ1
α1
,

= −Xδα1
β1
ϕβ1
α1
,

= −Xϕα1
α1
,

= −X2ϕ . (3.39)

This is called the cubic Galileon Lagrangian.

For N = 4, its expression is

LGal,3
N=4 = A α1α2

(2n=4) β1β2
ϕλϕ

λϕβ1
α1
ϕβ2
α2
,

= −Xδα1α2
β1β2

ϕβ1
α1
ϕβ2
α2
,

= −X
(
δα1
β1
δα2
β2

− δα1
β2
δα2
β1

)
ϕβ1
α1
ϕβ2
α2
,

= −X
(
ϕα1
α1
ϕα2
α2

− ϕα2
α1
ϕα1
α2

)︸ ︷︷ ︸
α1,α2→α,β

,

= X
(
ϕαβϕ

αβ −2ϕ2
)
. (3.40)

This is called the quartic Galileon Lagrangian.

For N = 5, its expression is

LGal,3
N=5 = A α1α2α3

(2n=6) β1β2β3
ϕλϕ

λϕβ1
α1
ϕβ2
α2
ϕβ3
α3
,

= −Xδα1α2α3
β1β2β3

ϕβ1
α1
ϕβ2
α2
ϕβ2
α2
,

= −X
(
δα1
β1
δα2
β2
δα3
β3

− δα1
β1
δα2
β3
δα3
β2

+ δα1
β3
δα2
β1
δα3
β2
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−δα1
β3
δα2
β2
δα3
β1

+ δα1
β2
δα2
β3
δα3
β1

− δα1
β2
δα2
β1
δα3
β3

)
ϕβ1
α1
ϕβ2
α2
ϕβ3
α3
,

= −X
(
ϕα1
α1
ϕα2
α2
ϕα3
α3

− 3ϕα1
α1
ϕα3
α2
ϕα2
α3

+ 2ϕα2
α1
ϕα3
α2
ϕα1
α3

)︸ ︷︷ ︸
α1,α2,α3→λ,α,β

,

= −X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
. (3.41)

This is called the quintic Galileon Lagrangian. From the above resulting Lagrangians,

the general form of Galileon Lagrangian for four dimensions on flat spacetime, can now

written as

L =
5∑

N=2

cNLG
N , (3.42)

where cN ’s are constant and

LG
2 = X ,

LG
3 = X2ϕ ,

LG
4 = X

(
2ϕ2 − ϕαβϕ

αβ
)
,

LG
5 = X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
. (3.43)

As we have described, the Galileon theories have equations of motion containing only

second order derivative. Generalizing the Galileon theories to the most general scalar

theory with equations of motion order 2 or lower in derivatives, one can just add function

f depending on ϕ and X or let constant cN ’s depend on ϕ and X . Then the generalized

Galileon Lagrangian is given by

Ln{f} = f(ϕ,X)× LGal,3
N=n+2 ,

= f(ϕ,X)
(
XAα1α2...αnβ1β2...βn

(2n)

)
ϕα1β1ϕα2β2 . . . ϕαnβn . (3.44)

Clearly, the Galileon symmetry given in Eq. (3.1) is broken for the generalized Galileons

because f(ϕ,X) is not invariant under the Galileon transformation.
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3.2 Covariant Galileon and Horndeski Theories

To generalize Galileon theories on flat spacetime to the theories in curved space-

time, we replace all partial derivatives appearing in the Lagrangians by covariant deriva-

tives. As a result, we obtain minimally covariantized theories. However, variations ofL4

and L5 with respect to ϕ give the EOMs which contain higher order derivatives. These

terms can lead to the Ostrogradsky instability. Let us consider variation with respect to

ϕ for LGal,3
N=4 in the version of minimally covariantization. It yields

δLGal,3
N=4 = δ

[
X
(
ϕαβϕ

αβ −2ϕ2
)]
,

= δ
[
ϕλϕ

λ
(
ϕαβϕ

αβ −2ϕ2
)]
,

= δ
(
ϕλϕ

λ
) (
ϕαβϕ

αβ −2ϕ2
)

+ϕλϕ
λδ
(
ϕαβϕ

αβ −2ϕ2
)
. (3.45)

Considering the first term in the above expression, we obtain

δ
(
ϕλϕ

λ
) (
ϕαβϕ

αβ −2ϕ2
)
, = 2

(
ϕλ∇λδϕ

) (
ϕαβϕ

αβ −2ϕ2
)
,

= 2∇λ

[
ϕλ
(
ϕαβϕ

αβ −2ϕ2
)
δϕ
]

−2∇λ

[
ϕλ
(
ϕαβϕ

αβ −2ϕ2
)]
δϕ , (3.46)

= −2∇λ

[
ϕλ
(
ϕαβϕ

αβ −2ϕ2
)]
δϕ . (3.47)

Note that, the first term in Eq. (3.46) is zero because it is the surface term when we write

it in the action form. For the second term in Eq. (3.45), we obtain

ϕλϕ
λδ
(
ϕαβϕ

αβ −2ϕ2
)

= X
(
2ϕαβ∇β∇αδϕ− 22ϕ∇λ∇λδϕ

)
. (3.48)

After ignoring the surface terms, the above equation becomes

ϕλϕ
λδ
(
ϕαβϕ

αβ −2ϕ2
)

= 2
[
∇α∇β

(
Xϕαβ

)
−∇λ∇λ (X2ϕ)

]
δϕ . (3.49)

Substituting Eq. (3.47) and Eq. (3.49) into Eq. (3.45), we now obtain

δLGal,3
N=4 = −2∇λ

[
ϕλ
(
ϕαβϕ

αβ −2ϕ2
)]
δϕ

+2
[
∇α∇β

(
Xϕαβ

)
−∇λ∇λ (X2ϕ)

]
δϕ . (3.50)
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We can see that the third and fourth order derivatives of ϕ appear in the above result.

Moreover, the third order derivatives of metric tensor gµν also appear in Eq. (3.50). We

call those higher order derivative terms as dangerous terms. As we have showed above,

the minimally covariantized theories fromGalileon Lagrangians are not sufficient to con-

struct the healthy covariant theories that are free from the Ostrogradsky instability. In

order to construct the healthy covariant ones, we have to add the correction term into the

actions to exactly cancel all such higher derivatives. The calculation for the correction

terms is shown in the appendix (B). The Lagrangians for the healthy theory are

LH
4 = G4(ϕ,X)R− 2G4,X

(
2ϕ2 − ϕαβϕ

αβ
)
, (3.51)

which is the quartic Horndeski Lagrangian, and

LH
5 = G5(ϕ,X)Gαβϕ

αβ +
1

3
G5,X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕβλ

)
,

(3.52)

which is the quintic Hondeski Lagrangian. Also, the case of the cubic Horndeski La-

grangian is the Lagrangian taking the form

LH
3 = G3(ϕ,X)2ϕ . (3.53)

Additionally, the variation with respect to the metric gµν for the covariant generalized

Galileons, had been derived in [45]. The resulting equations of motion after adding the

correction terms, are also second order derivatives of the metric. Obviously, covariant

generalized Galileons are no longer invariant under Eq. (3.1) but they can be generalized

to Eq. (3.2) and

ϕ→ ϕ+ c , (3.54)

where c is constant. According to Eqs. (3.51)-(3.53), we can get re-discovered Horn-

deski theories which can be expressed in terms of an arbitrary linear combination of the

Lagrangians as

L =
5∑

N=2

LH
N , (3.55)
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where

LH
2 = G2(ϕ,X) ,

LH
3 = G3(ϕ,X)2ϕ ,

LH
4 = G4(ϕ,X)R− 2G4,X

(
2ϕ2 − ϕαβϕ

αβ
)
,

LH
5 = G5(ϕ,X)Gαβϕ

αβ +
1

3
G5,X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕβλ

)
.(3.56)

whereG2,G3,G4 andG5 are arbitrary functions of ϕ andX and ϕµν in curved spacetime

is ∇ν∇µϕ. We have set the reduced Planck mass Mp ≡ 1/
√
8πG = 1. From the

above calculation, the covariant generalized Galileons are the Horndeski theory. If the

coefficients G2, G3, G4 and G5 depend on only X , the Horndeski theory becomes the

covariant Galileons or the extended Galileons.

3.3 Beyond Horndeski and GLPV Theories

As presented above, the Horndeski theory is the most general scalar-tensor theory

in four dimensions of spacetime leading to covariant second order equations of motion

for both scalar field and metric tensor. Hence, it definitely propagates three degrees of

freedom, e.g., two-tensor and one scalar degrees of freedom. It returns to the question

whether it is possible to extend the Horndeski theory to be more general, whose equations

of motion could contain higher order derivative of dynamical fields without Ostrogradsky

ghost. Currently, such theories have been found. One of possible theories is the beyond

Horndeski or GLPV theory. Adding the minimally covariantized Galileon of type-1 term

into the L4 and L5 of the Horndeski theory, we obtain the GLPV theory which still has

the same degrees of freedom as the Horndeski theory. The Lagrangians of this theory
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can be described by

Lϕ
2 ≡ G2(ϕ,X) , (3.57)

Lϕ
3 ≡ G3(ϕ,X)2ϕ , (3.58)

Lϕ
4 ≡ G4(ϕ,X) (4)R− 2G4,X(ϕ,X)(2ϕ2 − ϕµνϕµν)

+ F4(ϕ,X)ϵµνρσ ϵ
µ′ν′ρ′σϕµϕµ′ϕνν′ϕρρ′ , (3.59)

Lϕ
5 ≡ G5(ϕ,X) (4)Gµνϕ

µν

+
1

3
G5,X(ϕ,X)(2ϕ3 − 32ϕϕµνϕ

µν + 2ϕµνϕ
µσϕν

σ)

+ F5(ϕ,X)ϵµνρσϵµ
′ν′ρ′σ′

ϕµϕµ′ϕνν′ϕρρ′ϕσσ′ , (3.60)

where F4 and F5 are coefficients of the minimally covariantized type-1 Galileon La-

grangian [46]. Hence, the Horndeski theory is a subset of the above theory by restricting

the conditions

F4(ϕ,X) = 0, F5(ϕ,X) = 0, (3.61)

which guarantee that the equation ofmotion is only second order derivatives in dynamical

fields. It has been shown that GLPV theory propagates the same degrees of freedom as

the Horndeski theory using Hamiltonian analysis [47].

3.4 Degenerate Higher-Order Scalar-Tensor (DHOST) Theories

General action of scalar-tensor theories which contains the second order deriva-

tive of scalar field can lead to higher order of time derivative in the EOM. However, if

there is the suitable symmetry of the second order derivative of scalar field in the action

for example that appear in the Horndeski and GLPV theories, the EOMs are still sec-

ond order of time derivative, i.e., the propagating degrees of freedom in the theories are

single scalar and two-tensor. In addition to such symmetry, the general action can also

lead to three propagating degrees of freedom if Lagrangians are degenerate. Base on this

idea, the generalization of the Horndeski and GLPV theory have been constructed. These
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theories are Degenerate Higher-Order Scalar-Tensor (DHOST) theories.

3.4.1 Higher-Order Scalar-Tensor Theories

In this section, we consider scalar-tensor theories whose action is given by the

general form

S = Sg + Sϕ , (3.62)

where Sg depends on the Ricci scalar R of the metric gµν ,

Sg ≡
∫
d4x

√
−g f(ϕ,X)R , (3.63)

and Sϕ depends on the quadratic term of second derivatives of the scalar field ϕ

Sϕ ≡
∫
d4x

√
−g Cµν,ρσ ∇µ∇νϕ ∇ρ∇σϕ , (3.64)

where Cµν,ρσ is an arbitrary tensor depending only on ϕ and ∇µϕ. In principle, Sϕ can

depend on the cubic term of second derivatives of the scalar field which is the generaliza-

tion of L5 in the Horndeski and GLPV theory. The construction of theories that includes

this term is presented in [48]. We will see in the following section that this term in the

theories is ruled out because of the constraint on the propagation speed of GW. Then we

concentrate on the quadratic term of second derivatives of the scalar field. Note that when

the function f is 1/2, Sg reduces into the familiar Einstein-Hilbert action. We now con-

sider Cµν,ρσ. In general, we can write Cµν,ρσ in terms of symmetric and antisymmetric

parts. For simplicity, we start by considering the first pair of indices,

Cµν,ρσ =
1

2
(Cµν,ρσ + Cνµ,ρσ) +

1

2
(Cµν,ρσ − Cνµ,ρσ) . (3.65)

Since the antisymmetric part contracting with∇µ ∇νϕ vanishes, we can ignore the anti-

symmetric part. Applying the same consideration to the second pair of indices ρσ, one

can check that under swapping indices ρσ the antisymmetric part of Cµν,ρσ can also be

ignore. Hence, Cµν,ρσ satisfies the relations, [11]

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν . (3.66)
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According to these properties,Cµν,ρσ can be expressed in the most general form of metric

tensor and first order derivative of scalar field as

Cµν,ρσ =
1

2
α1(g

µρgνσ + gµσgνρ) + α2g
µνgρσ +

1

2
α3(ϕ

µϕνgρσ + ϕρϕσgµν)

+
1

4
α4(ϕ

µϕρgνσ + ϕνϕρgµσ + ϕµϕσgνρ + ϕνϕσgµρ) + α5ϕ
µϕνϕρϕσ , (3.67)

where the αI are five arbitrary functions of ϕ and X . Since Cµν,ρσ is contracted with

∇µ∇νϕ∇ρ∇σϕ, we can obtain the five possible Lagrangians quadratic in second deriva-

tives,

Lϕ
1 ≡ ϕµνϕµν , Lϕ

2 ≡ (ϕ µ
µ )2 , Lϕ

3 ≡ ϕ µ
µ ϕρϕρσϕ

σ ,

Lϕ
4 ≡ ϕµϕµνϕ

νρϕρ , Lϕ
5 ≡ (ϕρϕρσϕ

σ)2 . (3.68)

Now the action Sϕ from Eq. (3.64) can be written as

Sϕ =

∫
d4x

√
−g

(
α1L

ϕ
1 + α2L

ϕ
2 + α3L

ϕ
3 + α4L

ϕ
4 + α5L

ϕ
5

)
≡
∫
d4x

√
−g αIL

ϕ
I ,

(3.69)

where index I runs over I = 1, 2, . . . , 5. The action in Eq. (3.62) includes a particular

case of the quartic Horndeski term

LH
4 = G4(ϕ,X)(4)R− 2G4,X(ϕ,X)(2ϕ2 − ϕµνϕµν) . (3.70)

Indeed, the above Lagrangian is of the form of the Lagrangians in Eqs. (3.62)-(3.69) by

setting

f = G4, α1 = −α2 = G4,X , α3 = α4 = α5 = 0. (3.71)

The action (3.62) also includes the GLPV theory which can be written as

LbH
4 = F4(ϕ,X)ϵµνρσ ϵ

µ′ν′ρ′σϕµϕµ′ϕνν′ϕρρ′ . (3.72)

This corresponds to the action (3.62) with

α1 = −α2 = XF4, α3 = −α4 = 2F4, α5 = 0. (3.73)
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3.4.2 Degeneracy of Lagrangian

In general, the action (3.62) contains one scalar mode, two tensor modes and also

extra scalar mode called Ostrogradsky ghost leading to Ostrogradsky instability. When

the systems have Ostrogradsky degrees of freedom, the dynamical variables associated

with these degrees of freedom can be infinite for the finite value of Hamiltonian. We can

avoid this instability by imposing the constraints on function f and αI from the require-

ment that the Lagrangians have to be degenerate. To understand this degeneracy idea

more, we use very simple toy model based on classical point of views. Let us consider

the Lagrangian of the form

L =
1

2
a ϕ̈2 + b ϕ̈ q̇ +

1

2
ϕ̇2 +

1

2
c q̇2 − V (ϕ, q) , (3.74)

where a, b and c are constant coefficients and V (ϕ, q) is some potential. This Lagrangian

involves the acceleration of ϕ but not velocity of q. If a ̸= 0, the term that is proportional

to a generates fourth-order equations of motion for ϕ, whereas, if a = 0 but b ̸= 0, one

obtains third-order equations of motion for ϕ and q respectively.

To compute the degree of freedom, it is convenient to work with a more familiar

Lagrangian containing only velocities, let us introduce new auxiliary variable

Q ≡ ϕ̇ , (3.75)

leading to the new Lagrangian

L =
1

2
a Q̇2 + b Q̇ q̇ +

1

2
c q̇2 +

1

2
Q2 − V (ϕ, q)− λ(Q− ϕ̇) , (3.76)

which does not include any acceleration. We now introduce the kinetic matrix called the

Hessian matrix defined by [8]

M ≡
(

∂2L

∂va∂vb

)
=

 a b

b c

 , (3.77)

where the symbol va denotes the velocities, i.e., va ≡ {Q̇, q̇}. In the generic case, if

M is invertible, Q̈ and q̈ can be separated independently. Then the differential system
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requires six initial conditions which are Q, Q̇, q, q̇, λ and ϕ. The six initial conditions

correspond to the existence of three degrees of freedom including the extra degree of

freedom associated with Ostrogradsky degree of freedom. To avoid the presence of extra

degree of freedom, we have to impose the Hessian matrix,M , to be degenerate, i.e.,

detM = ac− b2 = 0 . (3.78)

This implies that Q̈ and q̈ cannot be separated independently. Since we can write Q̈ in

terms of q̈, two initial conditions decrease. Then there are only four initial conditions.

This means that this system consists of two degrees of freedom. The extra mode Q as-

sociated with ϕ̇ is eliminated whenM is degenerate. Since the EOM of Q contains third

order derivative of ϕ, Ostrogradsky degree of freedom is killed when Ostrogradsky de-

gree of freedom associated with Q is eliminated. In this situation, the initial Lagrangian

(3.74) is degenerate. In general, the number of degrees of freedom can also be determined

by using a Hamiltonian analysis. When the Lagrangian is degenerate, the conjugate mo-

menta implies the existence of primary constraint. When we perform time evolution of

this constraint, one finds that it leads to a secondary constraint in phase space. These two

constraints which are second class constraint, kill one degree of freedom in agreement

with the analysis based on the equations of motion. In principle, If some dynamical vari-

ables are constrained, their EOMs become constraint equations. This means that some

degrees of freedom are eliminated. If two constrained variables form a pair of canonical

variables, These two constraints are second class constraints which can eliminate one

degree of freedom of the system.

3.4.3 Kinetic Matrix

In order to study Hamiltonian analysis or analysis of constraints we have to write

H in terms of p and q̇. We then need to separate space and time by performing 3+1

decomposition[7]. We assume the existence of a slicing of spacetimewith three-dimensional

spacelike hypersurfaces. We introduce their normal unit vector nµ, which is time-like,

and satisfies the normalization condition nµn
µ = −1. Using this normal vector, we can



36

define the projection tensor as

γµν ≡ gµν + nµnν . (3.79)

This tensor projects any tensor into spacelike hypersurfaces. The spatial components of

this projection tensor are the metric tensor on spacelike hypersurfaces denoted by hij . It

is convenient to define the spatial projection of Aµ ≡ ∇µϕ,

Âµ ≡ γνµAν , (3.80)

and its normal projection

A∗ ≡ Aµn
µ . (3.81)

The extrinsic curvatureKij defined by

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
, (3.82)

where N is the lapse function, N i the shift vector and Di denotes the three-dimensional

covariant derivative compatible with hij . Using the above definitions and the property

∇µAν = ∇νAµ, where∇µ is the four-dimensional covariant derivative compatible with

gµν , we can find that the 3+1 covariant decomposition of∇µAν is given by [8, 48]

∇µAν → DiÂj − A∗Kij + n(i

(
Kj)kÂ

k −Dj)A∗

)
+ ninj

(
V∗ − Âk a

k
)
, (3.83)

where the Latin indices run over 1, 2, 3, ak is spatial component of the acceleration vector

defined by aν = nµ∇µ n
ν and

V∗ ≡ nµ∇µA∗ =
1

N

(
Ȧ∗ −N iDiA∗

)
. (3.84)

We note that the term on the left-hand side of the arrow in Eq. (3.83) is evaluated in four-

dimensional spacetime, while the terms on the right-hand side of the arrow are evaluated

on spacelike hypersurfaces. In Eq. (3.83), there is only time derivatives appear for the

three-dimensional metric hij (inside the extrinsic curvature) and for the component A∗
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(inside V∗). V∗ plays for A∗ the same role thatKij plays for hij . From Eq. (3.83), we can

write the relevant kinetic part of the Lagrangian on spacelike hypersurfaces as

(∇µAν)kin → λij Ȧ∗ + Λ kl
ij Kkl , (3.85)

with

λij ≡
1

N
ninj , Λ kl

ij = −A∗ h
k
(ih

l
j) + 2n(ih

(k
j)Â

l) . (3.86)

Strictly speaking, only the ḣij term is relevant but we will keep Kij for convenience.

We thus find that the kinetic part of the quadratic Lagrangian in∇µAν can be written on

spacelike hypersurface as

L
(ϕ)
kin = Cij,klλij λkl Ȧ

2
∗ + 2Cij,klΛ mn

ij λkl Ȧ∗Kmn + Cij,klΛ mn
ij Λ pq

kl KmnKpq , (3.87)

which is similar to the Lagrangian (3.74), with A∗ andKij (or ḣij) playing the role of Q

and q̇, respectively. Then we can compute the analogs of the coefficients a, b and c in

the Lagrangian (3.74) directly by substituting the explicit expressions for Cij,kl, λij and

Λ kl
ij . Hence, the first kinetic coefficient is given by

A ≡ Cij,klλijλkl =
1

N2
[α1 + α2 − (α3 + α4)A

2
∗ + α5A

2
∗] , (3.88)

while the coefficients of the mixed terms can be written as

Bmn ≡ Cij,klΛ mn
ij λkl = β1h

mn + β2 Â
mÂn , (3.89)

with

β1 =
A∗

2N

(
2α2 − α3A

2
∗
)
, β2 = − A∗

2N

(
α3 + 2α4 − 2α5A

2
∗
)
. (3.90)

Finally, the kinetic coefficient for the purely metric part is given by

Kmn,pq ≡ Cij,klΛ mn
ij Λ pq

kl . (3.91)

Substituting the explicit expressions for Eq. (3.67) and Eq. (3.86) into above equation,

we obtain

Kij,kl = κ1h
i(khl)j + κ2 h

ijhkl +
1

2
κ3

(
ÂiÂjhkl + ÂkÂlhij

)
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+
1

2
κ4

(
ÂiÂ(khl)j + ÂjÂ(khl)i

)
+ κ5Â

iÂjÂkÂl , (3.92)

with

κ1 = α1A
2
∗ , κ2 = α2A

2
∗ , κ3 = −α3A

2
∗ , κ4 = −2α4 , κ5 = α5A

2
∗ − α4 .(3.93)

To obtain the full kinetic part of the action, we also have to consider the gravita-

tional term f (4)R. We start with∫
d4x

√
−g f (4)R =

∫
d4xN

√
h
{
f
[
KijK

ij −K2 + (3)R
]
+ 2Dif

(
ai −Kni

)
−2K

1

N

(
ḟ −N iDif

)}
, (3.94)

where (4)R is four-dimensional Ricci scalar and (3)R is three-dimensional Ricci scalar.

Here, we write

ḟ = 2f,X(Âi
˙̂
Ai − A∗Ȧ∗) + f,ϕϕ̇ . (3.95)

From Eqs. ((3.94)) and (3.95), we can see that the second term on the right-hand side

gives the mixed kinetic terms. We can write the coefficient Bij
grav for the mixed kinetic

terms Bj
gravKijȦ∗ as

Bij
grav = 2f,X

A∗

N
hij . (3.96)

For the terms that are second-order inKij , i.e.,Kij,kl
gravKijKkl, we obtain the corresponding

coefficient as

Kij,kl
grav = γ1h

i(khl)j + γ2 h
ijhkl +

1

2
γ3

(
ÂiÂjhkl + ÂkÂlhij

)
, (3.97)

with

γ1 = −γ2 = f, γ3 = 4f,X . (3.98)

In summary, the coefficients that we obtained from the total action are

B̃ij = Bij + Bij
grav, K̃ij,kl = Kij,kl +Kij,kl

grav , (3.99)

The coefficients A, B̃ij and K̃ij,kl play the same role as a, b and c in the toy model

respectively.
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3.4.4 Degeneracy Conditions

The full kinetic matrix associated with Eq. (3.87) can be written as [8, 48] A B̃kl

B̃ij K̃ij,kl

 . (3.100)

Hence, the theory is degenerate if above matrix is not invertible, i.e., its determinant van-

ish, which can occur when at least one of eigenvalue is zero. Requiring the determinant

of this matrix to vanish, we obtain the condition which can be written in the form

D0(X) +D1(X)A2
∗ +D2(X)A4

∗ = 0 , (3.101)

with

D0(X) ≡ −4(α2 + α1)
[
Xf(2α1 +Xα4 + 4f,X)− 2f 2 − 8X2f 2

,X

]
, (3.102)

D1(X) ≡ 4
[
X2α1(α1 + 3α2)− 2f 2 − 4Xfα2

]
α4 + 4X2f(α1 + α2)α5

+8Xα3
1 − 4(f + 4Xf,X − 6Xα2)α

2
1 − 16(f + 5Xf,X)α1α2

+4X(3f − 4Xf,X)α1α3 −X2fα2
3 + 32f,X(f + 2Xf,X)α2

−16ff,Xα1 − 8f(f −Xf,X)α3 + 48ff 2
,X , (3.103)

D2(X) ≡ 4
[
2f 2 + 4Xfα2 −X2α1(α1 + 3α2)

]
α5 + 4α3

1 + 4(2α2 −Xα3 − 4f,X)α
2
1

+3X2α1α
2
3 − 4Xfα2

3 + 8(f +Xf,X)α1α3 − 32f,Xα1α2 + 16f 2
,Xα1

+32f 2
,Xα2 − 16ff,Xα3 . (3.104)

Note that the terms Â2 in these expressions have already replaced byX +A2
∗. Since the

determinant have to vanish for any value of A∗, we can obtain the degenerate theories

that are characterized by the three degeneracy conditions

D0(X) = 0, D1(X) = 0, D2(X) = 0 . (3.105)
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3.4.5 Classification of Degenerate Theories

The solutions of the above degeneracy conditions can be classified by considering

possible solution ofD0(X) = 0. The possible solutions ofD0(X) = 0 are α1 + α2 = 0,

Xf(2α1 +Xα4 + 4f,X)− 2f 2 − 8X2f 2
,X = 0, and f = 0 which corresponding to class

I, class II and class III of DHOST theories respectively. For classes II and III, the square

of the propagation speed of tensor modes and that of the scalar mode have opposite sign,

which implies that a gradient instability develops in either the scalar or tensor sector [49].

We only focus on class I, which includes Horndeski and beyond Horndeski and does not

suffer from this instability. This class contains four independent functions of ϕ and X .

Considering class α1 + α2 = 0 or α1 = −α2, we can then use the condition D1(X) = 0

to write α4 in terms of α2 and α3:

α4 =
1

8(f +Xα2)2
[
16Xα3

2 + 4(3f + 16Xf,X)α
2
2 + (16X2f,X − 12Xf)α3α2

−X2fα2
3 + 16f,X(3f + 4Xf,X)α2 + 8f(Xf,X − f)α3 + 48ff 2

,X

]
. (3.106)

Similarly, the condition D2(X) = 0 yields

α5 =
(4f,X + 2α2 +Xα3) (−2α2

2 + 3Xα2α3 − 4f,Xα2 + 4fα3)

8(f +Xα2)2
. (3.107)

In summary, degenerate theories in this class depend on three arbitrary functions α2, α3

and f . In the special case, the theories without dynamics of metric satisfy A = 0. It is

required the additional conditions as α3 + α4 = 0 and α5 = 0. We find the relation

4f,X + 2α2 +Xα3 = 0 . (3.108)

This means that α2 and α3 are not independent. Theory satisfying these conditions is the

GLPV theory by setting

f = G4 , α1 = −α2 = 2G4,X +XF4 , α3 = −α4 = 2F4 . (3.109)
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3.5 Constraints from Gravitational Wave

According to the previous section, the DHOST theories are the most general

scalar-tensor theories which are free from Ostrogradsky instability. To avoid the Lapla-

cian instability, theories satisfying class II and III are ruled out. In this section, we will

study other constraints on the DHOST theories. Recently, the detection of the gravi-

tational wave emitted from neutron binary stars, shows that the speed of gravitational

waves, cg, is the same as the speed of light, within deviations of order 10−15. This result

puts a tight constraint to the DHOST theories. For the quadratic DHOST Lagrangian,

the speed of gravitational waves can be computed in the units where clight = 1 from

c2GW =
G4

G4 −Xα1

. (3.110)

We denote that f is replaced by G4 in this section onwards. However, for the cubic

DHOST theories, the propagation speed of gravitational wave is background-dependent

so that this form of DHOST is ruled out by the result from gravitational wave detection.

Hence, we do not consider the cubic DHOST theories in this thesis. To satisfy cGW = 1,

α1 has to vanish. From the class I of the DHOST theories which have already discussed,

the condition α1 = 0 gives

α1 = α2 = 0 . (3.111)

Replacing the above relation into Eqs. (3.103) and (3.104), we respectively obtain

α4 =
1

8G4

[
48G2

4,X − 8(G4 −XG4,X)α3 −X2α2
3

]
,

α5 =
1

2G4

(4G4,X +Xα3)α3 .

(3.112)

We now consider another constraint on the the DHOST theories. It has been

shown that the GW in DHOST theories can decay to scalar perturbations which implies

that the GW is unstable. To avoid such decay, we require [12]

α3 = 0 . (3.113)
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Inserting the conditions from Eq. (3.113) into Eq. (3.112), we get

α5 = 0 , and α4 =
6G2

4,X

G4

. (3.114)

Hence, the action for quadratic DHOST theories in which the propagation speed of GW

is equal to speed of light and the GW do not decay to dark energy perturbations can be

written in the form

S =

∫
d4x

√
−gL+ SM ,

=

∫
d4x

√
−g
{
G2 +G32ϕ+G4R +

6G2
4,X

G4

ϕµϕµρϕ
ρνϕν

}
+ SM ,(3.115)

whereSM = Sγ+Sm is the action for the total matter andSγ is the action for the radiation

and Sm is the action for the matter in the universe.

3.6 Scaling Solutions

Since the evolution of dark matter and dark energy are completely unrelated and

are at different time scales, it is a puzzle why the density parameter of the dark matter

and the dark energy are the same order of magnitude at late time. This is the coincidence

problem. To solve this problem, the dark energy and matter should follow the same

evolution, at least for some period of time. This demands that the energy density of dark

energy is proportional to that of matter such that the ratio ρd/ρm is constant with time. A

solution that leads to the constant ratio of the matter and dark energy densities is a scaling

solution. To drive the accelerated expansion of the present universe, the equation of state

parameter of dark energy has to be less than −1/3. During the scaling regime, ρm is no

longer scale as a−3 but the effective equation of state parameter of matter is negative as

the dark energy. To realize such property of ρm, one assumes that there is an interaction

between the matter and the dark energy.

In the models of the dark energy from classes of the Horndeski theories, there

are self-accelerating solutions in which wd undergoes a tracking solution with constant

value. This tracking solution corresponds to ϕ̇ ∝ Hp with p is a constant [38]. For
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example, the covariant Galileon [42, 45] gives wd = −2 with p = −1 during the matter

dominated [50, 51], but it does not satisfy the observational data [52]. The extended

Galileon proposed in Ref. [53] give the trackig solution which wd is nearly −1. This

model satisfies the observational data [19]. In the beyond Horndeski theories such as the

DHOST theories, the tracking solutions can exist for particular models [11, 54], but the

general conditions for its existence have been unknown. The existence of the tracking

solution could alleviate the coincidence problem because the tracking solution is attractor

[3].

In Horndeski theories, there is the scaling solution which is a special kind of

tracking solution [55, 13, 56, 57, 58, 59, 60, 21, 61, 23, 62, 63, 64, 65]. In addition to

the constant ratio of ρd to ρm, the scaling solution satisfies ϕ̇ ∝ H . If the scalar field has

a constant coupling to matter, the scaling solution exists for the cubic-order Horndeski

Lagrangian L = Xg2(Y )− g3(Y )2ϕ, where g2, g3 are arbitrary functions of Y = Xeλϕ

(λ is a constant) [66]. In this model, there is ϕMDE which is the scaling solution that

can be used to describe the matter dominated epoch. The coincidence problem could

be alleviated if the universe can evolve from the radiation dominated epoch through the

ϕMDE which should be a saddle point and then reach the attractor corresponding to

cosmic acceleration at late time.

The existence of the ϕMDE potentially resolves the H0 tension as follows. The

H0 tension is the discrepancy of the estimatedH0 from CMB [67] and that from the local

measurements of the expansion rate of the universe. The H0 from CMB data analysis

which is based on ΛCDM is lower than that from local measurements by more than 3σ

[68]. Hence, to solve the H0 tension, the dynamics of the universe should be different

from that for ΛCDM. The resolutions from modification of the late-time expansion of

the universe [69, 70, 71] are tightly constrained by baryon acoustic oscillations (BAO)

[72, 73, 74]. Potential resolution of the H0 tension is based on the modification of the

dynamics of the universe during the last scattering epoch and matter domination by early
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dark energy [75, 76, 77]. In these models, the sound horizon at the last scattering is

reduced and therefore the CMB acoustic peaks shift to smaller angular scales. Then the

location of the acoustic peaks can shift to the larger angular scales and match with the

data when H0 increases [77].

For coupled dark energy models with ϕMDE, a small fraction of energy density

for dark energy during the ϕMDE rises the effective equation of state parameter weff =

Ωϕwϕ = Ωϕ to slightly positive. Here, Ωϕ and wϕ are the density parameter and equation

of state parameter of scalar-field dark energy. The positive effective equation of state

parameter during matter domination can also shift the CMB acoustic peaks to smaller

angular scales leading to a higher H0 [25].

Scaling and tracking behaviours for the cosmic evolution are the interesting fea-

tures arising in some models of dark energy and modified theories of gravity, because

they could lead to attractors (stable fixed points) in the phase space of the cosmic evo-

lution which could satisfy the observational constraints [13, 14, 15, 16, 17, 18, 19, 20].

Scaling and tracking solutions in the DHOST theories those satisfy the above two con-

straint on GW have been discussed. In Chapter IV, we will consider the DHOST theories

with scaling solution and we will consider coupled dark energy model from general con-

formal transformation in Chapter V.



CHAPTER IV

THE DHOST THEORIES WITH SCALING SOLUTION

4.1 The Lagrangians Having Scaling Solution

In this section, we will present the DHOST theories which have scaling solution.

Since the scaling solution is behaviour of the background evolution, we concentrate on

the Friedmann universe. Starting from the condition for the scaling solution,

ρϕ
ρm

= constant , (4.1)

where ρm is energy density of matter which equation of state parameter, wm is not nec-

essarily zero. We differentiate the above equation with respect to time t yielding

ρ̇ϕ
ρm

− ρϕρ̇m
ρ2m

= 0 ,

ρmρ̇ϕ − ρϕρ̇m = 0 ,

ρ̇ϕ
ρϕ

− ρ̇m
ρm

= 0 . (4.2)

The conservation equation adding the phenomenological interaction term on the right-

hand side can be written as

ρ̇ϕ + 3H(ρϕ + pϕ) = −Qρmϕ̇ , (4.3)

where in general Q can be function of ϕ, ρϕ and pϕ. Supposing that the scalar field has

a direct coupling to matter, and the total energy density of the scalar field and matter is

conserved, we have

ρ̇m + 3H(ρm + pm) = Qρmϕ̇ . (4.4)

Dividing Eqs. (4.3) and (4.4) by ρϕ and ρm respectively, we obtain

ρ̇m
ρm

+ 3H(1 + wm) = Qϕ̇ , (4.5)

ρ̇ϕ
ρϕ

+ 3H(1 + wϕ) = −Qϕ̇ Ωm

Ωϕ

. (4.6)
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Using Eq. (4.2), the above two equations become

3H(wϕ − wm) = Qϕ̇

(
Ωm + Ωϕ

Ωϕ

)
,

ϕ̇

H
=

3Ωϕ(wm − wϕ)

Q
. (4.7)

If we impose additional condition thatwϕ is constant during the scaling regime, ρϕ ∝ ϕ̇2.

This means that ρϕ/ρm ∝ ϕ̇2/ρm is constant. Then from the Friedmann equation we

obtain

H2 =
ρm
3

(
1 +

ρϕ
ρm

)
. (4.8)

This givesH2 ∝ ρm during the scaling regime so that ρϕ/ρm ∝ ϕ̇2/H2. This means that

at the scaling regime ϕ̇/H is constant. At late time, we ignore the contribution from the

radiation. From Eq. (2.75), we obtain

Ḣ

H2
= −3

2
(1 + wτ ) , (4.9)

where in this case

wτ = wϕΩϕ . (4.10)

Since ρϕ/ρm and wϕ are constant, wτ = weff is also constant during the scaling regime.

For convenience, we define
ϕ̇

H
=

2h

λ
, (4.11)

where

h = − Ḣ

H2
and λ = − 2hQ

3Ωϕwϕ

. (4.12)

Hence, at the scaling regime, λ ≡ constant. In the DHOST theories Eq. (3.115), the

energy-momentum tensor of the scalar field in Eq. (2.6) depend on Lϕ such that Tαβ =

−gαβLϕ+· · · . Hence, ρϕ and pϕ depend onLϕ+· · · . Here, we can writeL in Eq. (3.115)

as

L = Lϕ , (4.13)

where Lϕ is the effective Lagrangian of the scalar field. Following from Eq. (3.115), we

can write

Lϕ = G2 +G32ϕ+G4R + A4Z , (4.14)
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where the quantity Z ≡ ϕµϕµρϕ
ρνϕν and the function A4 ≡

6G2
4,X

G4
. Since ρϕ ∝ pϕ ∝ H2

during the scaling regime and R ∝ H2 in the Friedmann universe, the existence of the

scaling solution can be ensured if we demand that

Lϕ ∝ H2 . (4.15)

We next study whether some additional conditions are required for the existence of the

scaling solution. Since Lϕ depends on ϕ,X,2ϕ,R and Z, we can write

L̇ϕ

H
= −2hLϕ , (4.16)

∂Lϕ

∂ϕ

ϕ̇

H
+
∂Lϕ

∂X

Ẋ

H
+
∂Lϕ

∂2ϕ

2̇ϕ

H
+
∂Lϕ

∂R

Ṙ

H
+
∂Lϕ

∂Z

Ż

H
= −2hLϕ . (4.17)

The terms associated with the time derivatives of ϕ such that X = ϕ̇2,2ϕ = −ϕ̈ −

3Hϕ̇,R = 6(2H2 + Ḣ) and Z = −ϕ̇2ϕ̈2 can be written as

ϕ̇

H
=

2h

λ
, (4.18)

Ẋ

H
= −2hX , (4.19)

2̇ϕ

H
= −2h2ϕ , (4.20)

Ṙ

H
= −2hR , (4.21)

Ż

H
= −2h(3Z) . (4.22)

The partial derivative of Lϕ with respect to ϕ,X,2ϕ,R and Z can be respectively ex-

pressed as

∂Lϕ

∂ϕ
= G2,ϕ +G3,ϕ2ϕ+G4,ϕR + A4,ϕZ , (4.23)

∂Lϕ

∂X
= G2,X +G3,X2ϕ+G4,XR + A4,XZ , (4.24)

∂Lϕ

∂2ϕ
= G3 , (4.25)

∂Lϕ

∂R
= G4 , (4.26)

∂Lϕ

∂Z
= A4 . (4.27)
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Substituting Eqs. (4.18)-(4.22) and Eqs. (4.23)-(4.27) into Eq. (4.17), we can obtain the

general expression as

XG,X − 1

λ
G,ϕ + sG = 0 , (4.28)

where s is constant given by

s ≡


1 for G = G2,

1 for G = G3, G4,

−2 for G = A4 .

To solve Eq. (4.28), we set

G(ϕ,X) = Xsg(ϕ,X) . (4.29)

Then we get

G,X = sXs−1g +Xsg,X , (4.30)

Gϕ = Xsg,ϕ . (4.31)

Replacing Eqs. (4.29)-(4.31) into Eq. (4.28), when xs ̸= 0 we now obtain

Xg,X − 1

λ
g,ϕ = 0 . (4.32)

The simplest way to solve the above equation is setting

g(ϕ,X) = x(X)f(ϕ) . (4.33)

We now obtain

g,X = x,Xf and g,ϕ = xf,ϕ . (4.34)

Replacing the above partial derivative of g into Eq. (4.32), it reads

X
x,X
x

=
1

λ

f,ϕ
f
, (4.35)

d lnx
d lnX

=
1

λ

f,ϕ
f
. (4.36)
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Easily, Eq. (4.36) can be integrated by setting

d lnx
d lnX

=
1

λ

f,ϕ
f

= c , (4.37)

where c is constant. Finally, we obtain the non-trivial solutions of x and f given as

x = c1X
c and f = c2e

cλϕ , (4.38)

where c1 and c2 are constant. One see that

g = c1c2
(
Xeλϕ

)c
, (4.39)

for arbitrary c. This result comes from a simple calculation. However one can show that

solution of Eq. (4.32) can be written in the form

g = g(Y ) , (4.40)

where g is an arbitrary function of

Y = Xeλϕ . (4.41)

Each coefficients in Eq. (3.115) can be respectively written as

G2(ϕ,X) = Xg2(Y ) , (4.42)

G3(ϕ,X) = g3(Y ) , (4.43)

G4(ϕ,X) = g4(Y ) , (4.44)

A4(ϕ,X) = X−2a4(Y ) . (4.45)

Here, the function a4(Y ) is determined from g4(Y ).

4.2 Cosmology in the DHOST Theories with Scaling Solution

4.2.1 Evolution Equations for the Background Universe

To study the evolution of the background universe in the DHOST theories de-

scribed by the action (3.115), we use FLRW metric for the spatially flat universe in the

form

ds2 = −n2(t)dt2 + a2(t)γijdx
idxj , (4.46)
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where n(t) is an auxiliary function which will be set to unity after the evolution equations

are obtained. Using the above line element and homogeneity of the scalar field in the

background universe, the action (3.115) becomes

S =

∫
dta3n

G2 − 6G4,ϕH
ϕ̇

n2
− 6G4

[
H

n
+
G4,X

G4

ϕ̇

n2

d

dt

(
ϕ̇

n

)]2+ SM , (4.47)

where we have set G3 = 0 for simplicity.

Variation of the action (4.47) with respect to n and a yield

ρM = E00 ≡
1

G2
4

[
−G4X

(
−6ϕ̇

(
−2G2

4,X

...
ϕ − 6HG2

4,X ϕ̈
)

+G4

(
12
(
2H2 + Ḣ

)
G4,X + 2G2,X

)
+ 6G2

4,X ϕ̈
2
)

+G2
4

(
6G4H

2 + 6Hϕ̇
(
2G4,X ϕ̈+G4,ϕ

)
+G2

)
+12X2G4,X ϕ̈

((
G2

4,X − 2G4G4,XX

)
ϕ̈− 2G4G4,ϕX

+G4,XG4,ϕ)] , (4.48)

and

−pM = Eii ≡
1

G4

[
G4

(
4ϕ̇
(
G4,X

...
ϕ + 2HG4,X ϕ̈+HG4,ϕ

)
+ 6G4H

2

+4G4Ḣ + 4G4,X ϕ̈
2 + 2G4,ϕϕ̈+G2

)
+X

((
8G4G4,XX − 6G2

4,X

)
ϕ̈2 + 8G4ϕ̈G4,ϕX + 2G4G4,ϕϕ

)]
, (4.49)

where ρM and pM are the energy density and pressure of the total matter fluid which

is supposed to be perfect fluid. Subscript ,XX and ,ϕϕ denote the secnd derivatives with

respect toX and ϕwhile subscript ,Xϕ denotes the derivatives with respect to bothX and

ϕ. The quantities, ρM and pM, are obtained from variation of the action for the matter

with respect to metric. Then Eqs. (4.48) and (4.49) can be combined to eliminate Ḣ as

0 =
1

G2
4

[
G4X

(
−6G4H

2G4,X + 6Hϕ̇
(
2G4,XG4,ϕ − 2G2

4,X ϕ̈
)
+ 6G2

4,X ϕ̈
2

+6G4,XG4,ϕϕ̈− 2G4G2,X + 3G2G4,X

)
+G2

4

(
6G4H

2 + 6Hϕ̇
(
2G4,X ϕ̈+G4,ϕ

)
+G2

)
−G4ρM (G4 − 3XG4,XwM)

+3X2G4,X

(
−2G2

4,X ϕ̈
2 + 4G4,XG4,ϕϕ̈+ 2G4G4,ϕϕ

)]
. (4.50)
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In the above equation, wM ≡ pM/ρM is the equation of state parameter of the total

matter. Varying the action (4.47) with respect to scalar field ϕ, we get the evolution

equation for scalar field which can be written in the form

F (
....
ϕ ,

...
ϕ, ϕ̈, ϕ̇, ϕ, Ḧ, Ḣ,H) = Q , (4.51)

where Q is the interaction term arisen from the variation of the matter action SM with

respect to the scalar fieldϕ. In principle, the form of the interaction termQ depends on the

form ofSm. IfSm does not depend on scalar field ϕ,Q vanishes. We can see later that ifQ

does not vanish, the universe is accelerated in the scaling regime. For simplicity, we use

here the phenomenological form of the interaction term studied in the literature. Hence,

we write the function F in the above equation in the form of the conservation equation

for the effective energy density of the scalar field as F → ρ̇ϕ + 3H(ρϕ + pϕ) = 0. Then

we add the phenomenological interaction term on the right-hand side of the conservation

equation as

ρ̇ϕ + 3H(ρϕ + pϕ) = −Qρmϕ̇ , (4.52)

whereQ is constant, ρϕ and pϕ are the effective energy density and the effective pressure

of the scalar field ϕ. Supposing that the scalar field has a direct coupling to matter, and

the total energy density of the scalar field and matter is conserved, we have

ρ̇m + 3Hρm = Qρmϕ̇ . (4.53)

The effective energy density and pressure of the scalar field are defined such that Eqs. (4.48)

and (4.49) take the form of the usual Friedmann and acceleration equations when they

are written in terms of these effective quantities as 3H2 = ρM + ρϕ and 2Ḣ + 3H2 =

−pM − pϕ. The expressions for ρϕ and pϕ can be read from Eqs. (4.48) and (4.49) as

ρϕ ≡ 3H2 − E00 , pϕ ≡ Eii − 2Ḣ − 3H2 . (4.54)

From the above expressions, the effective equation of state parameter of the scalar field

can be defined as wϕ ≡ pϕ/ρϕ.
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Evolution of the background universe can be studied using the dynamical anal-

ysis. To compute the autonomous equation describing the evolution of the background

universe, we compute the expression for Ḣ/H2 as follows: differentiating Eq. (4.49)

with respect to time, eliminating
....
ϕ from the resulting equation using Eq. (4.51), and

then eliminating the remaining
...
ϕ terms using Eq. (4.49). Finally, we obtain

0 = Ẽi(ϕ̈, ϕ̇, ϕ,H, ρM, wM) . (4.55)

Differentiating the above equation with respect to time and eliminating
...
ϕ terms using

Eq. (4.49), we get
Ḣ

H2
= −h(ϕ̈, ϕ̇, ϕ,H, ρM, wM) . (4.56)

In this work, we explore features of the scaling solutions in the model described

by Eqs. (4.42) and (4.44) by setting

G2 = X (c̃2Y
n2 − c̃6Y

n6) , (4.57)

G4 =
1

2
+ c̃4Y

n4 , (4.58)

where c̃2, c̃4 and c̃6 are constant and n2, n4 and n6 are constant integer. When the coupling

between scalar field and matter is constant, the scaling solutions can give

λ = − 2hQ

3Ωϕwϕ

. (4.59)

4.2.2 The Autonomous Equations

To compute the autonomous equations from the evolution equations presented in

the previous subsection, we define the dimensionless variables as

x ≡ ϕ̇

MpH
, y ≡

M2
p e

−λϕ
Mp

H2
, z ≡ ϕ̈

ϕ̇H
, Ωm ≡ ρm

3M2
pH

2
, Ωγ ≡ ργ

3M2
pH

2
,

(4.60)

where Ωm and Ωγ are the density parameter of matter and radiation, respectively. We

note that ΩM = Ωm + Ωγ . For convenience, we normalize the variables x, y and z by

their values at scaling fixed point, such that

xr ≡
x

xs
, yr ≡

y

ys
, and zr ≡

z

zs
, (4.61)
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where subscript s denotes the quantities at the scaling fixed point, The scaling fixed point

in this case is the fixed point that x satisfies the condition in Eq. (4.11) and Q satisfies

Eq. (4.59). To compute xs and zs, we compute derivative of x with respect to N ≡ ln a

as

x′ = zx− x
Ḣ

H2
, (4.62)

which is a possible form of the autonomous equation. Here, a prime denotes derivative

with respect to N = ln a. From the condition in Eq. (4.11), we have

hs =
ϕ̇λ

2H

∣∣∣∣∣
s

≡ xλ
2
, (4.63)

where xλ ≡ xsλ. Inserting this solution into Eq. (5.28), we get zs = −hs = −xλ/2.

In terms of dimensionless variables, the constraint equations (4.50) and (4.55) are given

by Eqs. (C.2) and (C.5) in the appendix. We see that these constraint equations can be

solved for z andΩm in terms of x and y. Here we are interested in the evolution of the late-

time universe so that we set Ωγ = 0. Hence, the late-time dynamics of the background

universe can be described by two dynamical variables xand y.

Using definitions of xr and yr, we can write the autonomous equations as

x′r = −xλzrxr
2

− xr
Ḣ

H2
, (4.64)

y′r = −xλxryr − 2yr
Ḣ

H2
, (4.65)

where zr is computed from the constraint equations which the solutions are shown in

Eqs. (C.7)-(C.9). When the autonomous equations are written in these forms, the cou-

pling constant Q in the autonomous equations is always divided by λ so that dynamics

of the background universe depend on Q/λ rather than Q. In the numerical integration

for the evolution of the universe discussed below, we concentrate on the cases where zr

is the first solution given in Eq. (C.7) to avoid the contributions from the imaginary parts

of the solution. We note that the solution that gives zr = xr = yr = 1 is not necessarily

be the solution in Eq. (C.7) unless n4 = ±1. Hence, in our numerical integration for

the cosmic evolution, we choose the models where n4 = ±1. According to Eq. (4.56),
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Ḣ/H2 also depends on Ωm. However Ωm in this expression can be eliminated using the

constraint equations Eq. (C.2).

To compute the fixed points of this system, we set xr, yr and zr in the constraint

equations Eqs. (C.1) and (C.2) to be unity and then we solve for the parameters as

c2 = − 1

2 (2c4 + 1)2 (n2 − n6)

[
−6c24

(
−2 (Ωms + 2n6 (xλ − 3) + xλ − 6) + 2n3

4x
2
λ

−n2
4xλ (n6xλ + xλ − 6) + 4n4 (xλ − 4)

)
+ 6c4 (2Ωms − n4 (xλ − 4)

+2n6 (xλ − 3) + xλ − 6)− 4c34
(
3n3

4x
2
λ − 3n2

4xλ (n6xλ + xλ − 6)

+6n4 (xλ − 4)− 2 (2n6 (xλ − 3) + xλ − 6)) + 3Ωms + 2n6 (xλ − 3)

+xλ − 6] , (4.66)

c6 = − 1

2 (2c4 + 1)2 (n2 − n6)

[
6c24
(
2 (Ωms + xλ − 6)− 2n3

4x
2
λ + n2

4 (xλ − 6)xλ

−4n4 (xλ − 4) + n2

(
n2
4x

2
λ + 4xλ − 12

))
+ 6c4 (2Ωms − n4 (xλ

−4) + 2n2 (xλ − 3) + xλ − 6)− 4c34
(
3n3

4x
2
λ − 3n2

4 (xλ − 6)xλ

+6n4 (xλ − 4) + n2

(
−3n2

4x
2
λ − 4xλ + 12

)
− 2 (xλ − 6)

)
+ 3Ωms

+2n2 (xλ − 3) + xλ − 6] , (4.67)

where Ωms is Ωm at the scaling fixed point, and we redefine the coefficients as

c2 ≡ c̃2x
2
sY

n2
s , c4 ≡ c̃4Y

n4
s , and c6 ≡ c̃6x

2
sY

n6
s . (4.68)

We set hs = xλ/2 and xr = yr = 1 and substitute c2 and c6 from Eq. (4.66) and (4.67)

into Eq. (4.56) as

xλ
2

= h(ϕ̈, ϕ̇, ϕ,H, ρm)|s = h(xr, yr, zr,Ωm)|s = h(1, 1, 1,Ωms) . (4.69)

This relation yields

0 =
18c4 (2c4 + 1) 4n4Ωms(Qλ − 2)x13λ (Qλxλ + xλ − 3)

λ12
, (4.70)

where Qλ = Q/λ. The interesting conditions required by the above equation are

Ωms = 0 , Qλxλ + xλ − 3 = 0 , or c4 = 0 . (4.71)
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We can see that Qλ − 2 = 0 is the special case of the condition Qλxλ + xλ − 3 = 0 .

These conditions lead to three classes of fixed point as follows : (1) Qλxλ + xλ − 3 = 0

corresponding to scaling fixed point where Q satisfies Eq. (4.59), (2) Ωms = 0 corre-

sponding to the field dominated point where Q does not necessarily satisfy Eq. (4.59),

and (3) c4 = 0 yielding yr = 0 for negative n4. These fixed points have been found in

[38]. The stabilities of these fixed points will be discussed in the next section.

4.2.3 Fixed Points and Stabilities

To investigate stabilities of the fixed points, we linearize the autonomous equa-

tions around the fixed point and check the sign of the eigenvalues of the Jacobian matrix

defined by

Jij =
∂x′i
∂xj

∣∣∣∣
fixed point

, (4.72)

where xi = (xr, yr).

(a) Scaling Fixed Point

The scaling fixed point corresponds to the condition

xλ =
3

Qλ + 1
. (4.73)

From hs = xλ/2, we have

weff = − Qλ

Qλ + 1
. (4.74)

We see that if the coupling term disappears, weff = 0 because for the scaling solution

ρϕ/ρm is constant. Using the relation weff = Ωϕwϕ and Eq. (4.74), we can compute Ωϕ

as well asΩm at the fixed point ifwϕ at the fixed point is specified. Inserting the relations

for the scaling fixed point into the Jacobian matrix, we obtain the polynomial equation

for the eigenvalues of the fixed points. For the sufficiently large c4, the eigenvalues of

the Jacobian matrix depend only on xλ and given by

Ea l =

{
xλ − 6

2
, 0

}
. (4.75)

Since one of the eigenvalues is zero, the stabilities of this fixed point cannot be deter-

mined using the linear stability analysis. Non-linear stability analysis can be performed



56

using the center manifold method, but we will not consider the non-linear analysis in this

work. If c4 is not too large, the eigenvalues of the Jacobian matrix can be written as

Ea = {µ1, µ2} . (4.76)

To describe the accelerated expansion of the late-time universe required by observations,

we demand xλ < 1. The eigenvalues µ1 and µ2 can be computed from the equation

a2µ
2 + a1µ+ a0 = 0 , (4.77)

where a2, a1 and a0 are complicated functions of xλ,Ωms, c2, c4, c6, n2, n4 and n6. Here,

µ1 =
xλ − 6

4

(
1−

√
1 +

8a0
a1(xλ − 6)

)
, µ2 =

xλ − 6

4

(
1 +

√
1 +

8a0
a1(xλ − 6)

)
.

(4.78)

In the above expressions, the relation a1/(2a2) = (6 − xλ)/4 is used. It follows from

the relations for µ1 and µ2 that the real part of µ2 is always negative for xλ < 6, while

real part of µ1 can be either negative or positive. Hence, the fixed point is stable when

the real part of µ1 is negative and becomes saddle when the real part of µ1 is positive.

Due to the lengthy expressions of a0, a1 and a2, we compute µ1 numerically and plot the

results as a function of c4.

The real part of µ1 for some choices of the parameters is plotted in Fig. (1). In

all plots, xλ and Ωms are chosen such that weff satisfies observational constraints. For

Ωms = 0.3, we set xλ = 0.92 and xλ = 0.69 which correspond to wϕ = −0.99 and

wϕ = −1.10, respectively. From Fig. (1) and Eq. (4.78), we see that the stabilities of

the fixed point depend on xλ which controls the value of weff through the relation xλ =

−3(1 + weff) at the fixed points. In the plot, when xλ decreases, the fixed point of some

models, e.g., the models with n6 = −1, can become saddle points. According to Fig. (1),

the fixed point is stable for the wide range of c4 if n6 is positive. For n6 = −3, the fixed

point can be either saddle or stable depending on the value of c4. From the plot, we see

that the real part of µ1 reaches zero when c4 is sufficiently large independent of n2, n4, n6

and xλ.
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Figure 1 Plots of the real part of µ1 as a function of c4. The upper

left, upper right, lower left and lower right panels correspond to (xλ, n4) =

(0.92,−1), (0.92,−2), (0.69,−1) and (0.69,−2), respectively. In the plots, lines 1,

2 ,3 , 4, 5, 6 and 7 represent the cases of (n2, n6) = (0,-1), (0,-3), (0,1), (0,3), (1,-1),

(1,-3) and (1,3).
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(b) Field Dominated Point

In Eq. (4.70), we have shown that Ωm = 0 is a possible fixed point of the system.

To obtain this equation, we set h = xλ/2 at the fixed point according to Eq. (4.11).

Nevertheless, the condition h = xλ/2 can be relaxed if xr, yr and zr are not equal to

unity at the fixed point, where the condition xr = yr = zr = 1 defines the scaling fixed

point. From Eqs. (4.64) and (4.65), we see that the fixed points exist when

h =
xλ
2
zr =

xλ
2
xr , (4.79)

where the expressions for xr and zr at the fixed point can be solved from Eqs. (C.1), (C.2)

and (C.5). For the fixed point Ωm = 0, the expressions for xr and zr are complicated and

strongly depend on n2, n4 and n6 because Eqs. (C.1), (C.2) and (C.5) contain xn2
r , xn4

r

and xn6
r . However, we can substitute Eq. (4.79) into Eq. (4.9) to obtain

wϕ = weff = −1 +
xλxr b
3

, (4.80)

where subscript b denotes evaluation at the field dominated point. We note that for this

fixed point there is no any requirement on Qλ. This follows from Eqs. (4.52) and (4.53)

that the effect of the couplingQ disappears when Ωm = 0. According to this fixed point,

the eigenvalues computed from the Jacobian matrix are given by

Eb = {xλxr b − 6

2
, xλxr b(Qλ + 1)− 3} . (4.81)

It follows fromEq. (4.80) that observational data require xλxr b < 1 so that the first eigen-

value in Eq. (4.81) is always negative. We see that if Qλ does not satisfy Eq. (4.73), the

second eigenvalue in Eq. (4.81) is negative whenQλ < 3/(xλxr b)−1 for positive xλxr b

and Qλ > −3/|xλxr b| − 1 for negative xλxr b. These results are the same as in [23]. In

the case where Qλ satisfies Eq. (4.73), one of the eigenvalues vanishes. In this case, the

eigenvalues for the field dominated point are similar to those for the scaling fixed point

which c4 → ∞. Since one of the eigenvalues vanishes, we cannot use the linear dynami-

cal analysis to estimate the stabilities of the fixed point. However we will not go beyond
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Figure 2 Plots of Ωm as a function of N . The upper two panels represent the cases

xr > 0 during thematter domination, while the lower two panels represent the cases

xr < 0 during the matter domination. The left two panels and the right two panels

correspond to the model of (n2, n4, n6) = (0,−1,−1) and (0,−1, 1), respectively.

the linear analysis in this work. We check the stabilities of this fixed point by integrating

numerically the cosmic evolution as shown in Fig. (2). For a given value of xλ which

could make the field dominated point stable, we can choose n2, n4, n6 and c4 such that the

scaling fixed point is also stable. The question is that the cosmic evolution will reach the

scaling fixed point at late time in what situation. Since it is difficult to make the analyti-

cal analysis for answering this question, we solve the autonomous equations numerically

and plot the evolution of Ωm in Fig. (2) for some values of the model parameters. Ac-

cording to Fig. (2), the cosmic evolution will reach the scaling fixed point at late time if

xr > 0 during the matter domination. For xr < 0 during the matter domination, the cos-
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mic evolution will evolve towards the field dominated point. This result is consequences

of a positive xλ of the scaling points given by Eq. (4.63), and the fact that the evolution

of x cannot cross x = 0. This implies that although one of the eigenvalues vanishes,

the field dominated point can be stable. Since the scaling fixed points we consider in the

plots are stable points, these points should be reached for wide ranges of initial conditions.

However, if c4 is large enough and the initial condition for yr significantly differs from its

value at the fixed point, the value ofΩm can be larger than unity before reaching the fixed

point. This implies that Ωϕ can be negative, so that the definitions in Eq. (4.54) may can-

not be interpreted as the energy density and pressure of dark component. These cases are

shown in Fig. (2). We note that in Fig. (2) the numerical integration cannot be started from

radiation dominated epoch due to numerical instability. In the top left panel of Fig. (2),

the initial values for xr and yr during the matter domination for the solid, long-dash,

dash, and dash-long-dash lines are (xr, yr) = (0.55, 10−5), (0.05, 0.24), (0.1, 10−8), and

(0.79, 0.7) respectively. In the top right panel of Fig. (2), the initial values for xr and yr

during the matter domination for the solid, long-dash, dash, and dash-long-dash lines are

(xr, yr) = (0.4, 0.2), (0.74, 0.8), (0.18, 0.01), and (0.85, 0.8) respectively. For the cases

where yr significantly differs from their values at the fixed point, the maximum value

of Ωm during the cosmic evolution increases when c4 increases. Since c4 quantifies the

deviation from the Einstein gravity, this suggests that the deviation from the Einstein

gravity should not be large to avoid unphysical value of Ωm during the cosmic evolution.

Moreover, even though the initial values of xr and yr during the matter domination are

in the same order of magnitude of the value at fixed point, the cosmic evolution reaches

the fixed point slowly for positive initial xr compared with the negative initial value of

xr.

(c) yr = 0 : ϕMDE Point

According to Eq. (4.70), the other fixed point corresponds to yr = 0. It follows

from Eq. (4.65) that y′r = 0 when yr = 0. If we consider Eq. (4.64) in addition, we see
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that x′r = 0when zr = 2h/xλ. Here, h for this fixed point is not necessarily equal to xλ/2

because xλ is evaluated at the scaling fixed point (fixed point a). From the definitions of

G2 and G4 in Eqs. (4.57) and (4.58) as well as the definition of y in Eq. (4.60), we see

that the existence of the fixed point yr = 0 requires n2 ≤ 0, n6 < 0 and n4 < 0. Here,

we demand that n2 ̸= n6 and n4 ̸= 0. Inserting zr = 2h/xλ and Ωγ = 0 into Eqs. (C.1),

(C.2) and (C.5) and then taking the limit yr → 0, we respectively obtain

h|c =
3 + c2x

2
r c

2
, Ωmc = 1− c2x

2
r c

3
and xr c = −Qλxλ

c2
, (4.82)

where the subscript c denotes evaluation at ϕMDE point. Substituting the above xr c into

the expression for Ωmc, we get

Ωmc = 1− Q2
λx

2
λ

3c2
. (4.83)

This equation shows that c2 has to be positive otherwise Ωmc is larger than unity. The

eigenvalues for this fixed point are

Ec = {−3

2
+
Q2

λx
2
λ

2c2
, 3 +

Qλ(1 +Qλ)x
2
λ

c2
} . (4.84)

These eigenvalues coincide with those in [23]. The first eigenvalue can be written as

−3Ωmc/2, so that it is always negative. The second eigenvalue becomes positive when

Qλ > 0 or Qλ < −1 for positive c2. Since xλ is evaluated at the scaling fixed point, it

follows from Eq. (4.73) thatQλ < 1 yields xλ < 0 corresponding to phantom expansion.

We now check how the evolution of the universe can move from this fixed point during

matter domination to the scaling fixed point at late time. Let us first consider xr c in

Eq. (4.82). We can use Eq. (4.73) to write xr c = (xλ − 3)/c2. The scaling fixed point

can lead to the acceleration of the universe if xλ < 2. Hence, xr c is negative. Since xr c

is the value of xr during matter domination in our consideration, the universe will evolve

towards the field dominated fixed point rather than the scaling fixed point as presented

in the previous section. For illustration, we plot evolution of Ωm in Fig. (2). For given

values of xλ, Qλ, and Ωmc, the value of c2 can be computed from Eq. (4.83). From
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Table 1 The models used in the plots. We set Ωmc = 0.95 for Model I-IV and Ωmc =

0.93 for Model V. The column weff shows the value of weff at the field dominated

point.

Model (n2, n4, n6) Qλ xr c c4 weff

I (0,-1,-1) -10 -0.045 7.7 -0.88

II (0,-1,-1) 2 -0.075 1.7 -1.28

III (0,-1,-1) 2/3 -0.125 0.67 -1.44

IV (0,-1,-1) 1/6 -0.49 5.6× 10−3 -1.47

V (0,-1,-2) 2 -0.075 4.0 -1.17

-7 -6 -5 -4 -3 -2 -1 0

0

5

10

15

20

Figure 3 Plots of Ωm as a function of N for models I-V given in Tab. 1.

the values of xλ, Qλ and c2, we can compute xr c from Eq. (4.82) and compute c4 from

Eq. (4.66) by setting Ωms = 0.3. Finally, c6 can be computed from Eq. (4.67). The

models used in the plots are shown in Tab. 1.

From Fig. (3), we see that Ωm evolves towards the field dominated point for

various values of Qλ which correspond to various weff at late time. In the plots, we
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initially set yr = 10−11 according to theϕMDEpoint, so that the value ofΩm can be larger

than unity before reaching the field dominated point. However, if c4 is sufficiently small,

e.g., c4 = 5.6× 10−3 for model IV, Ωm can be less than unity through out the evolution

of the universe. By definition, c4 quantifies how large of the deviation from the Einstein

gravity. The above results suggest that the deviation from the Einstein gravity should not

be large to avoid the case Ωm > 1 during the cosmic evolution. From the analysis of the

Vainshtein mechanism, the bound on the difference between the gravitational constant of

the gravitational source and the gravitational coupling for GW gives [78]∣∣∣∣XG4,X

G4

∣∣∣∣ < O(10−3) . (4.85)

In terms of c4, |XG4,X | = |n4c4| at the scaling fixed point. Hence, the small c4 seems to

agree with the above bound.



CHAPTER V

COUPLED DARK ENERGYMODEL FROM GENERAL

CONFORMAL TRANSFORMATION

5.1 The Model

In this section, we consider the general conformal transformationwhich is defined

by

ḡµν = C(X,ϕ)gµν , and ḡµν =
1

C(X,ϕ)
gµν , (5.1)

whereC(X,ϕ) is the coefficient of the conformal transformation depending on the scalar

field ϕ and its kinetic term X ≡ −∇µϕ∇µϕ/2. Using this form of the conformal trans-

formation, the Einstein-Hilbert action is transformed as the action of DHOST theories in

Eq. (3.115) [79, 12]. In order to construct the coupled dark energy model inspired from

the conformal transformation, we suppose that the dark energy is in the form of a scalar

field ϕ involving the conformal transformation. Therefore the interaction between the

dark energy and the dark matter arises when the Lagrangian of the dark matter depends

on the metric ḡµν defined in Eq. (5.1). Hence, the model of coupled dark energy can be

described by the action in which the gravitational part of the action is written in terms of

the metric gµν while the part of the coupled matter is written in terms of ḡµν as

S =

∫
d4x
[√

−g
(1
2
R + P (X,ϕ) + LM(gµν)

)
+
√
−ḡLm(ḡµν , ψ, ψ,µ)

]
, (5.2)

where P (X,ϕ) ≡ X−V (ϕ) andLM is the ordinary matter Lagrangian including baryon

and radiation,Lm is the dark matter Lagrangian, ψ is the matter field and ψ,µ is the partial

derivative of the field. Using the variational method with respect to gαβ , we obtain the

Einstein equation in the form

Gαβ = Tαβ
ϕ + Tαβ

m + Tαβ
M , (5.3)

where Gαβ is the Einstein tensor computed from gµν , and the energy-momentum tensors
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for scalar field and matter are defined in unbarred frame as

T µν
ϕ ≡ 2√

−g
δ(
√
−gP (ϕ,X))

δgµν
, T µν

M ≡ 2√
−g

δ(
√
−gLM)

δgµν
, (5.4)

T µν
m ≡ 2√

−g
δ (

√
−ḡLm)

δgµν
. (5.5)

From these definitions of the energy-momentum tensor and ∇αG
αβ = 0 as well as the

conservation of the energy-momentum tensor for the ordinary matter, we have∇α(T
αβ
ϕ +

Tαβ
m ) = 0. Here, ∇α is the covariant derivative compatible with the metric gαβ . Since

the dark matter Lagrangian depends on field ϕ, the energy-momentum tensors of dark

energy and dark matter do not separately conserve. From the action (5.2), we see that the

metric tensor does not depend on ψ. Hence, variation of the action (5.2) with respect to

ψ yields

∇̄αT̄
αβ
m = 0 , (5.6)

where ∇̄α is defined from barred metric. This implies that T̄αβ
m conserves in the barred

frame. The relation of energy-momentum tensor between the barred frame and the un-

barred frame defined in Eq. (5.5) can be written as

Tαβ
m =

√
−ḡ√
−g

∂ḡρσ
∂gαβ

2√
−ḡ

δ (
√
−ḡLm)

δḡρσ
=

√
−ḡ√
−g

∂ḡρσ
∂gαβ

T̄ ρσ
m . (5.7)

Varying the action (5.2) with respect to the field ϕ, we obtain the evolution equation for

scalar field as

∇α∇αϕ− V,ϕ +Q = 0 , (5.8)

whereQ is the coupling term coming from variation of the darkmatter action
∫
d4x

√
−ḡLm

in Eq. (5.2) with respect to ϕ. The variation of this part of the action can be computed as

δ

∫
d4x

√
−ḡLm =

∫
d4xδϕ

{√
−ḡ
2

T̄αβ
m C,ϕgαβ +

1

2
∇σ

(√
−ḡT̄αβ

m gαβC,Xϕ
σ
)}

.

(5.9)

Using Eq. (5.7), we have

√
−gT αβ

m =

(
Cδαρ δ

β
σ − 1

2
C,Xϕ

αϕβgρσ

)√
−ḡT̄ ρσ

m ,

= C
√
−ḡT̄αβ

m − 1

2
C,Xϕ

αϕβ
√
−ḡgρσT̄ ρσ

m . (5.10)
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Contracting gαβ to the both sides of the above equation, and setting Tm ≡ gαβT
αβ
m , The

above equation can be written as

√
−gTm = (C + C,XX)

√
−ḡgρσT̄ ρσ

m , (5.11)

which yields
√
−ḡgαβT̄αβ

m =

√
−gTm

C + C,XX
. (5.12)

Substituting the above relation into Eq. (5.9), we obtain

δ

∫
d4x

√
−ḡLm

=

∫
d4x

√
−g δϕ

{
C,ϕ

2 (C + C,XX)
Tm +

1

2
∇α

(
C,X

C + C,XX
ϕαTm

)}
. (5.13)

Combining the above equation with Eq. (5.8), we obtain

∇α∇αϕ− V,ϕ = −ΓTm −∇α (Ξϕ
αTm) ≡ −Q , (5.14)

where Γ ≡ C,ϕ/[2(C + C,XX)]and Ξ ≡ C,X/[2(C + C,XX)]. Multiplying ϕβ to both

sides of th above equation, we can obtain the equation in the form as

∇αT
α
β ϕ = −ΓϕβTm −∇α (Ξϕ

αTm)ϕβ ≡ −Qϕβ , (5.15)

where Tα
β ϕ is the energy-momentum tensor of the scalar field. Hence, the general con-

formal transformation induces the coupling term between dark energy and dark matter in

the form

Q = ΓTm +∇α (Ξϕ
αTm) . (5.16)

According to the conservation of the total energy-momentum tensor, Eq. (5.15) gives

∇αT
α
β m = Qϕβ . (5.17)

In the case that we consider, if the conformal coefficient C depends only on the field ϕ,

then C,X vanishes. Therefore Eq. (5.14) reduces to the equation for the case of usual

conformal transformation. When C,X does not vanish, the coupling term Q contains

coupling between the field derivative and the energy density as well as between the field
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derivative and the derivative of energy density of CDM. The latter form of the coupling

can lead to different effects on cosmic evolution compared with the usual conformal

coupling case.

5.2 Evolution of the Background Universe

In this section, The effects of the interaction between dark energy and dark matter

due to the general conformal transformation are studied on the evolution of the back-

ground universe. Using the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, we

have

ds2 = −dt2 + a2δijdx
idxj . (5.18)

Supposing that the scalar field is homogeneous and other matter components in the uni-

verse are described by perfect fluid, Eqs. (5.14) and (5.17) become

ϕ̈+ 3Hϕ̇+ V,ϕ = Q̄ , (5.19)

and

ρ̇m + 3Hρm = −Q̄ϕ̇ , (5.20)

where Q̄ is the coupling term evaluated at the the background universe. In the follow-

ing calculation, we consider the case where matter include co-dark matter and baryon.

The energy density of dark matter is denoted by ρm and the coupling term in Eq. (5.16)

becomes

Q̄ = −Γρm +
(
ϕ̈+ 3Hϕ̇

)
Ξρm + 2Ξ,ϕXρm + 2Ξ,X ϕ̈Xρm + Ξϕ̇ρ̇m . (5.21)

We see that the interaction term Q̄ in the above equation depends on ϕ̈ and ρ̇m. Hence,

we combine Eqs. (5.19) and (5.20) to write the evolution equations for ϕ and ρm in the

forms

ϕ̈+ 3Hϕ̇+ V,ϕ = Q0 , and ρ̇m + 3Hρm = −ϕ̇Q0 , (5.22)

whereQ0 is the interaction term which has already eliminated ϕ̈ and ρ̇m. The interaction
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term Q0 can be written as

Q0 =
(ΘV,ϕ + 3HΘϕ̇− 2XΞ,ϕ + Γ)ρm

Θρm − 2XΞ− 1
, (5.23)

where Θ ≡ Ξ + 2XΞ,X . Since the energy-momentum tensors of baryon and radiation

separately conserve, the conservation of these energy-momentum tensors in the back-

ground universe yields

ρ̇b = −3Hρb , and ρ̇r = −4Hρr , (5.24)

where ρb and ρr are the energy density of baryon and radiation.

5.2.1 Autonomous Equations

To compute the autonomous equations, we define the dimensionless dynamical

variables as

x =
ϕ̇√
6H

, y =
V

3H2
, Ωm =

ρm
3H2

,

Ωb =
ρb
3H2

, Ωr =
ρr
3H2

, (5.25)

and the dimensionless functions as

z =
C,X

C
H2 , λ =

V,ϕ
V

,

γ = Γ , χ = ΞH2 . (5.26)

In terms of the above dimensionless variables, the Friedmann equation gives

1 = x2 + y + Ωm + Ωb + Ωr . (5.27)

Using the definitions of x, y, z andΩm from Eq. (5.22), we obtain autonomous equations
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as

x′ =− x
Ḣ

H2

+

√6 (γΩm + λy) + 6x+ 3
√
6 (γzΩm − 2Ωmχ,ϕ + 2λyz)x2

+36zx3 − 18
√
6zΩmχ,ϕx

4


36x2Ωm (3x2z + 1)χ,X + 3zΩm − 12x2z − 2

, (5.28)

y′ =
√
6λxy − 2y

Ḣ

H2
, (5.29)

z′ = 6x

(
C,X

C

)
,X

(
x
Ḣ

H2
+ x′

)
+
√
6x

(
C,X

C

)
,ϕ

+ 2z
Ḣ

H2
, (5.30)

Ω′
m =− 2Ωm

Ḣ

H2

− 36x3(3x2z + 1)(6x+
√
6λy)χ,X + 3

√
6λxyz − 2

√
6γx(3x2z + 1)

36x2Ωm (3x2z + 1)χ,X + 3zΩm − 12x2z − 2
Ωm

+
12
√
6x3 (3x2z + 1)χ,ϕ + 18x2z + 6

36x2Ωm (3x2z + 1)χ,X + 3zΩm − 12x2z − 2
Ωm

−
9
[
12 (3x4z + x2)χ,X + z

]
36x2Ωm (3x2z + 1)χ,X + 3zΩm − 12x2z − 2

Ω2
m , (5.31)

where a prime denotes a derivative with respect to N ≡ ln a and

Ḣ

H2
=

1

2

(
Ωm − 2x2 + 4y − 4

)
. (5.32)

From Eq. (5.24), we get

Ω′
b = −3Ωb − 2

Ḣ

H2
Ωb , (5.33)

Ω′
r = −4Ωr − 2

Ḣ

H2
Ωr . (5.34)

Considering the denominator of all terms except the first term which is proportional to

Ḣ/H2 in Eqs. (5.28) and (5.31). The denominators are the same and can vanish when

χ,X = − 3zΩm − 12x2z − 2

36x2Ωm (3x2z + 1)
. (5.35)

This suggests that x′ and Ω′
m can be infinite when the above equation is satisfied. To

ensure that the background universe properly evolves, we have to avoid the situations in

which the above equation is satisfied.
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To perform further analysis, we choose the potential of the scalar field and coef-

ficient C in the forms

V (ϕ) = V0eλϕ , C(ϕ,X) = C0eλ1ϕ

[
1 + eλ2ϕ

(
X

Λ0

)λ3
]
, (5.36)

where C0, λ1, λ2 and λ3 are dimensionless constants, while V0 and Λ0 are constants

with the same dimension as X . According to Eq. (5.26), inserting this form of C into

Eq. (5.35), we obtain

λ3 =
27x2z2Ωm + 3zΩm + 36x4z2 + 18x2z + 2

6zΩm

. (5.37)

For the case of positive λ3, we get z > 0 according to the definition in Eq. (5.26). This

suggests that the above equation can be satisfied if λ3 > 0. This implies that x′ and Ω′
m

can be infinite at some time during the evolution of the universe if λ3 is positive. Based

on the numerical investigation, the divergence of x′ and Ω′
m can be avoided if λ3 < 1.

5.2.2 Fixed Points

In the dynamical analysis, the contribution from the radiation energy density is

ignored because we focus on the fixed points corresponding to the matter-dominated

epoch and the late-time accelerating universe. Since Eq. (5.33) has fixed points atΩb = 0

and at Ḣ/H2 = −3/2, we also drop the contribution from baryon. The first fixed point

can be reached in the future while the second fix point involves the matter dominated

epoch. Since the ϕMDE requires Ḣ/H2 = −3(1 + weff)/2 ≲ −3/2 during matter

domination, the second fixed point is not exactly compatible with ϕMD. Hence, in order

to study the ϕMDE point in the dynamical analysis, the contribution from the baryon

energy density is dropped . However, we will show the numerical integration that the

inclusion of baryon energy density does not obstruct the existence of ϕMDE, because we

still get Ω′
b ∼ 0 when Ḣ/H2 ≲ −3/2.

Sincewe ignore contributions from radiation and baryon energy density, Eq. (5.27)

becomes

Ωm = 1− x2 − y . (5.38)
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Substituting this equation into Eq. (5.32), we obtain

Ḣ

H2
= −3

2

(
x2 − y + 1

)
. (5.39)

At fixed point we set y′ = 0, Eq. (5.29) gives two solutions corresponding to the fixed

points yc = 0 and
Ḣ

H2
=

√
3

2
λxc , (5.40)

where the subscript c denotes the evolution at the fixed point.

(a) Field Dominated Point and Scaling Point

Let us first consider the fixed point yc ̸= 0. We match Eq. (5.39) with Eq. (5.40).

Therefore we obtain

yc =

√
2

3
λxc + x2c + 1 . (5.41)

InsertingC fromEq. (5.36) together with Eq. (5.38), (5.40) and (5.41) into Eqs. (5.28) and

(5.30), we obtain the following equations for the fixed points after setting x′ = z′ = 0,

0 = −
√
6λλ3 +

(
λλ1 − 2

(
λ2 + 3

))
λ3xc +

√
6λ3 (λ1 − λ(9zc + 2))x2c

+ 3
(
−2λ2λ23 +

(
−5λ2 + λ1λ− 2λ2λ− 18

)
λ3 + λλ2

)
zcx

3
c

+ 3
√
6zc (−2λ3λ2 + λ2 + λ3 (λ1 − λ (2λ3 + 6zc + 5)))x4c

− 9
((
λ2 + 12

)
λ3 − 3λλ2

)
z2cx

5
c + 9

√
6 (3λ2 − λλ3) z

2
cx

6
c , (5.42)

0 =

√
6

λ3
(λ2 + λλ3)xczc

(
λ3 − 3x2czc

)
. (5.43)

Solving Eq. (5.43), we obtain the solutions for zc as

zc = 0 and zc =
λ3
3x2c

. (5.44)

Since the zc = 0 solution corresponds to the case where the kinetic dependence of C is

negligible, i.e., z = C,X/C = 0, we focus only on the second solution. Besides, the

condition λ2 + λλ3 = 0 is also the solution of Eq. (5.43). However, we will not discuss

this case in detail.
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Substituting the second fixed point of z of Eq. (5.44) into Eq. (5.42), we get two

fixed points of variable x as

xc =

{
− λ√

6
,

√
6 (2λ3 + 1)

λ1 + λ2 − λ (3λ3 + 2)

}
. (5.45)

Substituting two fixed points of xc from above equation into Eq. (5.41), we obtain two

fixed points of variable y as

yc =

{
1− λ2

6
, 1 +

6 (2λ3 + 1)2

(λ1 + λ2 − λ (3λ3 + 2))2
+

2λ (2λ3 + 1)

λ1 + λ2 − λ (3λ3 + 2)

}
. (5.46)

Substituting xc and yc into definitions Ωϕ ≡ x2 + y and wϕ ≡ (x2 − y)/Ωϕ, we obtain

the density parameter and equation of state of scalar field at the fixed as

Ωϕc =

{
1,

12 (2λ3 + 1)2

(λ1 + λ2 − λ (3λ3 + 2))2
+

2λ (2λ3 + 1)

λ1 + λ2 − λ (3λ3 + 2)
+ 1

}
, (5.47)

wϕc =

{
1

3

(
λ2 − 3

)
,− λ1 + λ2 + λλ3

(λ1 + λ2 − λ (3λ3 + 2))σ

}
, (5.48)

where

σ =

(
12 (2λ3 + 1)2

(λ1 + λ2 − λ (3λ3 + 2))2
+

2λ (2λ3 + 1)

λ1 + λ2 − λ (3λ3 + 2)
+ 1

)
. (5.49)

We see that the first pair of (xc, yc) corresponds to the field dominated point, while the

second pair corresponds to the scaling point. For the case of field dominated point, λ can

be expressed in terms of wϕc as

λ =
√
3(wϕc + 1) , (5.50)

which is the same as that for the field-dominated solution for uncoupled quintessence

with exponential potential. For the case of the scaling point, From Eq (5.47) and (5.48)

we can solve for λ and λ1 and write them in terms of Ωϕc and wϕc as

λ = ∓
√
3(wϕcΩϕc + 1)√
(wϕc + 1)Ωϕc

, (5.51)

λ1 = −λ2 ±
√
3 (−3λ3wϕcΩϕc − 2wϕcΩϕc + λ3)√

(wϕc + 1)Ωϕc

. (5.52)
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From the above equations, we see that the values of λ and λ1 can be computed from the

values of λ2, λ3, wϕc and Ωϕc. Based on observational constraints, we can be specify

the values of wϕc and Ωϕc, i.e., if we suppose that the scaling point corresponds to the

late-time universe, we can setwϕc = −0.99 andΩϕc = 0.7. This suggests that to perform

further analysis, we need to specify only the parameters λ2 and λ3 instead of all parame-

ters of the model λ, λ1, λ2 and λ3. Therefore, we can exclude the cases where the fixed

points do not correspond to the observational constraints in our analysis. Substituting λ

and λ1 from the above equations into Eqs. (5.45) and (5.46), we obtain xc and yc in terms

of wϕc and Ωϕc as

xc = ±
√

1

2
Ωϕc (1 + wϕc) and yc =

1

2
Ωϕc (1− wϕc) . (5.53)

(b) Kinetic Dominated Point and ϕMDE Point

We now consider the fixed point yc = 0. Then Eqs. (5.38) and (5.39) respectively

give

Ωm = 1− x2 , (5.54)

Ḣ

H2
= −3

2

(
x2c + 1

)
. (5.55)

Substituting yc = 0 and the above two equations into Eqs. (5.28) and (5.30) and perform-

ing the same steps as those for Eqs. (5.42) and (5.43), we obtain

0 =
(
1− x2c

) [√
6λ1λ3 + 3λ3 ((6λ3 − 3) zc + 2)xc

+3
√
6 (−2λ3λ2 + λ2 + λ1λ3) zcx

2
c + 9λ3zc (2λ3 − 9zc + 5)x3c

+27
√
6λ2z

2
cx

4
c + 27λ3z

2
cx

5
c

]
, (5.56)

0 = − 1

λ3
zc

(
3λ3

(
x2c + 1

)
−

√
6λ2xc

) (
λ3 − 3x2czc

)
. (5.57)

In the following consideration, we denote that a superscript (ϕ) is used for the quantities

corresponding to the fixed point yc = 0. This fixed point will play a role of ϕMDE in the

subsequent consideration. From Eq. (5.57), we can solve for z at the fixed point as

z(ϕ)c = 0 and z(ϕ)c =
λ3

3(x
(ϕ)
c )2

. (5.58)
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These solutions of z(ϕ)c are similar to the case of scaling point. Inserting the second

solution for z(ϕ)c into Eq. (5.56), we can solve for x(ϕ)c as

xkineticc = ±1 , and x(ϕ)c = − λ1 + λ2√
6 (3λ3 + 2)

∓
√
λ21 + 2λ2λ1 + λ22 + 6λ3 (3λ3 + 2)√

6 (3λ3 + 2)
.

(5.59)

The first two solutions correspond to kinetic-dominated points, while the other solutions

correspond to ϕMDE points. Inserting x(ϕ)c into the definition of Ωϕ in Eq. (5.54), we

obtain expression for Ωϕ at yc = 0 in the form

Ω
(ϕ)
ϕc =

[
1, 1,

(
λ1 + λ2 +

√
λ21 + 2λ2λ1 + λ22 + 6λ3 (3λ3 + 2)

)2
6(3λ3 + 2)2

,(
λ1 + λ2 −

√
λ21 + 2λ2λ1 + λ22 + 6λ3 (3λ3 + 2)

)2
6(3λ3 + 2)2

]
. (5.60)

From the definitions wϕ ≡ (x2 − y)/Ωϕ and y = 0 at these fixed points, we obtain

w
(ϕ)
ϕc = 1. Hence, the effective equation of state parameter weff = Ωϕwϕ = Ω

(ϕ)
ϕc is

slightly positive during the ϕMDE. We can write λ1 in terms of Ω
(ϕ)
ϕc , λ2 and λ3 using

Eq. (5.60) as

λ
(ϕ)
1 = −λ2 ∓

√
3

2

∣∣∣3λ3Ω(ϕ)
ϕc + 2Ω

(ϕ)
ϕc − λ3

∣∣∣√
Ω

(ϕ)
ϕc

, (5.61)

which are similar to scaling fixed point. In the following consideration, we use the sub-

scripts − and + to indicate the selected sign in the expressions which contain± or∓. As

an example, if we apply this notation to Eq. (5.59), we get

x
(ϕ)
c+ = − λ1 + λ2√

6 (3λ3 + 2)
+

√
λ21 + 2λ2λ1 + λ22 + 6λ3 (3λ3 + 2)√

6 (3λ3 + 2)
. (5.62)

Using such notation, the possible expressions of λ and λ1 for the scaling points can be

expressed as follows: according to Eqs. (5.51) and (5.52), there are two possible forms

of λ and λ1 such that (λ, λ1) = (λ−, λ1+) and (λ+, λ1−). For ϕMDE point, Eq. (5.59)

shows that there are two possible forms of x(ϕ)c , i.e., x(ϕ)c− and x(ϕ)c+ . Each of them leads to

two possible choices of λ1 given in Eq. (5.61).
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5.2.3 Stability

To investigate the stabilities of the fixed points considered in the previous section,

we linearize the autonomous equations (5.28) - (5.30) around the fixed points. Before

performing the linearization, we insert Ωm from Eq. (5.38) and C from Eq. (5.36) into

the autonomous equations. We estimate the stability of these fixed points by checking

the signs of the eigenvalues of the Jacobian matrix defined by

Jij =
∂x′i
∂xj

∣∣∣∣
fixed point

, (5.63)

where xi = (x, y, z).

(a) Field dominated Point

Let us first consider the field dominated point in which x and y at fixed point

given by the first solution in Eqs. (5.45) and (5.46), while z at the fixed point is the

second solution in Eq. (5.44). The eigenvalues of the Jacobian matrix for this case can

be written as

µ1 = 3λ3(1 + wϕc) + λ2

√
3(1 + wϕc) ,

µ2 = −3

2
(1− wϕc) ,

µ3 =
λ3 (9wϕc − 3) + 6wϕc −

√
3 (λ1 + λ2)

√
1 + wϕc

4λ3 + 2
, (5.64)

where we have expressed λ in terms ofwϕ for the case of this fixed point using Eq. (5.50).

One can check that the field dominated point is stable when both of the following condi-

tions are satisfied

λ3 < − λ2√
3(1 + wϕc)

, (5.65)

λ1


< −2wϕc(2

√
3λ2−3

√
wϕc+1)

√
3(wϕc+1)

for λ3 < −1/2

> −2wϕc(2
√
3λ2−3

√
wϕc+1)

√
3(wϕc+1)

for λ3 > −1/2
. (5.66)

Since µ2 is always negative whenwϕc < 1which is the case for scalar field with standard

kinetic term, the field dominated points cannot be unstable.
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(b) Scaling Fixed Point

For the expressions of xc and yc at the scaling point given by Eq. (5.53), the

eigenvalues can be written as

µ1 = 3λ3 (1 + wϕcΩϕc)∓ λ2

√
3Ωϕc(1 + wϕc) ,

µ2 = −3

4
(1− wϕcΩϕc) + 3

√
ra
rb
,

µ3 = −3

4
(1− wϕcΩϕc)− 3

√
ra
rb
, (5.67)

where

ra = λ3
(
w2

ϕc (2wϕc + 1)Ω3
ϕc +

(
−3w2

ϕc − 18wϕc + 16
)
Ω2

ϕc + (16wϕc − 15)Ωϕc + 1
)

+ Ωϕc

(
w2

ϕc (wϕc + 1)Ω2
ϕc − 2

(
w2

ϕc + 5wϕc − 4
)
Ωϕc + 9wϕc − 7

)
, (5.68)

rb = 16 (λ3Ωϕc + 2λ3wϕcΩϕc + wϕcΩϕc + Ωϕc + λ3) . (5.69)

In the above eigenvalues, we have expressed for λ and λ1 in terms of wϕc and Ωϕc using

Eqs. (5.51) and (5.52). We obtain the fixed point xc+ and xc− in Eq. (5.53) leading to the

same µ2 and µ3 but different µ1. The first eigenvalue µ1 can be negative when

λ3 < ±
λ2
√

3Ωϕc(1 + wϕc)

3(1 + wϕcΩϕc)
. (5.70)

The eigenvalues µ2 and µ3 in Eq. (5.67) can be infinite if rb = 0 occurring when

λ3 = λ3b = − (wϕc + 1)Ωϕc

2wϕcΩϕc + Ωϕc + 1
. (5.71)

If the ratio ra/rb < 0,the real parts of both µ2 and µ3 can be ensured to be negative. To

estimate the sign of this ratio, λ3 at which ra = 0 is computed. We can show that ra = 0

when

λ3 = λ3a

= −
Ωϕc

(
w2

ϕc (wϕc + 1)Ω2
ϕc − 2

(
w2

ϕc + 5wϕc − 4
)
Ωϕc + 9wϕc − 7

)
w2

ϕc (2wϕc + 1)Ω3
ϕc +

(
−3w2

ϕc − 18wϕc + 16
)
Ω2

ϕc + (16wϕc − 15)Ωϕc + 1
.

(5.72)
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Figure 4 Plots of the real parts of µ2 and µ3 for scaling fixed point. In the plots,

wϕc = −0.99 and λ2 = 1. The lines I and II represent the real part of µ2 while the

lines III and IV represent the real part of µ3. The lines I and III show the cases of

Ωϕc = 0.65 while the lines II and IV show the cases of Ωϕc = 0.95.

For the case that Ωϕc > 0.6 and wϕc ≳ −1, the coefficient of λ3 in Eq. (5.68) is negative

while that in Eq. (5.69) is positive. Hence, rb < 0 when λ3 < λ3b while ra < 0 when

λ3 > λ3a. Since λ3a < λ3b, the ratio ra/rb is negative when λ3 < λ3a or λ3 > λ3b. As

a result, the scaling point is stable when λ3 < λ3a or λ3 > λ3b for suitable choice of

λ2 according to Eq. (5.70). For the case λ3 ∈ (λ3a, λ3b), we have to evaluate µ2 and µ3

numerically. The real parts of µ2 and µ3 for some choices of Ωϕc are plotted in Fig. 4. In

this figure, the real parts of the eigenvalues weakly depend on λ2.

(c) Kinetic Dominated Point and ϕMDE Point

Let us first consider the kinetic dominated points where xc = ±1. For these

points, the eigenvalues of the Jacobian matrix are

µ1 =
3 (λ3 + 1)

2λ3 + 1
±
√
6 (λ1 + λ2)

4λ3 + 2
, µ2 = 6λ3∓

√
6λ2 , and µ3 = 6±

√
6λ . (5.73)

Depending on the values of λ2 and λ3, the second eigenvalue µ2 can be either positive or

negative. This means that these points can be saddle point, so that they could be reached

for some ranges of λ2, λ3 and some choices of initial conditions. However, we focus

on the cases where the cosmic evolution satisfies observational data, so that we will not
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discuss these points in more detail.

We next consider the ϕMDE points given by Eq. (5.59). Since the eigenva-

lues for these fixed points are complicated and their values include many possible cases

according to the range of λ1, λ2 and λ3, it is hard for discussion. However, if we are

interested in the case where the ϕMDE is followed by accelerating epoch described by

scaling points, we have to demand that λ1 from Eq. (5.52) is equal to that from Eq. (5.61).

Therefore we match these two equations. We then obtain the relation between Ω(ϕ)
ϕc and

Ωϕc as

Ω
(ϕ)
ϕc∓ =

A∓ |λ3 (3wϕcΩϕc − 1) + 2wϕcΩϕc|
√
B

(3λ3 + 2) 2 (wϕc + 1)Ωϕc

, (5.74)

where

A = λ23
(
9w2

ϕcΩ
2
ϕc − 3 (wϕc − 1)Ωϕc + 1

)
+2λ3Ωϕc

(
6w2

ϕcΩϕc − wϕc + 1
)
+ 4w2

ϕcΩ
2
ϕc , (5.75)

B = λ23
(
9w2

ϕcΩ
2
ϕc + 6Ωϕc + 1

)
+ 4λ3Ωϕc

(
3w2

ϕcΩϕc + 1
)
+ 4w2

ϕcΩ
2
ϕc . (5.76)

If λ3 is equal to −2/3, the right-hand side of Eq. (5.74) could be infinite. Nevertheless,

if we take the limit λ3 → −2/3, Eq. (5.74) gives

Ω
(ϕ)
ϕc− =

1

2
(wϕc + 1)Ωϕc , Ω

(ϕ)
ϕc+ = ∞ . (5.77)

Hence, in the following consideration, we concentrate only Ω(ϕ)
ϕc− which will be denoted

by Ω
(ϕ)
ϕc . From Eq. (5.74), we see that Ω(ϕ)

ϕc can have an imaginary part if B is negative

occurring when

2
(
−3w2

ϕcΩ
2
ϕc −

√
Ω2

ϕc − w2
ϕcΩ

2
ϕc − Ωϕc

)
9w2

ϕcΩ
2
ϕc + 6Ωϕc + 1

< λ3 <
2
(
−3w2

ϕcΩ
2
ϕc +

√
Ω2

ϕc − w2
ϕcΩ

2
ϕc − Ωϕc

)
9w2

ϕcΩ
2
ϕc + 6Ωϕc + 1

.

(5.78)

For wϕc = −0.99, the above condition becomes −0.45 < λ3 < −0.41 and −0.51 <

λ3 < −0.47 corresponding to Ωϕc = 0.65 and Ωϕc = 0.95, respectively. To ensure

that the scaling points are stable, we choose λ3 in the ranges λ3 < λ3a or λ3 > λ3b. For

wϕc = −0.99, from Eqs. (5.72) and (5.71) we have λ3a ≈ −0.57 for bothΩϕc = 0.65 and
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Figure 5 Plots of Ω(ϕ)
ϕc as a function of λ3. The solid line shows the case Ωϕc = 0.65,

while the dashed line shows the case Ωϕc = 0.95. In the plots, wϕc = −0.99 , λ2 = 1

and λ3 lies within the range λ3 ≤ −2/3 and 0 < λ3 ≤ 1.

Ωϕc = 0.95. Moreover, we have λ3b ≈ −0.01 and−0.13 for Ωϕc = 0.65 and Ωϕc = 0.95

respectively. Hence, for λ3 < λ3a or λ3 > λ3b, Ω
(ϕ)
ϕc is real. In the case where wϕc ≳ −1

and Ωϕc > 0.65, Eq. (5.74) gives Ω(ϕ)
ϕc ≲ 10−3. From the numerical values of λ3a and

λ3b, we have to set λ3 within the ranges λ3 ≤ −2/3 and 0 < λ3 ≤ 1 in the following

analysis. For the upper bound λ3 ≤ 1, we impose to avoid divergence of x′ and Ω′
m

which can occur when λ3 satisfies Eq. (5.37).

The quantity Ω(ϕ)
ϕc is the value of Ωϕ at the ϕMDE point. We plot this quantity as

a function of λ3 in Fig. 5. In the plots, Ωϕc are not sensitive to λ2. We note that λ1 in

Eqs. (5.52) and (5.61) can be matched only for suitable conditions for λ3. For example,

we obtain the same expression for Ω(ϕ)
ϕc when we solve for it from the equations which

are constructed by matching λ1+ from Eq. (5.52) with either λ(ϕ)1+ or λ(ϕ)1− from Eq. (5.61).

However, if we compute the numerical value of Ω(ϕ)
ϕc from Eq. (5.74) for given values

of Ωϕc, wϕc, λ2 and λ3, and insert the result back into Eq. (5.61), the numerical value of

λ1+ will be equal to λ(ϕ)1− when λ3 ≤ −2/3 while it will be equal to λ(ϕ)1+ when λ3 > 0.

Moreover, |x(ϕ)c− | < 1 and |x(ϕ)c+ | > 1 for the former case while |x(ϕ)c− | > 1 and |x(ϕ)c+ | < 1 for

the latter case. The case where |x(ϕ)c | > 1 is not physically relevant case. We summarize
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Table 2 Matching of λ1 from Eqs. (5.52) and (5.61) and the required conditions on

λ3. The fourth column shows the magnitude of x(ϕ)c . The fifth and the sixth columns

present the signs of λ1 and λ computed from Eqs. (5.52) and (5.51). The main con-

clusions from the table do not change if |λ2| ∼ O(1), wϕc ≳ −1 and Ωϕc > 0.65.

Matching

Cases
Scaling = ϕMDE λ3 x

(ϕ)
c λ1 λ

I λ1+ = λ
(ϕ)
1− λ3 ≤ −2/3 |x(ϕ)c− | < 1 and |x(ϕ)c+ | > 1 < 0 < 0

II λ1+ = λ
(ϕ)
1+ λ3 > 0 |x(ϕ)c− | > 1 and |x(ϕ)c+ | < 1 > 0 < 0

III λ1− = λ
(ϕ)
1+ λ3 ≤ −2/3 |x(ϕ)c− | > 1 and |x(ϕ)c+ | < 1 > 0 > 0

IV λ1− = λ
(ϕ)
1− λ3 > 0 |x(ϕ)c− | < 1 and |x(ϕ)c+ | > 1 < 0 > 0

Table 3 The first eigenvalues for all possible matching cases.

First eigenvalue Cases I and II Cases III and IV

µ1 λ
√

6Ω
(ϕ)
ϕc + 3(Ω

(ϕ)
ϕc + 1) −λ

√
6Ω

(ϕ)
ϕc + 3(Ω

(ϕ)
ϕc + 1)

the matching of λ1 and λ
(ϕ)
1 and the conditions on λ3 in Tab. 2. Based on the choices of

parameters in Tab. 2, We now investigate the eigenvalues of the ϕMDE points . The first

eigenvalues of all cases are simple and are shown in Tab. 3. From the table, we see that

the eigenvalues could be negative depending on the sign of λ. Nevertheless, the terms λ

are multiplied by
√

Ω
(ϕ)
ϕc which is in order of 10−2, so that these terms have no sufficient

contribution to make the eigenvalues negative. For these ϕMDE points, the polynomial

for the eigenvalues is complicated. Fortunately, the form the first eigenvalue is simple,

therefore the order of the polynomial can be reduced by dividing the polynomial with

(µ1 − µ). It yields the resulting polynomial which can be written in the form

µ2 + a1µ+ a2 = 0 , (5.79)
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where a1 and a2 are complicated functions of the parameters and Ω
(ϕ)
ϕc . Since Ω

(ϕ)
ϕc ≲

10−3, we expand a1 and a2 around Ω
(ϕ)
ϕc = 0 up to Ω(ϕ)

ϕc as shown in Eqs. (5.80) - (5.83).

cases I and II:

a1 =
3

2
− λ1

√
6Ω

(ϕ)
ϕc +

(
−24λ3 +

6

λ3
− 3

2

)
Ω

(ϕ)
ϕc + . . . , (5.80)

a2 = −9

2
+

3
√

3
2
[λ1λ3 (λ3 − 5) + 3λ2 (λ3 + 1)]

λ3 (λ3 + 1)

√
Ω

(ϕ)
ϕc

+
3
[
λ21 (−2λ23 + 5λ3 + 1)− λ1λ2a2b − 2 (λ22 (λ3 + 1)− 3λ3a2c)

]
λ23 (λ3 + 1)

Ω
(ϕ)
ϕc + . . . ,

(5.81)

cases III and IV:

a1 =
3

2
+ λ1

√
6Ω

(ϕ)
ϕc +

(
−24λ3 +

6

λ3
− 3

2

)
Ω

(ϕ)
ϕc + . . . , (5.82)

a2 = −9

2
−

3
√

3
2
[λ1 (λ3 − 5)λ3 + 3λ2 (λ3 + 1)]

λ3 (λ3 + 1)

√
Ω

(ϕ)
ϕc

−
3
[
λ21 (2λ

2
3 − 5λ3 − 1) + λ1λ2a2b + 2 (λ22 (λ3 + 1)− 3λ3a2c)

]
λ23 (λ3 + 1)

Ω
(ϕ)
ϕc + . . . ,

(5.83)

where a2b = 2λ23 − 3λ3 +1 and a2c = 2λ33 − 2λ23 +3λ3 +1. The solutions of Eq. (5.79)

are

µ± =
−a1 ±

√
a21 − 4a2
2

. (5.84)

From these solutions we see that the real part of at least one solution is negative if a1 > 0.

If a1 < 0, the real part of one solution is negative when a2 < 0. According to Eqs. (5.80)

and (5.82) and the sign of λ1 in Tab. 2, the main contributions to a1 for the cases I and

III are positive. As a result, the real part of at least one eigenvalue for each case is

negative. For the cases II and IV, it follows from Eqs. (5.81) and (5.83) together with

the sign of λ1 and the range of λ3 in Tab. 2 that the main contributions to a2 can be

negative. However, to ensure that a2 is negative, we suppose that |λ2| < |λ1| and impose

the additional condition λ3 ≤ 1 which is required to avoid divergence of x′ and Ω′
m.
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This suggests that the real part of one eigenvalue for each case is negative. From the

above discussion, we conclude that the ϕMDE point can be saddle for λ3 given in the

table, λ3 ≤ 1, |λ2| ∼ O(1) and for wϕc, Ωϕc satisfying the observational bound, e.g.,

wϕc = −0.99 and Ωϕc > 0.65.

5.2.4 Evolution from the ϕMDE Point to Scaling point

From the fixed points which we have already discussed in the previous sections,

we now numerically study the evolution of the background universe. The evolution

equations used in the numerical integration are obtained by substituting Eq. (5.36) into

Eqs. (5.28)-(5.31). To explain some results in the previous sections, The evolutions of

Ωϕ for various values of λ3 is plotted in Fig. 6. In the figure, we fix λ2 = 1, Ωb = 0 and

specify λ and λ1 by setting Ωϕc = 0.7 and wϕc = −0.99. From the figure, we see that the

fixed point Ωϕ = Ωϕc = 0.7 can be reached at late time. From the numerical investiga-

tion, the all evolution of Ωϕ weakly depends on λ2, and the late-time evolution is robust

under the change of initial conditions. We then set Ωb ≃ 0.022 at present for adding the

contribution from the baryon energy density Ωb into the numerical integration. Now the

evolutions of Ωr, Ωm and Ωϕ for λ3 = −3/2 are plotted in Fig. 7. In these plots, we fix

λ2 = 1 and also specify the parameters λ and λ1 by settingΩϕc = 0.95 andwϕc = −0.99.

Since this scaling point can be reached in the future whenΩb ∼ 0, we set Ωϕc to be larger

than the observational bound for the present value of Ωϕ. From the figure we see that the

universe evolves from the radiation domination to ϕMDE point and then evolves towards

the scaling point at late time with Ωϕ → 0.95 and Ωb → 0. This pattern of the evolution

is achieved for wide ranges of λ2 and initial conditions. Before moving to the late-time

attractor, the cosmic evolution can pass the point Ωϕ ≃ 0.68,Ωm ≃ 0.3 and Ωb ≃ 0.022

at present as required by observational data. We note that Ωc in Fig. 7 is Ωm.
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Figure 6 Evolutions of Ωϕ for various values of λ3. In the plots, 1 + Z = 1/a.
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Figure 7 The left panel shows the evolutions of Ωr,Ωb,Ωc and Ωϕ, while the right

panel shows the evolution of wϕ. The ϕMDE takes place around 1 + Z ∼ 20.



CHAPTER VI

CONCLUSIONS

According to the observational data, the expansion of the universe is accelerat-

ing at late time. There are numerous attempts to describe the accelerated expansion of

universe by introducing dark energy or assuming that physics of gravity on large scale

obeys the modified theory of gravity. However, one question arises because of coin-

cidence problem which is a puzzle why energy density of dark energy and matter that

independently evolve with time have the same order of magnitude at the present. To

solve such problem, we demand that the energy density of dark energy is proportional

to the energy density of matter during some period of time. A solution of the evolution

equations for the background universe that leads to the constant ratio of the matter and

dark energy densities is a scaling solution. Since ratio ρd/ρm is constant, ρm is no longer

scale as a−3 during the scaling regime but the effective equation of state parameter of

matter is negative as the dark energy. To realize such property of ρm, one assumes that

there is an interaction between the matter and the dark energy.

The scaling solution lead to the existence of ϕMDE point in which there is a

small fraction of dark energy during matter domination. The coincidence problem could

be alleviated if the universe can evolve from radiation domination through ϕMDE toward

acceleration epoch at late time.

In this thesis, the scaling solutions in two cosmologicalmodels are studied. Firstly,

the scaling solutions in the modified theory of gravity are investigated. The modified the-

ory of gravity used in our study is DHOST theory which satisfies the gravitational wave

constraints and has the scaling solutions . To get a suitable attractor at late time, the

coupling between scalar degree of freedom and dark matter is assumed. The coupling

for this model is inspired from conformal transformation in which the coefficient of the

conformal transformation depends only on scalar field. Then, the scaling solutions in the

coupled dark energy model constructed from the general conformal transformation are
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studied. The general conformal transformation is the conformal transformation in which

the coefficient of the conformal transformation depends on both the scalar field and its

kinetic term. For the first part of our analysis, the coupling between the dark compo-

nents is the same as literatures, but the different gravity is used for the second part of our

analysis, we use more general coupling term in Einstein gravity.

6.1 DHOST Theory with Scaling Solution

For the analysis of DHOST theory, we concentrate on themodel parameters which

the expression of zr is given by Eq. (C.7). We have found that the scaling fixed point

corresponding to the comic acceleration at late time, is stable when n2 and n6 are not

negative for n4 = −1 and −2. The stabilities of this scaling fixed point also depend on

the parameter xλ which corresponds to the expansion rate of the universe at late time.

There are ranges of parameters in which the scaling fixed point and the field dominated

point are simultaneously stable. If xr during thematter domination is positive, the cosmic

evolutionwill reach the scaling fixed point at late time. If xr during thematter domination

is negative, the cosmic evolution will reach the field dominated point.

The density parameter of the matter can be larger than unity during the cosmic

evolution if c4 is large enough and the initial value of yr during the matter domination

is significantly different from its value at scaling fixed points. Here, the deviation from

the Einstein gravity is parametrized by c4. In our consideration, the allowed value of c4

depends on the initial conditions for xr and yr during the matter domination.

Even though the gravity is described by the different theories, the eigenvalues for

the field dominated and ϕMDE points in the model considered here are similar to those

for coupled dark energy models presented in [23]. However, for DHOST theory, the

expressions for the eigenvalues corresponding to the scaling points are complicated, and

consequently stability of the fixed points has to evaluate numerically. In our numerical

investigation, the universe can only evolve from the ϕMDE to the field dominated point.

Since the evolution from ϕMDE toward the scaling point corresponding to the cosmic
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acceleration at late time cannot be achieved in thismodel, the coincidence problem cannot

be alleviated.

6.2 Coupled Dark Energy Model with General Conformal Coupling

In the analysis of coupled dark energy model, the ϕMDE point can be a saddle

point, while the solution for the cosmic acceleration at late time can be scaling attractor.

The cosmic evolution that starts from the radiation dominated epoch can move towards

the ϕMDE and then reaches the cosmic acceleration epoch at late time. This sequence of

the evolution can be achieved for the cosmological parameters which satisfy the obser-

vational bounds. This suggests that the coincidence problem can be alleviated.

We conclude that if coupling term is inspired from conformal transformation in

which the coefficient of the conformal transformation depends only on scalar field, the

coincidence problem cannot be alleviated in both DHOST theory and coupled dark en-

ergy model. If coupling term is inspired from general conformal transformation in which

the coefficient of the conformal transformation depends on both scalar field and its ki-

netic term, the coincidence problem can be alleviated in coupled dark energy model.
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APPENDIX



APPENDIX A SOME DETAILS OF CALCULATION FOR

GALILEON THEORIES

In the following, we present some details of several calculations for Galileon

theories. Considering the first term in Eq. (3.7), we obtain

∂µ∂ν
∂
(
T α1α2β1β2ϕα1β1ϕα2β2

)
∂ϕµν

= ∂µ∂ν

[
T α1α2β1β2

∂ (ϕα1β1ϕα2β2)

∂ϕµν

]
,

= ∂µ∂ν

[
T α1α2β1β2

(
ϕα1β1

∂ϕα2β2

∂ϕµν

+ ϕα2β2

∂ϕα1β1

∂ϕµν

)]
,

= ∂µ∂ν
[
T α1α2β1β2

(
ϕα1β1δ

µ
α2
δνβ2

+ ϕα2β2δ
µ
α1
δνβ1

)]
,

= ∂α2∂β2

(
T α1α2β1β2ϕα1β1

)
+ ∂α1∂β1

(
T α1α2β1β2ϕα2β2

)︸ ︷︷ ︸
α1↔α2 , β1↔β2

,

= 2∂α2∂β2

(
T α1α2β1β2ϕα1β1

)
,

= 2ϕα1β1

(
∂α2∂β2T α1α2β1β2

)
,

= 2ϕα1β1∂α2

(
∂T α1α2β1β2

∂ϕµ

∂β2ϕβ

)
,

= 2ϕα1β1

[
∂β2ϕµ∂α2

(
∂T α1α2β1β2

∂ϕµ

)
+
∂T α1α2β1β2

∂ϕµ

(∂α2∂β2ϕµ)

]
,

= 2ϕα1β1

[
∂β2ϕµ

(
∂2T α1α2β1β2

∂ϕµ∂ϕν

∂α2ϕν

)
+
∂T α1α2β1β2

∂ϕµ

(∂α2∂β2ϕµ)

]
. (A.1)

For the second term in Eq. (3.7), it yields

∂µ
∂
(
T α1α2β1β2ϕα1β1ϕα2β2

)
∂ϕµ

= ∂µ

(
ϕα1β1ϕα2β2

∂T α1α2β1β2

∂ϕµ

)
,

= ϕα1β1ϕα2β2∂µ

(
∂T α1α2β1β2

∂ϕµ

)
+
∂T α1α2β1β2

∂ϕµ

∂µ (ϕα1β1ϕα2β2) ,

= ϕα1β1ϕα2β2

(
∂2T α1α2β1β2

∂ϕµ∂ϕν

∂µϕν

)
+ 2ϕα1β1

∂T α1α2β1β2

∂ϕµ

(∂µϕα2β2) . (A.2)
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Inserting Eq. (3.9) into Eq. (3.8), we obtain

0 = 2ϕµβ2ϕνα2ϕα1β1

∂

∂ϕµ

[
∂
(
Aα1α2α3β1β2β3ϕα3ϕβ3

)
∂ϕν

]

−ϕα1β1ϕα2β2ϕµν
∂

∂ϕµ

[
∂
(
Aα1α2α3β1β2β3ϕα3ϕβ3

)
∂ϕν

]
,

= 2ϕµβ2ϕνα2ϕα1β1

(
δµβ3
δνα3

+ δµα3
δνβ3

)
Aα1α2α3β1β2β3

−ϕα1β1ϕα2β2ϕµν

(
δµβ3
δνα3

+ δµα3
δνβ3

)
Aα1α2α3β1β2β3 ,

= 2ϕα3β2ϕβ3α2ϕα1β1Aα1α2α3β1β2β3︸ ︷︷ ︸
β2↔β3

−2ϕα1β1ϕα2β2ϕα3β3Aα1α2α3β1β2β3 ,

= −4ϕα1β1ϕα2β2ϕα3β3Aα1α2α3β1β2β3 . (A.3)

Inserting Lagrangian in Eq. (3.11) into Eq. (3.5), we obtain

0 = −Aα1α2...αn+1β1β2...βn+1

(2n+2) ∂µ

[
∂

∂ϕµ

(
ϕαn+1ϕβn+1

)
ϕα1β1ϕα2β2 . . . ϕαnβn

]
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(2n+2) ∂µ∂ν

[
∂
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]
,
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µ
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µ
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)
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]
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[
∂
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[
n

∂
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]
,
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δµα1
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Showing the calculation of the first and second term in Eq. (3.19), we obtain

Eq. (A.6) and Eq. (A.7) respectively

∂µ∂ν
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
λ
β1

)
ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµν

= Aα1α2...αnβ1β2...βn

(2n) ∂µ∂ν

[
ϕα1ϕ

λ∂ (ϕλβ1ϕα2β2ϕα3β3 . . . ϕαnβn)

∂ϕµν

]
,

= Aα1α2...αnβ1β2...βn

(2n) ∂µ∂ν

[
ϕα1ϕλϕ

λ
β1

∂ (ϕα2β2ϕα3β3 . . . ϕαnβn)

∂ϕµν

]
+Aα1α2...αnβ1β2...βn
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ϕα1ϕ
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]
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λ
β1

∂ (ϕα2β2)

∂ϕµν
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]
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ϕα1ϕ

λ∂ (ϕλβ1)
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ν
β1
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]
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λ
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∂µ∂ν
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
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(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕλα2ϕα1β2 + ϕα1ϕλβ2α2)

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂λ
(
ϕλϕα1β1 + ϕα1ϕ

λ
β1

)
,

= (n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕλα2ϕα1β2)︸ ︷︷ ︸

α1↔α2

+(n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕα1ϕλβ2α2)

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕλ
λϕα1β1 + ϕλϕα1β1λ

)
+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕα1λϕ

λ
β1

+ ϕα1ϕ
λ
β1λ

)
,

= −(n− 2)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕλα1ϕα2β2)

+(n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕα1ϕλβ2α2)

+Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕα1ϕ

λ
β1λ

+ ϕλϕα1β1λ

)
, (A.6)
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∂µ
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕλϕ
λ
β1

)
ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµ

= Aα1α2...αnβ1β2...βn

(2n) ∂µ

[
∂ (ϕα1ϕλ)

∂ϕµ

ϕλ
β1
ϕα2β2ϕα3β3 . . . ϕαnβn

]
,

= Aα1α2...αnβ1β2...βn

(2n) ∂µ
[(
ϕα1δ

µ
λ + ϕλδ

µ
α1

)
ϕλ
β1
ϕα2β2ϕα3β3 . . . ϕαnβn

]
,

= Aα1α2...αnβ1β2...βn

(2n) ∂λ
(
ϕα1ϕ

λ
β1
ϕα2β2ϕα3β3 . . . ϕαnβn

)
+Aα1α2...αnβ1β2...βn

(2n) ∂α1

(
ϕλϕ

λ
β1
ϕα2β2ϕα3β3 . . . ϕαnβn

)
,

= Aα1α2...αnβ1β2...βn

(2n) ϕα1ϕ
λ
β1
∂λ (ϕα2β2ϕα3β3 . . . ϕαnβn)

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂λ
(
ϕα1ϕ

λ
β1

)
+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂α1

(
ϕλϕ

λ
β1

)
,

= (n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕα1ϕα2β2λ)

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂λ
(
ϕα1ϕ

λ
β1

)
+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂α1

(
ϕλϕ

λ
β1

)
,

= (n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕα1ϕα2β2λ)

+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕα1λϕ

λ
β1

+ ϕα1ϕ
λ
β1λ

)
+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕλα1ϕ

λ
β1

+ ϕλϕ
λ
β1α1

)
,

= (n− 1)Aα1α2...αnβ1β2...βn

(2n) ϕα3β3 . . . ϕαnβnϕ
λ
β1
(ϕα1ϕα2β2λ)

+2Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕα1λϕ

λ
β1

)
+Aα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕα1ϕ

λ
β1λ

+ ϕλϕ
λ
β1α1

)
. (A.7)
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Inserting Lagrangian in Eq. (3.18) into Eq. (3.5), we obtain

0 = ∂µ∂ν
∂L
∂ϕµν

− ∂µ
∂L
∂ϕµ

,

= ∂µ∂ν
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕλϕ
λ
)
ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµν

−∂µ
∂
[(

Aα1α2...αnβ1β2...βn

(2n) ϕλϕ
λ
)
ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

]
∂ϕµ

,

= Aα1α2...αnβ1β2...βn

(2n) ∂µ∂ν

[
ϕλϕ

λ∂ (ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn)

∂ϕµν

]
−Aα1α2...αnβ1β2...βn

(2n) ∂µ

[
∂
(
ϕλϕ

λ
)

∂ϕµ

ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

]
,

= Aα1α2...αnβ1β2...βn

(2n) ∂µ∂ν

[
nϕλϕ

λ∂ (ϕα1β1)

∂ϕµν

ϕα2β2ϕα3β3 . . . ϕαnβn

]
−Aα1α2...αnβ1β2...βn

(2n) ∂µ

[
∂
(
ϕλϕ

λ
)

∂ϕµ

ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

]
,

= Aα1α2...αnβ1β2...βn

(2n) ∂µ∂ν
[
nϕλϕ

λ
(
δµα1

δνβ1

)
ϕα2β2ϕα3β3 . . . ϕαnβn

]
−Aα1α2...αnβ1β2...βn

(2n) ∂µ
[(
2ϕλδµλ

)
ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

]
,

= nAα1α2...αnβ1β2...βn

(2n) ∂α1∂β1

(
ϕλϕ

λϕα2β2ϕα3β3 . . . ϕαnβn

)
−2Aα1α2...αnβ1β2...βn

(2n) ∂λ
(
ϕλϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn

)
,

= nAα1α2...αnβ1β2...βn

(2n) ∂α1

[
ϕα2β2ϕα3β3 . . . ϕαnβn∂β1

(
ϕλϕ

λ
)]

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ∂λ (ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn) ,

−2Aα1α2...αnβ1β2...βn

(2n) ∂λ
(
ϕλ
)
ϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn ,

= nAα1α2...αnβ1β2...βn

(2n) ∂α1

[
ϕα2β2ϕα3β3 . . . ϕαnβn

(
2ϕλβ1ϕ

λ
)]

−2nAα1α2...αnβ1β2...βn

(2n) ϕλϕα1β1λϕα2β2ϕα3β3 . . . ϕαnβn

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn ,

= 2nAα1α2...αnβ1β2...βn

(2n) ∂α1

(
ϕλϕλβ1ϕα2β2ϕα3β3 . . . ϕαnβn

)
−2nAα1α2...αnβ1β2...βn

(2n) ϕλϕα1β1λϕα2β2ϕα3β3 . . . ϕαnβn

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn , (A.8)
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0 = 2nAα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn∂α1

(
ϕλϕλβ1

)
−2nAα1α2...αnβ1β2...βn

(2n) ϕλϕα1β1λϕα2β2ϕα3β3 . . . ϕαnβn

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn ,

= 2nAα1α2...αnβ1β2...βn

(2n) ϕα2β2ϕα3β3 . . . ϕαnβn

(
ϕλ
α1
ϕλβ1 + ϕλϕλβ1α1

)
−2nAα1α2...αnβ1β2...βn

(2n) ϕλϕα1β1λϕα2β2ϕα3β3 . . . ϕαnβn

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn ,

= 2nAα1α2...αnβ1β2...βn

(2n) ϕλ
α1
ϕλβ1ϕα2β2ϕα3β3 . . . ϕαnβn

−2Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn ,

= nAα1α2...αnβ1β2...βn

(2n) ϕλ
α1
ϕλβ1ϕα2β2ϕα3β3 . . . ϕαnβn

−Aα1α2...αnβ1β2...βn

(2n) ϕλ
λϕα1β1ϕα2β2ϕα3β3 . . . ϕαnβn . (A.9)

From Eq. (3.22), one can show that

∂αJ
α
N = ∂α

(
XAαα2...αnβ1β2...βn

(2n) ϕβ1ϕα2β2ϕα3β3 . . . ϕαnβn

)
,

= ∂α

(
Aαα2...αnβ1β2...βn

(2n) ϕµϕ
µϕβ1ϕα2β2ϕα3β3 . . . ϕαnβn

)
,

= Aαα2...αnβ1β2...βn

(2n) ∂α (ϕµϕ
µϕβ1)ϕα2β2ϕα3β3 . . . ϕαnβn ,

= Aαα2...αnβ1β2...βn

(2n) (2ϕµϕ
µ
αϕβ1 + ϕµϕ

µϕαβ1)ϕα2β2ϕα3β3 . . . ϕαnβn ,

= 2Aαα2...αnβ1β2...βn

(2n) (ϕµϕ
µ
αϕβ1)︸ ︷︷ ︸

α↔β1

ϕα2β2ϕα3β3 . . . ϕαnβn

+Aαα2...αnβ1β2...βn

(2n) (ϕµϕ
µϕαβ1)ϕα2β2ϕα3β3 . . . ϕαnβn ,

= 2Aαα2...αnβ1β2...βn

(2n)

(
ϕαϕµϕ

µ
β1
ϕα

)
ϕα2β2ϕα3β3 . . . ϕαnβn︸ ︷︷ ︸

LGal,2
N

+Aαα2...αnβ1β2...βn

(2n) (ϕµϕ
µϕαβ1)ϕα2β2ϕα3β3 . . . ϕαnβn︸ ︷︷ ︸
LGal,3
N

,

= 2LGal,2
N + LGal,3

N . (A.10)
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Considering the first term on the right-hand side of Eq. (3.27), we can obtain

−δα1
β1
δ
α2α3...αn+1

β2β3...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
= −δα2α3...αn+1

β2β3...βn+1
ϕα1ϕ

α1︸ ︷︷ ︸
α1→α

ϕβ2
α2
. . . ϕβn+1

αn+1
,

= − δ
α2α3...αn+1

β2β3...βn+1
ϕαϕ

αϕβ2
α2
. . . ϕβn+1

αn+1︸ ︷︷ ︸
β2β3...βn+1→β1β2...βn︸ ︷︷ ︸
α2α3...αn+1→α1α2...αn

,

= −δα1α2...αn

β1β2...βn
ϕαϕ

αϕβ1
α1
. . . ϕβn

αn
,

= A α1α2...αn

(2n) β1β2...βn
ϕαϕ

αϕβ1
α1
. . . ϕβn

αn
,

= XA α1α2...αn

(2n) β1β2...βn
ϕβ1
α1
. . . ϕβn

αn
,

= LGal,3
N . (A.11)

Considering the second term on the right-hand side of Eq. (3.27), starting at i = 2 we

now obtain

δα1
β2
δ
α2α3...αn+1

β1β3...βn+1
ϕα1ϕ

β1ϕβ2
α2
. . . ϕβn+1

αn+1
= δ

α2α3...αn+1

β1β3...βn+1
ϕβ2ϕ

β1ϕβ2
α2︸ ︷︷ ︸

β2→λ

. . . ϕβn+1
αn+1

,

= δ
α2α3...αn+1

β1β3...βn+1
ϕλϕ

β1ϕλ
α2
. . . ϕβn+1

αn+1︸ ︷︷ ︸
β1β3...βn+1→β1β2...βn︸ ︷︷ ︸
α2α3...αn+1→α1α2...αn

,

= δα1α2...αn

β1β2...βn
ϕλϕ

β1ϕλ
α1
ϕβ2
α2
. . . ϕβn

αn
,

= −A α1α2...αn

(2n) β1β2...βn
ϕλϕ

β1ϕλ
α1
ϕβ2
α2
. . . ϕβn

αn
,

= −LGal,2
N . (A.12)
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At i = 3, it yields

−δα1
β3
δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕα1ϕ

β1ϕβ2
α2
ϕβ3
α3
. . . ϕβn+1

αn+1

= − δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕβ3ϕ

β1ϕβ2
α2
ϕβ3
α3︸ ︷︷ ︸

β3→λ

ϕβ4
α4
. . . ϕβn+1

αn+1
,

= − δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕλϕ

β1ϕβ2
α2
ϕλ
α3︸ ︷︷ ︸

α2↔α3

ϕβ4
α4
. . . ϕβn+1

αn+1
,

= δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕλϕ

β1ϕλ
α2
ϕβ2
α3
ϕβ4
α4
. . . ϕβn+1

αn+1
,

= δ
α2α3α4...αn+1

β1β2β4...βn+1
ϕλϕ

β1ϕλ
α2
ϕβ2
α3
ϕβ4
α4
. . . ϕβn+1

αn+1︸ ︷︷ ︸
β1β2β4...βn+1→β1β2β3...βn︸ ︷︷ ︸
α2α3α4...αn+1→α1α2α3...αn

,

= δα1α2...αn

β1β2...βn
ϕλϕ

β1ϕλ
α1
ϕβ2
α2
ϕβ3
α3
. . . ϕβn

αn
,

= −A α1α2...αn

(2n) β1β2...βn
ϕλϕ

β1ϕλ
α1
ϕβ2
α2
. . . ϕβn

αn
,

= − LGal,2
N . (A.13)



APPENDIX B CALCULATIONFORTHECORRECTTION

TERMS

To search for the suitable correction terms, let us start with the generalized La-

grangian Eq. (3.44) that is changed all partial derivatives as covariant derivatives.

Ln{f} = f(ϕ,X)× LGal,3
N=n+2

= f(ϕ,X)
(
XAα1α2...αnβ1β2...βn

(2n)

)
ϕα1β1ϕα2β2 . . . ϕαnβn . (B.1)

This is the covariant generalized Galileons. If the coefficients f do not depend on ϕ,

this is the covariant Galileons or the extended Galileons. Considering the variation with

respect to ϕ, it is expressed as

δLn{f} = δ [Xf(ϕ,X)]Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

+Xf(ϕ,X)Aα1α2...αnβ1β2...βn

(2n) δ (ϕα1β1ϕα2β2 . . . ϕαnβn) . (B.2)

Considering the first term in this equation, we obtain

δ [Xf(ϕ,X)]Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

= fδ
(
ϕλϕ

λ
)
Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

+ϕλϕ
λ (δf)Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn ,

= 2f
(
ϕλ∇λδϕ

)
Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

+ϕλϕ
λ (f,ϕδϕ+ f,XδX)Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn ,

= 2f
(
ϕλ∇λδϕ

)
Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

+ϕλϕ
λf,ϕδϕAα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

+2ϕλϕ
λf,X (ϕρ∇ρδϕ)Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn . (B.3)

After performing integration by parts and paying attention only on the dangerous terms,
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we obtain

δ [Xf(ϕ,X)]Aα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

∼ −2∇λ

(
ϕλfAα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

)
δϕ

−2∇ρ

(
ϕλϕ

λf,Xϕ
ρAα1α2...αnβ1β2...βn

(2n) ϕα1β1ϕα2β2 . . . ϕαnβn

)
δϕ ,

∼ −2ϕλfAα1α2...αnβ1β2...βn

(2n) ∇λ (ϕα1β1ϕα2β2 . . . ϕαnβn) δϕ

−2ϕλϕ
λf,Xϕ

ρAα1α2...αnβ1β2...βn

(2n) ∇ρ (ϕα1β1ϕα2β2 . . . ϕαnβn) δϕ︸ ︷︷ ︸
ρ↔λ

,

∼ −2 (f +Xf,X)ϕ
λAα1α2...αnβ1β2...βn

(2n) ∇λ (ϕα1β1ϕα2β2 . . . ϕαnβn) δϕ ,

∼ −2n (f +Xf,X)ϕ
λAα1α2...αnβ1β2...βn

(2n) ∇λ (ϕα1β1) ϕα2β2 . . . ϕαnβnδϕ . (B.4)

For the second term in Eq. (B.2), we obtain

Xf(ϕ,X)Aα1α2...αnβ1β2...βn

(2n) δ (ϕα1β1ϕα2β2 . . . ϕαnβn)

= nXf(ϕ,X)Aα1α2...αnβ1β2...βn

(2n) δ (∇β1∇α1δϕ)ϕα2β2 . . . ϕαnβn . (B.5)

On performing twice integration by parts, the above expression can be given by

Xf(ϕ,X)Aα1α2...αnβ1β2...βn

(2n) δ (ϕα1β1ϕα2β2 . . . ϕαnβn)

= n∇α1∇β1

(
XfAα1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβn

)
δϕ ,

= n∇α1∇β1

(
XfAα1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβn

)
δϕ ,

= 2n∇β1 (Xf)A
α1α2...αnβ1β2...βn

(2n) ∇α1 (ϕα2β2 . . . ϕαnβn) δϕ︸ ︷︷ ︸
A

+n∇α1∇β1 (Xf)A
α1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ︸ ︷︷ ︸
B

+nXfAα1α2...αnβ1β2...βn

(2n) ∇α1∇β1 (ϕα2β2 . . . ϕαnβn) δϕ︸ ︷︷ ︸
C

. (B.6)
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Let us first consider the term A

A = 2n (n− 1)∇β1 (Xf)A
α1α2...αnβ1β2...βn

(2n) ∇α1 (ϕα2β2) . . . ϕαnβnδϕ ,

∼ ∇α1 (ϕα2β2) ,

∼ ∇α1 (∇β2∂α2ϕ) ,

∼ ∂α1

(
∂β2∂α2ϕ+ Γλ

α2β2
∂λϕ
)
,

∼ ∂α1∂β2∂α2ϕ . (B.7)

The above term, ∂α1∂β2∂α2ϕ, is eliminated byA
α1α2...αnβ1β2...βn

(2n) . Therefore, there are no

higher order derivatives in the term A. We now consider the term B in Eq. (B.6)

B = n∇α1∇β1 (Xf)A
α1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ ,

= n∇α1 [(f +Xf,X)∇β1X +Xf,ϕ∇β1ϕ]A
α1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ ,

∼ n (f +Xf,X)∇α1∇β1

(
ϕλϕ

λ
)
Aα1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ ,

∼ 2n (f +Xf,X)∇α1

(
ϕλϕλβ1

)
Aα1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ ,

∼ 2n (f +Xf,X)
(
ϕλϕλβ1α1

)
Aα1α2...αnβ1β2...βn

(2n) ϕα2β2 . . . ϕαnβnδϕ . (B.8)

This term is canceled by Eq. (B.4). Therefore, the dangerous terms arising fromEq. (B.2),

remain only the term C coming from Eq. (B.6). So far Eq. (B.2) yields

δLn{f} ∼ nXfAα1α2...αnβ1β2...βn

(2n) ∇α1∇β1 (ϕα2β2 . . . ϕαnβn) δϕ ,

∼ n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) ∇α1 [(∇β1ϕα2β2)ϕα3β3 . . . ϕαnβn ] δϕ ,

∼ n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇β1ϕα2β2)∇α1 (ϕα3β3 . . . ϕαnβn) δϕ

+n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇α1∇β1ϕα2β2)ϕα3β3 . . . ϕαnβnδϕ ,

∼ n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇β1ϕα2β2)∇α1 (ϕα3β3 . . . ϕαnβn) δϕ

+n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇α1∇β1ϕα2β2)ϕα3β3 . . . ϕαnβnδϕ .

(B.9)

Based on the similar consideration, the first term in above equation includes the terms,

i.e., ∇β1ϕα2β2 that is the same as Eq. (B.7). Thus there are no third order derivatives in
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the first term. We then get

δLn{f} ∼ n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇α1∇β1ϕα2β2)ϕα3β3 . . . ϕαnβnδϕ ,

∼ n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) (∇α1∇β1∇β2∇α2ϕ)ϕα3β3 . . . ϕαnβnδϕ .

(B.10)

Since a generic tensor can be written in terms of symmetric and antisymmetric tensor as

Tβ1β2 = T(β1β2) + T[β1β2] , (B.11)

one can write

∇β1∇β2ϕ = ϕ(β1β2) + ϕ[β1β2] ,

=
1

2
(∇β2∇β1 +∇β1∇β2)ϕ+

1

2
(∇β2∇β1ϕ−∇β1∇β2)ϕ . (B.12)

Replacing the above relation into Eq. (B.10), we obtain

δLn{f} ∼ 1

2
n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) ∇α1 [∇β1∇β2 ]ϕα2ϕα3β3 . . . ϕαnβnδϕ .

(B.13)

We know that the Riemann tensor can be defined via the relation

[∇α,∇β]ϕλ = −Rσ
λαβϕσ = −Rσλαβϕ

σ = Rλσαβϕ
σ . (B.14)

Then Eq. (B.13) takes the form

δLn{f} ∼ 1

2
n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) ∇α1 (Rα2λβ1β2)ϕ
λϕα3β3 . . . ϕαnβnδϕ .

(B.15)

Applying the Bianchi identity, we have

∇λRαβρσ +∇βRλαρσ +∇αRβλρσ = 0 . (B.16)
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The term,∇α1Rα2λβ1β2 , in Eq. (B.15) can be written as

∇α1Rα2λβ1β2 = −∇λRα1α2β1β2 −∇α2Rλα1β1β2︸ ︷︷ ︸
α2↔α1

,

= −∇λRα1α2β1β2 +∇α1Rλα2β1β2 ,

= −∇λRα1α2β1β2 −∇α1Rα2λβ1β2 ,

∇λRα1α2β1β2 = −1

2
∇α1Rα2λβ1β2 . (B.17)

Inserting this relation into Eq. (B.15), we obtain

δLn{f} ∼ −1

4
n (n− 1)XfAα1α2...αnβ1β2...βn

(2n) ∇λRα1α2β1β2ϕ
λϕα3β3 . . . ϕαnβnδϕ .

(B.18)

Starting with the above equation, one can add the correction term, Cr, that its variation

with respect to ϕ gives the term that cancels out Eq.(B.15). Then we choose

Cr =
[
−1

8
n (n− 1)

∫ X

X0

f(ϕ,X1)X1dX1

]
Aα1...αnβ1...βn

(2n) Rα1α2β1β2ϕα3β3 . . . ϕαnβn .

(B.19)

where X0 is a constant.

The variation of Cr with respect to ϕ is

δCr = −1

8
n (n− 1) f(ϕ,X)X (δX)Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα3β3 . . . ϕαnβn︸ ︷︷ ︸
C1

−1

8
n (n− 1)

∫ X

X0

f(ϕ,X1)X1dX1Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2δ (ϕα3β3 . . . ϕαnβn)︸ ︷︷ ︸
C2

.

(B.20)

Considering the C1 term, it reads

C1 = −1

8
n (n− 1) fX

(
2ϕλ∇λδϕ

)
Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα3β3 . . . ϕαnβn ,

= −1

4
n (n− 1) fX

(
ϕλ∇λδϕ

)
Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα3β3 . . . ϕαnβn .

(B.21)
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After integration by parts, it leads to

C1 =
1

4
n (n− 1)∇λ

(
fXϕλAα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα3β3 . . . ϕαnβn

)
δϕ ,

∼ 1

4
n (n− 1) fXϕλAα1α2...αnβ1β2...βn

(2n) ∇λ (Rα1α2β1β2)ϕα3β3 . . . ϕαnβnδϕ

+
1

4
n (n− 1) fXϕλAα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2∇λ (ϕα3β3 . . . ϕαnβn) δϕ .

(B.22)

We can see that the second term in above expression cancels with Eq. (B.18). However,

there is still the third order derivative of ϕ. To eliminate this third order derivative, we

write the term C2 in Eq. (B.20) as

C2 =

∫ X

X0

DndX1Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2 (∇β3∇α3δϕ)ϕα4β4 . . . ϕαnβn ,

(B.23)

where Dn ≡ −1
8
n (n− 1) (n− 2) f(ϕ,X1)X1.

After twice integration by parts, it yields

C2 = ∇α3∇β3

[∫ X

X0

DndX1Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα4β4 . . . ϕαnβn

]
δϕ ,

∼ Pn∇α3∇β3

(
ϕλϕ

λ
)
Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2ϕα4β4 . . . ϕαnβnδϕ

+

∫ X

X0

DndX1Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2∇α3∇β3 (ϕα4β4 . . . ϕαnβn) δϕ ,

∼ P̃nϕ
λAα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2∇λ (ϕα4β4 . . . ϕαnβn) δϕ

+

∫ X

X0

DndX1Aα1α2...αnβ1β2...βn

(2n) Rα1α2β1β2∇α3∇β3 (ϕα4β4 . . . ϕαnβn) δϕ ,

(B.24)

where Pn ≡ −1
8
n (n− 1) (n− 2) f(ϕ,X)X and P̃n ≡ −1

4
n (n− 1) f(ϕ,X)X .

From the above result, the first term is canceled with the second term in C1. However,

the fourth order derivative still appears from the second term of the above result. In or-

der to eliminate the fourth order derivative terms, we have to add other correction term.

Fortunately, the fourth order terms do not appear for n = 2 and n = 3 which correspond

to quartic and quintic Lagrangians of Galileon models. Therefore, the additional correc-

tion terms are unneeded. In order to construct the covariantized Galileons for the quartic
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Lagrangian, we have to combine Eq. (3.44) and Eq. (B.19) as

L4 = Ln=2{f}+ Cr ,

=

[
−1

4

∫ X

X0

f(ϕ,X1)X1dX1

]
Aα1α2β1β2

(2n=4) Rα1α2β1β2

−f(ϕ,X)X
(
2ϕ2 − ϕαβϕ

αβ
)
,

=

[
−1

4

∫ X

X0

f(ϕ,X1)X1dX1

]
A α1α2

(2n=4) β1β2
R β1β2

α1α2

−f(ϕ,X)X
(
2ϕ2 − ϕαβϕ

αβ
)
,

=

[
1

4

∫ X

X0

f(ϕ,X1)X1dX1

]
δα1α2
β1β2

R β1β2
α1α2

−f(ϕ,X)X
(
2ϕ2 − ϕαβϕ

αβ
)
,

=

[
1

4

∫ X

X0

f(ϕ,X1)X1dX1

] (
δα1
β1
δα2
β2

− δα1
β2
δα2
β1

)
R β1β2

α1α2

−f(ϕ,X)X
(
2ϕ2 − ϕαβϕ

αβ
)
,

=

[
1

2

∫ X

X0

f(ϕ,X1)X1dX1

]
R− f(ϕ,X)X

(
2ϕ2 − ϕαβϕ

αβ
)
. (B.25)

We suppose that

G4(ϕ,X) ≡ 1

2

∫ X

X0

f(ϕ,X1)X1dX1 , (B.26)

so that

G4,X ≡ 1

2
f(ϕ,X)X . (B.27)

According to the above two equations, Eq. (B.25) can be written as

LH
4 = G4(ϕ,X)R− 2G4,X

(
2ϕ2 − ϕαβϕ

αβ
)
. (B.28)

This is the quartic Horndeski Lagrangian. Similarly, for the quintic Lagrangian, we now
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obtain

L5 = Ln=3{f}+ Cr ,

=

[
−3

4

∫ X

X0

f(ϕ,X1)X1dX1

]
Aα1α2α3β1β2β3

(2n=6) Rα1α2β1β2ϕα3β3

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

=

[
−3

4

∫ X

X0

f(ϕ,X1)X1dX1

]
A α1α2α3

(2n=6) β1β2β3
R β1β2

α1α2
ϕβ3
α3

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

=

[
3

4

∫ X

X0

f(ϕ,X1)X1dX1

]
δα1α2α3
β1β2β3

R β1β2
α1α2

ϕβ3
α3

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

=

[
3

4

∫ X

X0

f(ϕ,X1)X1dX1

] (
δα1
β1
δα2
β2
δα3
β3

− δα1
β1
δα2
β3
δα3
β2

+ δα1
β3
δα2
β1
δα3
β2

−δα1
β3
δα2
β2
δα3
β1

+ δα1
β2
δα2
β3
δα3
β1

− δα1
β2
δα2
β1
δα3
β3

)
R β1β2

α1α2
ϕβ3
α3

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

=

[
3

4

∫ X

X0

f(ϕ,X1)X1dX1

] (
2R2ϕ− 4Rαβϕ

αβ
)

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
−f(ϕ,X)X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

=

[
3

∫ X

X0

f(ϕ,X1)X1dX1

](
1

2
R2ϕ−Rαβϕ

αβ

)
−f(ϕ,X)X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

= −
[
3

∫ X

X0

f(ϕ,X1)X1dX1

](
Rαβ −

1

2
gαβR

)
ϕαβ

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
,

= −
[
3

∫ X

X0

f(ϕ,X1)X1dX1

]
Gαβϕ

αβ

−f(ϕ,X)X
(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
, (B.29)

where Gαβ ≡ Rαβ − 1
2
gαβR is Einstein tensor. Again, we suppose that

G5(ϕ,X) ≡ −3

∫ X

X0

f(ϕ,X1)X1dX1 , (B.30)

so that

G5,X ≡ −3f(ϕ,X)X . (B.31)
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From the above two equations, Eq. (B.29) can be written as

LH
5 = G5(ϕ,X)Gαβϕ

αβ +
1

3
G5,X

(
2ϕ3 − 32ϕϕαβϕ

αβ + 2ϕλαϕ
αβϕλ

β

)
.

(B.32)



APPENDIX C CONSTRAINT EQUATIONS IN TERMS OF

DIMENSIONLESS VARIABLES

In terms of the dimensionless variables, we can write Eq. (4.49) as

0 =
1

2c4 + vn4
r

[
v−n4
r

(
v−n2−n6
r (2c4 + vn4

r )

(
2c4n4v

n2+n6
r

(
zrxλ

(
− Ḣ

H2

+zrxλ − 2)− xλz
′
r + n4x

2
λ

)
− x2rv

n4
r (c6v

n2
r − c2v

n6
r )
)

+(2c4 + vn4
r )

(
c4(4

Ḣ

H2
+ 6) +

(
2
Ḣ

H2
+ Ωγ + 3

)
vn4
r

)
+c4n4z

2
rx

2
λ (c4 (n4 − 4) + 2 (n4 − 1) vn4

r )− 4c4n
2
4zrx

2
λ (2c4 + vn4

r )

−c4n4xλ (2c4 + vn4
r ) (zrxλ − 4))] , (C.1)

where vr ≡ yr/x
2
r .

Eq. (4.50) can be written in terms of the dimensionless variables as

0 =
1

(2c4 + vn4
r )2

[
v−n2−n4−n6
r

(
−c24vn4

r

(
−4c6 (3n4 − 2n6 − 1)x2rv

n2
r

−4c2 (2n2 − 3n4 + 1)x2rv
n6
r + 3vn2+n6

r

(
4n3

4x
2
rx

2
λ + 4n4 (2xrxλ

−2zrxλ + Ωγ − 2) + n2
4xλ (xr (8− 2zrxλ) + zr (zrxλ + 4)) + 12

))
−2c4v

2n4
r

(
−c6 (3n4 − 4n6 − 2)x2rv

n2
r − c2 (4n2 − 3n4 + 2)x2rv

n6
r

+3vn2+n6
r (n4 (xrxλ − zrxλ + Ωγ − 1) + 3)

)
− 6c34v

n2+n6
r

(
n3
4x

2
λ (−4xrzr

+4x2r − z2r
)
+ n2

4xλ (xr (8− 2zrxλ) + zr (zrxλ + 4))

+4n4 (xλ (xr − zr)− 1) + 4) + v3n4
r

(
−c6 (2n6 + 1)x2rv

n2
r

+c2 (2n2 + 1)x2rv
n6
r − 3vn2+n6

r

))]
+ 3 (Ωm + Ωγ) . (C.2)

This equation can be used to express Ωm in terms of the other dimensionless variables.

Eq. (4.55) can be written in terms of the dimensionless variables as

0 = Ẽ1 + Ẽ2 . (C.3)
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where Ẽ1 and Ẽ2 are respectively written as

Ẽ1 = v−n2−4n4−n6
r

(
c34
(
−6n4

4

(
8x3r − 18zrx

2
r + 9z2rxr + z3r

)
x3λv

n2+n6
r

+3n3
4x

2
λ

(
8xλx

3
r − 96x2r − 3zr (zrxλ − 24)xr + z2r (zrxλ + 12)

)
vn2+n6
r

+12n4

(
c6x

2
r ((2n6 − 1)xrxλ − (2n6zr + zr)xλ + 8) vn2

r

−c2x2r ((2n2 − 1)xrxλ − (2n2zr + zr)xλ + 8) vn6
r

+(xr − zr) (Ωγ − 3)xλv
n2+n6
r

)
− 12n2

4xλ
(
c6x

2
r (2xr + zr) v

n2
r

−c2x2r (2xr + zr) v
n6
r +

(
xλ (zrxλ − 4)x2r − 2 (Ωγ + 2zrxλ − 7)xr

+zr (−Ωγ + 2zrxλ + 4)) vn2+n6
r

)
+ 8xr

(
3vn2+n6

r (Ωm + Ωγ)Qλxλ

−xr
(
c6v

n2
r

(
2 (xr − zr)xλn

2
6 + (xrxλ − 3zrxλ + 6)n6 − zrxλ + 6

)
−c2vn6

r

(
2 (xr − zr)xλn

2
2 + (xrxλ − 3zrxλ + 6)n2 − zrxλ + 6

))))
vn4
r

−3c24
(
8n4

4x
2
r (xr − zr)x

3
λv

n2+n6
r − 2n3

4x
2
λ

(
xλx

3
r + (zrxλ − 16)x2r + 8zrxr

+2z2r
)
vn2+n6
r + n4

(
−4c6x

2
r ((2n6 − 1)xrxλ − (2n6zr + zr)xλ + 8) vn2

r

+4c2x
2
r ((2n2 − 1)xrxλ − (2n2zr + zr)xλ + 8) vn6

r − 2 (xr − zr) (2Ωγ − 3)xλv
n2+n6
r

)
+ n2

4xλ
(
6c6x

2
rzrv

n2
r − 6c2x

2
rzrv

n6
r +

(
xλ (zrxλ − 4)x2r + (8− 4zrxλ)xr

+2zr (−3Ωγ + zrxλ + 5)) vn2+n6
r

)
− 4xr

(
3vn2+n6

r (Ωm + Ωγ)Qλxλ

−xr
(
c6v

n2
r

(
2 (xr − zr)xλn

2
6 + (xrxλ − 3zrxλ + 6)n6 − zrxλ + 6

)
−c2vn6

r

(
2 (xr − zr)xλn

2
2 + (xrxλ − 3zrxλ + 6)n2 − zrxλ + 6

))))
v2n4
r

− 3c4
(
2 (xr − zr)

(
−c6x2rvn2

r + c2x
2
rv

n6
r + (Ωγ − 1) vn2+n6

r

)
xλn

2
4

+
(
−c6x2r ((2n6 − 1)xrxλ − (2n6zr + zr)xλ + 8) vn2

r + c2x
2
r ((2n2 − 1)xrxλ ,

(C.4)
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Ẽ2 = − (2n2zr + zr)xλ + 8) vn6
r − (xr − zr) (Ωγ − 1)xλv

n2+n6
r

)
n4

− 2xr
(
3vn2+n6

r (Ωm + Ωγ)Qλxλ − xr
(
c6v

n2
r

(
2 (xr − zr)xλn

2
6

+(xrxλ − 3zrxλ + 6)n6 − zrxλ + 6)− c2v
n6
r

(
2 (xr − zr)xλn

2
2

+(xrxλ − 3zrxλ + 6)n2 − zrxλ + 6)))) v3n4
r + xr

(
3vn2+n6

r (Ωm + Ωγ)Qλxλ

−xr
(
c6v

n2
r

(
2 (xr − zr)xλn

2
6 + (xrxλ − 3zrxλ + 6)n6 − zrxλ + 6

)
−c2vn6

r

(
2 (xr − zr)xλn

2
2 + (xrxλ − 3zrxλ + 6)n2 − zrxλ + 6

)))
v4n4
r

+6c44n4xλ
(
4n2

4x
2
λx

3
r + 2n4xλ

(
2zrxλn

2
4 − 2 (zrxλ + 8)n4 − zrxλ + 4

)
x2r

−
(
12z2rx

2
λn

3
4 + zrxλ (3zrxλ − 40)n2

4 − 8 (zrxλ − 4)n4 + 4
)
xr

− (n4 − 1) zr (n4zrxλ − 2) 2
)
vn2+n6
r

)
. (C.5)

To compute the equation for zr, we substitute Ωm solved from Eq. (C.2) into the above

equation. the resulting equation can be written in the form

b3z
3
r + b2z

2
r + b1zr + b0 = 0 , (C.6)

where b0, b1, b2 and b3 are complicated funtions of the dimensionless variables ofΩγ, xr, yr

and xλ. Using Eq. (C.6), we can compute the expression for zr in the form

zr 1 = −
3
√
2 (3b1b3 − b22)

3b3
3
√
∆

+
3
√
∆

3 3
√
2b3

− b2
3b3

, (C.7)

zr 2 =

(
1 + i

√
3
)
(3b1b3 − b22)

3(22/3b3
3
√
∆)

−
(
1− i

√
3
)

3
√
∆

6 3
√
2b3

− b2
3b3

, (C.8)

zr 3 =

(
1− i

√
3
)
(3b1b3 − b22)

3(22/3b3
3
√
∆)

−
(
1 + i

√
3
)

3
√
∆

6 3
√
2b3

− b2
3b3

, (C.9)

where∆ = −2b32+9b1b3b2−27b0b
2
3+
√

4 (3b1b3 − b22)
3 + (−2b32 + 9b1b3b2 − 27b0b23)

2.

The physically relevant solution is selected from the above solutions by the requirement

that zr becomes unity when xr = yr = 1,Ωγ = 0 and c2 as well as c6 are given by

Eqs. (4.66) and (4.67).
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