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ABSTRACT

In this thesis, we study cosmological scaling solutions in two cosmological mod-
els. We first consider the scaling solutions in the modified theory of gravity, and then
study this type of solution in the coupled dark energy model. The modified theory of gra-
vity used in our study is a subclass of Degenerate Higher-Order Scalar-Tensor (DHOST)
theory which satisfies gravitational wave constraints. The coupled dark energy model
used in our work is constructed from the general conformal transformation in which the
coefficient of the conformal transformation depends on both the scalar field and its ki-
netic term. Under this transformation, the action for the subclass of the DHOST theory

mentioned above is related to the Einstein-Hilbert action.

We use autonomous system to analyze the cosmic evolution. We study the DHOST
theory having the scaling solutions in which the Lagrangians have been derived in lit-
erature. To obtain the scaling solutions satisfying the cosmic acceleration at late time,
we assume coupling between a scalar degree of freedom in the DHOST theory and mat-
ter. In this model, the coupling term is inspired from simple conformal transformation.
We find that for some ranges of the parameters, both scaling and field dominated points
can be attractors. The deviation from the Einstein theory of gravity needs to be small to
prevent the density parameter of dark matter larger than unity. Similar to coupled dark

energy model in Einstein gravity, the background universe cannot evolve from radiation



domination through ¢-matter-dominated epoch (pMDE) towards acceleration epoch, the

coincidence problem in this DHOST model cannot be alleviated.

In the coupled dark energy model with general conformal coupling, we find that
the late-time scaling point can be an attractor, while MDE can be a saddle point for
some choices of parameters. In this model, the cosmic evolution from radiation domina-
tion through pMDE towards acceleration epoch can be realized. Therefore coincidence
problem can be alleviated. Based on our results, the coincidence problem cannot be alle-
viated in both DHOST theory and coupled dark energy model if coupling term is inspired
from conformal transformation. For the general conformal transformation, it is possible

to alleviate the coincidence problem.



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The General Relativity (GR) was proposed by Albert Einstein in 1915 [|1]. This
theory is a geometrical theory of gravity in four-dimensional spacetime that has changed
our viewpoint about nature of gravity. This theory successfully describes phenomena in
laboratory and Solar system, but cannot describe the acceleration of the present universe
without introducing mysterious form of energy that has a negative pressure called dark
energy. The simplest model of dark energy is cosmological constant. By putting a posi-
tive cosmological constant into the Einstein-Hilbert action, the acceleration of the present
universe can be realized. However, the value of cosmological constant is extremely fine-
tuned which is known as fine-tuning problem or cosmological constant problem. To
avoid the mentioned problem, dark energy has to evolve in time. However for evolving
dark energy models, there is the coincidence problem that questions the moment in the
cosmic history at which the accelerated expansion occurs [2]. The coincidence prob-
lem can be alleviated if the evolution of dark energy has suitable fixed points in phase
space [2, 3]. For alternative way, the accelerating universe can be achieved by assum-
ing that physics of gravity on large scale deviates from Einstein theory. These theories
are called the modified theory of gravity. The simplest modified theory of gravity can
be constructed by adding the scalar field into the action for gravity. These theories are
called scalar-tensor theories of gravity. The additional scalar field can be field of grav-
ity, if scalar field, ¢, couples non-minimally to Ricci scalar, R. This is a fundamental
construction of Brans Dickes theory. Besides non-minimally coupling between ¢ and
R, there is non-minimal derivative coupling between ¢ and curvature tensors. The most
general actions in four-dimensional spacetime for scalar-tensor theories containing both

forms of non-minimally coupling and having second order equations of motion (EOMs)



is Horndeski theory [4]. Because this theory contains up to second order derivative in
EOMs, it is free from Ostrogradsky instability. The simple example for such Lagrangians
are L < f(¢)Rand L o< G*¢,,,. The full Lagrangians of Horndeski theory will present
in section B.2.

In the modern view points, the Horndeski theory can be also reconstructed from
Galileon theory in four dimensions [5, 6]. However, in more general case, there also
exist viable theories which do not suffer from the Ostrogradsky instability even though
the corresponding field equations are higher order. It will be presented in section 3.3 that
this theory can be constructed by suitable combination of Galileon actions. This theory
is beyond Horndeski or GLPV theory [7]. Such theories have interesting consequences
for cosmology and astrophysics. In particular, it leads to a breaking of the Vainshtein
mechanism inside matter, which can modify the structure of nonrelativistic stars as well
as that of relativistic ones. Theories which the Lagrangians are degenerate, have been
studied. Although the equations of motion are higher order derivative, these theories
propagate at most three degrees of freedom without Ostrogradsky instability, because
extra degrees of freedom can be eliminated by constraints arising from degeneracy con-
ditions. These theories is Degenerate Higher-Order Scalar-Tensor (DHOST) theories in

which Horndeski and GLPV theories are included [§].

The detection of the gravitational wave (GW) emitted from neutron binary stars,
shows that the speed of gravitational waves, cgw, is the same as the speed of light (cjigh =
1) [9, 10]. This implies very restrictions on form of scalar-tensor theories in particular
DHOST theories. Hence, DHOST theories satisfying the constraint cqy = 1, have the

corresponding Lagrangians as [[11]

[PHOST _ p QO¢ + f(4)R + az3¢"9" ¢, 00

caw=1 —
+ % [48f,2)< = 8(f = Xfx)az — X2a§]¢“¢uu¢/\¢)‘y) (1.1)
+ 57 (b Xa) 0,076,

where P, (), f and a3 are arbitrary functions depending on scalar field, ¢ and X =



-V, 0V*¢. Theterms P, @), f ()R and o5 represent the Lagrangian of scalar field, the co-
efficient of cubic Galileon Lagrangian, non-minimally coupling term and the coefficient
of Ls in higher-order scalar-tensor Lagrangians respectively. R is four-dimensional
Ricci scalar. A subscript x denotes derivative with respect to X. Moreover, we have
used ¢, = V.0, 9, = V,V, 0 and O¢p =V, VH¢.

There are many attempts to study whether these theories are suitable as dark en-
ergy candidates [L1]. The scaling solutions during the matter dominated epoch and de
Sitter solutions at late time have been found without the cosmological constant, realizing
self-acceleration. The quasi-static perturbations around the self-accelerating solutions
are evaluated. It is shown that, for this theory the stricted constraints coming from astro-

physical objects and gravitational waves can be satisfied.

Besides the constraint on propagation speed, there is another constraint which
come from the requirement that GW in DHOST theories does not decay to dark energy
perturbations, i.e., graviton is stable [[12]. This constraint together with the constraint
on propagation speed of GW tightly constrain form of the Lagrangian for the DHOST

theories.

Scaling behaviour for the cosmic evolution is the interesting feature arising in
some models of dark energy and modified theories of gravity, because it is possible sce-
narios, among many others, that could lead to fixed points which become attractors for
some ranges of model parameters [13 14, 15, [16, 17, [18, 19, 20]. The scaling behaviour
is the constancy of the ratio between energy density of dark energy and dark matter du-
ring some period of time. Since scaling behaviour could lead to fixed point corresponding
to matter domination and attractor corresponding to late-time acceleration that satisfies
the observations, the coincidence problem could be alleviated. The scaling point that
can represent the matter dominated epoch is the pMDE point in which there is a small
fraction of dark energy during matter domination. The coincidence problem could be

alleviated if the universe can evolve from radiation domination through MDE toward



acceleration epoch at late time.

Possible dark energy models having scaling behaviour can be constructed by as-
suming interaction between dark energy and dark matter [21], 22, 23, 24, 25]. Due to such
interaction, the ratio of the energy density of dark energy to that of dark matter can be
constant with time during the scaling regime. Possible models of coupled dark energy are
inspired from the frames transformation in theories of gravity. The interaction between
dark energy and cold dark matter (CDM) can be inspired from the conformal transfor-

mation [26, 27, 28, 29, 30] and disformal transformation [31, 32, 33, 34, 35, 36, 37].

Scaling solutions in the DHOST theories which satisfy the above two constraints
on GW have been discussed. Demanding the existence of the scaling solution, the suit-
able form of the Lagrangians has been derived [38]. The scaling solutions can satisfy the
cosmic acceleration at late time if the coupling between a scalar degree of freedom in the
DHOST theory and dark matter is assumed. In this model, the coupling term between
the scalar degree of freedom and dark matter is inspired from conformal transformation
in which the coefficient of the conformal transformation depends only on scalar field.
The evolution of background universe for this class of DHOST theories is studied in
this thesis [39]. Our results show that, for this DHOST model, cosmic evolution cannot
evolve from radiation domination through ®MDE towards acceleration epoch. This be-
haviour is similar to that of coupled dark energy model in Einstein gravity [23] with the
same coupling between dark components as in the DHOST model considered here. This
implies that the coincidence problem cannot be alleviated in this form of coupling. The
sequence of cosmic evolution through suitable fixed points can be realized in the coupled
dark energy model in which the coupling term consists of Z = u*d,,¢, where such term
can lead to pure momentum transfer between the dark components [25]. Here, u* is a
four velocity of CDM and 0,,¢ is a derivative of scalar field. We will show in this thesis
that the proper sequence of cosmic evolution can be achieved in the model of coupled

dark energy inspired from the general conformal transformation in which the coefficient



of the transformation depends on both the scalar field and its kinetic term [40].

1.2 Objectives
1.2.1 To study background evolution of the universe in DHOST theories with

scaling solutions.

1.2.2 To study cosmic evolution in coupled dark energy model with general con-

formal coupling.

1.3 Frameworks
The scope of this work is to perform dynamical analysis for DHOST theories with
scaling solutions and coupled dark energy model with general conformal coupling. The

cosmic evolutions based on the fixed points found in the analysis are discussed.



CHAPTER 1I

FUNDAMENTAL COSMOLOGY

2.1 The Einstein Theory of Gravity

Let us start from the Einstein-Hilbert action in the form

1
SEH = —F d4.’L'\/—gR, (21)

2K2
where k = v/81G = 1/M,,, G is Newton’s gravitational constant, )/, is reduced Planck
mass, g is a determinant of the metric tensor g,3, R is the Ricci scalar defined by R =

g*? R,p, and R,z is the Ricci tensor defined by
Rag = 0al) — O\s + Ty — Tl - (2.2)
The Christoffel symbol, T'*, 5 can be computed by the relation
A 1 Ap
r aBf — ag (aﬁgap + aagﬁp - apgaﬁ) ) (23)

where ¢** is the inverse of metric tensor. In order to describe matter in gravity, we add a

matter action to the above action. Now we have

S = SEH +Sm = /d4x\/__g{2_,l<:2R+£m [gaﬁvw]} ’ (24)

where 7/ denotes the matter field. Using the variational method with respect to g®”, it

follows that

0S =05Sgn + 65, = /d4x {%5 (V—=9R) + 5;—&5 (V=9Lm) 590‘5} . (29

The energy-momentum tensor, 77,5 is defined by

2 0(/—9Lnm 2 6(/—9Ln
Ts = — ( e ) or o8 = (V=9Lm) (2.6)
V=g  0g° V=9 0gap
Considering the variation of the Einstein-Hilbert action in Eq. (2.), we obtain
1
0Spn =55 [ d' 0V =99’ Rag + V=969 Rag + v/ =99*P6Rap p . (2.7)

(551 552 65’3



Using the relation
1
V=9 = =5V=990309"" (2.8)

the first and second terms (657 and 6.5, ) in Eq. (2.7) can be written as

1
051+ 05 = 2 ) d*a/— { aB — §ga5R} 5% . (2.9)

In order to calculate the expression of the last term (0.53), we need to derive the variation

of the Ricci tensor R, as follows

SRag = 0(0aI7hy — 5 + T, — T250%,)
= 0a007\ — OO 5 4 0T, I, + 1,017, — 017 5%, — [4500%,
= 0a017\ + 15,017, — T50T%, — (06015 — 015\, + 017 51%,)
= 0,617, + 19,017, — T400%, — [,,61% 4
— (0r0T7 5 — 6T\ I, + 017 51%, — I, 00% )

= Vaol"y, — VAol (2.10)
where 61 wp Can be written as
6T, = ; M (V50Gap + Vadgsy — V,00as) - (2.11)
Now we rewrite the 655 as

653 = 22 d*z/=gg™” [V 50T\ — Va4
— 5 [ VYL [T - g8,

1
= —/d4x\/—gvp [5§V55ga6 —gagg“pvuégaﬁ} ,

2kK2
= 2 — d'x/=gV £,
= ﬁ dS3\/__9§p”p , (2.12)

where £” = 62V 369" — go39"*V ,,6g*” is a unit vector normal to hypersurface enclosing
aVpog 9as9 )

entire spacetime. The quantity £7n, in the last line is evaluated on the hypersurface.



Hence, the term in the above equation corresponds to a boundary contribution at infinity
which can be set to zero by demanding V36g” = 0 in stead of 6g*° = 0. Finally, we
obtain the Einstein field equation as

1
Rag — §ga5R = Ga/j = /€2Ta5, (213)

where G,z is Einstein tensor which represents the gravitational interaction in terms of
the spacetime curvature. This equation describes the dynamics of the gravity due to the

matter field. We take the covariant derivative of the above equation,
V.G = k*V, T . (2.14)

Since the left-hand side of this equation is zero because of the twice contracted Bianchi

identity, the right-hand side satisfies
V. T =0. (2.15)

This corresponds to the energy and momentum conservation of the total matter field. In
general, the energy-momentum tensors conserve if system is invariant under coordinate

transformation.

2.2 The Friedmann-Lemaitre-Robertson-Walker Metric

In cosmology, cosmological principle provides the symmetries of spacetime. Cos-
mological principle is the notion that the universe is homogeneous and isotropic in three-
dimensional space. Isotropy means that the universe we look at does not have special
direction. Homogeneity means the average density on large scales is about the same
everywhere in the universe. The metric that satisfies homogeneity and isotropy of the
three-dimensional space is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.
To ensure that the homogeneity and isotropy of the three-dimensional space are time
invariance, we write the time-dependent part of the spatial metric in the form of time-
dependent factor as

ds® = —dt* + a(t)*vdz'dy’ (2.16)



where a(t) is scale factor and +;; is metric tensor in spatial components. We start with a

three-dimensional space in Cartesian coordinate embedded in four-dimensional space
2+ + 220 = £R?, (2.17)

where R is a constant radius of a three-dimensional space in Cartesian coordinate and
« 1s the fourth component of Cartesian coordinate. The above equation corresponds to
flat space if R — oo, corresponds to 3-sphere if the sign in front of R? is positive and
becomes hyperboloid if the sign in front of R? is negative. From the above expression,
we can rewrite as

r?+ao® =4+R?, (2.18)

or

o=+ (—7"2 + RQ) , (2.19)
where 72 = 22 4+ y® + 2. The differentiation of Eq. (2.18) gives
2rdr = F2ada  — Dar = Fdo . (2.20)
«
Squaring both sides of the above equation, then we get
o 2
@dr =da”. (2.21)

Inserting Eq. (2.19) into the above equation, it yields

T2

+ _T2—Wdr2 = do”. (2.22)
From Eq. (2.16), we can write
ds* = —dt* + a*dI? (2.23)
where for Cartesian coordinate, we have
di* = da® + dy* + d2* £ do?, (2.24)

and for spherical coordinate, we have

di* = dr* + r2d0* 4 r*sin® 0d¢? + da® . (2.25)
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Inserting Eq. (2.22)) into the above equation, we then obtain
2
—7’2 :l: R2

2
. (1 4 T—) dr? + 12d6% + 2 sin® 0de?

di> = dr?* +r2d#* + r?sin® 6d¢* + dr? .

_7/-2 + RQ
+R?
= e Hrid +r7sin 0de’,

dr? 2 192 2 s 2 2
= ———— +r°df° + r*sin” Odo* . (2.26)

(1 o :1:T7222)

Considering the case of flat space R — oo, the above equation reduces to

di? = dr? 4+ r2d#* + r* sin® 6d¢* . (2.27)
Inserting the above expression into Eq. (2.23), we obtain the FLRW metric for spatially
flat space in spherical coordinate as

ds® = —dt* + a® [dr® 4+ r*d6* + r* sin® 6d¢?] (2.28)

where 9;; is the Kronecker delta. From the above equation, the dimension of radial coor-
dinate r is length while the scale factor a(t) is dimensionless. we also write the FLRW

metric for spatially flat space in Cartesian coordinate as
ds® = —dt* + a*6;da’da? . (2.29)

We now consider the case of &=R? corresponding to 3-sphere and hyperboloid.

For convenience we can rescale
,

o (2.30)
Eq. (2.26) becomes
) dr? 2002 | <2202
dl :m—i—r df” + 7 sin” 0do” , (2.31)
— kF

where [ = | /R and k = 1, —1 represent closed (spherical) space and open (hyperbolic)

space respectively. From Egs. (2.23) and (2.31]), the FLRW metric for curved space in

spherical coordinate yields

dr?

2 32 =02
ds* = —dt” +a(t) )

+ 72 (d6* + sin® 0d¢®) | | (2.32)
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where a(t) = a(t)R. From the above equation, the radial coordinate 7 is dimensionless

while the scale factor a(t) is length. In general, we can write Egs. (2.28) and (2.32) in

unified form by omitting tilde from a and r as

dr?

ds® = —dt? | ——
s + a(t) )

+ 7% (d6* + sin® 0d¢®) | (2.33)

where dimensionless £ = 1,0, —1 represent closed space, flat space and open space re-
spectively. If k& = 0, Eq. (2.33)) satisfies Eq. (2.28) which the scale factor a(t) is dimen-
sionless while dimension of radial coordinate r is length. If ¥ = 1 and —1, Eq. (2.33)
satisfies Eq. (2.32) which dimension of the scale factor a(t) is length while the radial
coordinate 7 is dimensionless. The metric tensor g, in Eq. (2.33) can be read as
a2

Jap = diag (—1, T2 a’r?, a*r? sin® 9) ) (2.34)

From the FLRW metric that we have mentioned, we can compute the Christoffel symbols

using Eq. (2.3). From the relation

9apg”" = 5., (2.35)

o

where 67 is kronecker delta, the inverse of metric tensor for the FLRW metric can be read

as
2
a 1

af _ s — — ) _
9" = diag <—1,(m) ,(@*r?) 1, (a*r? sin” 0) 1> : (2.36)

From Egs. (2.3), (2.34) and (2.36), we obtain the only non-zero Christoffel symbols as

Y, = ggij =Hg;, I'y = ga; = Ho!,

', = 1_]“—;702 Iy = —r(1—kr?), TYy=—r(1—kr?)sin’0,

11212 = 11221 = I1313 = 11331 = %7

%, = —sinficosd, I°,=T%,=cotd, (2.37)

where a dot denotes derivative with respect to time ¢, H = a/a is Hubble parameter and

index ¢ = 1, 2, 3 represented coordinate r, 8, ¢ respectively.
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From Eq. (2.2), we can compute the non-zero components of the Ricci tensor for

the FLRW metric as
R = -32, (2.38)
a
2ad + 2a* + 2k
= 2.39
Roy = 7°(2ad + 24 + 2k), (2.40)
Rss = 7*(2ad + 2a* + 2k) sin® 0, (2.41)

and we can obtain the Ricci scalar for the FLRW metric as

.. .2 k X k
R:6<g+a—+$>:(6H+12H2+6—). (2.42)

a? a?

From the observational data, the universe is quite spatially flat (k ~ 0) [41].

2.3 Perfect Fluid

The energy-momentum tensor 7,4 that satisfies the requirement of the isotropy

and homogeneity is in the form of a perfect fluid. It can be written as

Top = (p + p)uatip + Pgas , (2.43)

or

T35 = (p + p)uug + pog, (2.44)

where p and p are energy density and pressure of the fluid respectively and v, is four-
velocity of the fluid. To satisfy the homogeneity of space, both p and p are only functions
of time ¢. Moreover, the spatial components of the four-velocity have to vanish. In
the comoving flame, u* = (1,0,0,0). A perfect fluid is idealized fluid in which shear
stress, viscosity or heat transfer are neglected such that To; = T;p = T;; = 0. These

requirements satisfy the isotropy of space. Therefore, we can write Eqgs. (2.43) and (2.44)
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as
p 0 0 0 —p 0 0 0
0 0 0 0 p 00
T=| "M and T§ = . (2.45)
0 0 pga O 0 0pO
0 0 0 pgs3 0 00 p

Additionally, we can calculate the trace of T,,5 as
T=T;=—p+3p. (2.46)

The evolution of energy density can be calculated by the conservation equation for energy-
momentum tensor as follows

VoI5 =0. (2.47)

The component 5 = 0 of the above equation corresponds to the energy conservation
while 3 = i corresponds to the momentum conservation. Since 7¢ = 0 and 9;p = 0 in
the background universe, the evolution of the energy density is only considered by the
component 3 = 0

V.T9 =0. (2.48)

From the expression of the covariant derivative, the above equation can be written as

T + T2, T — T T2 =0. (2.49)

Because of the isotropy of the space, T = 0. Eq. (2.49) reduces to
ATy + T Ty =T T? = 0. (2.50)
Using Egs. (2.37) and (2.49), the above equation becomes

—p—Ho p—H&T! = 0,
p+HSp+ HT] = 0,

p+3H(p+p) = 0, (2.51)
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where 4! is trace of kronecker delta in three-dimensional space. This is the conservation
equation of the energy density for the perfect fluid in the spatially flat Friedmann uni-
verse. If we know the relation between p and p, we can solve Eq. (R.51)) in terms of p(a).
For the simple perfect fluid, the relation between p and p is characterized by the equation

of state

p=wp (2.52)

where w is the equation of state parameter. Substituting Eq. (2.52) into Eq. (2.51]), we
obtain
L (2.53)
p a

For simplicity, we set w to be a constant value. Then Eq. (2.53) yields
p o< a 30Fw) (2.54)

We know how the energy density changes when the universe expands or shrinks through
determining the equation of state parameter w. The universe is filled by a mixture of

different matters. The classification of such matters depends on w as follows.

e Matter, w = w,,, =0
For all forms of the matter, the pressure is much less than the energy density |p| <
p. The main matter components in the universe are dark matter and baryons which

are non-relativistic particles. The energy density of the matter obeys
Pm X a3, (2.55)
where the subscript ,,, denotes the matter.

e Radiation, w = w, = 1/3
The radiation is relativistic particles such as photons and neutrinos. For the radia-
tion, the energy density obeys
py X at, (2.56)

where the subscript -, denotes the radiation.
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e Dark energy, w = wy ~ —1
The dark energy is unknown form of energy with negative pressure. The dark
energy is introduced for describing the accelerated expansion of the universe at
late time. In general, w, is not necessarily constant. For simple cases, the dark
energy can be in the form of the cosmological constant A (wy = —1) or the scalar
field ¢. In the following notations, we denote the subscript 4 as the dark energy

and the subscript 5 as the cosmological constant.

Since scalar field is one of candidates for the dark energy, we will study the energy-
momentum tensor of the scalar field. For the scalar field in the gravity, its dynamics is

described by the action
S = / d'zy/=g (

where V' (¢) is the potential of the scalar field. We note that the metric signature is

1

5 Va®V©o — V((b)) : (2.57)

(—,+,+,+). The energy-momentum tensor for the scalar field can be derived from
Eq. (2.6) as

Tos = VadVs6 + (—%Vpcw”fb - V(¢)) Gas - (2.58)
The EOM of the scalar field can be calculated by varying Eq. (2.57) with respect to ¢.

Hence, we obtain the EOM of the scalar field as
VoV%% -V =0, (2.59)

where subscript , denotes derivative with respect to ¢. This equation can be also derived
from the conservation of the energy-momentum tensor for the scalar field. If the scalar
field is static and space independent, the energy-momentum tensor can mimic the energy-

momentum tensor for the cosmological constant,

T2 = —gasV (), (2.60)

where in this case V/(¢) is constant both space and time. In the Friedmann universe, the

scalar field satisfies the properties of perfect fluid. Hence, Eq. (2.44) and Eq. (2.58) give

1. 1.
Py = §¢2 +V(¢) and py = §¢2 —V(9), (2.61)
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where p4 and p, are the energy density and pressure of the scalar field respectively.

2.4 The Coupled Fluid

In general, the total energy-momentum tensor conserves according to diffeomor-
phism invariance. If all matters interact only through the gravity, the energy-momentum
tensor of all matters conserves separately. If matter interacts with other matter additional

to the gravity, the energy-momentum tensor of each coupled matter does not conserve,

VT = Q) (2.62)

where subscript (;) denotes matter involving the additional interaction. QB describes
the energy and momentum transfer between matter. In the Friedmann universe, Q( 1
corresponding to the momentum transfer has to vanish because of the isotropy of the

space. For component 3 = 0, Eq. (2.62)) gives

Ty = Q- (2.63)

where Q(()z) describes the energy transfer between matter. According to the conservation

of total energy-momentum tensor, we have
VT = Zv 75 + Zv Ta) =0, (2.64)

where index U runs over uncoupled matter. Since the energy-momentum tensors of un-

coupled matter separately conserved, e.g., VQT(O[‘]O) =0, Egs. (2.63) and (2.64) give

Z VoI =Y QU =0. (2.65)
1

Since the properties of the dark energy and the dark matter have not been clearly known,

one could assume direct interaction between them. From the above equation, we obtain
Q=@ =-Cu (2.66)
For this reason, Eq. (2.64) gives

VoI =Q and V. T3 =-Q. (2.67)



Hence, in the Friedmann universe, the above equations become

pm + 3H(pm + Pm) = Q

2.5 The Friedmann Equation

and  pgq + 3H(pg + pa) = —Q .

17

(2.68)

From the Einstein equation Eq. (2.13), the Ricci tensor, and the Ricci scalar for

the FLRW metric in Egs. (2.38) - (2.42)), we obtain for the component o3 = 00 as

2
GOO = K TOO .

By using Eqgs. 2.13) and ((2.45), the above equation can be written as

1
Roo — 5900R

.. .2 6k

6= + 6= + —

a a?  a?
a® 3k
e

3k
3H? + —
a

i 1
—3— — (-1
- =51

H2

2
k" Too ,

3 a?’

(2.69)

(2.70)

where p in this equation is the total energy density of all matters in the universe. For the

component a3 = 71, we obtain

Gii
1
Rii — —gii R
29
)
.. .9 @__ a CL_ %
(aa+2a —I—Qk) 2 g% <6 +6a2 + a2>
1 1/ a a’> 6k
. .9
(aa+2a +2/{:)¥—§<6— 6 2—1——2)
20 a? _k
a a? qa?
20 k
g2
a a?
2a H?

2
HT‘iia
2
’{7172727
2
R giip ,

2
KD,
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where p is the total pressure of all matters in the universe. Inserting Eq. (2.70) into
Eq. (2.71)), we obtain the acceleration equation written as
a K2

LT oo 2.72)

Usually, we call Eq. (2.70) as the Friedmann equation and call Eq. (2.72)) as the accelera-
tion equation. We use these equations to describe the evolution of the universe in which
the spacetime is FLRW metric and the matters are modeled by the perfect fluid. This is
the Friedmann universe. Using Eq. (2.52)), the above equation becomes

a 2

K
1+ 3w, 2.73
- 6p( + 3w,) (2.73)

where w, is the total equation of state parameter defined by

& _ p’y +pm +pd

: (2.74)
Pr p’y+pm +pd

T

From Eq. (2.73), we can see that the total equation of state parameter has to be less than
—1/3 to obtain an accelerated expansion of the universe. Differentiating Eq. (2.70) with

respect to time and using Eq. (2.53), we obtain

2

. K k
H= —Ep(1+wT)+$. (2.75)

Ignoring the last term, this equation tells us that if H < 0, H = 0 and H > 0, the
universe is dominated by the ordinary matter (w, > —1), contains only the cosmological

constant (w, = —1) and is dominated by the phantom field (w, < —1) respectively. The

Friedmann equation Eq. (.70) can be written as
Q4+ Q. =1, (2.76)

where

O ="" ) ad Q=" 2.77)
T = 3m2’ “ = aH)? '

Here €2, is the density parameter of the curvature, while (2 is the total density parameter

of all matters which can be written as

Q= Q)+ Qo+ Q, (2.78)
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where
2 I{2 2

and Q4 = mpd. (2.79)

Q“/ = Wp’y ’ Q, = mpm

From observations, the universe is filled with the radiation, matter and dark energy which
Qo ~0.01 , Qo~10"" | Q,0~0.31 and Qgo~ 0.69. (2.80)

The subscript o denotes the values at the present time. From observations, the present
universe is in the dark energy dominated epoch. However, the dark energy slowest decays
and the radiation fastest decays. Hence, when we look back in the past, we first see the
matter dominated epoch in which the energy density p,, > pq > p,. If we further look

back in the past, we will see the radiation dominated epoch in which p., > p,, > pa.



CHAPTER 1II

REVIEWS OF THE LITERATURE

3.1 Galileon Theories

Mostly, the fundamental theories in physics provide equations of motion up to
second-order time derivative of dynamical variables such as Newton’s law because their
Lagrangians depend on first-order time derivative of dynamical variables. In general,
if Lagrangian includes second-order time derivative of dynamical variables, the equa-
tions of motion become fourth-order time derivative of dynamical variables. This leads
to the Ostrogradsky instability because the corresponding Hamiltonian contains linear
conjugate momentum. However for some special forms of Lagrangians, the equations
of motion are still second order differential equation even though second order deriva-
tives appear in the Lagrangians. The theories which have such properties are for example

Galileon theory and some of its extension.

Galileon theories are the most general scalar field theories in flat Minkowski
spacetime which action contains second order time derivative of scalar field but can pro-
vide the equations of motion up to second order derivative of scalar field. The theories

have under the following transformation [42]
o(x) — o(z) + b2t +c, (3.1)
where 0, and c are arbitrary constants. It follows from the above transformation that

Op — G+ by, (3.2)

where ¢, = 0,,¢ in flat Minkowski spacetime.

This symmetry suggests that the the Lagrangians of Galileon theories are inva-

riant under the above transformation, i.e.,

¢;w — au (be + bu) = 925!“’ ) (3.3)
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where ¢, = 0,0,¢. Let us first start our consideration from the case where the La-

grangian depends on the generic function of ¢,,,, as

'C = 'C (gbv ¢u7 ¢MV) ) (34)

so that the Euler-Lagrange equation is

oL oL oL
9 8,%97% + auay—a(% =

Generally if Lagrangians depend on second order derivative of dynamical variables, the

0. (3.5)

EOMSs become fourth order derivative of dynamical variables. This leads to the Ostro-
gradsky instability. However for some special forms of Lagrangian, the EOMs are still
second order differential equation even though second order derivatives appear in the
Lagrangians. To prove the above viewpoint, we suppose £ is quadratic in ¢, and takes
the form

L= 7‘@1a2ﬂ162¢a161 ¢a262 ] (3.6)

For simplicity, we suppose tensor 7125152 depends on only ¢,,. To guarantee that the

Euler-Lagrange equation is second order differential equation, we require

55 totally antisymmetric under oy <> s and 31 <> s,
7‘&1042 182 —

symmetric under oy <> 31 and g <> s .

Inserting the Eq. (B.6) into Eq. (B.5), we obtain

oL oL
0 = 95— = digC

9 (Ta1a25152 ¢a151 ¢a252)

9 (Talcwﬁl/b Do ¢azﬁ2)

= 0,0, Do — 0, 96, (3.7
From Egs. (A.1)) and (A.2) in appendix, Eq. (8.7) becomes
627’0110125152 827’0410425162
=2 T PYarb1PaBePuv | =™ o 9, 3.8
0 ¢M/32¢Va2¢a1ﬁ1 ( 8(]5#8(;5,, > (b B8 (b B (b,u ( 3925”8(?” ) ( )

Eq. (B.8) can be up to second order derivative if tensor 7 *1*2%1% takes the form

Talagﬁlﬁg (¢#) = Aa1a2a3616253¢a3¢ﬁ3 7 (3,9)
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where 41223515265 is tensor that is defined as general form in Eq. (8.12). Inserting the

above expression into Eq. (3.§) and following calculation in Eq. (A.3)), we obtain
0= _4¢a151 ¢a2ﬁz¢asﬁ3Aala2asﬁlﬁzﬁs ) (3‘10)

From Eq. (A.3), one can extend to D-dimensional flat spacetime in which Galileon the-

ories can be defined in several ways. We start from the Galileon Lagrangian given by

Gal,1 On B
CNa = ("4?217105—‘,2-2)06 +1ﬁ152 18 +l¢an+1 ¢Bn+1> ¢041ﬁ1 ¢0¢2ﬁ2 ttt ¢a’n6n . (3'11)

This is called the type-1 Galileon Lagrangian. The 2m-contravariant tensor Az, is

defined by
A1O2...0m, wPm 1 a1 aAm 010 g
A(21m§ B1B2...8 = (D — m)' c 102...0m0102...0D —m 8,31,82...ﬁm0.102mo’D_m’ (312)
and the totally antisymmetric Levi-Civita tensor is given by
apo]...0lp—1 1 [040 a1 aD—l]
15 — _—60 (51 "'5D—1 ; (3.13)

v—9g
where NV indicates N-times multiplication of ¢, while n indicates the number of ¢,,,.
Then we have

N=n+2. (3.14)

Since the maximum number of the indices of Levi-Civita tensor are restricted by D in-
dices, we obtain

n+t1<D — N<D+1. (3.15)

When D = 4, N can take four possible values, e.g., N = 2, 3,4, 5. Thus there are only
four possible non-trivial Galileon Lagrangians of the above form in four dimensions,
and these were shown respectively in [43]. To obtain the EOM of the type-1 Galileon
Lagrangian, we replace Lagrangian in Eq. (8.11]) into Eq. (8.3) and follow Eq. (A.4). The

result is

0= — (24 n) A% PG Gants - PanpuPanirfosr - (316)
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Other forms of Galileon Lagrangians can be written as

ﬁ?val,z _ (A?21732"'an5152"ﬂn¢a1¢A¢gl) ¢a252¢a363 o ¢anﬂn , (3.17)
‘C](i[alg’ _ (A?21732---an51ﬂ2---,3n¢A¢>\> D1 1 Do - - - gbangn . (3.18)

We call the above equations as the type-2 and type-3 Galileon Lagrangian respectively.
We will also perform Euler-Lagrange equation to make sure that their EOMs are still up

to second order derivative. Let us start from the type-2 Galileon Lagrangian. Substituting

Eq. (B.17) into Eq. (B.3), we obtain

oL oL
0 = 0,0,— —90,—,
00, 00y
9 [(A?%z...anmﬁz..ﬂn%lqm%l) Pevs s Ders s - - - ¢an,3n}
= 0,0, 99
Hv
8 [(A();?;lz-..anﬁlﬁz.-ﬂngsal¢)\¢gl) ¢a262¢a363 . gbanﬁn]
_9 (2n) . (3.19)
[z a%

Substituting Eqs. (A.6) and (A.7) in appendix into Eq. (B.19), there are several terms

which cancel each other. Finally, we obtain

0 — _nAt(l21T(32...an,3152..ﬂnd)gl ¢>\a1¢(1252¢0353 o ¢an6n
+A((121r?)2man[3162“ﬂn¢§¢a151 ¢a252¢a353 T ¢an5n : (3.20)

In order to obtain the EOM of the type-3 Galileon Lagrangian, we replace Eq. (3.18)
into Eq. (B.5). We obtain

0 = nA‘(X;,%Q"'a”ﬁlBQ”ﬂ" Doy Ox1 Dasps Pazfis - - - Parnin
_Agssz...anﬁlﬁz..ﬂn¢§¢mﬁ1 ¢a2ﬁ2 ¢a353 .. '¢an,3n . (321)

We can see that three types of Galileon have purely second order derivative equa-

tions of motion on flat spacetime that have already shown in Eq. (m), Eq. (m) and

Eq. (B.21)). They definitely have invariance under the Galileon symmetry in Eq. (B.2).

In fact, there are relations among three types of Galileon Lagrangian that were shown in
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[44]. To prove these relations, let us define
J]C\M/ - XA‘(J‘20;2)~~-0£n5152~-~5n¢51 ¢a252 qbasﬁs s qbanﬁn . (322)

Here in this chapter we define X = ¢,¢". Following in Eq. (A.10) in the appendix, we

get
O J = 205 4 LG (3.23)
From the above equation, we can see that
Gal,2 L Gaz | 1, 14

This shows that L5 is equal to —%Eiﬁm up to a total derivative. Moreover, By using

Eq. (B.12) together with Eq. (B.13)), we can rewrite

A a1g...0n . _ 1 aA12...0n0102...0D _n,
(2n) B1B2...Bn (D . n)] B1B2...0n0102...0Dp_p
a1Q2...0m
~08185.Bn (3.25)

Likewise, we can rewrite

A a102...0n041 — _5a1a2...an+1
(2n+2) B1B2...Bnt1 B1B2.--frnt+1 ?
n+1

— _ _ i—1 ] SO203...0n 41
o Z ( 1) 551 5/81ﬁ2~~-ﬁi7151‘+1...ﬁn+1 Y
=1

_ saq £0203..Qn41
- 551 55263---,3n+1
n+1

i—1 a1 (O203...00; 1 4-1...Qn 41
o Z (_1) 551‘ 651ﬁ2~~-/8i716i+1mﬁn+1 : (326)
=2
On using the above expression, ﬁf’val’l in Eq. (8.11]) can be rewritten as

Gal,l a203...0, ~
Ly = =05 0ha e 00, 67 b0 - b
n+1
i—1 Q203...00;—1Qjp1...0p, ~
- Z (_1) 0, 6/312»323~~ﬁ¢71151‘+T.ﬂn+t1gbal gbﬁl gbgi T qbgn:ll - (3.27)
=2

k3

Considering the first term on the right-hand side of the above equation which is shown

in Eq. (A.11)) in the appendix, we can obtain

_531 50203 Ont1 ¢a1¢51 ¢§22 o ¢Bn+1 — ﬁ?val’3 . (3.28)

1 B2B3-.-Bn+1 Qn+1
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For the second term of Eq. (8.27), starting at i = 2 we now obtain

3...am - _ Gal,2
05 05 o b, TG Pl = =L (3.29)

Ant1
Ati = 3, it yields
o ) - . Gal,2
=0 O abe sy D@ O Bty = LN (3.30)

Eq. (B.29) and Eq. (B.30) are shown the calculation in Eq. (A.12) and Eq. (A.13). While
i=4,5,6,...,n+1, we still obtain the same results. Since the second term in Eq. (8.27)

is sum from 2 = 2 to 7 = n + 1 that are n times, it can be rewritten as

n+1
i—1 Q1@ O N Gal,2
o Z <_1) 62?5212;23---;—115:1%--507‘1;1(bo‘l(bﬁl (bgi U ¢gn:11 o _nﬁNa : (3'31)
1=2

Substituting Eq. (3.28) and Eq. (8.31)) into Eq. (3.27), we obtain the following relation
LEN = L3 —ned? (3.32)
Substituting Eq. (B.14) into the above relation, it yields
L = £ (N —2) L3 (3.33)
We can write £ in terms of £ and £ as
£ — pGall | (N _ 9y pOul2 (3.34)
or L3 in terms of L3 and L3 as
Eg}val,Z _ ﬁ (E?Val,_’) _ E?Val,1> ' (3.35)

Substituting the last two equations into Eq. (.24)), Thus we respectively have

£§}Val,1 _ _Nﬁ?val,Z 0, (3.36)

_N
2

N -2

LG = £G4 Tﬁano\‘z- (3.37)
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From Eq. (3.24), Eq. (B.36) and Eq. (8.37), we can see that three types of Galileon La-

grangian are related up to total derivative. Since the type-3 Galileon Lagrangian is more

compact, we are going to use it via this thesis.

As we have already mentioned at the beginning of this section, there are 4 possible La-

grangians in case D = 4. Therefore, we are going to write down for 4 possible ones from

the simplest Galileon Lagrangian in Eq. (B.18) together with Eq. (3.29).

For N = 2, it yields

For N = 3, its expression is

Gal,3
LN23

L =X, (3.38)

A(2n:2)06161 ¢A¢)\¢§11 )
_X(Sgll ¢§11 )
— X ™

a1 )

_X0O¢. (3.39)

This is called the cubic Galileon Lagrangian.

For N = 4, its expression is

Gal,3
‘CN:4

Qo2

A
B182 ¢>\¢ ¢§11 ¢§22 )

RTAATAE

A(Zn:4)

a2

G A AT

a9 !
—X (¢ 02 o)
a1 oo a1 roag) )
A g
~~

al,az—a,f

X (¢ape™ — 0¢?) .

(3.40)

This is called the quartic Galileon Lagrangian.

For N = 5, its expression is

Gal3
‘CNa:E) A(2n=6)

a1o2a3

— X 05575 P O Ve

by :
e DA O DO

a2 )

(07 (0% (07 (0% (0% (0% (07 (0% (07
—X (051052057 — 051052057 + 05105205
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a1 oo SO a1 o SO a1 coo SO B1 B2 15
— 05, 062057 + 05, 057057 — 05105705%) Gt Dz Pl »
= X (galohion — 300, darn: + 200:0000; ) |
a17a2,a‘3rﬁ)\,aﬂ

= —X (0¢° — 30¢¢as¢™ + 20207 3) - (3.41)

This is called the quintic Galileon Lagrangian. From the above resulting Lagrangians,
the general form of Galileon Lagrangian for four dimensions on flat spacetime, can now

written as

L= enLY, (3.42)
N=2
where ¢y ’s are constant and
Ly = X,
£ = X0o,
LY = X (0¢% — pags™)
LS = X (06" — 30¢¢as6™" + 2000063 . (3.43)

As we have described, the Galileon theories have equations of motion containing only
second order derivative. Generalizing the Galileon theories to the most general scalar
theory with equations of motion order 2 or lower in derivatives, one can just add function
f depending on ¢ and X or let constant cy’s depend on ¢ and X. Then the generalized

Galileon Lagrangian is given by

LAf} = flo,X)x LY.,

= (6, X) (XAG D) 6 GG (B44)

Clearly, the Galileon symmetry given in Eq. (B.1)) is broken for the generalized Galileons

because f(¢, X) is not invariant under the Galileon transformation.
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3.2 Covariant Galileon and Horndeski Theories

To generalize Galileon theories on flat spacetime to the theories in curved space-
time, we replace all partial derivatives appearing in the Lagrangians by covariant deriva-
tives. As a result, we obtain minimally covariantized theories. However, variations of £,
and L5 with respect to ¢ give the EOMs which contain higher order derivatives. These
terms can lead to the Ostrogradsky instability. Let us consider variation with respect to

¢ for L3 in the version of minimally covariantization. It yields
OLYL, = 0 [X (Gape™ —0¢%)]
= 0 [$20" (¢apd™ — 0¢7)]
= 0 (20") (Paps™” — Dg?)
+020™8 (Papd™® — 0¢?) . (3.45)

Considering the first term in the above expression, we obtain
0 (920" (¢ape™ —0%) , = 2(¢*V00) (Paps™ — 0¢%) ,
= 2V, [¢" (¢apod™® — O67) 6¢]
=2V, [0* (¢apg™ — O6%)] 06, (3.46)
= =2V, [¢" (Paps™® — 0¢*)] 66.  (3.47)

Note that, the first term in Eq. (8.46) is zero because it is the surface term when we write

it in the action form. For the second term in Eq. (B.45), we obtain
PAPM0 (Gag™ — 0¢%) = X (20°°V3Vadp —209VV,6¢) . (3.48)
After ignoring the surface terms, the above equation becomes
AP0 (Papd™ — O¢%) = 2[VaVg (X¢*) — VAV, (XO¢)] 5¢p. (3.49)
Substituting Eq. (3.47) and Eq. (8.49) into Eq. (B.45), we now obtain

OLYZ, = —2Va [0 (Pasd™ — 00%)] 66

+2 [V, V5 (X9™) — VAV, (XOg)] 66 (3.50)
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We can see that the third and fourth order derivatives of ¢ appear in the above result.
Moreover, the third order derivatives of metric tensor g, also appear in Eq. (B.50). We
call those higher order derivative terms as dangerous terms. As we have showed above,
the minimally covariantized theories from Galileon Lagrangians are not sufficient to con-
struct the healthy covariant theories that are free from the Ostrogradsky instability. In
order to construct the healthy covariant ones, we have to add the correction term into the
actions to exactly cancel all such higher derivatives. The calculation for the correction

terms is shown in the appendix (B). The Lagrangians for the healthy theory are
Ly = Gi(¢, X)R—2Gsx (09" — dapd™®) , (3.51)
which is the quartic Horndeski Lagrangian, and

clf = G5(¢,X>Gag¢“ﬁ+§6‘5,x (O¢® — 306¢asd™ + 20220 d31)

(3.52)

which is the quintic Hondeski Lagrangian. Also, the case of the cubic Horndeski La-

grangian is the Lagrangian taking the form
Ly = Gs(6,X)09. (3.53)

Additionally, the variation with respect to the metric g, for the covariant generalized
Galileons, had been derived in [45]. The resulting equations of motion after adding the
correction terms, are also second order derivatives of the metric. Obviously, covariant
generalized Galileons are no longer invariant under Eq. (B.1)) but they can be generalized
to Eq. (8.2) and

»—o¢+c, (3.54)
where ¢ is constant. According to Eqs. (8.51))-(B.53), we can get re-discovered Horn-
deski theories which can be expressed in terms of an arbitrary linear combination of the

Lagrangians as

L=> rh, (3.55)



30

where

ﬁgl = G2(¢7 X) ’
»Cgl == G3(¢7 X>D¢ 9
LY = Gi(¢,X)R —2Gsx (0¢* — paps™) |

o= GS<¢,X>Ga5¢aﬂ+§G5,X (O¢* — 300Pasd™ + 20200 dpy) -(3.56)

where G5, G'3, G4 and G5 are arbitrary functions of ¢ and X and ¢,,, in curved spacetime
is V,V,6. We have set the reduced Planck mass M, = 1/v/87G = 1. From the
above calculation, the covariant generalized Galileons are the Horndeski theory. If the
coefficients G5, G3, G4 and G5 depend on only X, the Horndeski theory becomes the

covariant Galileons or the extended Galileons.

3.3 Beyond Horndeski and GLPV Theories

As presented above, the Horndeski theory is the most general scalar-tensor theory
in four dimensions of spacetime leading to covariant second order equations of motion
for both scalar field and metric tensor. Hence, it definitely propagates three degrees of
freedom, e.g., two-tensor and one scalar degrees of freedom. It returns to the question
whether it is possible to extend the Horndeski theory to be more general, whose equations
of motion could contain higher order derivative of dynamical fields without Ostrogradsky
ghost. Currently, such theories have been found. One of possible theories is the beyond
Horndeski or GLPV theory. Adding the minimally covariantized Galileon of type-1 term
into the L, and L5 of the Horndeski theory, we obtain the GLPV theory which still has

the same degrees of freedom as the Horndeski theory. The Lagrangians of this theory
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can be described by
L§ = Gs(9,X) , (3.57)
L§ = Gs(¢, X) 06 (3.58)

LY = Gy(6, X) DR — 2G4 x (¢, X)(TP* — 9" $y)
+ F4(¢7 X)e,ul/pg eulylplgqﬁ“qb“/(ﬁwfﬁbpp’ ) (359)

LE = Gs(¢, X) G 0™
+ §G5,X<¢, X)(06° — 306 6,0 +26,,0"7¢",)

+ Fy (¢, X)e P70 b G Gop Do (3.60)

where F, and Fj are coefficients of the minimally covariantized type-1 Galileon La-
grangian [46]. Hence, the Horndeski theory is a subset of the above theory by restricting

the conditions
Fy(¢,X) =0, Fs5(¢,X) =0, (3.61)

which guarantee that the equation of motion is only second order derivatives in dynamical
fields. It has been shown that GLPV theory propagates the same degrees of freedom as

the Horndeski theory using Hamiltonian analysis [47].

3.4 Degenerate Higher-Order Scalar-Tensor (DHOST) Theories

General action of scalar-tensor theories which contains the second order deriva-
tive of scalar field can lead to higher order of time derivative in the EOM. However, if
there is the suitable symmetry of the second order derivative of scalar field in the action
for example that appear in the Horndeski and GLPV theories, the EOMs are still sec-
ond order of time derivative, i.e., the propagating degrees of freedom in the theories are
single scalar and two-tensor. In addition to such symmetry, the general action can also
lead to three propagating degrees of freedom if Lagrangians are degenerate. Base on this

idea, the generalization of the Horndeski and GLPV theory have been constructed. These
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theories are Degenerate Higher-Order Scalar-Tensor (DHOST) theories.

3.4.1 Higher-Order Scalar-Tensor Theories
In this section, we consider scalar-tensor theories whose action is given by the

general form

S=25,+8,, (3.62)

where S, depends on the Ricci scalar 1 of the metric g,,,,

5,= [ diav=g 16,08, (3.63)

and S, depends on the quadratic term of second derivatives of the scalar field ¢

Sy = / d'x /=g C"*"" N N, 0 VN0, (3.64)

where C*"*? is an arbitrary tensor depending only on ¢ and V ,¢. In principle, S, can
depend on the cubic term of second derivatives of the scalar field which is the generaliza-
tion of L5 in the Horndeski and GLPV theory. The construction of theories that includes
this term is presented in [48]. We will see in the following section that this term in the
theories is ruled out because of the constraint on the propagation speed of GW. Then we
concentrate on the quadratic term of second derivatives of the scalar field. Note that when
the function f is 1/2, S, reduces into the familiar Einstein-Hilbert action. We now con-
sider C*"*?. In general, we can write C**? in terms of symmetric and antisymmetric

parts. For simplicity, we start by considering the first pair of indices,

1 1
CHPT = — (C107 4 V7). S (107 — GV (3.65)
2 2

Since the antisymmetric part contracting with V,, V¢ vanishes, we can ignore the anti-
symmetric part. Applying the same consideration to the second pair of indices po, one
can check that under swapping indices po the antisymmetric part of C*"*? can also be

ignore. Hence, C'**+*? satisfies the relations, [|1 1]

CHPo — VPO — (0P — (1P, (366)
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According to these properties, C'****? can be expressed in the most general form of metric
tensor and first order derivative of scalar field as
vV, p0 1 vo g U v g 1 4 g g v
CHr? = 5a1(g"g™ + ¢"79"") + a2g™' g™ + Sas(¢"¢"g™ + ¢ ¢7¢™)
1
+ 1044(¢“¢'”9”” + @Y g + P 79" + @77 g") + as¢t P ¢ 97, (3.67)

where the «; are five arbitrary functions of ¢ and X. Since C'***? is contracted with
V,V.,oV V.0, we can obtain the five possible Lagrangians quadratic in second deriva-

tives,

LY = ¢, L3

(69, L3 =0/ ¢ et

L) = ¢"0ud”,, LE=(¢dpd?)?. (3.68)

Now the action S, from Eq. (B.64) can be written as

Sy = /d4:,;1 /—g (alLf + Oéng) + ang’ + 044Lﬁf + a5L§> = /d4g;- —g aIL?,
(3.69)
where index I runs over I = 1,2,...,5. The action in Eq. (8.62) includes a particular

case of the quartic Horndeski term
LY = Ga(¢, X) R — 2G4 x (¢, X) (08" — 6" by - (3.70)

Indeed, the above Lagrangian is of the form of the Lagrangians in Egs. (8.62)-(B.69) by
setting

f = G4, a1 = —Q9g = G4yx, a3 = 0y = 05 = 0. (371)

The action (B.62) also includes the GLPV theory which can be written as
LZH = F4(¢7 X)e,uupa EM'V/P'U¢N¢MI¢VV,¢pp/ . (372)
This corresponds to the action (B.62) with

a1 = —0g = XF4, Q3 — —0y = 2F4, gy = 0. (373)
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3.4.2 Degeneracy of Lagrangian

In general, the action (3.62) contains one scalar mode, two tensor modes and also
extra scalar mode called Ostrogradsky ghost leading to Ostrogradsky instability. When
the systems have Ostrogradsky degrees of freedom, the dynamical variables associated
with these degrees of freedom can be infinite for the finite value of Hamiltonian. We can
avoid this instability by imposing the constraints on function f and «; from the require-
ment that the Lagrangians have to be degenerate. To understand this degeneracy idea
more, we use very simple toy model based on classical point of views. Let us consider

the Lagrangian of the form

1 . . 1.. 1
L:§a¢2+b¢€?+§¢2+5042—‘/@5,(1), (3.74)

where a, b and c are constant coefficients and V' (¢, ¢) is some potential. This Lagrangian
involves the acceleration of ¢ but not velocity of q. If a # 0, the term that is proportional
to a generates fourth-order equations of motion for ¢, whereas, if a = 0 but b # 0, one

obtains third-order equations of motion for ¢ and q respectively.

To compute the degree of freedom, it is convenient to work with a more familiar

Lagrangian containing only velocities, let us introduce new auxiliary variable

Q=9, (3.75)
leading to the new Lagrangian
1., A P N :
L:§GQ +bQQ+§CQ +§Q —V(g.q) = MQ — 9), (3.76)

which does not include any acceleration. We now introduce the kinetic matrix called the

Hessian matrix defined by [8]

0L

M—( ) o 3.77)
— \ Oveowd b e

where the symbol v* denotes the velocities, i.e., v* = {Q, q}. In the generic case, if

M is invertible, () and § can be separated independently. Then the differential system



35

requires six initial conditions which are @), Q,q,4, ) and ¢. The six initial conditions
correspond to the existence of three degrees of freedom including the extra degree of
freedom associated with Ostrogradsky degree of freedom. To avoid the presence of extra

degree of freedom, we have to impose the Hessian matrix, M, to be degenerate, i.e.,
detM =ac—b>=0. (3.78)

This implies that Q) and § cannot be separated independently. Since we can write () in
terms of ¢, two initial conditions decrease. Then there are only four initial conditions.
This means that this system consists of two degrees of freedom. The extra mode () as-
sociated with qzﬁ is eliminated when M is degenerate. Since the EOM of () contains third
order derivative of ¢, Ostrogradsky degree of freedom is killed when Ostrogradsky de-
gree of freedom associated with () is eliminated. In this situation, the initial Lagrangian
(B.74) is degenerate. In general, the number of degrees of freedom can also be determined
by using a Hamiltonian analysis. When the Lagrangian is degenerate, the conjugate mo-
menta implies the existence of primary constraint. When we perform time evolution of
this constraint, one finds that it leads to a secondary constraint in phase space. These two
constraints which are second class constraint, kill one degree of freedom in agreement
with the analysis based on the equations of motion. In principle, If some dynamical vari-
ables are constrained, their EOMs become constraint equations. This means that some
degrees of freedom are eliminated. If two constrained variables form a pair of canonical
variables, These two constraints are second class constraints which can eliminate one

degree of freedom of the system.

3.4.3 Kinetic Matrix

In order to study Hamiltonian analysis or analysis of constraints we have to write
H in terms of p and ¢. We then need to separate space and time by performing 3+1
decomposition[[7]. We assume the existence of a slicing of spacetime with three-dimensional
spacelike hypersurfaces. We introduce their normal unit vector n*, which is time-like,

and satisfies the normalization condition n,n* = —1. Using this normal vector, we can
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define the projection tensor as
Yur = Guv + nyny . (379)

This tensor projects any tensor into spacelike hypersurfaces. The spatial components of
this projection tensor are the metric tensor on spacelike hypersurfaces denoted by ©;;. It

is convenient to define the spatial projection of A, =V ¢,

~

Ay =14, (3.80)

and its normal projection

A= Ant. (3.81)
The extrinsic curvature K;; defined by

1

K = —
2N

(hij — DiN; — D;N;) (3.82)

where N is the lapse function, N? the shift vector and D; denotes the three-dimensional
covariant derivative compatible with h;;. Using the above definitions and the property
V,.A, =V, A,, where V, is the four-dimensional covariant derivative compatible with

9w, We can find that the 3+1 covariant decomposition of V, A, is given by [8, 48]

where the Latin indices run over 1, 2, 3, a* is spatial component of the acceleration vector

deﬁned by a” =n/ C I TLV and
K N !

We note that the term on the left-hand side of the arrow in Eq. (3.83) is evaluated in four-
dimensional spacetime, while the terms on the right-hand side of the arrow are evaluated
on spacelike hypersurfaces. In Eq. (B.83), there is only time derivatives appear for the

three-dimensional metric h;; (inside the extrinsic curvature) and for the component A,
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(inside V). Vi plays for A, the same role that K;; plays for h;;. From Eq. (B.83), we can

write the relevant kinetic part of the Lagrangian on spacelike hypersurfaces as

(VA )kin — Nij As + Az‘jkl Ky, (3.85)
with
1 .
Aij = AR Aijkl =—4A h]fihé‘) + 2”(ih§";Al) ' (3.86)

Strictly speaking, only the hij term 1s relevant but we will keep K;; for convenience.
We thus find that the kinetic part of the quadratic Lagrangian in VA, can be written on

spacelike hypersurface as
L) = M\ Ny A2 4+ 209HN 0Ny ALKy + CHFRA A P Ky, (3.87)

which is similar to the Lagrangian (B.74), with A, and K; (or h;;) playing the role of Q
and ¢, respectively. Then we can compute the analogs of the coefficients a, b and ¢ in
the Lagrangian (B.74) directly by substituting the explicit expressions for C*-!, Aij and

A; . Hence, the first kinetic coefficient is given by

.. 1
A = C”’kl)\ij)\kl = m[al + Qg — (ag + &4)143 + 045142] s (388)

while the coefficients of the mixed terms can be written as

B = CHMA Ny = SR 4 By ATAM (3.89)
with
A, ) A, )
pr = 5N (200 — a3A7) | B2 = “oN (a3 4 20y — 205A7) . (3.90)

Finally, the kinetic coefficient for the purely metric part is given by
Kmpa = CUMA AP (3.91)

Substituting the explicit expressions for Eq. (3.67) and Eq. (B.86) into above equation,

we obtain

. . . . 1 oA Ny ar
ICZj,kl — Iilhz(khl” + Ko huhkl + 553 (AzA]hkl + AkAlhzj)
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1 s . Ao . A A Ay A
5k (AZA(’“h“] n AJA(khl)Z) trs ALAT AR AL (3.92)
with
K1 = OélAz > Rg = CVQAE s R3 = —063142, R4 = —2a4, Ry — OZ5A2 — Oy (393)

To obtain the full kinetic part of the action, we also have to consider the gravita-

tional term f“R. We start with
/ d'z/=g fYR = / d'sNVh{f [Ki; K7 — K*+ ®R] +2D;f (a' — Kn')
1 . .
2K+ (f _ N@J)} , (3.94)

where YR is four-dimensional Ricci scalar and ®)R is three-dimensional Ricci scalar.

Here, we write

F=2f (A — AA) + 40 (3.95)

From Egs. ((B.94)) and (B.93), we can see that the second term on the right-hand side

gives the mixed kinetic terms. We can write the coefficient Bé{av for the mixed kinetic

terms B3/ KijA* as

grav

g A,
Bilu = 2f x5 b (3.96)

grav

For the terms that are second-order in K5, i.e., K K, K}, we obtain the corresponding

grav

coefficient as

grav

K = 5y BRI 4y RERM %73 (Ardrntt 4 ARART) . 3.97)
with
Nn=-r=1r ¥3=4fx. (3.98)
In summary, the coefficients that we obtained from the total action are
B9 =B + B, oM = Ry [ (3.99)

The coefficients A, B and K“* play the same role as a, b and ¢ in the toy model

respectively.
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3.4.4 Degeneracy Conditions

The full kinetic matrix associated with Eq. (8.87) can be written as [8, 48]

A BH
(3.100)
Bii [Cidkl
Hence, the theory is degenerate if above matrix is not invertible, i.e., its determinant van-

ish, which can occur when at least one of eigenvalue is zero. Requiring the determinant

of this matrix to vanish, we obtain the condition which can be written in the form
Do(X) + Di(X)A2 + Dy(X)AL =0, (3.101)
with

Do(X) = —4(c2 + ay) [X f(200 + Xy +4f x) — 2f* —8X*f%] | (3.102)

Dl(X) = 4 [X2a1(011 + 30[2) — 2f2 — 4Xf0é2] oy + 4X2f(0z1 + CYQ)O[5
+8Xaj —4(f +4X fx —6Xaz)al — 16(f +5X fx)aiay
+4X(3f —4AX fx)oraz — X2 fas +32f x (f +2X f.x)as

—16ffxan = 8f(f — X fx)az +48f f% (3.103)

Dy(X) = 4 [2f2 +4X fay — X2ay(a; + 3042)] as + 408 + 4200 — Xaz — 4f x)ad
+3X21a; —4X fas +8(f + X fx)ajas — 32f xarag + 16f72X0z1
+32f%as — 16f f xa . (3.104)

Note that the terms AZ in these expressions have already replaced by X + A2, Since the
determinant have to vanish for any value of A,, we can obtain the degenerate theories

that are characterized by the three degeneracy conditions

Do(X)=0, Di(X)=0, Dyo(X)=0. (3.105)
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3.4.5 Classification of Degenerate Theories

The solutions of the above degeneracy conditions can be classified by considering
possible solution of Dy(X) = 0. The possible solutions of Dy(X) = 0 are a; + ae = 0,
X[+ Xay +4fx) —2f*—8X?f% = 0,and f = 0 which corresponding to class
I, class IT and class III of DHOST theories respectively. For classes II and III, the square
of the propagation speed of tensor modes and that of the scalar mode have opposite sign,
which implies that a gradient instability develops in either the scalar or tensor sector [49].
We only focus on class I, which includes Horndeski and beyond Horndeski and does not
suffer from this instability. This class contains four independent functions of ¢ and X.
Considering class oy + ag = 0 or oy = —ag, we can then use the condition D;(X) =0

to write a4 1n terms of oy and as:

1
8(f + Xay)? [
—X?fa5+16fx(3f +4X f.x)oo + 8f(X fx — f)as +48f f%] . (3.106)

16X a3 +4(3f + 16X fx)as + (16X2f x — 12X f)azas

a4 =

Similarly, the condition Dy(X) = 0 yields

(4f7X + 20&2 + XOZg) (—204% + 3XO(20[3 — 4f7xO42 + 4f0é3)
8<f + XO[2)2

gy =

. (3.107)

In summary, degenerate theories in this class depend on three arbitrary functions as, a3
and f. In the special case, the theories without dynamics of metric satisfy A = 0. It is

required the additional conditions as a3 + a4 = 0 and a5 = 0. We find the relation
4f x + 209 + Xag = 0. (3.108)

This means that as and a3 are not independent. Theory satisfying these conditions is the

GLPYV theory by setting

f = G4, A = —Qg = 2G47X + XF4, A3 = —0y = 2F4 . (3109)
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3.5 Constraints from Gravitational Wave

According to the previous section, the DHOST theories are the most general
scalar-tensor theories which are free from Ostrogradsky instability. To avoid the Lapla-
cian instability, theories satisfying class II and III are ruled out. In this section, we will
study other constraints on the DHOST theories. Recently, the detection of the gravi-
tational wave emitted from neutron binary stars, shows that the speed of gravitational
waves, c,, 1s the same as the speed of light, within deviations of order 10715, This result
puts a tight constraint to the DHOST theories. For the quadratic DHOST Lagrangian,

the speed of gravitational waves can be computed in the units where ¢jigne = 1 from

Gy

2 == 3.110
Cow G4 _ XOél ( )

We denote that f is replaced by G, in this section onwards. However, for the cubic
DHOST theories, the propagation speed of gravitational wave is background-dependent
so that this form of DHOST is ruled out by the result from gravitational wave detection.
Hence, we do not consider the cubic DHOST theories in this thesis. To satisty cqw = 1,
a1 has to vanish. From the class I of the DHOST theories which have already discussed,
the condition or; = 0 gives

0[12062:0. (3111)

Replacing the above relation into Egs. (3.103) and (3.104), we respectively obtain

1
g = @ [48G421,X — 8(G4 — XG47)()043 — XQCY§] s
. 4 (3.112)
= — (4G X .
Qs °C, (4G4 x + Xas) a3

We now consider another constraint on the the DHOST theories. It has been
shown that the GW in DHOST theories can decay to scalar perturbations which implies

that the GW is unstable. To avoid such decay, we require [|12]

a3 =0. (3.113)
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Inserting the conditions from Eq. (8.113)) into Eq. (B.112), we get

6G7 x
Gy

045:0, and Oy =

(3.114)

Hence, the action for quadratic DHOST theories in which the propagation speed of GW
is equal to speed of light and the GW do not decay to dark energy perturbations can be

written in the form

S = /d4$\/—g£+5’/\4 s

6G?
= / d'ry/ =g {02 + G0 + Gl + = W@pw%y} + S (3.115)

where Sy = 5,45, is the action for the total matter and S, is the action for the radiation

and S,, is the action for the matter in the universe.

3.6 Scaling Solutions

Since the evolution of dark matter and dark energy are completely unrelated and
are at different time scales, it is a puzzle why the density parameter of the dark matter
and the dark energy are the same order of magnitude at late time. This is the coincidence
problem. To solve this problem, the dark energy and matter should follow the same
evolution, at least for some period of time. This demands that the energy density of dark
energy is proportional to that of matter such that the ratio py/p,, is constant with time. A
solution that leads to the constant ratio of the matter and dark energy densities is a scaling
solution. To drive the accelerated expansion of the present universe, the equation of state
parameter of dark energy has to be less than —1/3. During the scaling regime, p,, is no
longer scale as a3 but the effective equation of state parameter of matter is negative as
the dark energy. To realize such property of p,,, one assumes that there is an interaction

between the matter and the dark energy.

In the models of the dark energy from classes of the Horndeski theories, there
are self-accelerating solutions in which w, undergoes a tracking solution with constant

value. This tracking solution corresponds to qﬁ o HP with p is a constant [38]. For
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example, the covariant Galileon [42, 45] gives wy = —2 with p = —1 during the matter
dominated [50, 51], but it does not satisfy the observational data [52]. The extended
Galileon proposed in Ref. [53] give the trackig solution which wy is nearly —1. This
model satisfies the observational data [|19]. In the beyond Horndeski theories such as the
DHOST theories, the tracking solutions can exist for particular models [|11], 54], but the
general conditions for its existence have been unknown. The existence of the tracking
solution could alleviate the coincidence problem because the tracking solution is attractor
31

In Horndeski theories, there is the scaling solution which is a special kind of
tracking solution [53, (13, 56, 57, 58, 59, 60, 21|, 61}, 23, 62, 63, 64, 65]. In addition to
the constant ratio of py to p,,, the scaling solution satisfies ¢ oc H. If the scalar field has
a constant coupling to matter, the scaling solution exists for the cubic-order Horndeski
Lagrangian L = X go(Y) — ¢3(Y)O¢, where g¢o, g5 are arbitrary functions of Y = Xe*?
(A is a constant) [66]. In this model, there is M DE which is the scaling solution that
can be used to describe the matter dominated epoch. The coincidence problem could
be alleviated if the universe can evolve from the radiation dominated epoch through the
¢®MDE which should be a saddle point and then reach the attractor corresponding to

cosmic acceleration at late time.

The existence of the PMDE potentially resolves the H tension as follows. The
Hj tension is the discrepancy of the estimated H from CMB [67] and that from the local
measurements of the expansion rate of the universe. The H, from CMB data analysis
which is based on ACDM is lower than that from local measurements by more than 3o
[68]. Hence, to solve the H tension, the dynamics of the universe should be different
from that for ACDM. The resolutions from modification of the late-time expansion of
the universe [69, 70, 71] are tightly constrained by baryon acoustic oscillations (BAO)
[72, [73, 74]. Potential resolution of the H, tension is based on the modification of the

dynamics of the universe during the last scattering epoch and matter domination by early
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dark energy [75, 76, [77]. In these models, the sound horizon at the last scattering is
reduced and therefore the CMB acoustic peaks shift to smaller angular scales. Then the
location of the acoustic peaks can shift to the larger angular scales and match with the

data when H, increases [[77].

For coupled dark energy models with pMDE, a small fraction of energy density
for dark energy during the pMDE rises the effective equation of state parameter wegr =
Qpwy = €1y to slightly positive. Here, €24 and w,, are the density parameter and equation
of state parameter of scalar-field dark energy. The positive effective equation of state
parameter during matter domination can also shift the CMB acoustic peaks to smaller

angular scales leading to a higher H, [25].

Scaling and tracking behaviours for the cosmic evolution are the interesting fea-
tures arising in some models of dark energy and modified theories of gravity, because
they could lead to attractors (stable fixed points) in the phase space of the cosmic evo-
lution which could satisfy the observational constraints [|13, [14, |15, |16, 17, [18, 19, 20].
Scaling and tracking solutions in the DHOST theories those satisfy the above two con-
straint on GW have been discussed. In Chapter IV, we will consider the DHOST theories
with scaling solution and we will consider coupled dark energy model from general con-

formal transformation in Chapter V.



CHAPTER 1V

THE DHOST THEORIES WITH SCALING SOLUTION

4.1 The Lagrangians Having Scaling Solution
In this section, we will present the DHOST theories which have scaling solution.
Since the scaling solution is behaviour of the background evolution, we concentrate on

the Friedmann universe. Starting from the condition for the scaling solution,

Po
Pm

= constant 4.1)

where p,, is energy density of matter which equation of state parameter, w,, is not nec-

essarily zero. We differentiate the above equation with respect to time ¢ yielding

P PePm 0

Lo _Polm—_ g,

pm pm

pmp¢_p¢pm = 0,
Po. _Pm— _ . 4.2)
Py Pm

The conservation equation adding the phenomenological interaction term on the right-

hand side can be written as

po+3H(py +py) = —Qpmd, (4.3)

where in general () can be function of ¢, p, and p,. Supposing that the scalar field has
a direct coupling to matter, and the total energy density of the scalar field and matter is

conserved, we have
fm + 3H (pm + Pm) = Qpm¢ . (4.4)

Dividing Eqs. (#.3) and (4.4) by ps and p,, respectively, we obtain

P

o 3H( b wn) = Q6. (4.5)
Ib¢ ] Qm

— +3H(1 = —Q¢ —. 4.6
oy (1 + wy) Qo 0, (4.6)
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Using Eq. (#.2), the above two equations become

3H(wy — wm) = Qé(

QZB . 3Q¢(wm—w¢)
7 = o : (4.7)

If we impose additional condition that wy is constant during the scaling regime, py o P2

Qm+§2¢)

This means that p,/p,, o $? /pm is constant. Then from the Friedmann equation we

obtain

H2=Pm <1 n @) . 4.8)
3 Pm

This gives H? o p,, during the scaling regime so that p,/p,, o< ¢*/H?. This means that
at the scaling regime ¢ /H is constant. At late time, we ignore the contribution from the

radiation. From Eq. (2.79), we obtain

H 3
i —5(1 +w.), (4.9)
where 1n this case
Wr = W¢Q¢ . (410)

Since py/pm and wy are constant, w, = w,yy is also constant during the scaling regime.
For convenience, we define

== (4.11)

where

(4.12)

Hence, at the scaling regime, A\ = constant. In the DHOST theories Eq. (B.115), the
energy-momentum tensor of the scalar field in Eq. (2.6) depend on L4 such that T3 =
—gapLe+---. Hence, p, and py depend on Ly +- - - . Here, we can write £ in Eq. (B.115)
as

L=Ly, (4.13)
where L is the effective Lagrangian of the scalar field. Following from Eq. (B.119), we
can write

Ly =Gy+Gy00+ GiR+ A7, (4.14)



47

2
where the quantity Z = ¢*¢,,,¢”" ¢, and the function A, = Cix Since P X pg o< H?

Ga

during the scaling regime and R o< H? in the Friedmann universe, the existence of the

scaling solution can be ensured if we demand that

£¢O(H2.

(4.15)

We next study whether some additional conditions are required for the existence of the

scaling solution. Since £, depends on ¢, X, 0¢, R and Z, we can write

0Ls ¢ 0L, X

Ly
H

o6 H' O0XH 00¢ H ' ORH 07 H

The terms associated with the time derivatives of ¢ such that X = gz52, O¢

0L, 0¢ 0L, R L 9L Z

3H$, R = 6(2H? + H) and Z = —¢*¢$? can be written as

o _ 2

H A

X

7o ~2hX |

% _ g,
g — _2hR,

Z

= —2h(32).

(4.16)

4.17)

— —

(4.18)
(4.19)
(4.20)
(4.21)

(4.22)

The partial derivative of £, with respect to ¢, X, O¢, R and Z can be respectively ex-

pressed as

0L,
e
0Ly
X
0L,
90¢
0L,
OR
0L,
07z

G27¢ + Gg,(quﬁ + G4V¢R + A4,¢Z ,
Gox + G xB0+Gyx R+ Ayx 2,
G?) )

G47

Ay

(4.23)
(4.24)
(4.25)
(4.26)

(4.27)
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Substituting Eqs. (4.18)-#.22)) and Egs. (#.23)-(#.27) into Eq. (B.17), we can obtain the
general expression as
1

XCx —

Gy+5G=0, (4.28)

where s is constant given by

1 for G = G,

V)
Il
—

for G = G3,G4,

—2 for G=A,.

\

To solve Eq. (4.28), we set

G(¢,X) = X%g(0,X). (4.29)

Then we get
Gx = sX* g+ X°gx, (4.30)
Gy = X°ggu. (4.31)

Replacing Eqs. (#.29)-(#.31)) into Eq. (#.28), when z* # 0 we now obtain
1

The simplest way to solve the above equation is setting

9(¢, X) = x(X) f(9). (4.33)

We now obtain
g,X = J,”Xf and g7¢ = Z’f’(z) . (434)

Replacing the above partial derivative of ¢ into Eq. (#.32), it reads

T x 1 f¢
X—— = —=—= 4.35
dinz —_1fo (4.36)

dln X A
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Easily, Eq. (#.36) can be integrated by setting

dinz  1f,
dnXx A f O

(4.37)
where c is constant. Finally, we obtain the non-trivial solutions of x and f given as
=X and f = e, (4.38)
where ¢; and ¢y are constant. One see that
g =cicr (X)), (4.39)

for arbitrary c. This result comes from a simple calculation. However one can show that

solution of Eq. (#.37)) can be written in the form

g=g(Y), (4.40)
where g is an arbitrary function of

Y = Xe. (4.41)

Each coefficients in Eq. (B.115) can be respectively written as

Ga(d, X) = Xg(Y), (4.42)
G3(9, X) = g3(Y), (4.43)
Gi(o, X) = qu(Y), (4.44)
A9, X) = X 2ay(Y). (4.45)

Here, the function ay(Y") is determined from g4(Y).

4.2 Cosmology in the DHOST Theories with Scaling Solution

4.2.1 Evolution Equations for the Background Universe

To study the evolution of the background universe in the DHOST theories de-
scribed by the action (B.115), we use FLRW metric for the spatially flat universe in the

form

ds* = —n*(t)dt* + a*(t)vy;;da'da’ (4.46)
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where n(t) is an auxiliary function which will be set to unity after the evolution equations
are obtained. Using the above line element and homogeneity of the scalar field in the
background universe, the action (B.115) becomes

o E_I_Gz;,x(i;d(@zg)?

~ — 6G,

n

S = /dta?’n Gg - 6G47¢H + SM s (447)

n Gy n2dt \n

where we have set G35 = 0 for simplicity.

Variation of the action (#.47) with respect to n and a yield

Gii [—G4X (—6¢ (—zGi,XEb' . 6HGiX¢5>

el (12 <2H2 + H) Gax + 202,X> + 6G37X¢52>

pm = Eoo =

+G? (GG4H 21 6H¢ (204, xb + G4,¢> + G2>

H12X2Gy xé ((Gi,X —2G4Gaxx) & — 2G4Gasx

+GuxGay)l (4.48)
and

—pp = Eu= G% [G4 (4q's (G4,XE¢>' +2HGyxd + HGM,) 4 6G,H?

+4G4H + 4Gy x > 4 2G4 40 + G2>

+X ((8G4G4,XX — 6G4217X) (bQ + 8G4§5G4,¢X + 2G4G47¢¢>] , (4.49)

where py( and py are the energy density and pressure of the total matter fluid which
is supposed to be perfect fluid. Subscript xx and ,4 denote the secnd derivatives with
respect to X and ¢ while subscript x4 denotes the derivatives with respect to both X and
¢. The quantities, pq and py,, are obtained from variation of the action for the matter

with respect to metric. Then Egs. (#.48) and (4.49) can be combined to eliminate H as

1 . 3 .
0 = 55 |GuX (<0G H Gux + 6H (261xCas — 2G4 x) +6G3 x
4

+6Gy xGapd — 2G4Go x + 3G2G4,X>
Ie. <6G4H2 Y 6HG (2G4,X<;§ + Gw) + GQ> — Gappn (Ga — 3X Gy xwn)

F3X3Gx (~263 8 +4G1xG1gd + 2GiGis ) | (4.50)
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In the above equation, wy; = pa/pm 1s the equation of state parameter of the total
matter. Varying the action (#.47) with respect to scalar field ¢, we get the evolution

equation for scalar field which can be written in the form

F(¢,0,6,6,0,H,H H)=Q, (4.51)

where () is the interaction term arisen from the variation of the matter action S, with
respect to the scalar field ¢. In principle, the form of the interaction term () depends on the
form of S,,. If S,,, does not depend on scalar field ¢, () vanishes. We can see later that if ()
does not vanish, the universe is accelerated in the scaling regime. For simplicity, we use
here the phenomenological form of the interaction term studied in the literature. Hence,
we write the function F' in the above equation in the form of the conservation equation
for the effective energy density of the scalar field as £' — py + 3H (ps + py) = 0. Then
we add the phenomenological interaction term on the right-hand side of the conservation

equation as
po +3H(ps + ps) = —Qpmd , (4.52)

where () is constant, p, and p, are the effective energy density and the effective pressure
of the scalar field ¢. Supposing that the scalar field has a direct coupling to matter, and

the total energy density of the scalar field and matter is conserved, we have

P+ 3H pry = Qpumd . (4.53)

The effective energy density and pressure of the scalar field are defined such that Eqs. (#.48)
and (4.49) take the form of the usual Friedmann and acceleration equations when they

are written in terms of these effective quantities as 3H* = pp + p, and 2H + 3H? =

—pm — pe- The expressions for p, and p, can be read from Eqs. (4.48) and (4.49) as
ps =3H* — By, py= Ey—2H —3H?. (4.54)

From the above expressions, the effective equation of state parameter of the scalar field

can be defined as w, = py/py.



52

Evolution of the background universe can be studied using the dynamical anal-
ysis. To compute the autonomous equation describing the evolution of the background
universe, we compute the expression for H /H? as follows: differentiating Eq. (4.49)
with respect to time, eliminating qb from the resulting equation using Eq. (.51]), and

then eliminating the remaining ¢ terms using Eq. (4.49). Finally, we obtain

Differentiating the above equation with respect to time and eliminating ¢ terms using
Eq. (B.49), we get
ﬁ - _h(¢7 gbu ¢7 Ha pMawM) (456)

In this work, we explore features of the scaling solutions in the model described

by Eqs. (#.42) and (#.44)) by setting

Gy = X (BY™ —&Y™) , (4.57)
1
Gi = S+ay™, (4.58)

where ¢,, ¢4 and G are constant and n,, n4 and ng are constant integer. When the coupling

between scalar field and matter is constant, the scaling solutions can give

2hQ
SQ¢U)¢ ’

A= (4.59)

4.2.2 The Autonomous Equations
To compute the autonomous equations from the evolution equations presented in
the previous subsection, we define the dimensionless variables as
: 2 .
¢ Mpje ™ ¢

Y =2 q,="Pm QIE—
M,H’ H? 7 oH’ m_3M5H2’ 7_BMIEHQ’

(4.60)

T

where (2,,, and €1, are the density parameter of matter and radiation, respectively. We
note that (2, = €2, + (1,. For convenience, we normalize the variables z, y and z by

their values at scaling fixed point, such that

Tp=—, yrzg, and z, = —, (4.61)

T
Ts Ys Zs
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where subscript ; denotes the quantities at the scaling fixed point, The scaling fixed point
in this case is the fixed point that «: satisfies the condition in Eq. (#.11]) and Q satisfies
Eq. (#.59). To compute x, and z,, we compute derivative of z with respect to N = Ina
as

¥ = zx — x% , (4.62)
which is a possible form of the autonomous equation. Here, a prime denotes derivative

with respect to N = Ina. From the condition in Eq. (#.11), we have

_ o

hs =
2H

T
- 4.63
2, (4.63)

where x5 = x,)\. Inserting this solution into Eq. (5.28), we get z, = —h, = —x,/2.

In terms of dimensionless variables, the constraint equations (4.50)) and (4.55) are given

by Egs. (C.2) and (IC.3) in the appendix. We see that these constraint equations can be
solved for z and €2,,, in terms of x and yy. Here we are interested in the evolution of the late-
time universe so that we set {1, = 0. Hence, the late-time dynamics of the background

universe can be described by two dynamical variables xand y.

Using definitions of =, and y,., we can write the autonomous equations as

rer H

v = —“22”” — . (4.64)
H

y; = _mAxryr_erm> (4.65)

where 2, 1s computed from the constraint equations which the solutions are shown in
Egs. (C.7)-(C.9). When the autonomous equations are written in these forms, the cou-
pling constant () in the autonomous equations is always divided by A so that dynamics
of the background universe depend on ()/\ rather than (). In the numerical integration
for the evolution of the universe discussed below, we concentrate on the cases where z,
is the first solution given in Eq. (C.7) to avoid the contributions from the imaginary parts
of the solution. We note that the solution that gives z,, = x,, = y,, = 1 is not necessarily
be the solution in Eq. (C.7) unless ny = +1. Hence, in our numerical integration for

the cosmic evolution, we choose the models where ny, = +1. According to Eq. (4.56),
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H /H? also depends on €2,,,. However 2, in this expression can be eliminated using the

constraint equations Eq. (C.2).

To compute the fixed points of this system, we set x,, 3, and z, in the constraint
equations Egs. (C.1)) and (C.2)) to be unity and then we solve for the parameters as

1
cp = — —662 (=2 (s + 2n6 (zx — 3) + 2\ — 6) + 21322
2 2(264—{-1)2(712—716)[ 4( ( 6</\ ) A ) RO

—n3xy (nexy + ) — 6) + dng (1) — 4)) +6¢4 (2Qns — ng (x) — 4)

+2n6 (z) — 3) + ) — 6) — 4c] (3nia} — 3njzy (nexy + )\ — 6)
+6ny (x) —4) —2(2n6 (xx — 3) + ) — 6)) + 3 s + 216 (25 — 3)

tay— 6], (4.66)

1
e = — 6¢2 (2(Qns + 21 — 6) — 20322 +n? (z\ — 6) xy
R T T d 11 )= 203+ 2 — )
—4ny (z) — 4) + na (nfa} + 4ay — 12)) + 6¢q (25 — 14 ()
—4) +2ny (zx — 3) + x5 — 6) — 4c) (3nix?\ —3n} () — 6) 1y
+6n4 () — 4) +no (—3n3a — dxy +12) — 2 (25 — 6)) + 3

+2n2 (xy —3) + 25 — 6] , (4.67)
where (2, ¢ 1s €1, at the scaling fixed point, and we redefine the coefficients as

Co = &Y™ cy=&Y™, and ¢ = GalY. (4.68)

We set h, = x5/2 and x, = y, = 1 and substitute ¢, and cg from Eq. (4.66) and (4.67)
into Eq. (#.56) as

T
2

= h((b, (2‘5, Qba H7 pm)|s = h<xr>yra 2y Qm)|s = h(L 17 17 Qms) . (469)

This relation yields

_ 1804 (204 + 1) 4n4QmS(Q>\ — 2)1&3 (Q,\l’)\ + Iy — 3)

0 A2 ’

(4.70)
where Q) = @/ . The interesting conditions required by the above equation are

Qs =0, Qrxxx+xy—3=0, or ¢,=0. 4.71)
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We can see that (), — 2 = 0 is the special case of the condition Q) x) + ) —3 = 0.
These conditions lead to three classes of fixed point as follows : (1) Qyxyx + 2y —3 =0
corresponding to scaling fixed point where Q satisfies Eq. (#.59), (2) Qs = 0 corre-
sponding to the field dominated point where ) does not necessarily satisfy Eq. (#.59),
and (3) ¢, = 0 yielding y, = 0 for negative n,. These fixed points have been found in

[38]. The stabilities of these fixed points will be discussed in the next section.

4.2.3 Fixed Points and Stabilities
To investigate stabilities of the fixed points, we linearize the autonomous equa-
tions around the fixed point and check the sign of the eigenvalues of the Jacobian matrix
defined by
g = 9 | (4.72)

8xj fixed point

where z; = (2., y,).
(a) Scaling Fixed Point

The scaling fixed point corresponds to the condition

3
= . 4.73
T Or+1 ( )
From hy = x,/2, we have
Qx
i = — . 4.74
Weft Qxr+1 ( )

We see that if the coupling term disappears, weir = 0 because for the scaling solution
Pe/ pm 1s constant. Using the relation wes = Q,w, and Eq. (8.74), we can compute Qy
as well as €2,,, at the fixed point if w, at the fixed point is specified. Inserting the relations
for the scaling fixed point into the Jacobian matrix, we obtain the polynomial equation
for the eigenvalues of the fixed points. For the sufficiently large c4, the eigenvalues of

the Jacobian matrix depend only on z and given by

E, = {“2_6,0}. (4.75)

Since one of the eigenvalues is zero, the stabilities of this fixed point cannot be deter-

mined using the linear stability analysis. Non-linear stability analysis can be performed
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using the center manifold method, but we will not consider the non-linear analysis in this

work. If ¢4 is not too large, the eigenvalues of the Jacobian matrix can be written as

Eqy = {1, p2} - (4.76)

To describe the accelerated expansion of the late-time universe required by observations,

we demand x), < 1. The eigenvalues 1 and 5 can be computed from the equation
asp® + aypp+ag =0, (4.77)

where a9, a1 and aq are complicated functions of x, {2, s, Co, 4, cs, N2, Ny and ng. Here,

Ty —06 8ayg zy—6 8ayg
- 1— 14— - T4 J14+ —220
i 4 ( \/ +a1(x,\—6)) 2 4 ( +\/ +a1(:m—6)>

(4.78)

In the above expressions, the relation a;/(2as) = (6 — z,)/4 is used. It follows from
the relations for ;4; and po that the real part of us is always negative for z, < 6, while
real part of 11 can be either negative or positive. Hence, the fixed point is stable when
the real part of 1, is negative and becomes saddle when the real part of 4 is positive.
Due to the lengthy expressions of ag, a; and as, we compute 1; numerically and plot the

results as a function of ¢4.

The real part of 1, for some choices of the parameters is plotted in Fig. ([I}). In
all plots, x, and €2, ; are chosen such that w.g satisfies observational constraints. For
Qs = 0.3, we set zy = 0.92 and ) = 0.69 which correspond to w, = —0.99 and
wy = —1.10, respectively. From Fig. (1) and Eq. (#.78), we see that the stabilities of
the fixed point depend on x, which controls the value of w.¢ through the relation x) =
—3(1 4 wegr) at the fixed points. In the plot, when ), decreases, the fixed point of some
models, e.g., the models with ng = —1, can become saddle points. According to Fig. (),
the fixed point is stable for the wide range of ¢, if ng is positive. For ng = —3, the fixed
point can be either saddle or stable depending on the value of ¢,. From the plot, we see
that the real part of 11 reaches zero when ¢, is sufficiently large independent of ny, n4, ng

and z,.
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Figure 1 Plots of the real part of ;; as a function of c;. The upper
left, upper right, lower left and lower right panels correspond to (r),n,) =
(0.92,-1),(0.92,—2),(0.69,—1) and (0.69, —2), respectively. In the plots, lines 1,
2.,3,4,5,6 and 7 represent the cases of (n2,n6) = (0,-1), (0,-3), (0,1), (0,3), (1,-1),
(1,-3) and (1,3).
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(b) Field Dominated Point

In Eq. (4.70), we have shown that §2,,, = 0 is a possible fixed point of the system.
To obtain this equation, we set h = x,/2 at the fixed point according to Eq. (4.11).
Nevertheless, the condition h = x,/2 can be relaxed if x,,y, and z, are not equal to

unity at the fixed point, where the condition x,, = y, = 2z, = 1 defines the scaling fixed

point. From Eqs. (#.64) and (#.69), we see that the fixed points exist when
h=—z =—-x,, (4.79)

where the expressions for z, and z, at the fixed point can be solved from Egs. (C.1)), (C.2)
and (IC.9). For the fixed point §2,,, = 0, the expressions for z, and z, are complicated and

strongly depend on n., ny and ng because Egs. (C.1)), (C.2) and (IC.5) contain xr, xtt

and 2s. However, we can substitute Eq. (4.79) into Eq. (4.9) to obtain

IALrp

3 Y

Wy = Weff = -1+ (480)

where subscript ;, denotes evaluation at the field dominated point. We note that for this

fixed point there is no any requirement on (. This follows from Egs. (%.52) and (4.53))

that the effect of the coupling () disappears when €2, = 0. According to this fixed point,

the eigenvalues computed from the Jacobian matrix are given by

TA\Lyrp — 6

E,={ 5

, AT p(Qx + 1) — 3} (4.81)

It follows from Eq. (#.80) that observational data require z»z,, < 1 so that the first eigen-
value in Eq. (B.81)) is always negative. We see that if Q does not satisfy Eq. (4.73), the
second eigenvalue in Eq. (#.81)) is negative when Qy < 3/(x)2,,) — 1 for positive 5z,
and )y > —3/|x x| — 1 for negative xx,,. These results are the same as in [23]. In
the case where Q) satisfies Eq. (#.73), one of the eigenvalues vanishes. In this case, the
eigenvalues for the field dominated point are similar to those for the scaling fixed point
which ¢, — o00. Since one of the eigenvalues vanishes, we cannot use the linear dynami-

cal analysis to estimate the stabilities of the fixed point. However we will not go beyond
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Figure 2 Plots of (2, as a function of N. The upper two panels represent the cases
x, > 0 during the matter domination, while the lower two panels represent the cases
2, < 0 during the matter domination. The left two panels and the right two panels

correspond to the model of (12, n4,n6) = (0,—1,—1) and (0, —1, 1), respectively.

the linear analysis in this work. We check the stabilities of this fixed point by integrating
numerically the cosmic evolution as shown in Fig. (f]). For a given value of z, which
could make the field dominated point stable, we can choose ns, ny, ng and ¢4 such that the
scaling fixed point is also stable. The question is that the cosmic evolution will reach the
scaling fixed point at late time in what situation. Since it is difficult to make the analyti-
cal analysis for answering this question, we solve the autonomous equations numerically
and plot the evolution of ©,, in Fig. (P]) for some values of the model parameters. Ac-
cording to Fig. (]), the cosmic evolution will reach the scaling fixed point at late time if

x, > 0 during the matter domination. For x,, < 0 during the matter domination, the cos-
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mic evolution will evolve towards the field dominated point. This result is consequences
of a positive z, of the scaling points given by Eq. (#.63)), and the fact that the evolution
of x cannot cross x = (. This implies that although one of the eigenvalues vanishes,
the field dominated point can be stable. Since the scaling fixed points we consider in the
plots are stable points, these points should be reached for wide ranges of initial conditions.
However, if ¢, is large enough and the initial condition for g, significantly differs from its
value at the fixed point, the value of €2,,, can be larger than unity before reaching the fixed
point. This implies that {2, can be negative, so that the definitions in Eq. (4.54) may can-
not be interpreted as the energy density and pressure of dark component. These cases are
shown in Fig. (). We note that in Fig. (f]) the numerical integration cannot be started from
radiation dominated epoch due to numerical instability. In the top left panel of Fig. (2),
the initial values for x, and y, during the matter domination for the solid, long-dash,
dash, and dash-long-dash lines are (z,,y,) = (0.55,107°), (0.05,0.24), (0.1,1078), and
(0.79,0.7) respectively. In the top right panel of Fig. (2), the initial values for x, and v,
during the matter domination for the solid, long-dash, dash, and dash-long-dash lines are
(r,yr) = (0.4,0.2),(0.74,0.8),(0.18,0.01), and (0.85, 0.8) respectively. For the cases
where y,. significantly differs from their values at the fixed point, the maximum value
of €2,,, during the cosmic evolution increases when ¢, increases. Since ¢, quantifies the
deviation from the Einstein gravity, this suggests that the deviation from the Einstein
gravity should not be large to avoid unphysical value of €2,,, during the cosmic evolution.
Moreover, even though the initial values of x, and y, during the matter domination are
in the same order of magnitude of the value at fixed point, the cosmic evolution reaches
the fixed point slowly for positive initial z, compared with the negative initial value of

T
(©) y» = 0: pMDE Point

According to Eq. (B.70), the other fixed point corresponds to v, = 0. It follows
from Eq. (4.69) that i/, = 0 when g, = 0. If we consider Eq. (4.64) in addition, we see
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that 2. = 0 when z,, = 2h/x,. Here, h for this fixed point is not necessarily equal to z /2
because x) is evaluated at the scaling fixed point (fixed point a). From the definitions of

G5 and G4 in Eqgs. (8.57) and (4.58) as well as the definition of y in Eq. (), we see

that the existence of the fixed point i, = 0 requires ny < 0,n¢ < 0 and ny < 0. Here,
we demand that ny # ng and ny # 0. Inserting z, = 2h/x, and €2, = 0 into Egs. (C.1),
(C.2) and (C.5) and then taking the limit ¢, — 0, we respectively obtain

3 2 ;
= _+ CZ:CTC bl ch — 1 - CZ:ETC and xrc - — QA:C)\ ) (4'82)
2 3 €2

hl.

where the subscript . denotes evaluation at pMDE point. Substituting the above z, . into
the expression for €2, ., we get
2.2

O = 1 — AN (4.83)

362

This equation shows that ¢, has to be positive otherwise €2,, . is larger than unity. The

eigenvalues for this fixed point are

ATR o, a1+ Q)2
, 3+ }.
202 Co

E, = {—; + (4.84)

These eigenvalues coincide with those in [23]]. The first eigenvalue can be written as
—30,¢/2, so that it is always negative. The second eigenvalue becomes positive when
@, > 0or @\ < —1 for positive cy. Since x, is evaluated at the scaling fixed point, it
follows from Eq. (4.73) that Q0 < 1yields 2, < 0 corresponding to phantom expansion.
We now check how the evolution of the universe can move from this fixed point during
matter domination to the scaling fixed point at late time. Let us first consider x,. in
Eq. (4.82). We can use Eq. (#.73) to write ... = () — 3)/c,. The scaling fixed point
can lead to the acceleration of the universe if x, < 2. Hence, x, . is negative. Since x,..
is the value of x, during matter domination in our consideration, the universe will evolve
towards the field dominated fixed point rather than the scaling fixed point as presented
in the previous section. For illustration, we plot evolution of 2, in Fig. (). For given

values of z,, @), and €,,., the value of ¢, can be computed from Eq. (). From
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Table 1 The models used in the plots. We set €2,,, . = 0.95 for Model I-IV and €),,,. =

0.93 for Model V. The column w.; shows the value of w. at the field dominated

point.

Model | (n2,n4,76) | Qx | e (o Weff
I (0,-1,-1) -10 | -0.045 7.7 -0.88
m | -1-1) | 2 |-0.075 17 | -128
III (0,-1,-1) 2/3 |1 -0.125 0.67 -1.44

v (0,-1,-1) 1/6 | -0.49 | 5.6 x 1073 | -1.47

V | 0-1,2) | 2 |-0075] 40 |-1.17
—— Model I
———-Model II
------- Model III
—-—-- Model IV
—— Model V

Figure 3 Plots of (,, as a function of NV for models I-V given in Tab. [l.

the values of z, @), and ¢y, we can compute x, . from Eq. () and compute ¢4 from

Eq. (B.66) by setting Q,,, = 0.3. Finally, ¢s can be computed from Eq. (#.67). The

models used in the plots are shown in Tab. [I.

From Fig. (B), we see that 2, evolves towards the field dominated point for

various values of (), which correspond to various weg at late time. In the plots, we
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initially set i, = 107! according to the pMDE point, so that the value of €2,,, can be larger
than unity before reaching the field dominated point. However, if ¢, is sufficiently small,
e.g., ¢4 = 5.6 x 1073 for model IV, ,,, can be less than unity through out the evolution
of the universe. By definition, ¢, quantifies how large of the deviation from the Einstein
gravity. The above results suggest that the deviation from the Einstein gravity should not
be large to avoid the case €2, > 1 during the cosmic evolution. From the analysis of the
Vainshtein mechanism, the bound on the difference between the gravitational constant of
the gravitational source and the gravitational coupling for GW gives [[78]

X
‘ﬂ < O(107%). (4.85)
Gy

In terms of ¢y, | XG4 x| = |naca| at the scaling fixed point. Hence, the small ¢4 seems to

agree with the above bound.



CHAPTER V

COUPLED DARK ENERGY MODEL FROM GENERAL
CONFORMAL TRANSFORMATION

5.1 The Model

In this section, we consider the general conformal transformation which is defined

by

1
T g — py
gw =C(X,0)g, and g C(X7¢)g , (5.1)

where C' (X, ¢) is the coefficient of the conformal transformation depending on the scalar
field ¢ and its kinetic term X = —V ,¢V*¢/2. Using this form of the conformal trans-
formation, the Einstein-Hilbert action is transformed as the action of DHOST theories in
Eq. (B.119) [79, [12]. In order to construct the coupled dark energy model inspired from
the conformal transformation, we suppose that the dark energy is in the form of a scalar
field ¢ involving the conformal transformation. Therefore the interaction between the
dark energy and the dark matter arises when the Lagrangian of the dark matter depends
on the metric g, defined in Eq. (6.1)). Hence, the model of coupled dark energy can be
described by the action in which the gravitational part of the action is written in terms of

the metric g,,, while the part of the coupled matter is written in terms of g,,,, as

5= [ da[V=g(3R+ POCE)+ Lanln) + VTl 000)] (52)

where P(X, ¢) = X —V(¢) and L, is the ordinary matter Lagrangian including baryon
and radiation, £,, is the dark matter Lagrangian, 1) is the matter field and ¢ , is the partial
derivative of the field. Using the variational method with respect to g,s, we obtain the

Einstein equation in the form
G =T+ T2 + Ty (5.3)

where G*? is the Einstein tensor computed from g,,,,, and the energy-momentum tensors
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for scalar field and matter are defined in unbarred frame as

T T = .
3 = 5o v =5 ogm (5.4)
o= = v o (5.5)

From these definitions of the energy-momentum tensor and V,G*® = 0 as well as the

conservation of the energy-momentum tensor for the ordinary matter, we have V, (Tg f 4
T ﬁ;ﬁ) = 0. Here, V,, is the covariant derivative compatible with the metric g,5. Since
the dark matter Lagrangian depends on field ¢, the energy-momentum tensors of dark
energy and dark matter do not separately conserve. From the action (5.2), we see that the
metric tensor does not depend on ¢. Hence, variation of the action (5.2) with respect to
1 yields

VT =0, (5.6)

where V,, is defined from barred metric. This implies that 7% conserves in the barred
frame. The relation of energy-momentum tensor between the barred frame and the un-

barred frame defined in Eq. (5.3) can be written as

qop V=999 2 5(V=9Ln) _ V=999 7po (5.7)
N TN V=909a5 "

Varying the action (5.2)) with respect to the field ¢, we obtain the evolution equation for

scalar field as

vava¢ - V¢ + Q = 07 (58)

where @ is the coupling term coming from variation of the dark matter action [ d*z/=gL,,

in Eq. (5.2)) with respect to ¢. The variation of this part of the action can be computed as

S5 1 _
0 / d*o/=G Lo = / d'zé¢ {Tgﬂzm%ﬂ +5Ve (¢—9T%ﬁgaﬁC,X¢">} :
(5.9)
Using Eq. (5.7), we have

1 —
\/—QT%’B = (05;0;(55 - §C7X¢Q¢nga) \% _ngr)LU?

_ 1 _
= C\/—gT% — §C’7X¢O‘¢B\/_—§gpaT#f. (5.10)
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Contracting g, to the both sides of the above equation, and setting 7;,, = gagTT?;ﬁ , The

above equation can be written as

V=9Tn = (C+ CxX) V=390 TS , (5.11)
which yields
V=0T
V=09a3T" = 5.12
99as CrCxX (5.12)

Substituting the above relation into Eq. (5.9), we obtain
) / d*z/ =L,

/d495\/_5¢{ + %va (LgbaTm)} (5.13)

—T
2(C+ CxX) C+CxX

Combining the above equation with Eq. (5.8), we obtain
Vo V%% - Vy=-IT,, —V,(E¢°T},) = —-Q, (5.14)

where I' = C',/[2(C + C xX)]and = = C x/[2(C + C xX)]. Multiplying ¢4 to both

sides of th above equation, we can obtain the equation in the form as

Valge = —T¢sTn — Va (E¢°Tn) ¢s = —Qdp, (5.15)

where T§ ;s is the energy-momentum tensor of the scalar field. Hence, the general con-
formal transformation induces the coupling term between dark energy and dark matter in
the form

Q=TT + Vo (E¢°T,,) . (5.16)

According to the conservation of the total energy-momentum tensor, Eq. (5.13) gives

vaTgam = Q¢B : (517)

In the case that we consider, if the conformal coefficient C' depends only on the field ¢,
then C x vanishes. Therefore Eq. (5.14) reduces to the equation for the case of usual
conformal transformation. When C' x does not vanish, the coupling term () contains

coupling between the field derivative and the energy density as well as between the field
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derivative and the derivative of energy density of CDM. The latter form of the coupling
can lead to different effects on cosmic evolution compared with the usual conformal

coupling case.

5.2 Evolution of the Background Universe

In this section, The effects of the interaction between dark energy and dark matter
due to the general conformal transformation are studied on the evolution of the back-
ground universe. Using the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, we
have

ds® = —dt* + a*6;da'da? . (5.18)

Supposing that the scalar field is homogeneous and other matter components in the uni-

verse are described by perfect fluid, Egs. (6.14) and (5.17) become

b+3Hop+Vy=0Q, (5.19)

and
pm + 3H pm = —Q0, (5.20)

where @ is the coupling term evaluated at the the background universe. In the follow-
ing calculation, we consider the case where matter include co-dark matter and baryon.
The energy density of dark matter is denoted by p,,, and the coupling term in Eq. (5.16)

becomes
Q= —Tp, + (q’ﬁ + 3Hq’5> Zom + 225X P+ 22X pn + Edpm . (5.21)

We see that the interaction term Q in the above equation depends on ¢ and p,,. Hence,
we combine Eqs. (5.19) and (5.20) to write the evolution equations for ¢ and p,, in the
forms

O+3Ho+Vy=0Qo, and fjp+3Hpy = —0Qo, (5.22)

where () is the interaction term which has already eliminated gzﬁ and p,,. The interaction
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term ()y can be written as

(OVy+3HOG — 2XZ 4+ D)pp,

o= Opm — 2XZ — 1 ’

(5.23)

where © = = + 2XE x. Since the energy-momentum tensors of baryon and radiation
separately conserve, the conservation of these energy-momentum tensors in the back-

ground universe yields

py = —3Hp,, and p, = —4Hp,, (5.24)

where p;, and p, are the energy density of baryon and radiation.

5.2.1 Autonomous Equations
To compute the autonomous equations, we define the dimensionless dynamical

variables as

L N A Y
V6 3H2 ™ 3H?'
Pb Pr
b 3H2 Q, = 3H2’ (5.25)

and the dimensionless functions as

) A )
= v
v=T, x=ZH. (5.26)

In terms of the above dimensionless variables, the Friedmann equation gives
l=2+y+ Q4+ QB+, . (5.27)

Using the definitions of z, y, z and €,,, from Eq. (5.22)), we obtain autonomous equations



69

as

V6 (YQum + Ay) + 67 + 3v6 (720 — 20X, + 2Ay2) 22

+3622° — 18v620,, X o2

5.28
* 3622, (3222 + 1) x x + 328, — 12222 — 2 o (528)

H
Y = \/g)azy — 2y

7 (5.29)
C,X H C}X H
o
362° (3222 + 1)(6z + V6Ay)x.x + 3V Yz — 2v/6y2(37%2 + 1) a
36220, (3722 + 1) X, x + 320, — 12222 — 2 "
12¢/623 (3222 + 1) x4 + 18222 + 6
) Qm
3622, (3222 + 1) x x + 328, — 12222 — 2
9|12 (32*z + 22 -
N 12 (Baz +2%) x.x + 2] 02 (5.31)
3622, (3222 + 1) x x + 328, — 12222 — 2
where a prime denotes a derivative with respect to N = Ina and
H 1 )
m:§(Qm—2x +4y —4) . (5.32)
From Eq. (5.24)), we get
a
Q = =30, — 2me, (5.33)
H
Q. = —49, — 2ﬁQr : (5.34)

Considering the denominator of all terms except the first term which is proportional to

H/H? in Eqgs. (5.28) and (5.31)). The denominators are the same and can vanish when

32Q,, — 122%2 — 2
3622Q), (3222 + 1)

XX = (5.35)

This suggests that =’ and )/ can be infinite when the above equation is satisfied. To
ensure that the background universe properly evolves, we have to avoid the situations in

which the above equation is satisfied.
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To perform further analysis, we choose the potential of the scalar field and coef-

X\
1 Aogp [
+e (Ao)

where Cy, A\, A2 and A3 are dimensionless constants, while V{, and A, are constants

ficient C in the forms

V(p) = Ve, C¢, X) = Coe? , (5.36)

with the same dimension as X. According to Eq. (5.26), inserting this form of C' into
Eq. (5.39), we obtain

Ny — 27x%2%Q,, + 3297% +Q36x4z2 + 18222+ 2 ' (5.37)
Z3lm

For the case of positive A3, we get z > 0 according to the definition in Eq. (5.26). This
suggests that the above equation can be satisfied if A3 > 0. This implies that 2’ and €2,
can be infinite at some time during the evolution of the universe if A3 is positive. Based

on the numerical investigation, the divergence of 2’ and €2/, can be avoided if A3 < 1.

5.2.2 Fixed Points

In the dynamical analysis, the contribution from the radiation energy density is
ignored because we focus on the fixed points corresponding to the matter-dominated
epoch and the late-time accelerating universe. Since Eq. (5.33) has fixed points at {2, = 0
and at H /H? = —3/2, we also drop the contribution from baryon. The first fixed point
can be reached in the future while the second fix point involves the matter dominated
epoch. Since the pMDE requires H/H?> = —3(1 + wey)/2 < —3/2 during matter
domination, the second fixed point is not exactly compatible with 9MD. Hence, in order
to study the pMDE point in the dynamical analysis, the contribution from the baryon
energy density is dropped . However, we will show the numerical integration that the
inclusion of baryon energy density does not obstruct the existence of PMDE, because we
still get Q) ~ 0 when H/H? < —3/2.

Since we ignore contributions from radiation and baryon energy density, Eq. (5.27)
becomes

Qn=1—a*—y. (5.38)
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Substituting this equation into Eq. (5.32)), we obtain

H 3
=5 (2 —y+1). (5.39)

At fixed point we set v/ = 0, Eq. (5.29) gives two solutions corresponding to the fixed

points y. = 0 and
a 3
where the subscript . denotes the evolution at the fixed point.

(a) Field Dominated Point and Scaling Point

Let us first consider the fixed point y, # 0. We match Eq. (5.39) with Eq. (5.40).

2
Yo = \/;)\xc + a2+, (5.41)

Inserting C from Eq. (5.36) together with Eq. (5.38), (5.40) and (5.41]) into Egs. (5.28) and

(5.30), we obtain the following equations for the fixed points after setting 2’ = 2’ = 0,

Therefore we obtain

0= V63 + (M1 — 2 (A2 +3)) Mgz + VA3 (M — A(92. + 2)) 22
+ 3 (220203 4 (=5A7 + A — 2004 — 18) A3 + AXo) 22

+ 362, (=230 + Ao + A (A1 — A (A3 + 62, 4 5))) =

— 9 (A2 +12) A3 — 3A\g) 2222 + 9V6 (3Xg — ANg) 2228, (5.42)
0= \){—6 (A2 + AN3) xeze ()\3 — 3:5320) ) (5.43)
3

Solving Eq. (5.43), we obtain the solutions for z. as

A3
327

C

2.=0 and z.= (544)

Since the z. = 0 solution corresponds to the case where the kinetic dependence of C' is
negligible, i.e., z = C x/C = 0, we focus only on the second solution. Besides, the
condition Ay + A3 = 0 is also the solution of Eq. (5.43)). However, we will not discuss

this case in detail.
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Substituting the second fixed point of z of Eq. (5.44) into Eq. (5.42), we get two

fixed points of variable x as

B A V6 (23 + 1)
xc_{_%’)\1+/\2—/\(3/\3+2)}' (545)

Substituting two fixed points of z,. from above equation into Eq. (5.41)), we obtain two

fixed points of variable y as

2 2 1) 2\ (2 1
ch{l—)\—,l 62% +1) A2Xs +1) } (5.46)

+
6 ()\1-1—/\2—)\(3)\34—2))2 )\1+)\2—)\(3)\3+2)

Substituting x. and y. into definitions Q4 = z? + y and wy; = (22 — y)/Qy, we obtain

the density parameter and equation of state of scalar field at the fixed as

12 (2Xs + 1)° 2X\ (23 + 1)
Qe = 1, + +1%, (547
¢ { Ont o — ABrs + 272 At Az— AN +2) (5:47)
1 A+ Ao+ Ay
e = 97 (V=3),— , 5.48
w {3( ) ()\1+)\2—)\(3)\3+2))a} (5.48)
where
12 (203 4 1)° 2X\ (23 + 1)

o= + +1] . 5.49
(()\1+>\2—/\(3>\3+2))2 M e AN 1 2) (549

We see that the first pair of (x., y.) corresponds to the field dominated point, while the
second pair corresponds to the scaling point. For the case of field dominated point, A can

be expressed in terms of wy, as
A= /3(wee + 1), (5.50)

which is the same as that for the field-dominated solution for uncoupled quintessence

with exponential potential. For the case of the scaling point, From Eq (5.47) and (5.48)

we can solve for A and \; and write them in terms of €24, and wy,. as

V3(wseQpe +1)
(U)Qgc + 1) Q¢c )
\/g (—3)\3w¢CQ¢C — 2U)¢)CQ¢C + )\3)

A=A : 5.52
1 2 (w¢c T 1) Q¢c ( )

A=TF

(5.51)
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From the above equations, we see that the values of A and \; can be computed from the
values of Ay, A3, wg. and €2,.. Based on observational constraints, we can be specify
the values of wy. and (., 1.e., if we suppose that the scaling point corresponds to the
late-time universe, we can set wg. = —0.99 and €24, = 0.7. This suggests that to perform
further analysis, we need to specify only the parameters A, and A3 instead of all parame-
ters of the model A\, A1, \; and A3. Therefore, we can exclude the cases where the fixed
points do not correspond to the observational constraints in our analysis. Substituting A
and \; from the above equations into Eqs. (5.49) and (5.46), we obtain z, and v, in terms

of wy. and Q. as

1 1
Te = i\/§Q¢C (1 + ’qugc) and Ye = §Q¢C (1 — w¢c) . (553)

(b) Kinetic Dominated Point and )MDE Point

We now consider the fixed point y, = 0. Then Eqs. (5.38) and (5.39) respectively

give
Q=1 — a2, (5.54)
H 3
=5 (z2+1) . (5.55)

Substituting y. = 0 and the above two equations into Egs. (5.28) and (5.30) and perform-

ing the same steps as those for Eqs. (5.42)) and (5.43)), we obtain

0 = (1-22) [\/émg 432 (6N — 3) 20 + 2) 2

+3v6 (—2X300 + s + A As) 2022 + 9Nsz (203 — 920 + 5) 2

127V N2t + 27A3z§a;§] , (5.56)
0 = —)\izc (34 (22 + 1) = VBa.) (As — B222) (5.57)
3

In the following consideration, we denote that a superscript (*) is used for the quantities
corresponding to the fixed point y. = 0. This fixed point will play a role of MDE in the

subsequent consideration. From Eq. (5.57), we can solve for = at the fixed point as

2P =0 and 2 = As

C

(5.58)
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These solutions of z'” are similar to the case of scaling point. Inserting the second

solution for 2% into Eq. (6.56), we can solve for 2 as

AL+ A - VA2 + 2200 + A2+ 6X3 (3X3 + 2)
V6 (33 +2) V6 (33 +2) ‘

xkinetic _ :]:17 and xg‘i)) [

C

(5.59)
The first two solutions correspond to kinetic-dominated points, while the other solutions
correspond to MDE points. Inserting 2 into the definition of 2, in Eq. (6.54), we

obtain expression for (24 at y. = 0 in the form

2
“ </\1 + X2+ /A2 + 2001 + A2+ 6X3 (3)3 + 2))
Q p—
6(3M\3 + 2)2 ’

¢c ]-717

2
()\1 + A — /A2 + 209\ + A2+ 673 (33 + 2))
6(3\;3 + 2)2

(5.60)

From the definitions w, = (z* — y)/Q, and y = 0 at these fixed points, we obtain

wgi’) = 1. Hence, the effective equation of state parameter weyr = 2wy = Qg;) 18

slightly positive during the pMDE. We can write \; in terms of Qf;?, Ay and A3 using

Eq. (6.60) as

" 3[3ra 0 + 20 - x|
)\1 =—)Xs F 5 s (561)

(¢)
Q e

which are similar to scaling fixed point. In the following consideration, we use the sub-
scripts _ and , to indicate the selected sign in the expressions which contain 4 or . As

an example, if we apply this notation to Eq. (5.59), we get

L0 _ Mt VA 20 + A2+ 6 (3Xs + 2)
VBBt 2) V6 (3)s + 2) ‘

(5.62)

Using such notation, the possible expressions of A and \; for the scaling points can be

expressed as follows: according to Egs. (5.51]) and (5.52), there are two possible forms

of X and \; such that (X, \;) = (A_, A\;;) and (A;, \;_). For $MDE point, Eq. (5.59)

shows that there are two possible forms of x£¢), ie., xfﬁ) and x‘(ji) Each of them leads to

two possible choices of \; given in Eq. (5.61)).
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5.2.3 Stability

To investigate the stabilities of the fixed points considered in the previous section,
we linearize the autonomous equations (5.28) - (5.30) around the fixed points. Before
performing the linearization, we insert €2, from Eq. (5.3§) and C' from Eq. (5.36) into
the autonomous equations. We estimate the stability of these fixed points by checking
the signs of the eigenvalues of the Jacobian matrix defined by

Jij = — , (5.63)

a‘rj fixed point

where z; = (x,y, 2).
(a) Field dominated Point

Let us first consider the field dominated point in which x and y at fixed point

given by the first solution in Eqgs. (5.49) and (5.46), while z at the fixed point is the

second solution in Eq. (5.44). The eigenvalues of the Jacobian matrix for this case can

be written as

H1 = 3)\3(1+w¢c)+)\2\/3(1+w¢c),

3
po = —5(1 — Wge)
A3 (9Wge — 3) + 6wge — V3 (A1 + Xa) /T + w,

= 5.64
M3 4)\3 + 9 9 ( )

where we have expressed \ in terms of w,; for the case of this fixed point using Eq. (5.50).
One can check that the field dominated point is stable when both of the following condi-

tions are satisfied

A

ANy < ——, 5.65
’ 3(1 + wye) (565)
< _ 20ge(2VBNa—3 e 1) for \3 < —1/2
A ( f’i(“’“*y_) (5.66)
2’!1)¢C 2 3)\273 UJ¢C+1
> — \/g(w¢c+1) for A3 > —1/2

Since 15 1s always negative when wgy. < 1 which is the case for scalar field with standard

kinetic term, the field dominated points cannot be unstable.
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(b) Scaling Fixed Point

For the expressions of z, and y, at the scaling point given by Eq. (5.53)), the

eigenvalues can be written as

n = 3)\3 (1 + W¢CQ¢C) F )\2\ / BQ¢C(1 + W¢C) s
3 Tq
po = —— (1 —wece) + 34/ —,
V 7
(1 = wpeQe) — 34 /% , (5.67)
b

W

B~ w

Hs = —

where

o = A3 (05, Qwge + 1) Q5 + (3w}, — 18wy + 16) 25, + (16wge — 15) Qe + 1)
+ Qe (03, (wge + 1) Q3, — 2 (Wi, 4 Swge — 4) Qge + Iwge — 7) (5.68)

Ty = 16 (>\3Q¢c + 2)\3w¢cﬂ¢c + w¢CQ¢C + Q¢c + /\3) . (569)

In the above eigenvalues, we have expressed for A and \; in terms of wg. and €24, using

Egs. (5.51]) and (5.52)). We obtain the fixed point =, and z._ in Eq. (5.53) leading to the

same 1o and ug but different 1. The first eigenvalue 1; can be negative when

Aon/3000 (1 + wo
Ny < 422V 3e(1+ Wor) (5.70)

3 ( 1 + w¢CQ¢C)

The eigenvalues 1 and p3 in Eq. (5.67) can be infinite if 7, = 0 occurring when

(w¢c + 1) Q¢c

A3 = A3z = — :
3 3 2w¢cQ¢c + Q¢C + 1

(5.71)

If the ratio r,/r, < 0,the real parts of both 15 and 13 can be ensured to be negative. To
estimate the sign of this ratio, A3 at which r, = 0 is computed. We can show that r, = 0

when

>\3 = >\3a
B Q¢C (wic (w¢c + 1) ngc —2 (wic + 5w¢c - 4) Q¢C + 9w¢c - 7)
w3, (2wge + 1) O3, + (=3w3, — 18w, + 16) Q2 + (16wye — 15) Qg + 1
(5.72)
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Figure 4 Plots of the real parts of ;» and 3 for scaling fixed point. In the plots,
Wge = —0.99 and A\ = 1. The lines I and II represent the real part of ;. while the
lines III and IV represent the real part of ;.5. The lines I and III show the cases of

24 = 0.65 while the lines II and IV show the cases of (). = 0.95.

For the case that 2. > 0.6 and wy. 2 —1, the coefficient of A3 in Eq. (5.68) is negative
while that in Eq. () is positive. Hence, 7, < 0 when A3 < A3, while r, < 0 when
A3 > A3q. Since Az, < Ay, the ratio 7, /7 is negative when A3 < A3, or A3 > Agp. As
a result, the scaling point is stable when A3 < A3, or A3 > A3, for suitable choice of
A according to Eq. (5.70). For the case A3 € (\3q, As3), we have to evaluate 5 and i3
numerically. The real parts of 11, and pi3 for some choices of (2. are plotted in Fig. 4. In

this figure, the real parts of the eigenvalues weakly depend on As.
(¢) Kinetic Dominated Point and )MDE Point

Let us first consider the kinetic dominated points where . = 41. For these

points, the eigenvalues of the Jacobian matrix are

3(As+1) V(A + )
= j: == - P— j: . .
s YW Do 6X\3F V62, and s =6£V6). (5.73)

Depending on the values of A\, and A3, the second eigenvalue 15 can be either positive or
negative. This means that these points can be saddle point, so that they could be reached
for some ranges of Ay, A3 and some choices of initial conditions. However, we focus

on the cases where the cosmic evolution satisfies observational data, so that we will not
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discuss these points in more detail.

We next consider the ¢MDE points given by Eq. (5.59). Since the eigenva-
lues for these fixed points are complicated and their values include many possible cases
according to the range of \;, \; and A3, it is hard for discussion. However, if we are
interested in the case where the PMDE is followed by accelerating epoch described by
scaling points, we have to demand that \; from Eq. (5.52)) is equal to that from Eq. (5.61]).

Therefore we match these two equations. We then obtain the relation between Q((;;) and

Q4 as
AF|A e — 1) + 2wp8| VB
v - F [As (Bwy o ) + 2wy ¢>|\/_’ (5.74)
(3)\3 -+ 2) (U)¢C + 1) Q¢>c
where
A = X (w5, — 3 (wge — 1) Qe + 1)
+2X3Q. (6w Qe — wge + 1) + 4w} 02, (5.75)

B = X (9wi %, + 6Qgc + 1) + 4NsQ0 (3wl Qe + 1) + 4w Q.. (5.76)

If \s is equal to —2/3, the right-hand side of Eq. (5.74) could be infinite. Nevertheless,
if we take the limit \s — —2/3, Eq. (5.74) gives

1
0l = 5 (Woe +1) Qe 0, = oo. (5.77)

Hence, in the following consideration, we concentrate only fo;)_ which will be denoted
by Q((;;) From Eq. (5.74), we see that ngi) can have an imaginary part if B is negative

occurring when

2 (—3wg)c§2;c — /2 — w2 02 - Q¢C> 2 (—3w;c§z§)e + /02, — w2 02— Q¢C>

<A<

w3 7, + 6Q4. + 1 w3 5, + 604 + 1

(5.78)
For wy. = —0.99, the above condition becomes —0.45 < A3 < —0.41 and —0.51 <
A3 < —0.47 corresponding to {24, = 0.65 and Q4. = 0.95, respectively. To ensure
that the scaling points are stable, we choose A3 in the ranges A3 < A3, or A3 > Ag,. For

Wy = —0.99, from Egs. (6.72) and (5.71)) we have )5, ~ —0.57 for both Q4. = 0.65 and
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Figure 5 Plots of Qg]? as a function of \3. The solid line shows the case (2,. = 0.65,
while the dashed line shows the case (05 = 0.95. In the plots, w,. = —0.99, Ay =1

and \; lies within the range \; < —2/3and 0 < \3 < 1.

Q4 = 0.95. Moreover, we have A3, ~ —0.01 and —0.13 for Q4. = 0.65 and 24, = 0.95
respectively. Hence, for A3 < A3, or A3 > Ag, Qf;;) is real. In the case where wy. 2 —1
and (2. > 0.65, Eq. (5.74) gives Qgi) < 1073. From the numerical values of )3, and
Asp, we have to set A3 within the ranges A3 < —2/3 and 0 < A3 < 1 in the following
analysis. For the upper bound A3 < 1, we impose to avoid divergence of z’ and 2/

which can occur when \; satisfies Eq. (5.37).

The quantity Qéﬁ) is the value of €2, at the YMDE point. We plot this quantity as

a function of )5 in Fig. B. In the plots, (24 are not sensitive to A\y. We note that \; in

Egs. (5.52) and (5.61]) can be matched only for suitable conditions for \3. For example,

we obtain the same expression for Qg’? when we solve for it from the equations which
are constructed by matching A, from Eq. (5.52)) with either )\(ﬁ) or /\5‘75_) from Eq. (5.61)).
However, if we compute the numerical value of Q((;;) from Eq. (5.74) for given values
of €y, Wy, A2 and A3, and insert the result back into Eq. (), the numerical value of
A1+ will be equal to )\g‘é) when A3 < —2/3 while it will be equal to )\ﬁ) when A3 > 0.
Moreover, |z\”| < 1and ]xgﬁ)] > 1 for the former case while |'”)| > 1and |x£ﬁ)| < 1for

the latter case. The case where ]1:@] > 1 is not physically relevant case. We summarize
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Table 2 Matching of )\; from Eqs. (5.52) and (5.61)) and the required conditions on
As. The fourth column shows the magnitude of 2{?). The fifth and the sixth columns
present the signs of \; and \ computed from Eqs. (5.52) and (5.51). The main con-

clusions from the table do not change if | \s| ~ O(1), wy. 2 —1 and Q4. > 0.65.

Y

Matehing Scaling = pMDE A3 2 A1 A
Cases
I s =AM < —2/3 | 2P <1and 2] >1] <0 | <0
11 Ay =AY A3 >0 |z >1and 2% <1 >0 <0
11 Ao =A< =23 29 > 1and [ <1 | >0 | >0
Y A =AY A >0 |z <1and |z >1 ] <0 | >0

Table 3 The first eigenvalues for all possible matching cases.

First eigenvalue Cases [ and 11 Cases III and IV

" M/69 + 30 +1) | —A/60%) + 39 +1)

the matching of \; and )\(1¢) and the conditions on )3 in Tab. . Based on the choices of
parameters in Tab. P}, We now investigate the eigenvalues of the pMDE points . The first
eigenvalues of all cases are simple and are shown in Tab. . From the table, we see that
the eigenvalues could be negative depending on the sign of A. Nevertheless, the terms A
are multiplied by \/@ which is in order of 1072, so that these terms have no sufficient
contribution to make the eigenvalues negative. For these pMDE points, the polynomial
for the eigenvalues is complicated. Fortunately, the form the first eigenvalue is simple,
therefore the order of the polynomial can be reduced by dividing the polynomial with

(1 — p). Tt yields the resulting polynomial which can be written in the form

P4 aip+as =0, (5.79)
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where a; and a, are complicated functions of the parameters and Qgﬁ) Since Q((;Z) S
10~3, we expand a; and a, around Qéﬁ? =0upto Q((;Z) as shown in Eqs. (5.80) - (5.83).

cases I and II:

3 6 3
o= S oayfel 4 <—24/\3 sl 5) 0¥y (5.80)
3\/3[/\1/\3 (s —5) + 3% (Ag + 1)]
ay = —9 + 2 \/ lei)
2 Az (A3 +1)
+3[A§ (—2A3 +5A3 + 1) — Aidgagy — 2(A5 (A3 + 1) — 3Xgaz.) | Q0
A2 (A3 +1) o ’
(5.81)
cases III and IV:
3 6 3
o = 3ol + (2 -F)ole g
3vEM A3 =5) A +3N (N +1)] —
Ay = —9 - \/; Qf;i)
2 Az (A +1)
C3PRRA -5 = 1)+ Meazy + 2(8 (g +1) = BAsae) ] )
A2 (s +1) oo T
(5.83)

where ag = 202 — 33 + 1 and ay. = 2A3 — 2)\% +3)3 + 1. The solutions of Eq. (5.79)

are
—ap = a% — 4as
2

pt = (5.84)

From these solutions we see that the real part of at least one solution is negative if a; > 0.
If a; < 0, the real part of one solution is negative when a, < 0. According to Egs. (5.80))
and (5.82) and the sign of \; in Tab. [, the main contributions to a; for the cases I and
IIT are positive. As a result, the real part of at least one eigenvalue for each case is

negative. For the cases II and IV, it follows from Egs. (5.81) and (5.83) together with

the sign of \; and the range of A3 in Tab. P that the main contributions to a; can be
negative. However, to ensure that a, is negative, we suppose that |\;| < |\;| and impose

the additional condition A3 < 1 which is required to avoid divergence of z’ and 2/,,.
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This suggests that the real part of one eigenvalue for each case is negative. From the
above discussion, we conclude that the MDE point can be saddle for A3 given in the
table, A3 < 1, |A\2| ~ O(1) and for wy., Q. satisfying the observational bound, e.g.,

Wepe = —0.99 and Q¢C > (.65.

5.2.4 Evolution from the pMDE Point to Scaling point

From the fixed points which we have already discussed in the previous sections,
we now numerically study the evolution of the background universe. The evolution
equations used in the numerical integration are obtained by substituting Eq. (5.36) into
Egs. (5.28)-(5.31)). To explain some results in the previous sections, The evolutions of
2, for various values of A3 is plotted in Fig. B In the figure, we fix Ay = 1, 2, = 0 and
specify A and \; by setting (2, = 0.7 and wy. = —0.99. From the figure, we see that the
fixed point €2, = €24, = 0.7 can be reached at late time. From the numerical investiga-
tion, the all evolution of (2, weakly depends on \,, and the late-time evolution is robust
under the change of initial conditions. We then set {2, ~ 0.022 at present for adding the
contribution from the baryon energy density {2, into the numerical integration. Now the
evolutions of €2, §2,,, and Q, for A3 = —3/2 are plotted in Fig. @ In these plots, we fix
A2 = 1 and also specify the parameters A and \; by setting {2, = 0.95 and wy. = —0.99.
Since this scaling point can be reached in the future when €2, ~ 0, we set (2. to be larger
than the observational bound for the present value of €24. From the figure we see that the
universe evolves from the radiation domination to M DE point and then evolves towards
the scaling point at late time with {2, — 0.95 and €2, — 0. This pattern of the evolution
is achieved for wide ranges of A, and initial conditions. Before moving to the late-time
attractor, the cosmic evolution can pass the point €2, ~ 0.68, 2,,, ~ 0.3 and €2, ~ 0.022

at present as required by observational data. We note that €, in Fig. [ is Q..
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Figure 6 Evolutions of (), for various values of )\;. In the plots, 1 + Z = 1/a.
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Figure 7 The left panel shows the evolutions of 2,, (2, ). and (2, while the right

panel shows the evolution of w,. The pMDE takes place around 1 + Z ~ 20.



CHAPTER VI

CONCLUSIONS

According to the observational data, the expansion of the universe is accelerat-
ing at late time. There are numerous attempts to describe the accelerated expansion of
universe by introducing dark energy or assuming that physics of gravity on large scale
obeys the modified theory of gravity. However, one question arises because of coin-
cidence problem which is a puzzle why energy density of dark energy and matter that
independently evolve with time have the same order of magnitude at the present. To
solve such problem, we demand that the energy density of dark energy is proportional
to the energy density of matter during some period of time. A solution of the evolution
equations for the background universe that leads to the constant ratio of the matter and
dark energy densities is a scaling solution. Since ratio pg/p., is constant, p,, is no longer
scale as a2 during the scaling regime but the effective equation of state parameter of
matter is negative as the dark energy. To realize such property of p,,, one assumes that

there is an interaction between the matter and the dark energy.

The scaling solution lead to the existence of ®MDE point in which there is a
small fraction of dark energy during matter domination. The coincidence problem could
be alleviated if the universe can evolve from radiation domination through pMDE toward

acceleration epoch at late time.

In this thesis, the scaling solutions in two cosmological models are studied. Firstly,
the scaling solutions in the modified theory of gravity are investigated. The modified the-
ory of gravity used in our study is DHOST theory which satisfies the gravitational wave
constraints and has the scaling solutions . To get a suitable attractor at late time, the
coupling between scalar degree of freedom and dark matter is assumed. The coupling
for this model is inspired from conformal transformation in which the coefficient of the
conformal transformation depends only on scalar field. Then, the scaling solutions in the

coupled dark energy model constructed from the general conformal transformation are
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studied. The general conformal transformation is the conformal transformation in which
the coefficient of the conformal transformation depends on both the scalar field and its
kinetic term. For the first part of our analysis, the coupling between the dark compo-
nents is the same as literatures, but the different gravity is used for the second part of our

analysis, we use more general coupling term in Einstein gravity.

6.1 DHOST Theory with Scaling Solution

For the analysis of DHOST theory, we concentrate on the model parameters which
the expression of z, is given by Eq. (C.7). We have found that the scaling fixed point
corresponding to the comic acceleration at late time, is stable when n, and ng are not
negative for n, = —1 and —2. The stabilities of this scaling fixed point also depend on
the parameter x, which corresponds to the expansion rate of the universe at late time.
There are ranges of parameters in which the scaling fixed point and the field dominated
point are simultaneously stable. If x,. during the matter domination is positive, the cosmic
evolution will reach the scaling fixed point at late time. If x, during the matter domination

1s negative, the cosmic evolution will reach the field dominated point.

The density parameter of the matter can be larger than unity during the cosmic
evolution if ¢, is large enough and the initial value of ¥, during the matter domination
is significantly different from its value at scaling fixed points. Here, the deviation from
the Einstein gravity is parametrized by c,. In our consideration, the allowed value of ¢4

depends on the initial conditions for x,. and y,. during the matter domination.

Even though the gravity is described by the different theories, the eigenvalues for
the field dominated and ®MDE points in the model considered here are similar to those
for coupled dark energy models presented in [23]]. However, for DHOST theory, the
expressions for the eigenvalues corresponding to the scaling points are complicated, and
consequently stability of the fixed points has to evaluate numerically. In our numerical
investigation, the universe can only evolve from the pMDE to the field dominated point.

Since the evolution from pMDE toward the scaling point corresponding to the cosmic
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acceleration at late time cannot be achieved in this model, the coincidence problem cannot

be alleviated.

6.2 Coupled Dark Energy Model with General Conformal Coupling

In the analysis of coupled dark energy model, the pMDE point can be a saddle
point, while the solution for the cosmic acceleration at late time can be scaling attractor.
The cosmic evolution that starts from the radiation dominated epoch can move towards
the PMDE and then reaches the cosmic acceleration epoch at late time. This sequence of
the evolution can be achieved for the cosmological parameters which satisfy the obser-

vational bounds. This suggests that the coincidence problem can be alleviated.

We conclude that if coupling term is inspired from conformal transformation in
which the coefficient of the conformal transformation depends only on scalar field, the
coincidence problem cannot be alleviated in both DHOST theory and coupled dark en-
ergy model. If coupling term is inspired from general conformal transformation in which
the coefticient of the conformal transformation depends on both scalar field and its ki-

netic term, the coincidence problem can be alleviated in coupled dark energy model.
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APPENDIX A SOME DETAILS OF CALCULATION FOR

GALILEON THEORIES

In the following, we present some details of several calculations for Galileon

theories. Considering the first term in Eq. (3.7), we obtain
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For the second term in Eq. (B.7), it yields
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Inserting Eq. (B.9) into Eq. (B.8§), we obtain
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Inserting Lagrangian in Eq. (B.11)) into Eq. (B.3), we obtain
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Showing the calculation of the first and second term in Eq. (3.19), we obtain

Eq. (A.6) and Eq. (A.7) respectively
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Inserting Lagrangian in Eq. (8.18) into Eq. (B.3), we obtain
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Considering the first term on the right-hand side of Eq. (8.27), we can obtain
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Considering the second term on the right-hand side of Eq. (B.27), starting at i = 2 we
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At = 3, it yields
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APPENDIX B CALCULATION FOR THE CORRECTTION

TERMS

To search for the suitable correction terms, let us start with the generalized La-

grangian Eq. (8.44) that is changed all partial derivatives as covariant derivatives.

Lodf} = J(6,X) % L35,
= 10, X) (XAGE B 6 G G (BD)

This is the covariant generalized Galileons. If the coefficients f do not depend on ¢,
this is the covariant Galileons or the extended Galileons. Considering the variation with

respect to ¢, it is expressed as

(5‘Cn{f} =0 [Xf(¢> X)] A?;$2...anﬁlﬂ2...ﬁn¢alﬁl ¢012/32 s ¢an6n

+Xf(¢u X)Aélna)}“anﬁl&mﬁn(s ((balﬂl ¢&252 s ¢an5n) . (B.2)

Considering the first term in this equation, we obtain
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+0r0 () Al P2 B 1 by - - Pans
= 2 ($*V200) AL PG 5y b - P

+ia0* (f000 + [ x0X) ALz PP o Gany - Pans
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+ a0 f g0 DAl G 5 Gy - Pounn

203 fx (Y ,00) Al @B o Gonpy - P - (B3)

After performing integration by parts and paying attention only on the dangerous terms,



we obtain
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For the second term in Eq. (B.2), we obtain
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On performing twice integration by parts, the above expression can be given by
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Let us first consider the term A

A = 2n(n—1) Vg (XF)AGar= 200G (Bans,) - - Gonp 00
~ Va (Gasps)
~ Vo, (Vg,00,9)
~ Oy (05,00,0 +T7%,5,009)

~  0ny 08,000 . (B.7)

The above term, 0,, 0,04, ¢, is eliminated by

«4?21,32"'%[3 182:-BnTherefore, there are no

higher order derivatives in the term A. We now consider the term B in Eq. (B.6)

B = nVa, Vg (XF) AL G0, - Ganp, 00,
= Vo, [(f + X Fx) Vi X + X [V, 0] Ay 2 o, - ba5,00),
~ n(f+ X fx) Va, Vi, (638Y) Al @525y a5, 00,
~ 20 (f + X[ x) Va, (0 05, ) A2 G, - G500,
~ 20 (f + XF.x) (6 0rpian) Al 2 G, - o, 00 (B.8)

This term is canceled by Eq. (B.4). Therefore, the dangerous terms arising from Eq. (B.2),
remain only the term C' coming from Eq. (B.€). So far Eq. (B.2)) yields

OLASY ~ nX ALY NG Vs, (Gass - - - ansn) 00
~ n(n = 1) X FARR 00 (Ve fasss) dasss - dans] 00,
~ o (n— 1) X AR (N g Gos,) Vay (Gassy - - Pansa) 56
+n (0 — 1) X fAQR D525 (T, Vg, bans,) Pass - - Punpn 0D,
~ n(n = 1) X FAGR P (Vs G0,6,) Voo (Bagss - - - Panpn) 06
+n(n— 1) X fAG 3 P20 (4 Vg, Gass,) Gassy - GO0

(B.9)

Based on the similar consideration, the first term in above equation includes the terms,

1.e., Vg, 0a,p, that is the same as Eq. (B.7). Thus there are no third order derivatives in
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the first term. We then get

0L AfY ~ n(n—1) X AL (T Vs, Gar,) Pass - - - Ponsn 0P
~ n(n—1) X fAGR PP (7, V5,V 5,V 0,0) bagss - - Pans, 00 -

(B.10)
Since a generic tensor can be written in terms of symmetric and antisymmetric tensor as
Tors = T + Tipusol s (B.11)

one can write

Vﬁlvﬁ2¢ = ¢(5152) + ¢[5152] )

1 1
= 5 <v52vﬂ1 + Vﬁ1v,32) ¢+ 5 <V52Vgl¢ - vﬁlvﬁz) ¢. (B.12)
Replacing the above relation into Eq. (B.10), we obtain

1 a102...0n, 01 02...0n
(5‘CN{f} ~ Fn (n - 1) XfA 2n i Voq [V/BIVBQ] ¢a2¢a353 s ¢ocn,3n5¢'
2 (2n)

(B.13)
We know that the Riemann tensor can be defined via the relation
[Va, Vgl or = =R\ 500 = —Rorap®” = Rrcapd” - (B.14)
Then Eq. (B.13) takes the form

1 d102..0nP1P2...0n
0L {f} ~ —n(n—1)XfA%nP2bng (R 35 5) 0 asss - - Panpn 00 -
2 (2n)

(B.15)
Applying the Bianchi identity, we have

v)\Raﬁpa + V,BR/\apa + VaR,B)\pO' =0. (B16)
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The term, V,,, Ro, x5, 5,, 1 Eq. (B.13) can be written as

Voél Raz>\5152 = _v)\Rala25162 - VOQR)\CY16162 )
——————

ag4r0]

= _VARalagﬂlﬁz + va1R>\a25152 )
- _V/\Ralagﬁlﬁz - vOélROCQA/BlﬁQ i

1
V)\Roé1a2,31ﬁ2 = _évalRag)\ﬁlﬁg- (B17)

Inserting this relation into Eq. (B.13), we obtain

]' A1 A2...0n 01 P2...0n
OL{f} ~ —gn(n—1) XA %P0\ Ry 0,68, by, - - Poupa 00

(B.18)

Starting with the above equation, one can add the correction term, C,, that its variation

with respect to ¢ gives the term that cancels out Eq.(B.13). Then we choose

1 X at...anB1
CT = |:—g77, (n — 1) f(¢, Xl)deXl A(2n) 3 "'BnRa1a2ﬁ162¢a363 o ¢O¢n,3n )
Xo
(B.19)
where X is a constant.
The variation of C, with respect to ¢ is
5C, =~ (n — 1) (6, X)X (5X) Aerorfaiipy o iy
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X
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0
s
(B.20)
Considering the C'; term, it reads
C, = _1 — 1) fX (2 )\V 5 Aa1a2~~~an6162m,8nR
1 8” (n ) f ( ¢ A 925) (2n) a1a2B162¢a363 cee ¢om,8n )

1 a102...0n, 01 P2...0n
- _Zn (n - 1) X (¢)\VA(5¢) 'A(2n) il Ra1a25152¢a353 T ¢an,8n :

(B.21)
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After integration by parts, it leads to

1 a102...0nP1P2...On
G = -1V, (quyAm) b1 Ralaﬂl&%wg...qﬁanﬁn) 56,

1 a10Q...0p ...Pn
~ g (n = 1) FXGPAGT BT (Rasane,6,) Gty - - P00

1 A1A2...0nP1P2...Dn
+5n(n—1) FXPAGR IR 515,V A (Bagsy - - D) 36

(B.22)

We can see that the second term in above expression cancels with Eq. (B.18). However,

there is still the third order derivative of ¢. To eliminate this third order derivative, we

write the term C, in Eq. (B.20) as

b's
@ = X Dud Xy Al 2 Ry (V35 Vs 00) Gagsy - - Poenin »
0
(B.23)
where D, = —in (n — 1) (n — 2) f(¢, X1)X.
After twice integration by parts, it yields
X
02 = Va3vﬂ3 |:/X DnXmA?Zlna)lJlnﬁlﬂ%ﬂnRa1a2ﬂ152¢a454 SR gbanﬁn 5¢7
0
~ anagvﬁg (¢)\¢/\> A((X;%Qmanﬁlﬁ%ﬂnRa1a2ﬂ152¢a4ﬁ4 s ¢o¢nﬁn5¢
X
* X DnXmA?ZIT%2man6162”ﬂnRa1a251ﬂ2va3vﬁ3 (¢a4ﬁ4 s ¢an,3n) 5¢’
0
~ Pad A IR 513,V (Passy - - Pans,) 00
X
" X DnXmA?QlT?SQmanﬁlﬁ%ﬁn Ra1a25152 Vas vﬁs (¢a454 SR ¢an5n) Jop
0
(B.24)

where P, = —in(n—1) (n —2) f(¢, X)X and P, = —1n (n — 1) f(4, X)X.
From the above result, the first term is canceled with the second term in C;. However,
the fourth order derivative still appears from the second term of the above result. In or-
der to eliminate the fourth order derivative terms, we have to add other correction term.
Fortunately, the fourth order terms do not appear for n = 2 and n = 3 which correspond

to quartic and quintic Lagrangians of Galileon models. Therefore, the additional correc-

tion terms are unneeded. In order to construct the covariantized Galileons for the quartic
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Lagrangian, we have to combine Eq. (3.44) and Eq. (B.19) as

£4 - En:2{f}+c7’7

1 X 1 iorasm
= | -1 ) SO XXX AT R,
L 0 =
—f(¢, X)X (06" = ¢asd™) ,
o1 X 1 ara
- 4 Xo f(@, X1) X1d Xy ‘A(Qn:4) 1 25152Ra10‘2ﬁ1ﬂ2
—f(8, X)X (06" — dass*’) .
_1 X 7
= |5 [ S0 X0)XidX | 6552 R, 0
L Xo -
—F(¢, X)X (06 = ¢ap6””) |
_1 X

= | [ e X0 XadXs | (05105 — 051057) oo

o
_4 Xo

—f(6, X)X (36 — 6apd™) ,

X -
= % i f(6, X1)X1dX1| R — f(¢, X)X (0¢® — dpapd™) . (B.25)
We suppose that
1 X
Gu(o, X) =5 | J(&, X0)XdXs, (B.26)
Xo
so that
Gux = 516, X)X (B.27)

According to the above two equations, Eq. (B.29) can be written as
L = Gu(¢, X)R— 2G4 x (0¢° — ¢agd™) . (B.28)

This is the quartic Horndeski Lagrangian. Similarly, for the quintic Lagrangian, we now
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Ls

111

£n=3{f} + C'I’ )
g X -
_Z . f((b? Xl)deXl -’4?21710(:23;’516253Ra1a25152¢a353
L 0 J
—f(¢, X)X (O¢° — 30¢¢apd™” + 202007 03)
[ 3 X | o120,
_Z ; f(qb, Xl)deXl A(Qn:G) 102 SﬁlﬁzﬁgRamflﬁggbgz
L 0 J
—f(¢, X)X (O¢° — 30¢¢apd™ + 202007 03)
_3 X ] Q1000
4_1 X, f((b, Xl)Xl dX1 5/31152533 R041042ﬁlﬁ2 ¢§?3
L 0 .
—f(¢, X)X (O¢° — 30¢¢apd™ + 20200 03)
r X

2 s x| (e - s+ oy
L 0 |

Qi sa9 so a1 a9 sa Qi sa9 so B182 1B
— 05, 03 0 + 03, 052057 — 05, 0572053) R Do

o

—f(6, X)X (0¢° — 30¢0asd™ + 202007 93)
E X): f(o, Xl)deXl] (2R0¢ — 4R,5¢™")

— (6, X)X (09" — 30¢0asd™” + 20200 ¢33
—f(¢, X)X (0¢® = 30¢¢app™ + 20200 03)

X
{3 f(¢7X1)X1dX1:| (%RD¢_ROCB¢@B)

= (Z?X)X (06 — 306¢asd™ + 20207 33)

[ [ st x| (R - Sk

F(6 X)X (06" — 800050°" + 26:0657)

— _3 XX f((b,Xl)deXl- Gopd™

~F(6 X)X (06 — 3066056 1 2rad ) (B.29)

where G = Rop — % gt 1s Einstein tensor. Again, we suppose that

so that

X
G5(¢, X) =-3 f(¢7 X1)XqdXy, (B.30)

Xo

G5’X = —3f(¢,X)X (B?)l)
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From the above two equations, Eq. (B.29) can be written as

ch = G5<¢,X>Gaﬂ¢aﬁ+%%x (O¢° — 30060567 + 20200 95) -

(B.32)



APPENDIX C CONSTRAINT EQUATIONS IN TERMS OF

DIMENSIONLESS VARIABLES

In terms of the dimensionless variables, we can write Eq. (#.49) as

v, ™ (v_m_% (2¢4 + vp4) (204n4v”2+”6 (z Ty (—ﬁ
r r r r r H?2

2,05 — 2) — Taz) + nuxy) — 20 (ceul? — coul'®))

n4 H H Q nqg
+ (2¢4 + v)*) 04(4m+6)+ 2m+ 5+ 3| v

teang 22 (ca (ng —4) + 2 (ng — 1) v™) — degniiz.as (2c4 +v™)

1

2¢4 + vt

r

—cynaxy (2¢4 + 00 (zrxy —4))] (C.1)

where v, = y, /22

Eq. (#.50) can be written in terms of the dimensionless variables as

0 = (204—1-—111?4)2 [0, 7770 (—cqurt (—4cg (3ng — 2ng — 1) 270
—4cs (2ns — 3ny + 1) 2207° 4 30217 (dnfalal + dny (22,2,
2223+ Qy —2) + nixy (1, (8 — 22,my) + 2, (zpwx +4)) + 12))
—2¢402™ (—cg (3ng — dng — 2) T2V — ¢3 (dng — 3ny + 2) 20

+30277 (ny (2,20 — 200 + Qy — 1) + 3)) — 6cio? T (nfaf (—4w, 2,
+4a? — 27) + nixy (z, (8 — 22,35) + 2 (z,2\ + 4))
+any (z) (2, — 2) — 1) +4) + 02" (—c6 (2n6 + 1) 2)v)

+ea (2ng + 1) 2207° — 302 470)) | 4 3 (Q, + Q) (C.2)

This equation can be used to express (2,,, in terms of the other dimensionless variables.

Eq. (B.53) can be written in terms of the dimensionless variables as

0=FE + E». (C.3)
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where E1 and E’g are respectively written as

By = v, (¢ (—6ny (82) — 182,47 + 927w, + 27) afu) T
+3njz3 (8zaal — 9627 — 3z, (zowy — 24) @, + 27 (zowy + 12)) 0270
+12ny (cox? ((2n6 — 1) 2,y — (2062, + 2,) Ty + 8) V)2

—cx? ((2ng — 1) 2y — (2022, + 2,) Ty + 8) V7

+ (2 — 2) (= 3) 2\02T) — 12nxy (cox? (22, + 2,) V)2

—eow) (2, + 2,) U0 + (mx (2w — 4) 27 — 2(Qy + 22,20 — 1),
+2, (=Qy + 22,25 + 4)) 01270 4 8z, (3072770 (Qy, + Q) Qa2
—, (cevl (2 (2, — 2,) ANG + (2,2 — 32,2\ + 6) ng — 2,2 + 6)
—Coul'® (2 (2, — 2,) 2303 + (2,25 — 32,25 + 6) Ny — 2,0 + 6)))) o
=3¢} (8nyz? (v, — 2,) 23vf> ™ — 2nfas (zaad + (zo2\ — 16) 27 + 8z,.2,

+222) 02t 4 ny (—dcex? ((2ne — 1) zpay — (2062, + 2,) Ty + 8) V)2

+4cox? (2ny — 1) 2oy — (2n22, + 2,) Ty + 8) V) — 2 (2, — 2,) (200, — 3) 202 T70)
+ n2xy (60&22}1}?2 — G2z, u" + (x)\ (zpzy — 4) 22 + (8 — dz,2))

+22, (=3Q, + 2,25 + 5)) 0P T0) — da, (3u2H70 (Q, + Q) Qazy
—T, (cﬁv:f? (2 (z, — 2,) wang + (2,0\ — 32,75 + 6) ng — 2,2\ + 6)
—cou)® (2 (z, — z) am3 + (y — 32,20 + 6) no — 2,25 4+ 6))) ) v2™

—3ca (2 (@, — 2) (—eziv) + comlvf + () — 1) 0277) zyn]

+ (—cox? ((2n6 — 1) 2oy — (2062, + 2,) Ty + 8) V)2 + cox? (2ny — 1) 2,y
(C4
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Ey = —(2noz, + z) oA + 8) )¢ — (x, — 2,) (2, — 1) xwf2+"6) Ny
— 2z, (3u2170 (Q, + Q) Qazx — 2 (cov)? (2 (2 — 20) TanG
+ (xpxy — 32,25 + 6) ng — 2,2\ + 6) — cou'® (2 (2, — 2.) 203
+ (2,2 — 32,2\ + 6) N2 — 2,23 4 6)))) V2" + . (307777 (Q, + Q) Qo2
—x, (0611:‘2 (2 (z, — 2,) wAng + (T,2\ — 32,75 + 6) ng — 2,2\ + 6)
—cou)'® (2 (2, — 2,) 2303 + (2,25 — 322\ + 6) Ny — 2,0 + 6))) pina
+6cin4Ty (4niz§\xi’ + 2n41) (ZZriL‘)\nZ —2(zpxy+8)ny — zpwy + 4) 72
— (1222238 + 2,2\ (Bz,2) — 40) nf — 8 (zpx) — 4)ny + 4) ,

— (g — 1) 2, (naz,my — 2) 2) vp2tre) (C.5)

To compute the equation for z,, we substitute €2,,, solved from Eq. (C.2) into the above

equation. the resulting equation can be written in the form
bsz2 + boz? + blz, + by =0, (C.6)

where by, b1, by and bz are complicated funtions of the dimensionless variables of €1, x,., y,

and z,. Using Eq. (C.6), we can compute the expression for z, in the form

V2(38bibs —3) VA b

1= — : + _ 2 C.7
o 3bs /A 3v/2b;  3bs s
o (1+iv3) (Bhubs — 05) (1—iV3) VA by 8
" 3(22/3b;Y/A) 6/2bs 3b; '
Lo (1=iVB) @by b))  (1+ V) VA by ©9)
e 3(22/30, /AN 6/2b; 3b; '

where A = —Qb% +9b1b3b2 - 27b0b§+ \/4 <3b1b3 — b%) 3 + (—Zb% + gblbng - 27b0b§)2
The physically relevant solution is selected from the above solutions by the requirement

that z, becomes unity when z, = y, = 1,2, = 0 and ¢, as well as ¢ are given by

Egs. (4.66) and (4.67).
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