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ABSTRACT

We introduce the generalised Fisher information or the one-parameter extended

class of the Fisher information. This new form of the Fisher information is obtained

from the intriguing connection between the standard Fisher information and the varia-

tional principle together with the non-uniqueness property of the Lagrangian. Further-

more, one could treat this one-parameter Fisher information as a generating function for

obtaining what is called Fisher information hierarchy. The generalised Cramér-Rao in-

equality is also derived. The interesting point is the fact that the whole Fisher information

hierarchy, except for the standard Fisher information, does not follow the additive rule.

This could suggest that there is an indirect connection between the Tsallis entropy and the

one-parameter Fisher information. Furthermore, the whole Fisher information hierarchy

is also obtained from the two-parameter Kullback-Leibler divergence.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

There is no doubt that we are now in the “information era”. The information is

physical [1] and plays an essential role in modern physics ranging from thermodynamics,

statistical mechanics, quantum mechanics to relativity. The birth of information theory

can be traced back to the seminal paper of Shannon [2] on communication. The key

quantity in this context is the entropy or more precisely “Shannon entropy” as the mean

value of information or uncertainty inherent in the possible outcomes. The interesting

point is that the Shannon entropy is in the same form as the Gibbs-Boltzmann entropy

in the context of statistical mechanics if one ignores the Boltzmann’s constant, which

measures the configuration of themicroscopic states. However, the notion of entropywas

first introduced in the context of thermodynamics the second law of thermodynamics,

which is a bit more abstract relating to the heat flow in or out and the temperature of

the system. However, if we trace back long before the breakthrough work of Shannon,

Fisher purposed another information quantity, later known as Fisher information [3], as a

measurement uncertainty on estimating unknown parameters in the system. This means

that the Fisher information allows us to probe into the internal structure of the system.

At this point, Shannon entropy and Fisher information provides a complete description

of the system in the sense that the Fisher information can give an insight of what the

system is made of and the Shannon entropy gives the system behaviour in the big picture.

Moreover, the Shannon differential entropy and Fisher information are connected which

was first observed by Kullback [4]. With the Kullback insight, the Fisher information

matrix can be obtained from the second derivative of the Kullback-Leibler divergence(or

the relative entropy).
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The generalised version of the Shannon entropy was first introduced by Renyi

[5]. The Renyi entropy comes with a parameter and with a suitable limit, the Shannon

entropy can be recovered. Then one could think that the Renyi entropy is a one-parameter

extended class of the Shannon entropy. On the statistical mechanical side, the generalised

version of the Gibbs-Boltzmann entropy was proposed by Tsallis [6]. Again, this Tsallis

entropy comes with a parameter and the Gibbs-Boltzmann entropy can be recovered with

a suitable limit. One main feature of the Tsallis entropy is the non-additive property

directly related to the non-extensivity of the system. Consequently, this leads to a new

kind of research area known as the Tsallis statistics with a wide range of applications in

statistics, physics, chemistry, economics, and biosciences [7]. On the other hand, several

extensions of the Fisher information have been proposed with different aspects [8–13] to

serve different uses in statistics.

1.2 Objectives

The aim of this work is to derive the one-parameter generalisation of the Fisher

information.

1.3 Frameworks

In this contribution, we propose another one-parameter extended class of the

Fisher information. The key motivation and derivation come from the intriguing connec-

tion between Fisher information and variational principle observed by Frieden [14–16]

together with one-parameter extended class of the Lagrangian [21].

1.4 Structure of the thesis

The body of this thesis is the following. In chapter 2, we will give a brief re-

view of basic statistical notation, entropies, generalized entropies, and Fisher informa-

tion. In chapter 3, one parameter extended class of the Fisher information is derived by



3

employing the connection with the variational principle. The Fisher information hierar-

chy will be so obtained, the extended Cramér-Rao inequality and non-additive property

are given as well. Moreover, The connection between two-parameter Kullback-Leibler

divergence and Fisher information hierarchy will be established and we also show that

Fisher information hierarchy has a connection to Shannon entropy throught out matric

tensor in Kullback-Leibler divergence. The last chapter will be about the conclusion and

discussion.



CHAPTER II

THEORIES

In this chapter, we will first provide all necessary basic ingredients. The basic

of the statistics such as the notation of random variables, probabilities, the expectation of

random variables and statistical moments will be given in the first section . In the next

section, the concept of entropies will be discussed including thermodynamic entropy,

statistical entropy, Shannon entropy, Tsallis entropy and Kullback-Leibler divergence.

The definition of the generalised entropy will be mentioned as well. The standard Fisher

information will be given at the end of the chapter together with the connection with the

geometric metric tensor on the probability manifold.

2.1 Basic statistics

2.1.1 Random variable and probability

In statistics, we usually deal with a random process which is an event or ex-

periment that has random outcomes, i.e., tossing a coin, rolling a die, choosing a card.

For these kinds of experiments, we cannot exactly predict an outcome. Then there will

be a range of possibilities that we can calculate the probability of a particular outcome.

Random variables give numerical value to outcomes of random events. Normally, the

random variables, defined on the sample space Ω which is a collection of all possible

outcomes of a random event, are denoted by capital letters, i.e.,X = number of aces in a

card hand or Y = total of lotto numbers. The random variables can be divided into two

classes which are discrete and continuous cases.
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2.1.1.1 Discrete random variable.

Definition: A discrete random variable X is a measurable and countable value

from a set of possible outcomes Ω to a measurable space. That is

X ⊆ Ω , (2.1)

where X is a set of possible values, X = {x1, x2, ..., xN}.

Let us give an example. Suppose that we would like to predict the outcome of

the rolling unbiased dice. Of course there are six possible outcomes and therefore Ω =

{1, 2, 3, 4, 5, 6}. If we are interested in only even number outcomes then X = {2, 4, 6}

is our a set of random number. We now further introduce a quantity, associated with a

chance of getting a particular outcome, called probability mass function (PMF).

Definition: Let X be a discrete random variable (finite or countably infinite).

The function

PX(xi) = P (X = xi), for i = 1, 2, 3, ... , (2.2)

is called the probability mass function (PMF) of X . The subscript X indicates that this

is the PMF of random variable X . These PMFs must satisfy

N∑
i=1

PX(xi) = 1, (2.3)

which is called the normalisation condition.

If we again consider the unbiased dice, we can define probabilities of each value

as P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6 and these all should satisfy

normalization condition
∑6

i=1 PX(xi) = 1.
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2.1.1.2 Continuous random variable.

Definition: A random variable X is said to be continuous, when it is measur-

able and uncountable value from a set of possible outcomes Ω to a measurable space.

Therefore, this means that X can be any, uncertain, possible value

X = [a, b] , (2.4)

where a and b are boundary value of X .

Let us give an example. Here we would like to measure the temperature of

water and the range of possible temperature is X = [25, 30] degree celsius from the

sample space Ω ∈ R. We can also define a chance of getting random variables called

probability density function (PDF).

Definition: The probability that a random variableX takes a value in the (open

or closed) interval [a, b] is given by the integral of a function called the probability density

function fX(x) :

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx , (2.5)

where P (a ≤ X ≤ b) indicates probability of X in interval [a, b].

If we consider random variable being any real numbers and the PDF is nor-

malised so that ∫ ∞

−∞
fX(x)dx = 1. (2.6)

Normally, we might write it in a simple way as∫
Ω

f(x)dx = 1 , (2.7)

where random variable is finite value.
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2.1.2 Moment generating function

Here, we will introduce and discuss moment generating functions which will be

recalled later. The moment generating functions of a random variable X is a function

MX(α) defined as

MX(α) =


∑n

i e
αxiP (xi) for discrete random variable∫

Ω
eαxf(x)dx for continuous random variable

(2.8)

Then we can consider Taylor series of exponential

eαX = 1 + αX +
(αX)2

2!
+

(αX)3

3!
+ ...+

(αX)n

n!
+ ... , (2.9)

and expected values of Equation (2.9) can be written as

MX(α) =
〈
eαX

〉
= 1 + α ⟨X⟩+ α2

〈
X2

2!

〉
+ α3

〈
X3

3!

〉
+ ...+ αn

〈
Xn

n!

〉
+ ...

= 1 + α m1 + α2m2

2!
+ α3m3

3!
+ ...+ αnmn

n!
+ ... , (2.10)

where mn is called the nth moment. Next, we can also consider logarithm function of

moment generating functions as follow,

KX(α) ≡ logMX(α) = log
〈
eαX

〉
= log

(
1 + α m1 + α2m2

2!
+ α3m3

3!
+ ...+ αnmn

n!
+ ...

)
. (2.11)

Normally there are 2 type of moments. The first one is the moment about the origin

(raw moment) of a random variable X , denoted bymn (as pervious)

mn =


∑n

i x
n
i P (xi) for discrete random variable∫

Ω
xnf(x)dx for continuous random variable

. (2.12)

The second one is the central moment is moment about the mean (µ) of a random vari-

able X, denoted bym′
n ,

m′
n =


∑n

i (xi − µ)nP (xi) for discrete random variable∫
Ω
(x− µ)nf(x)dx for continuous random variable

. (2.13)
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Actually the meaning of the raw moments is just the expected value of xn about origin.

But the central moments refer to the behaviour of distribution for example,

1) the first Moment is a measure of the central location.

2) the second Moment is a measure of dispersion/spread.

3) the third Moment is a measure of asymmetry.

4) the fourth Moment is a measure of outliers/tailedness.

Moreover, there are the relations between raw and central moments as well. For example,

the 2nd central momentm′
2 can be expressed as follows

m′
2 =

〈
(x− µ)2

〉
=

〈
x2 − 2µx+ µ2

〉
= m2 −m2

1, (2.14)

where m1 = µ is the mean value. In the same fashion, some other order of central

moments are related with raw moments as follows

m′
3 = m3 −m3m2 + 2m3

1 (2.15)

m′
4 = m4 − 4m1m3 + 6m2

1m2 − 3m4
1. (2.16)

2.1.3 Cumulant generating function

If we define Y ≡ 1 + α m1 + α2m2

2!
+ α3m3

3!
+ ...+ αnmn

n!
+ ..., we can expand

logarithm function as

log(1 + Y ) = Y − Y 2

2
+

Y 3

3
− Y 4

4
+ ... . (2.17)

Then Equation (2.11) is rewritten as

KX(α) =
(
α m1 + α2m2

2!
+ α3m3

3!
+ ...

)
−1

2

(
α2m2

1 + α3m1m2

2!
+ α4m1m3

3!
+ ...

)
+
1

3

(
α3m3

1 + α4m
2
1m2

2!
+ α5m

2
1m3

3!

)
−1

4

(
α4m4

1 + α5m
3
1m2

2!
+ α6m

3
1m3

3!

)
+ ... . (2.18)
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Rearranging and grouping the common terms, we will get

KX(α) = m1α +
[
m2 −m2

1

] α2

2!
+
[
m3 − 3m1m2 + 2m3

1

] α3

3!
+[

m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1

] α4

4!

= k1α + k2
α2

2!
+ k3

α3

3!
+ k4

α4

4!
+ ... =

∞∑
n=1

kn(X)

n!
(α)n , (2.19)

where kn is nth cumulants given by

k1 = m′
1 = m1 , (2.20)

k2 = m′
2 = m2 −m2

1 , (2.21)

k2 = m′
3 = m3 −m3m2 + 2m3

1 , (2.22)

k4 = m′
4 − 3m2 = m4 − 4m1m3 − 3m2

2 + 12m1m
2
2 − 6m4

1 , (2.23)

This means that cumulants can be used to describe the behaviour of the distribution as

well. Recalling the definitions of moment and cumulant generating function (2.10) and

Equation. (2.11), we then introduce the effective values of a random variable [18].

eKX [α−1] =
〈
e(α−1)·X〉 , (2.24)

where [·] is a notion to emphasise the difference between the terms α − 1 for two sides

of the Equation. To match them, we define Xα such that

(α− 1) ·Xα = KX [α− 1]. (2.25)

Then we will have

e(α−1)·Xα = eKX [α−1] =
〈
e(α−1)·X〉 . (2.26)

Expanding the right hand side of Equation(2.26), one can obtain

Xα =
∞∑
n=1

kn(X)

n!
(α− 1)n−1 , (2.27)

where Xα is called the effective values of order α of the random variable X .
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2.2 Entropy and Fisher information

In this section, the notions of various entropies will be given together with their

physical meaning. In the last subsection, the Fisher information will be discussed.

2.2.1 Thermodynamic entropy

Here we shall first discuss the notion of the entropy in the context of the ther-

modynamics. The notion of the entropy was introduced to capture the statement of the

second law of thermodynamics which is concerned with the direction of the natural pro-

cess (irreversible process). A common example is that the heat always spontaneously

flows from a hot body to the cold body. We never encounter the situation that the heat

spontaneously flows from a cold body to a hot body as shown in Figure 1.

A B

TA TB

Q

(a) Natural process

A B

TA TB

Q

(b) Impossible process

Figure 1 Whenwe contact systemA andB together with temperature ofA is greater

thanB (TA > Tb), heat will be naturally transferred fromA toB (a). While

the opposite case (b) should be impossible without external conditions.

Then, we can conclude that entropy is the quantity that tell us what the processes in ther-

modynamic are possible or impossible. The mathematical interpretation of entropy was

introduced by Rudolf Clasius. For a closed system, which evolves along the reversible

path from the initial state to the final state, an infinitesimal increment of the entropy dS

is given by

dS =
d̄Q

T
, (2.28)
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where d̄Q is an infinitesimal transfer of heat to the system and T is a common temperature

between the system and the environment which supplies heat. The symbols d and d̄ are

employed to denote exact differential and inexact differential, respectively. And, the

concept of an exact differential refers to concept of path independence, while inexact

differential refers to concept of path dependence [19].

Another point that we need to introduce, before we start to consider entropy

change of system, is Clausius inequality. Basically, The Carnot’s theorem, for the Carnot

cycle, gives

η = 1− d̄Qc

d̄Qh

= 1− Tc

Th

. (2.29)

V

P

1

2

3

4

Isothermal Expansion at Th

Adiabatic

Expansion

Isothermal Compression at Tc

Adiabatic

Compression

d̄Qh

d̄Qc

Figure 2 The Carnot cycle contains with isothermal and adiabatic process.

Where η is efficiency of Carnot heat engine and while system receives heat d̄Qh from

high temperature Th reservoir and rejects heat d̄Qc to lower temperature Tc reservoir, see

Figure 2. Since, d̄Qc is negative, it reduces to

d̄Qh

Th

+
d̄Qc

Tc

= 0 . (2.30)

Next, for arbitrary reversible process (closed loop), one can approximate it with many

Carnot cycle as shown in Figure 3.
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P

V

d̄Q1

d̄Q2

d̄Q3

d̄Q4

d̄Qn−1

d̄Qn

Figure 3 The reversible cycle which can be sub-divided by drawing a family of

Carnot cycles.

Therefore, Equation (2.30) can be considered for every Carnot cycle in this process and

then we obtain
n∑

i=1

d̄Qi

Ti

= 0 or
∮

reversible loop

d̄Q

T
= 0 , (2.31)

where d̄Qi is heat flow for whole process at a temperature Ti. Next, we will consider

arbitrary irreversible process.

By The Carnot principle on the second law of thermodynamics, which is “effi-

ciency of an all irreversible heat engine is always less than the efficiency of a reversible

one operating between same two thermal reservoirs” [20], what we have now is

ηir < ηr

1− d̄Q′
c

d̄Q′
h

< 1− Tc

Th

, (2.32)

or

d̄Q′
h

Th

+
d̄Q′

c

Tc

< 0 . (2.33)
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Please note that, we just use d̄Q′ to indicate different of heats for irreversible

and reversible process but these are the same sort of quantity. With the same reason to

get Equation (2.31), we lastly get
n∑

i=1

d̄Qi

Ti

< 0 or
∮

irreversible loop

d̄Q

T
< 0 . (2.34)

Actually, if we combine Equation (2.31) and (2.34) together,

∮
d̄Q

T
≤ 0


∮

d̄Q
T

= 0 for reversible closed loop∮
d̄Q
T

< 0 for irreversible closed loop
(2.35)

which is known as Clausius inequality. Here, recalling entropy (2.28), the total change

of entropy will be given by

∆S =

final state∫
initial state

d̄Q

T
. (2.36)

Therefore, the entropy change of any closed reversible process is zero

∆S = 0 =

∮
reversible loop

d̄Q

T
(2.37)

as a consequence of the Clausius inequality. Equation (2.37) gives an important feature

called the path independent property between the initial state and the final state.

P

V

I
: R
ev
er
si
bl
e

II
: R
ev
er
si
bl
e

II
I
: I
rr
ev
er
si
bl
e

1

2

Figure 4 here are three possible paths from initial state (1) to the final state (2).
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For the irreversible process, we can always connect the initial and final states

with a fictitious reversible process and integrate along that path to calculate the difference

in entropy. Considering an irreversible cycle in Figure 4, included path II and III, and

applying Clausius inequality, we have∮
irreversible loop

d̄Q

T
< 0

∫
III

d̄Q

T
+

∫
II

d̄Q

T
< 0 . (2.38)

Next, if we consider the reversible cycle, included path I and II, we have∮
reversible loop

d̄Q

T
= 0

∫
I

d̄Q

T
+

∫
II

d̄Q

T
= 0

∫
I

d̄Q

T
= −

∫
II

d̄Q

T
. (2.39)

Here, replacing the second term in (2.38) with (2.39), we obtains∫
II

d̄Q

T
<

∫
I

d̄Q

T
= ∆S .

Finally, we can write entropy change for irreversible process as

∆S >

final state∫
initial state

d̄Q

T
. (2.40)

In the case that the process is adiabatic d̄Q = 0, together with (2.37), we obtain

∆S ≥ 0 . (2.41)

Now we can draw a conclusion that the process of heat transferring from a hot

body to a cold body is allowed because the entropy change is greater than zero. The

reverse process is forbidden because the entropy change is contradict with (2.41).
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2.2.2 Boltzmann-Gibbs entropy

In the previous subsection, the notion of thermodynamic entropy is discussed.

Here, another notion of entropy known as the statistical entropy will derived. What we

know is that thermodynamics is concerned with the macroscopic behaviour of the sys-

tem. However, the system is constituted of tiny parts, i.e., a box of N atoms. The in-

teresting fact is that the macroscopic properties of the system actually is the statistical

emergence of one configuration from possible many configurations of the microscopic

states. Let us now define an ensemble W which is a collection of all possible con-

figuration of the microstates and suppose the system is composed of two subsystems

at thermal equilibrium, see Figure 5. Then we could define number of microstates of

the whole system W1+2(E1+2), the first subsystem W1(E1) and the second subsystem

W2(E2 = E1+2 − E1). When E1, E2 and E1+2 are energies of subsystem 1, subsystem

2 and the whole system, respectively.

2

W2, E2

1

W1, E1

W1+2, E1+2

Figure 5 The composite system, which contain with subsystem 1 and 2.

Of course, relation between these three ensembles could be written as

W1+2(E1+2) = W1(E1)W2(E1+2 − E1) . (2.42)

Therefore, probability of microstates is expressed as

P (E1+2) = CW1(E1)W2(E1+2 − E1) , (2.43)



16

where C is normalised constant of probability. Since the logarithm function is concave,

the extremum point is not altered, we obtain

lnP (E1+2) = lnC + lnW1(E1) + lnW2(E1+2 − E1). (2.44)

Here, we need to know that which system provides the extremum probability respect to

energy E1. What we have now is

∂

∂E1

lnP (E1+2) =
∂

∂E1

lnW1(E1) +
∂

∂E1

lnW2(E1+2 − E1) . (2.45)

Using the fact that ∂
∂E1

P (E1+2) = 0, Equation (2.45) becomes

0 =
∂

∂E1

lnW1(E1) +
∂

∂E2

lnW2(E2)
∂(E1+2 − E1)

∂E1

=
∂

∂E1

lnW1(E1)−
∂

∂E2

lnW2(E2)

= β(E1)− β(E2) , (2.46)

where β is a new function of energy and now the relation between two subsystems is

β(E1) = β(E2) . (2.47)

At thermal equilibrium there is only temperature between subsystems that will be the

same (for canonical ensemble).

Therefore, we assume that β = 1
kBT

, where kB is Boltzmann constant. Then we

obtain

1

kBT
=

∂

∂E1

lnW1(E1)

1

T
=

∂

∂E1

kB lnW1(E1) . (2.48)

There exists a function S(E, V ) such that

1

T
=

∂S

∂E
. (2.49)

Hence, from Equation (2.48) and (2.49), we now see that

S = kB lnW1(E1) . (2.50)
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We note here that one can start with β(E2) and will obtain Equation (2.50) as well. The

quantity is called Boltzmann entropy (statistic entropy)

SB = kB lnW , (2.51)

whereW is number of possible microstates of the system that we are interested in. To see

the behaviour of the system through the Boltzmann entropy, let us consider the situation

in Figure 6(a). Initially, the subsystem 1 contains three energy bunches (indistinguishable

objects) and the subsystem 2 contains one energy bunch. For the system 1, we can say

that we have three balls and four boxes. The number of ways to choose the balls with

repetition is given by

C̄n,k =

((
n

k

))
=

(
n+ k − 1

k

)
. (2.52)

This is the number of k-element combinations of n objects. Surely, each possible of

combination is microstate of system and k is now defined to be number of balls and n is

defined to be number of boxes. Then we can compute number of microstates for system

1 as

W1 ≡ C̄4,3 =

(
4 + 3− 1

3

)
=

(
6

3

)
=

6!

3!(6− 3)!

= 20 . (2.53)

Also, we can compute number of microstates for the system 2 with the same process,

where we have n = 4 and k = 1. This gives us W2 = 4. Then Boltzmann entropy of

whole system at the initial configuration is

Si
B = kB lnW12 . (2.54)
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Actually, we also know that the system which contains subsystem 1 and 2 should has

number of mirostates as in Equation (2.42) (multiple form). Here, Equation (2.54) be-

comes

Si
B = kB lnW1W2

= kB ln(20)(4)

= kB ln 80 . (2.55)

1 2

(a)

1 2

(b)

Figure 6 The subsystem A and B are containing three energy bunches and one en-

ergy bunch, respectively, (a). After, they are come to together, it will be

the system that contain four energy bunches (b).

Later, let 1 and 2 contact each other allowing energy bunches to move across the subsys-

tems, see Figure 6(b). We find that the maximum entropy of the whole system is attained

if each subsystem contains two energy bunch, see Figure 7.
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Then the final entropy of the whole system is

Sf
B = kB lnW1W2

= kB ln(10)(10)

= kB ln 100 . (2.56)

Therefore, the entropy change is

Sf
B − Si

B = kB ln(10)(10)− kB ln(20)(4) > 0 , (2.57)

which agrees with the second law of thermodynamics.

Probable state

Initial state Final state

Figure 7 There are five configuration of energy bunch at final state.

Here we conclude that the statistical entropy probabilistically describes the system in

the same way as the thermodynamic entropy which is the entropy of an isolated system

cannot decrease with time.

So far, we treat all possible microstates on the same equal footing. This means

that the probability distribution is uniform for thewhole ensemble. Then if the probability

distribution is not uniform, the Boltzmann entropy is no longer applicable.
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However, one could employ another notion of entropy

SG = −kB

W∑
i=1

pi ln pi (2.58)

which was introduced by Josiah W Gibbs. In the case that if all microstates are equally

likely pi = 1/W , we obtain

SG = −kB

W∑
i=1

1

W
ln

1

W
= kBW

(
1

W
ln

1

W

)
= kB lnW, (2.59)

which is actually the Boltzmann entropy. Then we can state that the Boltzmann entropy

is the upper bound of the Gibbs entropy SB ≥ SG.

2.2.3 Shannon entropy

In this section, we will introduce another type of entropy known as Shannon

entropy. The origin of this entropy is nothing to do with what we have mentioned previ-

ously, namely thermodynamics and statistical mechanics, but rather from the communi-

cation.

According to Shannon, the communication is composed of 3 fundamental parts,

a sender, a communication channel and a receiver. The quest is that how the receiver can

identify what data is sent by the sender over the channel. Shannon demonstrated that the

entropy represents an absolute mathematical limit on how well the data from the sender

can be compressed onto a perfectly noiseless channel.

Recall a random variableX = (x1, x2, x3, ..., xN) and a set of associated proba-

bilities of each outcome P = (p1, p2, p3, ..., pN)
1. We now define a quantity that implies

amount of surprise for ith-outcome xi as 1/pi. The meaning of this quantity can be inter-

preted as follows. We consider a coin flip experiment. There are two outcomes resulting

in the random variable X = {xH , xT}: head and tail. If the head outcome xH turns up

every single time of flipping coin implying 100% chance associated with this particular

1Normally, it should be PX(xi), but we neglect subscription X and xi as pi to be convenient
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outcome known as maximally biased coin, the amount of surprise is 1, which is the min-

imum value, implying that there is nothing to be surprised with the head outcome since

it turns up every single time of the experiment. In the case that there are 50% chance

for outcome xH and 50% chance for outcome xT known as unbiased coin, the amount of

surprise is 2 for each outcome, which is higher than the previous case. This means that

you have to guess the outcome of the experiment for every single time. You could pick

the head outcome xH to be the one to turn up, but it might actually be xT to turn up, with

50% chance. Of course, you are surprised with the outcome because it is not what you

expected. From these two situations, we find that the more improbable a particular out-

come is, the more surprised we are to observe it. A question is now how can we measure

the amount of surprise properly? Here we find that if we choose logarithms to the base

2 (binary system) then the amount of surprise for each outcome is quantified in bits

Shannon information ≡ Ii = log2
1

pi
, [bits] (2.60)

which is called the Shannon information and also called surprisal. In Figure 8, the Shan-

non information increases logarithmically with decreasing the probability. This means

that more improbable of the outcome is, the more Shannon information.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Probability : p

Sh
an
no
n
in
fo
rm

at
io
n
:l
og

2
1/
p

Figure 8 Shannon information related with probability of x.
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Of course, in principle, the system would possess an ensemble of many possible

outcomes with a particular probability distribution. This also means that we will have a

corresponding ensemble of surprisals: {I1, I2, ..., IN}. We then could look for an (linear)

average of the surprisal

< I >=
N∑
i=1

piIi =
N∑
i=1

pi log2
1

pi
. (2.61)

Rearranging form a bit, we obtain

H(p1, p2, ..., pN) ≡< IX >= −
N∑
i=1

pi log2 pi , (2.62)

which is known as the Shannon entropy2. To see what we could say about the Shannon

entropy, we again recall the flipping coin experiment. In the case of unbiased coin, we

have {pH = 0.5, pT = 0.5} and

H(pH , pT ) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1 bit . (2.63)

This is of course the average of the Shannon information or the amount of information

to be extracted from the experiment is 1 bit.

In the case of biased coin, the Shannon entropy is always less than 1 bit and the

minimum value of the Shannon entropy is 0 for the maximally biased coin: either pH = 1

or pT = 1, see Figure 9.

In general, the maximum entropy is attained when the probability distribution

of all N outcomes is fair: {pi = 1/N , ∀i}

Hmax = H(1/N, 1/N, ..., 1/N) = log2 N bits . (2.64)

Here is an interesting feature. For the Shannon entropy H , the variable X can be repre-

sented bym = 2H equiprobable values. In the case of fair coin, we find thatm = 21 = 2.

This means that we can assign two different digits in binary system to each outcomes such

that {xH = 0, xT = 1}.

2The Shannon entropy is the same form with Equation (2.58), but with out Boltzmann constantKB
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Figure 9 Shannon entropy versus the probability of getting head pH , which is cal-

culated by using Equation (2.62), and we automatically know that pT =

1− pH .

In the case of unfair coin with H = 0.469, the number of equiprobable values

is 20.469 = 1.38. This number does not look so natural comparing with the previous

case. However, this way of transforming Shannon entropy to the number of equiprobable

values is quite natural to associate amount of information with the variable X .

In case of continuous probability distribution, we could also define the entropy.

Let X be a random variable with probability density function f(x) whose domain is a

set Ω. We define

H = −
∫
Ω

f(x) log f(x)dx , (2.65)

which is called the differential entropy. However, the differential entropy is unlike dis-

crete entropy becuase it can be negative. For example, we consider a normal distribution

given as,

f(x) =
1

σ
√
2π

exp
{(

−1

2

(x
σ

)2)}
, (2.66)

where a random variable X with f(x) has zero mean (µ = 0). The differential entropy
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becomes

H = −
∫

f(x)

(
ln
(

1

σ
√
2π

)
− x2

2σ2
ln(e)

)
dx

=
1

2
ln
(
2πσ2

)
+

ln e
2σ2

< X2 > . (2.67)

Using relation σ2 =< X2 > −�����: 0
< X >2, then we obtain

H =
1

2
ln
(
2πσ2

)
+

1

2

=
1

2
ln
(
2πσ2

)
+ ln(e)

1

2

=
1

2
ln
(
2eπσ2

)
. (2.68)

Equation (2.68) implies that differential entropy can be negative when 2eπσ2 takes the

value less than 1.

2.2.4 Kullback-Leibler divergence (relative entropy)

Normally, Kullback-Leibler divergence is just a modification of the Shannon

entropy. This divergence is given by

D(p ∥ q) =
N∑
i=1

p(xi) (log p(xi)− log q(xi)) . (2.69)

What we see from Equation (2.69) is that it is just the expectation of the logarithm differ-

ence between the probability of data in the original distribution p(x) and the approximat-

ing distribution q(x). If we consider for bit unit of information, we can interpret (2.69)

as “how many bits of information we expect to lose”, because there will be some lost of

information when we badly choose q(x) to approximate the true distribution p(x). For

example, suppose we obtain experimental data from original distribution p(x) and we

expect that it might be either uniform or binomial distribution being the original distri-

bution. We assume that Equation (2.69) yield

D(p ∥ Binomial) = 0.3 and D(p ∥ Uniform) = 0.5 . (2.70)

We can see that the information is lost when we use the uniform approximation is greater

than the binomial approximation. This means that if we have to choose some functions to
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represent our observations, it is better to deal with the binomial approximation. Basically,

Kullback-Leibler divergence can be written as

D(p ∥ q) =
n∑

i=1

p(xi) log
p(xi)

q(xi)
, (2.71)

for the discrete case and for the continuous case, it is

D(f ∥ g) =

∫
Ω

f(x) log
f(x)

g(x)
dx. (2.72)

We can see that if p(X)(or fX(x)) and q(X)(or gX(x)) are the same, D will be zero.

This means that there are no difference or no distance between them. One important fact

is that the KL-divergence is not a true measure of distance

D(p ∥ q) ̸= D(q ∥ p), (2.73)

since it is not symmetric under the commutation of the argument.

However, KL-divergence can be applied to study the probability distribution in

the geometry context.

Here, the Riemannmanifolds will be replaced by the statistical manifolds whose

points correspond to probability distributions. To see this, let’s first consider the point

P = (p1, p2, ..., pn) and P +dP = (p1+dp1, p2+dp2, ..., pn+dpn) for discrete random

variable on the n-dimensional statistical manifold, see figure 10. These two points can

be treated as two different probability distributions and we can use the KL-divergence to

quantify the difference

D(P ∥ P + dP ) =
n∑

i=1

pi ln
(

pi

pi + dpi

)
.

If dpi are infinitesimal, we find that

D(P ∥ P + dP ) ∼=
1

2

n∑
i=1

dpidpi

pi
.
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D

Mp

P

P + dP

Figure 10 Two different points P and P + dP on manifoldMp.

If we define gij = 1
2

δij
pi
, we then have

D(P ∥ P + dP ) =
n∑

i=1

n∑
j=1

gijdp
idpj . (2.74)

With the present form of the Equation (2.74), one can treat the KL-divergence as the

square of an infinitesimal line element ds2 or “interval” between point P and P + dP .

Then, of course, gij is the metric tensor, known as Fisher-Rao matrix, associated with

the statistical manifold. We note here that the asymmetric property of the KL-divergence

does not affect the lowest term in the expansion of Equation (2.74). Under the coordinates

transformation pi ⇒ θi = θi(p1, p2, ..., pn), of course, there exists an inverse transfor-

mation such that pi(θ1, θ2, ..., θn). With this transformation, a new statistical manifold

whose points correspond to different probability distributions Θ = (θ1, θ2, ..., θn).

D

Mp

P

P + dP

Mθ

Θ

Θ+ dΘ

D′

Figure 11 The probability manifold under the coordinate transformation.
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The metric is transformed as follows

gab =
n∑
i

N∑
j

∂pi

∂θa
∂pj

∂θb
gij

=
1

4

N∑
i

N∑
j

∂ap
i∂bp

j

pi
δij , (2.75)

where ∂
∂θa

≡ ∂a and ∂
∂θb

≡ ∂b. A new metric can be further simplifed

gab =
1

4

N∑
i

∂ap
i∂bp

i

pi

=
1

4

N∑
i

∂ap
i

pi
∂bp

i

pi
pi

=
1

4

N∑
i

pi∂a ln pi∂b ln pi

=
1

4
⟨∂a ln pi∂b ln pi⟩. (2.76)

We would point out that the term with the bracket is the Fisher information3.

In addition, if we consider

−1

2

∂2H

∂pi∂pj
=

1

2

δij
pi

= gij, (2.77)

we may treat this as the connection between the Fisher information and the Shannon

entropy.

3The derivation of the Fisher information will come up later.
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2.2.5 Generalised entropies

Fadeev [23] proposed the postulates which can be used to characterize entropy

(the discrete case is interested here) as follows

(a) H(p1, p2, ..., pn) is a symmetric function

(b) H(p1, p− 1) is a continuous function of p for 0 6 p 6 1.

(c) H(1/2, 1/2) = 1.

(d) H(tp1, (1 − t)p1, p2, ..., pn) = H(p1, p2, ..., pn) + p1H(t, 1 − t) for any

distributions P = (p1, p2, ..., pn) and for 0 6 t 6 1.

Here in this section, we will pay attention to Tsallis entropy and Rényi entropy

since they are relevant for our context on generalising the Fisher information.

2.2.5.1 Rényi entropy.

AlfrédRényi introduced a new quantitywhich is calledRényi entropy [5], through

generalised probability distributions. To see what he did, let us consider [Ω,B,P] be a

probability space, where Ω is the elements of events (sample space), B is a σ- algebra

of subsets of Ω, elements ofB being events and P is probability which P(Ω) = 1. Then

he considered function ξ = ξ(ω) for ω ∈ Ω1 where Ω1 ∈ B and P(Ω1) > 0. Now, if

P(Ω1) = 0, ξ is called a complete random variable. While in the case 0 < P(Ω1) < 1,

ξ is called incomplete random variable. What we are interested is a particular case such

that ξ takes on a finite different values x1, x2, ..., xn, the existence of distribution can be

written as pk = P(ξ = xk) for k = 1, 2, ..., n.

Here, the generalised probability can written as

W(P ) =
n∑

k=1

pk , (2.78)

where P ≡ (p1, p2, ..., pn). We shall callW(P ) as the weight of distribution with

0 < W(P ) 6 1 . (2.79)

The weight is called a complete distribution if W(P ) is equal to 1, while the weight is
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less than 1 will be called incomplete distribution. Next, Rényi characterised the entropy

with a generalised probability distribution by given five postulates

(1) H[P ] is a symmetric function of the elements of P .

(2) H[{p}] is a continuous function of p in the interval 0 < p < 1, if p is defined

as the single probability.

(3) H[1/2] = 1.

(4) Let ∆ denote the set of all finite discrete generalised probability distribu-

tions. For P ∈ ∆ and Q ∈ ∆ we have

H[(P ∗Q)] = H[P ] +H[Q] , (2.80)

where Q = (q1, q2, ..., qm) is other set of probability. If we denote P and Q as two

generalised distributions such thatW(P ) +W(Q) 6 1, where the union of set being as

P ∪Q = (p1, p2, ..., pn, q1, q2, ..., qm) , (2.81)

and, of course, P ∪Q is not defined whenW(P ) +W(Q) > 1.

The last one may be called the mean-value property of entropy.

(5) If P and Q ∈ ∆, one obtains

H[(P ∪Q)] =
W(P )H[P ] +W(Q)H[Q]

W(P ) +W(Q)
, (2.82)

for W(P ) + W(Q) 6 1. An advantage of this way on defining the entropy from the

generalised distributions is that this mean-value property is much simpler in the general

case. Next, let’s define

H[{p}] = h(p) , (2.83)

where the probability p exists on 0 < p 6 1 and should be continous in this interval by

postulate 2. The postulate 3 also gives us that h(1/2) = 1. Moreover, if we have another

probability q with 0 < q 6 1 , the postulate 4 gives

h(pq) = h(p) + h(q) . (2.84)
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Thus, it follows that

H[{p}] = h(p) = log 1/p (2.85)

the h(p) must be the logarithm function of p.

Rényi asked a question that what he will get if he replaced postulate 5 by some

other mean value. In general, weighted mean value of the numbers x1, x2, ..., xn with the

weight probability w1, w2, ..., wn for wk > 0 and
∑n

k=1 wk = 1, can be written in the

form

g−1

[
n∑

k=1

wkg(xk)

]
(2.86)

where g−1 is an inverse function of g(x) which is strictly an arbitrary monotonic and

continuous function.

(5′) With this reason, the new postulate is introduced

H[(P ∪Q)] = g−1

[
w(P )g(H[P ]) + w(Q)g(H[Q])

w(P ) + w(Q)

]
. (2.87)

It can be seen clearly that, if g(x) = ax + b with a ̸= 0, then postulate 5′ reduces to 5.

Another choice is

gα(x) = 2(α−1)x , (2.88)

where α > 0. Then postulate 1,2,3 and 4 characterise the entropy of order α. Obviously,

postulate 5′ gives a new entropy by choosing g(x) ≡ gα(x) for P = (p1, p2, ..., pn) as

Hα[P ] =
1

1− α
log2

[∑n
k=1 p

α
k∑n

k=1 pk

]
. (2.89)

This will be called the entropy of order α of generalised distribution P . For the complete

distribution
∑n

k=1 pk = 1, one obtains

Hα[P ] =
1

1− α
log2

[
n∑

k=1

pαk

]
, (2.90)

which is known as the Rényi entropy. It is not difficult to see that under the limit α → 1,

the Shannon entropy H1[P ] = H[P ] = −
∑n

k=1 pk log2 pk can be recovered.
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In fact, Renyi entropy of different orders, with different values of them, are

needed to describe the uncertainty [18]. To show this claim, we recall the definition of

the surprisal Ii = − log pi and rewrite as follows

Hα[P ] = − 1

α− 1
log
[ n∑

i=1

pi exp[(α− 1) log pi)]
]

= − 1

α− 1
log
[ n∑

i=1

pi exp[(α− 1)(−Ii)]

]
= − 1

α− 1
log⟨exp[(α− 1)(−I)]⟩ . (2.91)

Equation (2.91) is identical to the effective values

Xα =
∞∑
n=1

κn(X)

n!
(α− 1)n−1 =

1

α− 1
log⟨exp[(α− 1) ·X]⟩ (2.92)

where the coefficients κn(X) are called the cumulant. This implies that the negative

Renyi entropies are the effective values of the negative surprisal (X being replaced by

−I). Effectively, Equation (2.91) becomes

−Hα =
∞∑
n=1

κn(−s)

n!
(α− 1)n−1 =

1

α− 1
log⟨exp[(α− 1) · (−s)]⟩ . (2.93)

For n = 1, the cumulant κ1 = ⟨−s⟩ = ⟨log pi⟩ =
∑

i pi log pi is nothing but the Shannon

entropy. Then we get

−Hα =
∑
i

pi log pi +
∞∑
n=2

κn(−s)

n!
(α− 1)n−1 . (2.94)

The second term represents the fluctuation in the uncertainty. Again, by taking limit

α → 1, the Shannon entropy is trivially recovered from Equation (2.94).

2.2.5.2 Tsallis entropy.

Coming from different perspective, namely on the statistical mechanics, on

generalising the entropy, Tsallis gave a one-parameter generalisation of the Boltzmann-

Gibbs entropy [7]. To illustrate the method, let us consider a differential equation

dy

dx
= a+ b(y), (2.95)
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where a and b are parameters and condition y(0) = 1. From Equation (2.95), we consider

three different possible situations.

The first equation is

dy

dx
= 0 , (2.96)

where a and b are set to be zero. Then its solution is trivially constant y = 1 and whose

symmetric curve with regard to the bisector axis is x = 1.

The second simplest differential equation would be

dy

dx
= 1. (2.97)

Its solution is clearly

y = 1 + x, (2.98)

and we know that whose inverse function is

y = x− 1. (2.99)

The last one which we will consider is

dy

dx
= y . (2.100)

It can be explicitly seen that its solution is the exponential

y = ex, (2.101)

and its inverse function is

y = lnx . (2.102)

Equation (2.102) satisfies condition

ln(xAxB) = ln(xA) + ln(xB). (2.103)
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Here, if we multiply constant KB on both side of Equation (2.102) and replace x as a

number of microstateW . We might obtain thermodynamics quantity

SB = KB lnW , (2.104)

which is Boltzmann entropy. This, of course, satisfy additive condition (2.103) as well.

In addition, it is possible to unify the same three differential equations with only one

parameter by considering

dy

dx
= yq, (2.105)

with condition that y(0) = 1 and q ∈ R. Here q is a index. Then we can find that its

solution is

y = [1 + (1− q) x]1/(1−q) ≡ exq , (2.106)

which is called that the Tsallis’s q-exponential and there exists inverse function as

y =
x1−q − 1

1− q
≡ lnq x, (2.107)

which is called the Tsallis’s q-logarithm. Of course, if we take limit of q → 1 these two

q-analogues will become the original ones. It is not difficult to see that

lnq(xAxB) = lnq(xA) + lnq(xB) + (1− q) lnq(xA) lnq(xB). (2.108)

Next, we can introduce the generalised Boltzmann entropy by using definition of q-

logarithm

Sq = KB lnq W = KB
W 1−q − 1

1− q
. (2.109)

Equation (2.109) can be rewritten as

Sq = KB

∑W
i=1(

1
W
)q − 1

1− q

= KB
1−

∑W
i=1 p

q
i

q − 1
. (2.110)
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Again, the Boltzmann-Gibbs entropy can be recovered by considering the limit q → 1.

2.2.6 Fisher information

The new quantity can also be used tomeasure disorder of system such that Fisher

information which is defined frommaximum likelihood estimation (MLE). With random

variable X(= x1, x2, x3, ..., xN) and independent and identically distribution (i.i.d) of

each outcome f(xi | θ), we can consider likelihood as

L(θ | X) =
N∏
i=1

f(xi | θ) , (2.111)

where θ is arbitrary parameter in probability models. In principle, the likelihood mea-

sures how good the statistical model is comparing to the sample of data X for given the

values of the unknown parameter θ such that at maximum value of likelihood data X

are existing at the true probability models, defined through parameter θ, itself. Then we

need to find maximum value of likelihood which means that

∂

∂θ
L(θ | X) = 0 . (2.112)

But, likelihood is often fussy on calculation, we introduce log-likelihood to solve the

problem becauses log-likelihood is monotonic increasing function which means they

have the same maximum point

∂

∂θ
logL(θ | X) = 0 . (2.113)

We also know that derivative of log-likelihood function in Equation (2.113) is called

Score function. It is obviously that the curvature of the log-likelihood function around

its maximum can be used as indicator for how good it is for the estimated value: If the

log-likelihood is quite narrow around the maximum we are fairly certain on the esti-

mated value, otherwise if the log-likelihood is broad we are uncertain about the estimate.

Therefore, we can consider second derivative of log-likelihood to determine curvature of

log-likelihood which is averaged for all possible random variable

I(θ) =

〈
∂2

∂θ2
logL(θ | X)

〉
, (2.114)
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because this quantity implies concavity and convexity of function and if absolute of value

is very hight its mean that function is quite sharp and easy to estimated. Thus, we define

this quatity as the measurement of accuration from data which is called Fisher informa-

tion. By the fact that

∂

∂θ
logL(θ | X) =

1

L(θ | X)

∂L(θ | X)

∂θ
, (2.115)

and the first derivative of log-likelihood will be alway zero〈
∂

∂θ
logL(θ | X)

〉
= 0 , (2.116)

Equation (2.114) can be treated as〈
∂2

∂θ2
logL(θ | X)

〉
=

〈
∂

∂θ

(
∂
∂θ
L(θ | X)

L(θ | X)

)〉

=

〈
L(θ | X) ∂2

∂θ2
L(θ | X)−

(
∂
∂θ
L(θ | X)

)2
L2(θ | X)

〉

=

〈
∂2

∂θ2
L(θ | X)

L(θ | X)

〉
−

〈(
∂

∂θ
logL(θ | X)

)2
〉
.(2.117)

For now on, we might neglect subscription Ω on integrating to be convenient. The first

term of Equation (2.117) can be obviously seen that it will be zero,〈
∂2

∂θ2
L(θ | X)

L(θ | X)

〉
=

∫
...

∫ ∂2

∂θ2
L(θ | X)

L(θ | X)
L(θ | X)

n∏
i=1

dxi

=

∫
...

∫
∂2

∂θ2
L(θ | X)

n∏
i=1

dxi

=
∂2

∂θ2

∫
...

∫
L(θ | X)

n∏
i=1

dxi

=
∂2

∂θ2
(1)

= 0 . (2.118)

Therefore, Equation (2.117) can be rewritten as〈
∂2

∂θ2
logL(θ | X)

〉
= −

〈(
∂

∂θ
logL(θ | X)

)2
〉

= −V ar

[
∂

∂θ
logL(θ | X)

]
−
〈

∂

∂θ
logL(θ | X)

〉2

.
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Using Equation (2.116), the last term vanishes, then we obtain〈
∂2

∂θ2
logL(θ | X)

〉
= −V ar

[
∂

∂θ
logL(θ | X)

]
.

Here, we can conclude that Fisher information tells us how much we know about the

internal structure from data. With a given space of outcomes Ω, Fisher information is

often defined by

I(θ) ≡

〈(
∂

∂θ
logL(θ | X)

)2
〉

= V ar

[
∂

∂θ
logL(θ | X)

]
= −

〈
∂2

∂θ2
logL(θ | X)

〉
.

In general, the estimated parameters could come in a set i.e., θ = (θ1, θ2, ..., θn).

Then the Fisher information becomes I(θ) = [Iij(θ)], where

Iij(θ) = −
〈

∂2

∂θi∂θj
logL(θ|X)

〉
, (2.119)

which is known as the Fisher information matrix.

To explain more clearly about Fisher information, we will show a famous ex-

ample which is tossing coin. We are interested to toss the coin 10 times: N = 10. We

observe a sequence of heads and tails which is H,H,H, T,H, T, T,H, T,H . If we de-

note heads by 1 and tails by 0, the data can be coded as

X = {1, 1, 1, 0, 1, 0, 0, 1, 0, 1} . (2.120)

So in this experiment, head turns up 6 times. Before considering N = 10, we actual

know that what kind of this probability model for n time tossing.

Model: We see that outcomes are independent to each other. Then the Bernoulli

distribution is an appropriate model to describe the probability of observing heads for

any single flip and parameter for this case is probability of getting head, that is θ ≡ pH

p(xi | pH) = pxi
H (1− pH)

1−xi , xi = {0, 1}. (2.121)
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Criterion: Of course, the criterion that will be used to estimate the probability

associated with the heads. The likelihood function is given by

L(pH | X) =
N∏
i=1

p(xi | pH)

= p
∑N

i=1 xi

H (1− pH)
N−

∑N
i=1 xi , (2.122)

What we need is to look at the condition for maximal likelihood function

d

dpH
L(pH | X) = 0 . (2.123)

At this point, it is useful of we consider the logarithm function of the likelihood. Then

we work with the addition rather than multiplication as we mention earlier. So the log-

likelihood is given by

logL(pH | X) =

(
N∑
i=1

xi

)
log pH +

(
n−

N∑
i=1

xi

)
log(1− pH) . (2.124)

We find that
d

dpH
logL(pH | X) = 0 , (2.125)

resulting in

p∗H =

∑N
i=1 xi

N
. (2.126)

Which suggests that the probability pH is just proportion of number of head outcomes in

the experiment. The Figure 12 shows the various outcomes forN = 10 tossing coin. We

observe that for 3 heads and 7 tails were the outcome, the likelihood function reaches the

maximum at pH = 0.3 = 3/10.

The question is now how accurate the estimate is. According to law of large

number, wewould prefer a large number of data. Figure 13 shows that increase in number

of flips gives decrease in the width of the distribution resulting in a better estimation.

Then it suggests the curvature of the likelihood function around its maximum can be

used as indicator for how good it is for the estimated value.
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(b) 5 Heads and 5 Tails
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(d) 9 Heads and 1 Tail

Figure 12 The likelihood function for several different possible outcomes for n = 10

flips of a coin.

If the likelihood is quite narrow around the maximum we are fairly certain on the esti-

mated value, otherwise if the likelihood is broad we are uncertain about the estimate. We

now can compute the score function

Score ≡ ∂

∂pH
logL(pH | X) =

x

pH
− N − x

1− pH
, (2.127)

where x =
∑N

i=1 xi.
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Figure 13 (a): The likelihood function for the case if 6 heads in 10 flips. (b): The

likelihood function for 60 heads in 100 flips. (c): The likelihood function

for 300 heads in 500 flips.

It is not difficult to see evident that, on average the score (first moment) is zero

〈
∂

∂pH
logL(pH | X)

〉
=

N∑
x=0

∂

∂pH
logL

N

x

 pxH(1− pH)
1−x

=
N∑

x=0

(
x

pH
− N − x

1− pH

)N

x

 pxH(1− pH)
1−x

=
NpH
pH

− N(1− pH)

1− pH
= 0 . (2.128)
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Next, we consider the average of the square score (the second moment)

〈(
∂

∂pH
logL(pH | X)

)2
〉

=
N∑

x=0

(
∂

∂pH
logL

)2

N

x

 pxH(1− pH)
1−x

=
N∑

x=0

(
x

pH
− N − x

1− pH

)2

N

x

 pxH(1− pH)
1−x

=
N

pH(1− pH)
= −

〈
∂2

∂p2H
logL(pH | X)

〉
= Var

(
∂

∂pH
logL(pH | X)

)
, (2.129)

which gives the variance of the score. Then for a single flip, the variance is 1/pH(1−pH)

which can be visualised in Figure 14. Therefore, the variance is proportional to the num-

ber n of trials, large n implying large variance as well as large negative expected second

derivative of the log-likelihood function.
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Figure 14 The variance as a function θ = pH within the Bernoulli model. As θ

reaches zero or one the variance goes to infinity. If pH = 1 the outcomes

will always be 1, therefore clearly conveying this information within the

data .
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Fisher information also provides a inforamtion lower bound on the variance of an un-

biased estimator for a parameter which is called Cramér-Rao inequality. Noramlly, it is

obtianed from considering unbiases estimator

B(Θ̂) =
〈
Θ̂− θ

〉
=

∫
Ω

...

∫
Ω

(Θ̂− θ)L(θ | X)
N∏
i=1

dxi = 0, (2.130)

where we already know that θ is unknow parameter and define Θ̂ = h(x1, x2, ..., xn) as

point estimator.

Next, if we now consider its derivative respect to parameter θ, we will have

∂

∂θ

〈
Θ̂− θ

〉
= −

∫
...

∫
L(θ | X)

N∏
i=1

dxi

+

∫
...

∫
(Θ̂− θ)

∂

∂θ
L(θ | X)

N∏
i=1

dxi , (2.131)

using the fact that
∫
...
∫
L(θ | X)

∏N
i=1 dxi = 1 and we obtain∫

...

∫
(Θ̂− θ)

(
∂

∂θ
logL(θ | X)

)
L(θ | X)

N∏
i=1

dxi = 1

∫
...

∫ [
(Θ̂− θ) · L1/2(θ | X)

] [( ∂

∂θ
logL(θ | X)

)
· L1/2(θ | X)

] N∏
i=1

dxi = 1 .

Applying Cauchy–Schwarz to above equation, we get

1∫
...
∫
(Θ̂− θ)2L(θ | X)

∏N
i=1 dxi

≤
∫

...

∫ (
∂

∂θ
logL(θ | X)

)2

L(θ | X)
N∏
i=1

dxi

1

V ar(Θ̂)
≤ I(θ) , (2.132)

which is called Cramér-Rao inequality.
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Furthermore, there is also one more important feature, as same as Boltzmann-

Gibbs (2.103), Shannon and Rényi entropy (2.80), of the Fisher information known as

the additive property. From the right hand side of the inequality (2.132), we will see that

I(θ) =

∫
...

∫ (
∂

∂θ
log

N∏
i=1

f(xi | θ)

)2 N∏
i=1

f(xi | θ)
N∏
i=1

dxi

=

∫
...

∫ ( N∑
i=1

1

f(xi | θ)
∂f(xi | θ)

∂θ

)2 N∏
i=1

f(xi | θ)
N∏
i=1

dxi

=

∫
...

∫ ( N∑
i,j=1
i ̸=j

1

f(xi | θ)f(xj | θ)
∂f(xi | θ)

∂θ

∂f(xj | θ)
∂θ

+
N∑
j=1

1

f 2(xj | θ)

(
∂f(xj | θ)

∂θ

)2) N∏
k=1

f(xk | θ)
N∏
k=1

dxk

=

∫
...

∫ N∑
i,j=1
i ̸=j

1

f(xi | θ)f(xj | θ)
∂f(xi | θ)

∂θ

∂f(xj | θ)
∂θ

N∏
i=k

f(xk | θ)
N∏
i=k

dxk

+

∫
...

∫ N∑
j=1

1

f 2(xj | θ)

(
∂f(xj | θ)

∂θ

)2 N∏
k=1

f(xk | θ)
N∏
k=1

dxk

=F1 + F2. (2.133)

Next, let us first consider F1 term. The probabilities f(xk | θ) for k ̸= i or j in-

tegrate through as simply factors 1, by normalization. The remaining probabilities in∏N
k=1 f(xk | θ) and term

∏N
k=1 dxk will be only f(xi | θ) and f(xj | θ) and just f(xj | θ)

for F2.

Then result is

I(θ) =
N∑

i,j=1
i ̸=j

∫ ∫
∂f(xi | θ)

∂θ

∂f(xj | θ)
∂θ

dxidxj +
N∑
j=1

∫
1

f(xj | θ)

(
∂f(xj | θ)

∂θ

)2

dxj

With the reason that we are dealing with identical and independent random variable,



43

this will be simplified as

I(θ) =
N∑

i,j=1
i ̸=j

∫
∂f(xi | θ)

∂θ
dxi

∫
∂f(xj | θ)

∂θ
dxj +

N∑
j=1

∫
1

f(xj | θ)

(
∂f(xj | θ)

∂θ

)2

dxj

=
N∑

i,j=1
i ̸=j

∂

∂θ

∫
f(xi | θ)dxi

∂

∂θ

∫
f(xj | θ)dxj +

N∑
j=1

∫
1

f(xj | θ)

(
∂f(xj | θ)

∂θ

)2

dxj

=
N∑
j=1

∫
1

f(xj | θ)

(
∂f(xj | θ)

∂θ

)2

dxj

=
N∑
j=1

∫ (
∂

∂θ
log f(xj | θ)

)2

f(xj | θ)dxj

=
N∑
j=1

Ii(θ). (2.134)

Particularly, the Fisher matrix (2.119) can also be obtained by considering the relative

entropy or Kullback-Leibler divergence between two distribution P = (f1, f2, ..., fN)

and Q = (q1, q2, ..., qN) on the probability manifold. Then the Kullback-Leibler diver-

gence between two probability distributions L(θ|X) and L(θ′|X), parametised by θ, is

given by

D(θ, θ′) ≡ KL(L(θ|X)||L(θ′|X))

=

∫
...

∫
L(θ|X) log

(
L(θ|X)

L(θ′|X)

) N∏
i=1

dxi , (2.135)

where likelihood is what we was already defined in Equation (2.111). For θ being fixed,

the Kullback-Leibler divergence can be expanded around θ as

D(θ, θ′) =
1

2
(θ′ − θ)

T
(

∂2

∂θ′i∂θ
′
j

D(θ, θ′)

) ∣∣∣
θ=θ′

(θ′ − θ) + O
(
(θ′ − θ)

2
)

, (2.136)

where the second order derivative is(
∂2

∂θ′i∂θ
′
j

D(θ, θ′)

) ∣∣∣
θ=θ′

= −
∫

...

∫ (
∂2

∂θ′i∂θ
′
j

L(θ′|X)

) ∣∣∣
θ′=θ

L(θ|X)
N∏
i=1

dxi

= [Iij(θ)] . (2.137)

With this connection, one may intuitively interpret the Fisher information as the metric

between two point on the probability manifold.
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However, the Kullback-Leibler divergenece is not symmetric and does not fol-

low the triangle inequality [22]. Then the Fisher information cannot be treated as a true

metric.



CHAPTER III

ONE-PARAMETER EXTENDED FISHER INFORMATION

In this chapter, we will derive a new type of the Fisher information called one

parameter generalised Fisher information. Then, we will construct the generalised one of

Cramér-Rao inequality and show that Fisher information hierarchy is non-additive quan-

tity. Furthermore, we will give the relation between Fisher information hierarchy and

the two-parameters Kullback–Leibler divergence. We also find that the standard discrete

Kullback–Leibler divergence gives a relation between Fisher information hierarchy and

Shannon entropy by considering higher rank tensor metric.

3.1 Least action principle and Fisher information

We first would like to give a short review on the least action principle. Let S[q]

given by

S[q] =

∫ b

a

L (q′(t), q(t), t)dt , where q′(t) =
dq(t)

dt
, (3.1)

be an action functional defined on the configuration space Σ : q = (q1, q2, .., qn) with

dimension n. Here L is a Lagrangian defined

L (q′(t), q(t), t) = T (q′(t))− V (q(t)) ,

where T is the kinetic energy and V is the potential energy. The action S[q] will take

its extremal value for particular function q0(t). This means that under an infinitesimal

variation q(t, ϵ) = q0(t) + ϵη(t), where η(a) = η(b) = 0, see Figure 15, the action

remains the same δS[q] = 0.



46

q0(t)

q(t, ϵ)

q

ta b
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Figure 15 Small variation q(t, ϵ) of q0(t) between the endpoint a, b.

Now the new action is given by

S[q] → S(ϵ) =

∫ b

a

L (q′(t, ϵ), q(t, ϵ), t)dt , (3.2)

which depends on the parameter ϵ. It takes the extremal value

0 =
∂S

∂ϵ
=

∂

∂ϵ

∫ b

a

L (q′(t, ϵ), q(t, ϵ), t)dt

=

∫ b

a

[
∂L

∂q

∂q

∂ϵ
+

∂L

∂q′
∂q′

∂ϵ

]
dt. (3.3)

Integrating by parts the second term in the bracket, we obtain

0 =

∫ b

a

[
∂L

∂q

∂q

∂ϵ
+

∂L

∂q′
∂q′

∂ϵ

]
dt

=

∫ b

a

[
∂L

∂q

∂q

∂ϵ
− d

dt

(
∂L

∂q′

)
∂q

∂ϵ

]
dt+

�
�

�
��>
0

∂L

∂q′
∂q

∂ϵ

∣∣∣b
a

=

∫ b

a

[
∂L

∂q
− d

dt

∂L

∂q′

]
η(t)dt. (3.4)

Since η(t) is arbitrary, this means that

∂L

∂q
− d

dt

∂L

∂q′
= 0 , (3.5)

which is known as the Euler-Lagrange equation.
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The intriguing connection between the variational principle and Fisher informa-

tion was proposed by Frieden [16]. Let us now define θ as actual value of a measurement

quantity, X = (x1, x2, .., xN) as N outcomes of the quantity and Y = (y1, y2, ..., yN) as

random errors associated with each measurement. Then we have

xi = θ + yi . (3.6)

Next, let f(xi|θ) be a probability distribution, whose support is a set Ω, over the x’s with

respect to θ. We recall the Fisher information 4

I(θ) =
N∑
i=1

∫ (
∂

∂θ
ln f(xi | θ)

)2

f(xi | θ)dxi (3.7)

In the case N = 1, we do have f(x | θ) = f(x − θ) = f(y). The Fisher information is

simply reduced to

I[f(y)] =

∫
f(y)

(
d

dy
ln f(y)

)2

dy =

∫
(f ′(y))2

f(y)
dy when f ′(y) =

df(y)

dy
. (3.8)

Next, we do a transformation such that q(y) =
√

f(y) resulting in

I[q(y)] = 4

∫
q′2(y)dy, when q′(y) =

dq(y)

dy
. (3.9)

We find that the Fisher information is now a functional with the input function q(y).

Here comes to an interesting point. If we define I[q] ≡ S[q] as an action functional

and L (q′, q; y) ≡ 4q′2(y) as the Lagrangian, the variational principle would give the

Euler-Lagrange equation

∂L (q′, q; y)

∂q(y)
− d

dy

(
∂L (q′, q; y)

∂q′(y)

)
= 0, (3.10)

resulting in −8q′′(y) = 0. This second order differential equation describes how a posi-

tion q change with time y for a free particle. This would mean that the Fisher informa-

tion (3.9) could be remarkably treated as the action functional for the free particle and

of course, in the absence of the interaction, the equation of motion in physics is a direct

result of extramising the Fisher information: δI[q] = 0.

4Here we prefer the natural logarithm function.
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3.2 One-parameter extended Fisher information

Here in this section, we will employ the connection between the Fisher infor-

mation and the action functional together with the non-uniqueness property of the La-

grangian to construct a one-parameter generalisation of the Fisher information. Com-

monly, two Lagrangians differing by the total derivative with respect to time of some

function F (q, y) would give the identical equation of motion on extreamising the action.

However, one could ask an inverse question as follows. Imposing the equation of motion,

could we solve all possible Lagrangians directly from the Euler-Lagrange equation? The

answer is definitely yes and this problem is known as the inverse problem of the calculus

of variations [17]. Recently, Sarawuttinack et al [21] proposed a new type of Lagrangian

called the multiplicative form for the case of one degree of freedom. Here we shall em-

ploy the same technique and propose an alternative Lagrangian forL (q′, q; y) = 4q′2(y)

as

Lλ(q
′, q; y) =

4

λ

(
eλq

′2(y) − 1
)

. (3.11)

Of course, the Lagrangian Lλ(q
′, q; y) can be treated as one-parameter extended class of

the standard Lagrangian L (q′, q; y). It is not difficult to see that these two Lagrangians

give exactly the same equation of motion. By considering the limit λ → 0, one find that

limλ→0 Lλ = L (q′, q; y) = 4q′2(y). Then what we have is the action functional in the

form

Iλ[q(y)] =
4

λ

∫ (
eλq

′2(y) − 1

)
dy . (3.12)

We shall call Equation (3.12) as a one parameter generalised Fisher information. The

reason can be seen as follows. If we expand the functional (3.12) with respect to the

parameter λ, we obtain

Iλ[q(y)] = 4

∫
q′2(y)dy + 4

λ

2!

∫
q′4(y)dy + 4

λ2

3!

∫
q′6(y)dy + ...

= I1[q(y)] +
λ

2!
I2[q(y)] +

λ2

3!
I3[q(y)] + ... . (3.13)
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What we have in Equation (3.13) is a hierarchy {I1, I2, I3, ...}, where the first three are

I1 = 4

∫ (
f ′(y)

2q(y)

)2

dy =
4

22

∫
f ′2(y)

f(y)
dy =

4

22

∫ (
∂

∂θ
ln f(x|θ)

)2

f(x|θ)dx ,

I2 = 4

∫ (
f ′(y)

2q(y)

)4

dy =
4

24

∫
f ′4(y)

f 2(y)
dy =

4

24

∫ (
∂

∂θ
ln f(x|θ)

)4

f 2(x|θ)dx ,

I3 = 4

∫ (
f ′(y)

2q(y)

)6

dy =
4

26

∫
f ′6(y)

f 3(y)
dy =

4

26

∫ (
∂

∂θ
ln f(x|θ)

)6

f 3(x|θ)dx .

The first term is nothing but the standard Fisher information I1[q] = I[q] coinciding with

the limit lim
λ→0

Iλ[q(y)] = I[q(y)]. With the above structure, one could easily write In[f(y)]

as

In(θ) =
4

22n

∫ (
∂

∂θ
ln f(x|θ)

)2n

fn(x|θ)dx , n = 1, 2, 3, ... (3.15)

The next point is that the generalised Fisher information is in the average of the score

function but the rest in the hierarchy is not. Thenwe shall seek a transformation to express

the higher order Fisher information in the statistical average. We shall first consider the

second function I2 and introduce a new variable ϕ1 ≡ f 2 such that f ′(y) = ϕ′
1(y)/2f(y),

resulting in

I2[ϕ1] =
4

44

∫
ϕ′4
1 (y)

ϕ4
1(y)

ϕ1(y)dy ,

or

I2[θ] =
4

44

∫ [
∂

∂θ
lnϕ1(x|θ)

]4
ϕ1(x|θ)dx . (3.16)

We shall call Equation (3.16) as the 2nd order Fisher information. We can proceed the

same technique of transformation and obtain the nth order Fisher information as

In(θ) =
4

(2n)2n

∫ [
∂

∂θ
lnϕn−1(x|θ)

]2n
ϕn−1(x|θ)dx, (3.17)

where ϕn−1(y) = fn(y) and the generalised Fisher information (3.13) can be expressed

in terms of infinite series as

Iλ(θ) =
∞∑
n=1

λn−1

n!
In(θ) . (3.18)
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At this point, we may treat Equation (3.13) as the generating function for the entire hier-

archy of the Fisher information by expanding with respect to the parameter λ.

3.3 Generalised Cramér-Rao inequality and non-additive property

Here in this section, we will construct the Cramér-Rao inequality associated

with the Fisher information hierarchy given in the previous section. To achieve the goal,

we start with 〈
Θ̂− θ

〉
=

∫
(Θ̂− θ)f q(x | θ)dx = 0 , (3.19)

which is known as the q-expectation value [24–26] . Taking the 1st derivative, we obtain

∂

∂θ

〈
Θ̂− θ

〉
=

∫
∂

∂θ
(Θ̂− θ)f q(x | θ)dx+

∫
(Θ̂− θ)

∂

∂θ
f q(x | θ)dx

= −
∫

f q(x | θ)dx+ q

∫
(Θ̂− θ)f q−1(x | θ)∂f(x | θ)

∂θ
dx

= −
∫

f q(x | θ)dx+ q

∫
(Θ̂− θ)f q−1(x | θ)f(x | θ)∂ ln f(x | θ)

∂θ
dx

= −Qq + qJ = 0 , (3.20)

where

Qq ≡
∫

f q(x | θ)dx , (3.21)

J ≡
∫

(Θ̂− θ)f q−1(x | θ)f(x | θ)∂ ln f(x | θ)
∂θ

dx . (3.22)

Conventionally, the term Qq is well know as information generating function [26] with

Tsallis index q [6](we are now interested in case q ≥ 1). It is also called incomplete

normalization and f q is called effective probability [25]. Next, we rewrite the J in the

form

J =

∫ [
(Θ̂− θ)

] [∂ ln f(x | θ)
∂θ

f q−1(x | θ)
]
f(x | θ)dx , (3.23)

and applying the Hölder’s inequality [27] to Equation (3.23), we obtain

J ≤
[∫

(Θ̂− θ)βf(x | θ)dx
]1/β [∫ (

∂ ln f(x | θ)
∂θ

)α

(f q−1(x | θ))αf(x | θ)dx
]1/α

=

[∫
(Θ̂− θ)βf(x | θ)dx

]1/β [∫ (
∂ ln f(x | θ)

∂θ

)α

fα(q−1)+1(x | θ)dx
]1/α

,(3.24)
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where Hölder conjugates α and β are related with the condition 1/α + 1/β = 1 for

α, β = [1,∞]. Finally, employing Equation (3.20), the inequality (3.24) becomes

Qq

q
=

∫
f q(x | θ)dx

q
≤
[∫

(Θ̂− θ)βf(x | θ)dx
]1/β

×
[∫ (

∂ ln f(x | θ)
∂θ

)α

fα(q−1)+1(x | θ)dx
]1/α

, (3.25)

which is our generalised Carmer-Rao inequality. It is not difficult to see that if one takes

q = 1, β = 2 and α = 2, the standard Carmer-Rao inequality can be recovered. For

α = 4, β = 4/3 and q = 5/4, we obtain

4 Q5/4

54
〈
(Θ̂− θ)4/3

〉3 ≤ I2 , (3.26)

which is the Cramér-Rao inequality for the 2nd extended Fisher information. Basically,

the inequality (3.25) provides the Cramér-Rao bound for the whole Fisher information

hierarchy as shown in table 1.

Table 1 The nnd Carmer-Rao inequalities and their associated three parameters.

nnd Carmer-Rao inequality
Parameters

q β α

1st order 1 2 2

2nd order 5/4 4/3 4

3rd order 4/3 6/5 6

4th order 11/8 8/7 8

Next, we will investigate the additive property of the higher order Fisher infor-

mation. For simplicity, we shall start with the 2nd order Fisher information. Suppose a

system composed of two independent identically subsystems that are defined its random
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variable X = (x1, x2), where superscription denote for subsystems. The joint probabil-

ity of the two subsystems is given by f12 ≡ f(x1, x2|θ) = f(x1|θ)f(x2|θ) ≡ f1f2. What

we have for the 2nd order Fisher information is

I2[f12] =
4

24

∫ ∫ (
∂

∂θ
ln(f1f2)

)4

f 2
1 f

2
2dx1dx2

=
4

24

[ ∫ (
∂

∂θ
ln f1

)4

f 2
1dx1

∫
f 2
2dx2 + 4

∫ (
∂

∂θ
ln f1

)3

f 2
1dx1

×
∫ (

∂

∂θ
ln f2

)
f 2
2dx2 + 6

∫ (
∂

∂θ
ln f1

)2

f 2
1dx1

∫ (
∂

∂θ
ln f2

)2

f 2
2dx2

+ 4

∫ (
∂

∂θ
ln f1

)
f 2
1dx1

∫ (
∂

∂θ
ln f2

)3

f 2
2dx2

+

∫
f 2
1dx1

∫ (
∂

∂θ
ln f2

)4

f 2
2dx2

]
=

4

24

[
Q2(f2)

∫ (
∂

∂θ
ln f1

)4

f 2
1dx1 + 6

∫ (
∂

∂θ
ln f1

)2

f 2
1dx1

×
∫ (

∂

∂θ
ln f2

)2

f 2
1dx2 +Q2(f1)

∫ (
∂

∂θ
ln f2

)4

f 2
2dx2

]
=

1

4

[
Q2(f2)I2(f1) +Q2(f1)I2(f2) + 6I(f1)I(f2)

]
. (3.27)

Here see that the 2nd order Fisher information does not follow the additive rule.

With the result in equation (3.27), it is not difficult now to see that the nth order

Fisher information could give

In[f12] =
4

22n

[(
2n

0

)
Qn(f(x2|θ))

∫ (
∂

∂θ
ln f(x1|θ)

)2n

fn(x1|θ)dx1

+
2n−2∑
k=2

(
2n

k

)∫ (
∂

∂θ
ln f(x1|θ)

)2n−k

fn(x1|θ)dx1

×
∫ (

∂

∂θ
ln f(x2|θ)

)k

fn(x2|θ)dx2

+

(
2n

2n

)
Qn(f(x1|θ))

∫ (
∂

∂θ
ln f(x2|θ)

)2n

fn(x2|θ)dx2

]
, (3.28)

where the first and last terms refer to the Fisher information for each subsystem and the

middle one is the crossing-term. Therefore, our Fisher information hierarchy does not

follow the additive property, except for n = 1 the standard Fisher information.
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3.4 The Kullback–Leibler divergence revisited

Here in this section, we shall investigate on the connection between our Fisher

information hierarchy and the Kullback–Leibler divergence. We shall begin with the

Kullback–Leibler divergence

D(f ∥ q) =

∫
f(y) ln

(
f(y)

q(y)

)
dy , (3.29)

where f and q are two different points on the probability manifold. If q(y) = f(y+∆) =

f(y) + ∆f ′(y), we could have

D(f(y) ∥ f(y) + ∆f ′(y)) =

∫
f(y) ln

(
f(y)

f(y) + ∆f ′(y)

)
dy , (3.30)

where f ′(y) = df/dy. We then shall expand Equation (3.30) with respect to f ′. Keeping

only the first dominate term, we obtain

D(f(y) ∥ f(y) + ∆f ′(y)) ≈
∫

1

2

(f ′(y))2

f(y)
dy =

1

2
I[f(y)] . (3.31)

We could see that the right hand side of Equation (3.31) is nothing but the standard Fisher

information.

Now we introduce two-parameter Kullback-Leibler divergence

Dq,q′ (f(y) ∥ f(y) + ∆f ′(y)) =

∫
f q(y)

(
ln

f(y)

f(y) + ∆f ′(y)

)q′

dy . (3.32)

Here we do again the expansion with respect to p′ and we obtain the two-parameter gen-

eralisation of the Fisher information from the first dominant term [8]

Ia,b[f ] =

∫
fa(y)

(
df(y)

dy

)b

dy , (3.33)

where a = q − q′ − 1 and b = q′ + 1 with the requirements q > 0 and q′ > 0. We find

that, with a suitable choice of parameters, our whole hierarchy of Fisher information can

be identified as shown in the table 2.
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Table 2 Comparison our one-parameter Fisher information with two-parameter

Fisher information.

nth Fisher information
Parameters

a b

1st order: I1 1 2

2nd order: I2 2 4

3rd order: I3 3 6

4th order: I4 4 8

We note here that the quantities in Equation (3.33), of course directly connected with

our Fisher information hierarchy as we already mentioned, can be possibly viewed as the

generalised Fisher matrices. However, there exist also other generalised Fisher matrices

for different purposes and motivations [13, 28].

3.5 Connection with the higher rank tensors

We also find that the standard discrete Kullback–Leibler divergence have a re-

lation to Fisher information hierarchy. What we want to look isD(pi ∥ pi + dpi), where

dpi is small. Expanding D(pi ∥ pi + dpi) with respect to dpi, we obtain

D(P ∥ P + dP ) =
n∑

i=1

[
1

2!

dpidpi

pi
− 1

3!

dpidpidpi

pi2
+

1

4!

dpidpidpidpi

pi3
+ ...

]
. (3.34)

We now define

gij =
1

2!

δij
pi

as the metric tensor rank 2 (3.35)

uijk =
1

3!

δijk

pi2
as the tensor rank 3 (3.36)

vijkl =
1

4!

δijkl

pi3
as the tensor rank 4 . (3.37)
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The higher rank tensor can be generated by the same fashion. Then we will see that

relative entropy becomes

D(P ∥ P + dP ) =
n∑

i=1

n∑
j=1

gijdp
idpj +

n∑
i=1

n∑
j=1

n∑
k=1

uijkdp
idpjdpk

+
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

vijkldp
idpjdpkdpl + ... . (3.38)

As we already mentioned, the relation between the Shannon entropy and the Fisher-Rao

matrix can be obtained through the second derivative of Shannon entropy respect to all

related probability

−1

2

∂2H

∂pi∂pj
=

1

2!

δij
pi

= gij , (3.39)

Here, we push further on order of the derivative and we obtain

1

3!

∂3H

∂pi∂pj∂pk
=

1

3!

δijk

pi2
= uijk , − 1

4!

∂4H

∂pi∂pj∂pk∂pl
=

1

4!

δijkl

pi3
= vijkl . (3.40)

Now we apply the same trick, as we did in chapter 2, on transforming the coordinates for

uijk and vijkl

uabc =
n∑
i

n∑
j

n∑
k

∂pi

∂θa
∂pj

∂θb
∂pk

∂θc
uijk

=
1

3!

n∑
i

n∑
j

n∑
k

∂pi

∂θa
∂pj

∂θb
∂pk

∂θc
1

pi2
δijk

=
1

3!

n∑
i

∂ap
i

pi
∂bp

i

pi
∂cp

i

pi
pi

=
1

3!

n∑
i

pi∂a ln pi∂b ln pi∂c ln pi

=
1

3!
⟨∂a ln pi∂b ln pi∂c ln pi⟩ , (3.41)
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and

vabcd =
n∑
i

n∑
j

n∑
k

n∑
l

∂pi

∂θa
∂pj

∂θb
∂pk

∂θc
∂pl

∂θd
vijkl

=
1

4!

n∑
i

n∑
j

n∑
k

n∑
l

∂pi

∂θa
∂pj

∂θb
∂pk

∂θc
∂pl

∂θd
1

pi3
δijkl

=
1

4!

n∑
i

∂ap
i

pi
∂bp

i

pi
∂cp

i

pi
∂dp

i

pi
pi

=
1

4!

n∑
i

pi∂a ln pi∂b ln pi∂c ln pi∂d ln pi

=
1

4!
⟨∂a ln pi∂b ln pi∂c ln pi∂d ln pi⟩ . (3.42)

These two transformed matrix are actually Fisher information in order of skewness and

kurtosis. If we consider matric tensor (3.41) and (3.42) for only one parameter θ, we

obtain u = 1
3!
⟨( ∂

∂θ
ln pi)3⟩ and v = 1

4!
⟨( ∂

∂θ
ln pi)4⟩, respectively. What we can see is that

⟨( ∂
∂θ
ln pi)4⟩ is nothing but the 2nd order Fisher information if we defined p as ϕ1. Of

course, metric tensor rank 6 with one parameter case will give us the 4th order Fisher

information. Therefore, we can say that each ith (i = 1, 2, 3, ...) extended term of one-

parameter extended Fisher information (3.13) have relation with metric tensor rank jth

which can be obtained from jth, where j = 2, 4, 6, ..., derivative of Shannon entropy.
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SUMMARY

We succeed to construct the one-parameter generalised Fisher information. The

main method used to derive thFe one-parameter generalised Fisher information is the

variational principle. We consider here the Fisher information as the action functional

of free particle Lagrangian. With the new insight of the one-parameter generalised La-

grangian [21], one can naturally obtain the one-parameter generalised Fisher information

which is

Iλ[q(y)] =
4

λ

∫ [
eλq

′2(y) − 1

]
dy ,

where q(y) =
√

f(y) and λ is parameter. Furthermore, we can treat our one-parameter

generalised Fisher information as the generator yielding

Iλ[q(y)] = I1[q(y)] +
λ

2!
I2[q(y)] +

λ2

3!
I3[q(y)] + ... .

Here {I1, I2, ...} is called the Fisher information hierarchy. The first one I1[q(y)] is noth-

ing but the standard Fisher information. By introducing ϕn−1(y) = fn(y), we can rear-

range Fisher information hierarchy to be in the form of ith moments such that

I ′n(θ) =
4

(2n)2n

∫ [
∂

∂θ
lnϕn−1(x|θ)

]2n
ϕn−1(x|θ)dx .

Normally, Fisher information provides information lower bound on the variance of an

unbiased estimator for a parameter through the relation called Craḿer-Rao inequality.

Here, in this present work, the generalised Craḿer-Rao inequality is also obtained with

the help of the Hölder’s inequality and the q-expectation value of estimator∫
f q(x | θ)dx

q
≤

[∫
(Θ̂− θ)βf(x | θ)dx

]1/β
×
[∫ (

∂ ln f(x | θ)
∂θ

)α

fα(q−1)+1(x | θ)dx
]1/α

.

Moreover, we find that our Fisher information hierarchy does not follow the addition

property, except for the standard Fisher information. The interesting point is that this
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non-additive property pops up when the Tsallis index q is not equal to 1 as intriguing

built in the Tsallis entropy

Sq[f12] = Sq[f1] + Sq[f2] + (1− q)Sq[f1]Sq[f2] .

Of course this point is quite interesting since this non-additive property has been widely

discussed in the Tsallis statistic [6]. Let us point out possibly indirect connection with

the Tsallis entropy by recalling our one-parameter generalised Fisher information

Iλ[f ] =
4

λ

∫ [
e

λ
4

f ′2(y)
f(y) − 1

]
dy ,

and Tsallis entropy

Sq[f ] =
1

1− q

[∫
f q(y)− 1

]
dy .

It might seem a bit strange but these two quantities more or less similar in the sense that

they both contain a parameter and under the suitable limit the standard quantities can

be recovered. However, more direct connection with the entropy might be the relative

entropy or the Kullback–Leibler divergence, more specifically two-parameter Kullback–

Leibler divergence and our whole hierarchy Fisher information can be identified with the

two-parameter Fisher information with the appropriate choice of parameters.
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