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ABSTRACT

For a non-relativistic quantum system of N particles, the wave function is a

function of 3N spatial coordinates and one temporal coordinate. The relativistic gener-

alisation of this wave function is a function ofN time variables known as the multi-time

wave function and its evolution is described by N Schrödinger equations, one for each

time variable. To guarantee the existence of a non-trivial common solution to these N

equations, the N Hamiltonians need to satisfy a compatible condition known as an inte-

grability condition. In this work, the integrability condition will be expressed in terms of

Lagrangians. The time evolution of a wave function with N time variables through the

Feynman picture of quantum mechanics is derived. However, these evolutions will be

compatible if and only if the N Lagrangians satisfy a certain relation called the consis-

tency condition which could be expressed in terms of the Wilson line. As a consequence

of this consistency condition, the evolution of the wave function gives rise to a key feature

called the “path-independent” property on the space of time variables. This would sug-

gest that one must consider all possible paths not only on the space of dependent variables



(spatial variables) but also on the space of independent variables (temporal variables). In

the view of the geometry, this consistency condition can be considered as a zero curvature

condition and the multi-time evolutions can be treated as compatible parallel transport

processes on flat space of time variables.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

In non-relativistic quantummechanics, the wave function forN particles can be

expressed as Ψ(q1, q2, ..., qN , t), where qk ∈ Rd in d-dimensional space, k = 1, 2, ..., N .

If one asks for the relativistic counterpart of this wave function we encounter with the

difficulty as follows. Since there is only one time variable in the wave function, it is

a bit puzzle to perform the Lorentz transformation. The argument of Ψ can be treated

as a collection of N simultaneous space-time points (t, q1), ..., (t, qN) which under the

Lorentz transformation is changed to (t′1, q
′
1), ..., (t

′
N , q

′
N), of course, in general, t′1 ̸=

t′2 ̸= ... ̸= t′N . Then it is quite natural to introduce the multi-time structure into the

wave function Φ(q1, t1, ..., qN , tN) to manifest the Lorentz transformation. This idea

was first introduced by Dirac in 1932 [1]. To capture the Dirac’s idea, we consider

the system of N charged particles interacting with the electromagnetic field (EM-field).

The evolution of the system can be described on the phase space with the coordinates

(p, q) = (p1, p2, ..., pN , q1, q2, ..., qN). The Schrödinger equation is given by(
HEM +

N∑
j=1

Hj(qj, pj, a(qj)) +
}
i

∂

∂t

)
Ψ = 0 , (1.1)

whereHEM is the Hamiltonian of the EM-field,Hj is the (time-independent) Hamiltonian

of the j th-particle and contains the coupling between the j th-particle and the EM-field,

i.e. a(qj). We now introduce the unitary operator

u = e−
i
}HEMt (1.2)

such that the wave function Ψ will be transformed to

Φ = uΨ . (1.3)
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Then Equation (1.1) can be simplified as follows(
N∑
j=1

uHju
−1 +

}
i

∂

∂t

)
Φ = 0 . (1.4)

Next, we introduce the transformation of the coupling a as

U = uau−1 . (1.5)

Now Equation (1.4) becomes(
N∑
j=1

Hj(qj, pj,U (qj, t)) +
}
i

∂

∂t

)
Φ = 0 . (1.6)

The thing is that since u depends on time and by introducing the transformation U , the

Hamiltonian Hj is now effectively time-dependent. Furthermore, in oder to decouple

the temporal part of Equation (1.6), it is quite natural to introduce a set of time variables

t = (t1, t2, ..., tN) such that
N∑
j=1

(
Hj(qj, pj,U (qj, tj)) +

}
i

∂

∂tj

)
Φ = 0 , (1.7)

resulting in N separable time-dependent Schrödinger equations(
Hj(qj, pj,U (qj, tj)) +

}
i

∂

∂tj

)
Φ(q1, t1, q2, t2, ..., qN , tN) = 0 , j = 1, 2, ..., N .(1.8)

It seems to suggest that Φ(q1, t1, q2, t2, ..., qN , tN)must be treated as the multi-time wave

function [2]. These multi-time systems will be compatible or a common non-trivial so-

lution Φ exists if and only if the relation

∂Hj

∂tk
− ∂Hk

∂tj
+ i [Hj, Hk] = 0 , ∀j ̸= k , (1.9)

holds. This is known as the consistency condition or integrability condition. The ordinary

probability amplitude Φ(t) is retrieved by setting all time coordinates equal

Φ(q1, t, q2, t, ..., qN , t) = Ψ(q1, q2, ..., qN , t) . (1.10)

Here the single-time wave function satisfies the standard Schrödinger equation

i}
∂Ψ

∂t
= HΨ , (1.11)
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where H =
∑N

j=1Hj . Equation (1.10) and (1.11) suggests that the multi-time wave

function coincides with the single-time wave function with respect to the Lorentz frame

on configurations of N space-time points [3–8].

The idea of the multi-time wave function formalism could be possibly useful in

many aspects. For example, Petrat and Tumulku [9] demonstrated that the relevant inter-

acting quantum field theories can be reformulated in terms of multi-time wave functions

and therefore, multi-time wave function, the Tomonaga-Schwinger and the Heisenberg

approaches are equivalent and the consistency condition of the multi-time formulation

explains why in nature the process that a fermion decays into two fermions cannot hap-

pen [10]. Lienert, Petrat and Tumulka [8] pointed out that multi-time wave function

can be considered in discrete action principles and can be applied to study the cellular

automata.

1.2 Objectives

To capture the multi-time consistency condition and inconsistency condition in

terms of Lagrangians.

1.3 Frameworks

The main question of this work could be addressed as what is the Lagrangian

analogue for the consistency condition? This kind of question is natural to be asked since

normally in physics we could choose to work with either Hamiltonian or Lagrangian

descriptions. Then in this work, the variational principle will play a central role in order

to obtain the consistency condition or integrability condition and the quantummulti-time

evolution will be captured through Feynman’s path integration expressing in terms of the

Wilson line.
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1.4 Structure of the thesis

To make things flow smoothly, the remainder of this thesis is organised as fol-

lows. In chapter 2, a brief review of the both Lagrangian and Hamiltonian mechanics

will be given and we will introduce the basic differential geometry and Wilson loop. In

chapter 3, we will derive the multi-time system through Hamiltonian approach and La-

grangian approach will be explained by the Feynman path integration method. After that,

the consistency condition of multi-time propagators will be constructed. The conclusion

will be given in the last chapter.



CHAPTER II

THEORETICAL BACKGROUND

In this chapter, the background ingredients will be provided ranging from the

classical mechanics to quantum mechanics. In the classical mechanics part, the La-

grangian and Hamiltonian formalism will be discussed. The variational principle will be

mathematically explained. In the quantummechanics part, the derivation of the Schrödinger

equation will be presented through the connection with the Hamilton-Jacobi equation.

The time evolution operator will be obtained as a map of the wave function from an

initial time to a later time. The next part, the Feynman path integral description will

be explained. The propagator, which is the transition probability amplitude of a parti-

cle from the initial point to the final point, will mathematically derived. The last part is

devoted for some basic tools on differential geometry and the Wilson loop.

2.1 Lagrangian and Hamiltonian Mechanics

In this section, the Lagrangian and Hamiltonian descriptions in classical me-

chanics will be sufficiently explained. We shall first derive the Euler-Lagrange equation

from the Newton equation known as the D’Alambert’s principle and then the least action

principle will also derived. The Hamiltonian will be obtained from the Lagrangian using

Legendre transformation. The Hamilton’s equations are also obtained which are equiv-

alent to the Euler-Lagrange equation. The canonical transformations will be explained

and a special case known as the Hamilton-Jacobi equation is also obtained.

2.1.1 Lagrangian Mechanics

In this section, we will derive the Euler-Lagrange equation from the Newton

equation F = ma, where F is the resultant force, a is the acceleration and m is mass

of a particle. Suppose the particle trajectory is on the rectangular space R3. The kinetic
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energy of the particle is given by

T =
1

2
m(ẋ2 + ẏ2 + ż2) , (2.1)

where x = x(q1, q2, ..., qn), y = y(q1, q2, ..., qn) and z = z(q1, q2, ..., qn). Here a set

of (q1, q2, ..., qn) is the generalised coordinates. Then ẋ can be expressed in terms of

{qk}, k = 1, 2, ...n as

ẋ =
∂x

∂q1

∂q1
∂t

+
∂x

∂q2

∂q2
∂t

+ ...+
∂x

∂qn

∂qn
∂t

=
n∑

k=1

∂x

∂qk

∂qk
∂t

=
n∑

k=1

∂x

∂qk
q̇k = ẋ(q, q̇) , (2.2)

where q̇k is generalised velocities. In the same fashion, we also find that ẏ = ẏ(q, q̇) and

ż = ż(q, q̇) and the kinetic energy becomes

T =
1

2
m
(
ẋ2(q, q̇) + ẏ2(q, q̇) + ż2(q, q̇)

)
. (2.3)

Next we take the derivative Equation (2.3) with respect to q̇, resulting in

∂T

∂q̇k
= m

(
ẋ
∂ẋ

∂q̇k
+ ẏ

∂ẏ

∂q̇k
+ ż

∂ż

∂q̇k

)
. (2.4)

Using ∂ẋ
∂q̇k

= ∂x
∂qk

, we can write

∂T

∂q̇k
= m

(
ẋ
∂x

∂qk
+ ẏ

∂y

∂qk
+ ż

∂z

∂qk

)
d

dt

(
∂T

∂q̇k

)
= mẍ

∂x

∂qk
+mÿ

∂y

∂qk
+mz̈

∂z

∂qk
+mẋ

d

dt

(
∂x

∂qk

)
+mẏ

d

dt

(
∂y

∂qk

)
+mż

d

dt

(
∂z

∂qk

)
= mẍ

∂x

∂qk
+mÿ

∂y

∂qk
+mz̈

∂z

∂qk
+mẋ

∂

∂qk

(
dx

dt

)
+mẏ

∂

∂qk

(
dy

dt

)
+mż

∂

∂qk

(
dz

dt

)
= mẍ

∂x

∂qk
+mÿ

∂y

∂qk
+mz̈

∂z

∂qk
+mẋ

∂ẋ

∂qk
+mẏ

∂ẏ

∂qk
+mż

∂ż

∂qk

= mẍ
∂x

∂qk
+mÿ

∂y

∂qk
+mz̈

∂z

∂qk
+

∂

∂qk

(
1

2
mẋ2

)
+

∂

∂qk

(
1

2
mẏ2

)
+

∂

∂qk

(
1

2
mż2

)
= Fx

∂x

∂qk
+ Fy

∂y

∂qk
+ Fz

∂z

∂qk
+

∂

∂qk

(
1

2
m(ẋ2 + ẏ2 + ż2)

)
. (2.5)
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We now assume that the particle is moving under the influence of the conservative force

and then we write

Fx
∂x

∂qk
+ Fy

∂y

∂qk
+ Fz

∂z

∂qk
= −

[(
∂V

∂x

)
∂x

∂qk
+

(
∂V

∂y

)
∂y

∂qk
+

(
∂V

∂z

)
∂z

∂qk

]
= −∂V

∂qk
. (2.6)

Substituting Equation (2.3) and (2.6) in Equation (2.5), one gets

d

dt

(
∂T

∂q̇k

)
=
∂T

∂qk
− ∂V

∂qk
. (2.7)

Equation (2.7) can be rearranged in the form

d

dt

(
∂

∂q̇k
(T − V )

)
=

∂

∂qk
(T − V ) , (2.8)

since V = V (q). Then we define

L(q, q̇) = T (q̇)− V (q) , (2.9)

which is known as the Lagrangian. Now we arrive at

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 , k = 1, 2, 3, .., n . (2.10)

This equation is known as Euler-Lagrange’s equations. Of course, Equation (2.10) is

equivalent to the Newton equation giving the second order differential equation. The

difference between these two approaches is that the Newton equation comes with vector

quantities, while the Euler-Lagrange’s equation deals with scalar quantities, namely the

kinetic and potential energies.

Now, we will start to derive the Euler-Lagrange’s equation from another point

of view namely the variational principle. An action functional is given by

S[q(t)] =

∫ tf

ti

L(q̇, q; t)dt , (2.11)

where ti is the initial time and tf is the final time. According to the least action princi-

ple: Of all possible paths of the system, the actual physical path is the one which
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t

q

(qi, ti)

(qf, tf)

δq

Figure 1 The classical particle will take only one path which minimizes the action

that is the solid line.

minimizes the action [11, 12], see figure 1. Mathematically, the variation of the action

functional vanishes

δS = δ

∫ tf

ti

L(q̇, q; t)dt = 0 . (2.12)

The variation can be expressed as

0 = δ

∫ tf

ti

L(q̇, q; t)dt =

∫ tf

ti

n∑
k=1

(
∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k

)
dt

=

∫ tf

ti

n∑
k=1

(
∂L

∂qk
δqk +

∂L

∂q̇k

d

dt
δqk

)
dt

=
n∑

k=1

[
∂L

∂q̇k
δqk

]tf
ti

+

∫ tf

ti

n∑
k=1

(
∂L

∂qk
− d

dt

∂L

∂q̇k

)
δqkdt

=

∫ tf

ti

n∑
k=1

(
∂L

∂qk
− d

dt

∂L

∂q̇k

)
δqkdt . (2.13)

Since δqk(t) ̸= 0, where ti < t < tf, the term inside the bracket must be zero. Of course,

what we obtain from (2.13) is nothing but the Euler-Lagrange’s equations.

2.1.2 Hamiltonian Mechanics

In this subsection, we will present an alternative approach to explain the dynam-

ics of the system known as the Hamiltonian mechanics. We shall first define

pk =
∂L

∂q̇k
(2.14)
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as the canonical momentum variables then the Euler-Lagrange equations are expressed

as

ṗk =
∂L

∂qk
. (2.15)

Next, we consider the total time derivative of the Lagrangian L(q, q̇; t)

dL

dt
=
∑
k

(
∂L

∂qk

dqk
dt

+
∂L

∂q̇k

dq̇k
dt

)
+
∂L

∂t
. (2.16)

Substituting Equation (2.14) and (2.15) into Equation (2.16), we obtain

dL

dt
=
∑
k

(
ṗk
dqk
dt

+ pk
dq̇k
dt

)
+
∂L

∂t
. (2.17)

If the Lagrangian does not depend explicitly on time ∂L
∂t

= 0, hence the total time deriva-

tive Equation (2.17) can be written as

dL

dt
=
∑
k

(
∂L

∂qk

dqk
dt

+
∂L

∂q̇k

q̇k
dt

)
=
∑
k

(
∂L

∂qk
q̇k +

∂L

∂q̇k
q̈k

)
=
∑
k

(
q̇k
d

dt

∂L

∂q̇k
+
∂L

∂q̇k
q̈k

)
=
∑
k

d

dt

(
q̇k
∂L

∂q̇k

)
, (2.18)

therefore,

d

dt

(∑
k

q̇k
∂L

∂q̇k
− L

)
= 0 . (2.19)

The terms inside the bracket must be constant with respect to time and shall be denoted

as H(q, p) called the Hamiltonian

H(q, p) =
∑
k

q̇k
∂L

∂q̇k
− L =

∑
k

q̇kpk − L(q, q̇) . (2.20)

This equation is known as the Legendre transformation. We can also write

dH

dt
=
∑
k

(
q̇k
dpk
dt

+ pk
dq̇k
dt

− ∂L

∂qk

dqk
dt

− ∂L

∂q̇k

dq̇k
dt

)
+
∂H

∂t

=
∑
k

(
q̇k
dpk
dt

− ṗk
dqk
dt

)
+
∂H

∂t
. (2.21)
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The Hamiltonian is considered as a function of (q, p) by using Equation (2.14). Conse-

quently, we can express q̇k in terms of pk. The total time derivative of H is therefore

dH

dt
=
∑
k

(
∂H

∂qk

dqk
dt

+
∂H

∂pk

dpk
dt

)
+
∂H

∂t
. (2.22)

Comparing Equation (2.22) with Equation (2.21), we find

q̇k =
∂H

∂pk
, (2.23)

−ṗk =
∂H

∂qk
, (2.24)

Equation (2.23) and (2.24) areHamilton’s equations. Next, we consider the Lagrangian

depends on explicitly on time ∂L
∂t

̸= 0, therefore the Hamiltonian is expressed as an

explicit function of (q, p; t). Thus, we have instead of Equation (2.22)

dH

dt
=
∑
k

(
∂H

∂qk

dqk
dt

+
∂H

∂pk

dpk
dt

)
+
∂H

∂t
, (2.25)

and Equation (2.21) becomes

dH

dt
=
∑
k

(
q̇k
dpk
dt

+ pk
dq̇k
dt

− ∂L

∂qk

dqk
dt

− ∂L

∂q̇k

dq̇k
dt

)
− ∂L

∂t

=
∑
k

(
q̇k
dpk
dt

− ṗk
dqk
dt

)
− ∂L

∂t
. (2.26)

Comparing Equation (2.25) with Equation (2.26), we find

−∂L
∂t

=
∂H

∂t
. (2.27)

If we substitute Equation (2.23) and (2.24) into Equation (2.25), we obtain

dH

dt
=
∑
k

(
∂H

∂qk
q̇k +

∂H

∂pk
ṗk

)
+
∂H

∂t

=
∑
k

(
∂H

∂qk

∂H

∂pk
− ∂H

∂pk

∂H

∂qk

)
+
∂H

∂t

=
∂H

∂t
. (2.28)
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This equation expresses the fact that the Hamiltonian is a constant if it does not contain

the time explicitly ∂H
∂t

= 0 and this implies the conserved quantity. If the potential energy

V is independent of the velocity q̇k, and using Equation (2.20), we find that

H =
∑
k

q̇k
∂L

∂q̇k
− L

=
∑
k

q̇k
∂(T − V )

∂q̇k
− (T − V )

=
∑
k

q̇k
∂T

∂q̇k
− (T − V )

= 2T − (T − V ) = T + V = E , (2.29)

the Hamiltonian is nothing but the total energy of the system.

One important feature of the Hamiltonian mechanics is that a set of coordinates

(p, q) is not unique. This means that there are other set of coordinates that can be used to

describe the dynamics of the system subject to invariance of the Hamilton’s equations.

Now let (Pk(q, p, t), Qk(q, p, t)) be a new set of coordinates and K(Q,P, t) be a new

Hamiltonian such that the Hamilton’s equations become

Q̇k =
∂K

∂Pk

, (2.30)

−Ṗk =
∂K

∂Qk

. (2.31)

According to the least action principle (2.11), we have

δS = δ

∫ tf

ti

(pkq̇k −H(q, p, t)) dt (2.32)

in terms of the old set of coordinates (p, q). Similarly, we also have

δS = δ

∫ tf

ti

(
PkQ̇k −K(Q,P, t)

)
dt (2.33)

in terms of the old set of coordinates (P,Q). According to the non-uniqueness property

of the Lagrangian, we have

PkQ̇k −K(Q,P, t) = pkq̇k −H(q, p, t) +
d

dt
F (q,Q, t) , (2.34)
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or

PkQ̇k −K(Q,P, t) = pkq̇k −H(q, p, t) +
∂F

∂t
+
∂F

∂qk
q̇k +

∂F

∂Qk

Q̇k . (2.35)

Therefore, comparing both sides of the equation, we obtain

pk =
∂F

∂qk
, (2.36)

Pk = − ∂F

∂Qk

, (2.37)

and,

K = H +
∂F

∂t
. (2.38)

The function F = F1 is known as the first generating function providing the connection

between the old Hamiltonian H and the new Hamiltonian K according to the transfor-

mation (q, p) → (Q,P ). However, there are another three types of generators as shown

in table 1. [13]

Table 1 Summary of four different basic generating functions.

Generating Function Generating Function Derivatives

F = F1(q,Q, t) pk =
∂F1

∂qk
Pk = − ∂F1

∂Qk

F = F2(q, P, t)−QkPk pk =
∂F2

∂qk
Qk =

∂F2

∂Pk

F = F3(Q, p, t) + qkpk qk = −∂F3

∂pk
Pk = − ∂F3

∂Qk

F = F4(p, P, t) + qkpk −QkPk qk = −∂F4

∂pk
Qk =

∂F4

∂Pk

We now consider a special case of the transformation (q, p) to (Q,P ) such that

the Q and P are constant. Then the equation of motion of new Hamiltonian are

∂K

∂Pk

= Q̇k = 0 , (2.39)

∂K

∂Qk

= −Ṗk = 0 . (2.40)
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It is trivial that Equation (2.39) and (2.40) have a common solution which is K = 0.

Therefore, Equation (2.38) becomes

H(q, p, t) +
∂F

∂t
= 0 . (2.41)

Using the generating functions such as F2(q, P, t), Equation (2.41) can be written as

H

(
q,
∂F2

∂q
, t

)
+
∂F2

∂t
= 0 . (2.42)

This equation is known as the Hamilton-Jacobi equation. Since the P andQ are constant,

we can take the new constant momenta as Pk = αk and the new constant coordinates

Qk = βk. The generating function derivative relations are

pk =
∂S(q, α, t)

∂qk
, (2.43)

Qk =
∂S(q, α, t)

∂αk

, (2.44)

where S ≡ F2 which can be determined by computing its total time derivative

dS

dt
=
∂S

∂qk
q̇k +

∂S

∂αk

α̇k +
∂S

∂t

=
∂S

∂qk
q̇k +

∂S

∂t
= pkq̇k −H = L . (2.45)

This is indeed the action functional

S =

∫
Ldt . (2.46)

Now, the Hamilton-Jacobi equation can be written as

H

(
q,
∂S

∂q
, t

)
+
∂S

∂t
= 0 . (2.47)

where S is called the Hamilton’s principal function.
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2.2 The Schrödinger wave mechanics

In this section, we will derive the Schrödinger equation from the Hamilton-

Jacobi equation for a particle of massm with the potential V

1

2m

{(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2
}

+ V +
∂S

∂t
= 0 . (2.48)

Now we take a transformation such that Ψ = e
i
}S or S = −i} lnΨ. Since S =

S(x, y, z, t), we can compute

∂S

∂x
= − i}

Ψ

∂Ψ

∂x
∂Ψ

∂x
= −Ψ

i}
∂S

∂x
=
iΨ

}
∂S

∂x
∂2Ψ

∂x2
=
i

}
∂Ψ

∂x

∂S

∂x
+
iΨ

}
∂2S

∂x2
. (2.49)

Differentiating momentum equation (2.43),

∂2S

∂x2
=
∂px
∂x

= 0 . (2.50)

Substituting this into Equation (2.49),

∂2Ψ

∂x2
=
i

}
∂S

∂x

(
−Ψ

i}
∂S

∂x

)
= −Ψ

}2

(
∂S

∂x

)2

(
∂S

∂x

)2

= −}2

Ψ

∂2Ψ

∂x2
. (2.51)

Similarly, we also have (
∂S

∂y

)2

= −}2

Ψ

∂2Ψ

∂y2
, (2.52)(

∂S

∂z

)2

= −}2

Ψ

∂2Ψ

∂z2
, (2.53)

and

∂S

∂t
= − i}

Ψ

∂Ψ

∂t
. (2.54)



15

Substituting Equation (2.51), (2.52), (2.53) and (2.54) into Equation (2.48), we obtain

1

2m

{
−}2

Ψ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ψ

}
+ V − i}

Ψ

∂Ψ

∂t
= 0

− }2

2m
∇2Ψ+ VΨ− i}

∂Ψ

∂t
= 0

− }2

2m
∇2Ψ+ VΨ = i}

∂Ψ

∂t
. (2.55)

This equation is the time-dependent Schrödinger equation. The solutionwhich is indeed

the wave function Ψ lives in the Hilbert space H . The wave function Ψ(x, y, z, t) itself

is not measurable quantity. However, the |Ψ(x, y, z, t)|2dV is the probability amplitude

of finding a particle within the element volume dV and therefore∫ +∞

−∞
|Ψ(x, y, z, t)|2dV = 1 , (2.56)

which is called the normalisation condition.

Next, we will adopt the Dirac notation to represent the wave function. Let |Ψ⟩ ∈

H be a state vector in the spaceH and ⟨Φ| ∈ H ∗ be a dual state vector in the dual space

H ∗. With this newway of presenting the wave function, we canwriteΨ(q, t) = ⟨q|Ψ(t)⟩

and the normalisation condition (2.56) becomes ⟨Ψ|Ψ⟩ = 1. The wave function can be

mapped from the initial time t′ to the final time t′′ through the time-evolution operator

U(t′, t) such that

|Ψ(t′′)⟩ = U(t′′, t′)|Ψ(t′)⟩ , (2.57)

with the unitary property

U †(t′′, t′)U(t′′, t′) = 1 . (2.58)

The time-evolution operator can be decomposed as

U(t′′, t′) = U(t′′, t)U(t, t′) , (2.59)

where t′′ > t > t′. Next, let t′′ = t′ + dt, where dt is infinitesimal. Then we have

U(t′ + dt, t) = U(t′ + dt, t′)U(t′, t) . (2.60)
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We now write

U(t′ + dt, t′) = 1− iΩdt , (2.61)

where Ω is a Hermitian operator Ω† = Ω. It is not difficult to see that Equation (2.61)

satisfies both composition and unitary property. We see that the dimension of Ω is that

of the frequency. Therefore, using the Planck-Einstein relationE = }Ω, Equation (2.60)

is written as

U(t′ + dt, t) =

(
1− iHdt

}

)
U(t′, t)

U(t′ + dt, t)− U(t′, t) = −i
(
H

}

)
dtU(t′, t) . (2.62)

Taking the partial derivative,

i}
∂

∂t′
U(t′, t) = HU(t′, t) . (2.63)

This equation is known as the Schrödinger equation for the time-evolution operator.

Equation (2.63) yields the Schrödinger equation by applying the initial state ket as

i}
∂

∂t′
U(t′, t)|Ψ(t)⟩ = HU(t′, t)|Ψ(t)⟩

i}
∂

∂t′
|Ψ(t′)⟩ = H|Ψ(t′)⟩ . (2.64)

Next, we will compute the explicit form of the time evolution operator which can be

classified into three cases.

Case 1: The Hamiltonian operator does not depend on time. LetΨ(q′, t′) be the

final wave function and Ψ(q, t) be the initial wave function. We then have

Ψ(q′, t′) = U(t′, t)Ψ(q, t) , t′ = t+ δt . (2.65)

If δt is infinitesimal, Ψ(q′, t′) can be expanded as followed

Ψ(q′, t′) = Ψ(q, t) + δt
d

dt
Ψ(q, t) +

δt2

2

d2

dt2
Ψ(q, t) + ...

= Ψ(q, t) + δt
(−iH

}

)
Ψ(q, t) +

δt2

2

(−iH
}

)2
Ψ(q, t) + ...

= e−
i
}HδtΨ(q, t) . (2.66)
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Comparing Equation (2.65) with Equation (2.66), we find that

U(t′, t) = e−
i
}Hδt = e−

i
}H(t′−t) . (2.67)

This is an explicit formula of the time evolution operator for the case of time-independent

Hamiltonian operator.

Case 2: The Hamiltonian operator is time dependent and they do commute at

different time such that [H(t), H(t′)] = 0. To derive the time evolution operator, we start

dividing the time from t to t′ into n equal intervals, i.e.,

△t = t′ − t

n
. (2.68)

Using Equation (2.59), we have

U(t′, t) =
n∏

k=1

U(t+ k△t, t+ (k − 1)△t) =
n∏

k=1

e−
i△t
} H(t+(k−1)△t) . (2.69)

Taking the limit in which△t→ 0 and n→ ∞ simultaneously, we obtain

U(t′, t) = lim
△t→0

n∏
k=1

e−
i△t
} H(t+(k−1)△t)

= lim
△t→0

e−
i△t
} H(t)e

−i△t
} H(t+△t)...e−

i△t
} H(t′−△t) . (2.70)

Applying the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+... . (2.71)

and using the fact that the Hamiltonian operators commute [H(ti), H(tj)] = 0. Equation

(2.70) can be written as

U(t′, t) = lim
△t→0

e−
i△t
h̄

∑N−1
k=0 H(t+k△t) = e−

i
h̄

∫ t′
t H(t)dt . (2.72)

Here we obtain the explicit form of the time evolution operator for the case of the time-

dependent Hamiltonian.

Case 3: This case can be considered as an extension of Case 2 to the situa-

tion that the Hamiltonian operators evaluated at different times do not commute, i.e.,
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[H(t), H(t′)] ̸= 0. The time evolution can be considered from Equation (2.63), with the

initial condition U(t, t) = 1,

U(t′, t) = 1− i

}

∫ t′

t

H(t′)U(t′, t)dt′ . (2.73)

Doing the same process as above, but we need to concern the condition of commutation

of each Hamiltonian, we obtain

U(t′, t) = 1 +
∞∑
n=1

(
− i

}

)n ∫ t′

t

dt1

∫ t1

t

dt2...

∫ tn−1

t

dtnH(t1)H(t2)...H(tn)

= Te− i
}
∫ t′
t dTH(T ) , (2.74)

where T is the time ordering operator and this expansion (2.74) is sometimes known as

Dyson series. [14–16]

2.3 The Propagator

In this section, we will give a brief tour on how to quantise the system with the

Lagrangian description. We recall the least action principle: the path that the particle

will follow is the one that the action functional is stationary. As a consequence of this

principle, there is only one true path called the classical path, see figure 2a. Interestingly,

in quantum context, the particle will take all possible paths simultaneously from the initial

point to the final point, see figure 2b. The main mathematical object in this context is no

longer the wave function, but the Feynman’s propagator given by

K(qf, tf; qi, ti) = ⟨qf |U(tf − ti)| qi⟩ . (2.75)

The propagator provides the transition probability amplitude for a particle to travel from

the initial point (qi, ti) to the final point (qf, tf). If we introduce the time t1 such that
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q

t

(qi, ti)

(qf, tf)

(a) The classical particle will take

only one path.

q

t

(qi, ti)

(qf, tf)

(b) Quantum particle will take all

possible paths.

Figure 2 The path connected between (qi, ti) and (qf, tf).

tf > t1 > ti, the propagator can be factorised as follows

K(qf, tf; qi, ti) =
〈
qf

∣∣∣U(tf − t1 + t1 − ti)
∣∣∣qi〉

=
〈
qf

∣∣∣U(tf − t1)U(t1 − ti)
∣∣∣qi〉

=
〈
qf

∣∣∣U(tf − t1)

∫
dq1

∣∣∣q1〉〈q1∣∣∣U(t1 − ti)
∣∣∣qi〉

=

∫
dq1

〈
qf

∣∣∣U(tf − t1)
∣∣∣q1〉〈q1∣∣∣U(t1 − ti)

∣∣∣qi〉
=

∫
dq1K(qf, tf; q1, t1)K(q1, t1; qi, ti) . (2.76)

Equation (2.76) suggests that the transition amplitude of the quantum particle from the

initial point to the final point must be taken into account of all possible points q1 at time

t1. We could continue to make the time interval into n steps such that tn ≡ tf > tn−1 >

tn−2 > ... > t2 > t1 > ti ≡ t0 (see figure 3) resulting in

K(qn, tn; q0, t0) =

(
n−1∏
k=1

∫
dqk

)
n−1∏
k=0

K(qk+1, tk+1; qk, tk) . (2.77)

Using the fact that the Hamiltonian operator isH(p, q) = T (p)+V (q) and applying the
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t

q

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

t0 t1 t2 t3 tn−2 tn−1 tn

qt0

qt1
qt2

qt3

qtn−1

qtn−2

qtn

Figure 3 Time slicing with the interval ∆t = tj+1 − tj .

Baker-Campbell-Hausdorff formula, we can compute

K(qk+1, tk+1; qk, tk) = ⟨qk+1 |U(tk+1 − tk)| qk⟩

=
〈
qk+1

∣∣∣e− i(tk+1−tk)

} T (p̂)e−
i(tk+1−tk)

} V (q̂)

× e
− 1

2

(
−

i(tk+1−tk)

}

)2

[T (p̂),V (q̂)]+...
∣∣∣qk〉 . (2.78)

We take tk+1 − tk very small and therefore we can ignore higher order terms resulting in

K(qk+1, tk+1; qk, tk) =
〈
qk+1

∣∣∣e− i(tk+1−tk)

} T (p̂)e−
i(tk+1−tk)

} V (q̂)
∣∣∣ qk〉

=

∫
dpk ⟨qk+1 |pk⟩ ⟨pk| qk⟩ e−

i(tk+1−tk)

} T (pk)e−
i(tk+1−tk)

} V (qk)

=

(
1√
2π}

)2 ∫
dpke

i(tk+1−tk)

}

(
pk(qk+1−qk)

(tk+1−tk)
− p2k

2m
−V (qk)

)

=

√
m

2πi}(tk+1 − tk)
e

i(tk+1−tk)

} L(qk,qk+1) , (2.79)

where

L(qk, qk+1) =
m

2

(
qk+1 − qk
tk+1 − tk

)2

− V (qk) . (2.80)

Equation (2.79) is the discrete propagator and Equation (2.80) is indeed the discrete La-

grangian. Next, taking tk+1 − tk ≡ ∆t → 0 and n → ∞, the propagator (2.78) can be

written as

K(qn, tn; q0, t0) = lim
n→∞
∆t→0

( m

2πi}∆t

)n/2(n−1∏
k=1

∫
dqk

)
e

i
}
∑n−1

k=0 ∆tL(qk,qk+1) . (2.81)
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Under the limits with qa = qi and qb = qf
n−1∑
k=0

∆tL(qk, qk+1) ⇒
∫ tb

ta

dtL(q, q̇) , (2.82)

where

L(q, q̇) =
m

2
q̇2 − V (q)

is the standard Lagrangian. Now, the propagator can be written as

K(qf, tf; qi, ti) =

∫ qf

qi

D [q(t)]e
i
}S[q(t)] , (2.83)

where ∫ qf

qi

D [q(t)] ≡ lim
n→∞
∆t→0

(√
m

2πi}∆t

)n/2
(

n−1∏
k=1

∫
dqk

)
,

and

S[q(t)] =

∫ tf

ti

dtL(q̇, q; t) .

is the action functional.

Remark: The explicit form of the propagator can be obtained for the case of quadratic

Lagrangian

K (qf, tf; qi, ti) = F (tf − ti)e
i
}Sc , (2.84)

where Sc is the classical action and F (tf − ti) =

√
1

2πi}

∣∣∣ ∂2Sc
∂qi∂q

′
f

∣∣∣ is the prefactor [17–19].
2.4 Basic Differential Geometry

In this section, wewill provide some necessary ingredients on differential geom-

etry. Conventionally, the discussion of geometry is concerned with properties of space

such as curve, angle, moving of line segments, etc. The geometry, which could be ex-

pressed as differential equations, is important analytical technique to understand physical

systems. A physical phenomenon usually takes place on the space which generally can

be treated as the manifold [20–22].

A manifold is a set of points and each point has a neighborhood that is required

to be one-to-one mapping on an open set of an n-dimensional Euclidean space. Every φi
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from the open set Ui on a manifoldM maps to Rn : (Ui, φi) is called a chart and the set

of chart (Ui, φi) is called an atlas. If Ui ∩ Uj ̸= ∅, then the map from φj(Uj) to φi(Ui)

is ψij = φi ◦ φ−1
j , see figure 4, [22–25].

φi
φj

Ui ∩ Uj

M

Ui Uj

φi(Ui)

Rn

ψij

φj(Uj)

Rn

Figure 4 Relation between two charts, φi and φj , in the overlap region of neighbor-

hoods Ui and Uj .

In order to compare the vector at different points, we need a necessary notion of

parallelism. Imagine that there is a vectorV at the north pole of the sphere, then vectorV

is transported along the curveABC to the south pole, which is not rotated. This produces

the vector V ′ at C, see the figure 5a. On the other hand, we transport V on the another

pathADC shown in figure 5b. The vector V is perpendicular toADC arising the vector

V ′′ at C. Both vectors at C, V ′ and V ′′, are antiparallel. For this reason, the definition

of parallel transport, moving along a curve without changing its direction with respect to

the sphere’s geometry, is important in geometry [22].

We can write the displacement vector of two dimensional coordinate system,

see figure 6, as

dr = dx1e1 + dx2e2 =

(
∂r

∂x1

)
dx1 +

(
∂r

∂x2

)
dx2 . (2.85)



23

A

B

C

V

V ′

(a) Parallel transport of a vector

V along the path ABC.

A

D

C

V

V ′′

(b) Parallel transport of a vector

V along the path ADC.

Figure 5 Parallel transport of a vector V on different paths.

The basis vectors vary with the position, which affect the basis vectors when applying

x2

x1

e2

dr = dx1e1 + dx2e2

e1

Figure 6 A two-dimensional coordinate system in curved space.

derivatives to vector on a curved space. The divergence of a vector V = V iei with

∇ ≡ ei ∂
∂xi , becomes

∇ · V = ej ∂

∂xj
·
(
V iei

)
= ej · ∂

∂xj
(
V iei

)
= ej ·

[(
∂V i

∂xj

)
ei + V i

(
∂ei

∂xj

)]
. (2.86)

The last term in the square brackets can be expressed as ∂ei
∂xj = Γk

ijek, where Γk
ij is the
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Christoffel symbol. We can calculate the Christoffel symbols by dot el on both sides

el · ∂ei

∂xj
= Γk

ij

(
el · ek

)
, (2.87)

yielding

Γl
ij = el · ∂ei

∂xj
. (2.88)

We know that the basis vectors can be written as ei =
∂r
∂xi and consequently the Christof-

fel symbol is rewritten

Γl
ij = el · ∂2r

∂xj∂xi
. (2.89)

If we consider a torsionless manifold Γk
ij = Γk

ji and gij = ei · ej , we can define a

Christoffel symbol of the first kind

Γkij ≡ gklΓ
l
ij . (2.90)

Substituting Equation (2.88) into Equation (2.90),

Γkij = gkle
l · ∂ei

∂xj
= ek ·

∂ei

∂xj
. (2.91)

Taking the derivative of the metric, we obtain

∂gij
∂xk

= ei ·
(
∂ej

∂xk

)
+

(
∂ei

∂xk

)
· ej = Γijk + Γjik . (2.92)

Similarly, we also have

∂gik
∂xj

= Γikj + Γkij , (2.93)

and

∂gjk
∂xi

= Γjki + Γkji , (2.94)

Comparing Equation (2.92), (2.93) and (2.94), while using the quantities Γkij = Γkji,

one gets

Γkij =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
. (2.95)
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An expression for the Christoffel symbol of the second kind is

Γk
ij =

1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
. (2.96)

Equation (2.86) can now be written in term of the Christoffel symbol as

∇ · V = ej ·
[(

∂V i

∂xj

)
ei + V iΓk

ijek

]
. (2.97)

The derivative in parentheses can also be defined a new type of derivative

∂

∂xj
(
V iei

)
=
∂V i

∂xj
ei + V i ∂ei

∂xj

=
∂V i

∂xj
ei + V iΓk

ijek

=
∂V i

∂xj
ei + V kΓi

kjei

=

(
∂V i

∂xj
+ V kΓi

kj

)
ei

=
(
∇jV

i
)
ei , (2.98)

where

∇jV
i ≡ ∂V i

∂xj
+ Γi

kjV
k , (2.99)

is called the covariant derivative of the contravariant component of a vector. On the

other hand, the covariant derivative of the covariant components is

∇jVi ≡
∂Vi
∂xj

− Γk
ijVk . (2.100)

We can think that the covariant derivative is simply the partial derivative. If the covariant

derivative of the vector V is zero, V is parallel transported along the curve [22, 26, 27].

Consider a vector V along the curve C parametrised by u.

V (u) = V i(u)ei . (2.101)



26

Then, the derivative is given by

dV

du
=
dV i

du
ei + V idei

du

=
dV i

du
ei + V i ∂ei

∂xj
dxj

du

=
dV i

du
ei + V iΓk

ijek
dxj

du

=
dV i

du
ei + V kΓi

kjei
dxj

du

=

(
dV i

du
+ V kΓi

kj

dxj

du

)
ei . (2.102)

The term in the parentheses is defined as the intrinsic (or absolute) derivative and often

denoted by

DV i

Du
≡ dV i

du
+ V kΓi

kj

dxj

du
. (2.103)

Since, we can write

dV i

du
=
∂V i

∂xj
dxj

du
, (2.104)

then Equation (2.103) becomes

DV i

Du
=
∂V i

∂xj
dxj

du
+ V kΓi

kj

dxj

du

=

(
∂V i

∂xj
+ V kΓi

kj

)
dxj

du

= ∇jV
idx

j

du
. (2.105)

The intrinsic derivative can be written in term of covariant derivative. The parallel trans-

port of a vector along a curve is DV i

Du
= 0 [26].

The curvature is important property of the surface on manifold, which measures

how much a manifold is curved. This is related to the path dependence of parallel trans-

port. We can consider the parallel transport around a small closed loop, see figure 7.

What we want to compute is the commutator of two covariant derivatives in order to
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define the curvature tensor or Riemann tensor. The second covariant differentiation is

∇l∇jVi = ∂l (∇jVi)− Γm
il ∇jVm − Γm

jl∇mVi

= ∂l∂jVi −
(
∂lΓ

k
ij

)
Vk − Γk

ij∂lVk − Γm
il

(
∂jVm − Γk

mjVk
)

− Γm
jl

(
∂mVi − Γk

imVk
)
. (2.106)

The other one gives

∇j∇lVi = ∂j (∇lVi)− Γm
ij∇lVm − Γm

lj∇mVi

= ∂j∂lVi −
(
∂jΓ

k
il

)
Vk − Γk

il∂jVk − Γm
ij

(
∂lVm − Γk

mlVk
)

− Γm
lj

(
∂mVi − Γk

imVk
)
. (2.107)

Therefore, the commutator , [∇l,∇j]Vi, gives

(∇l∇j −∇j∇l)Vi = Rk
ijlVk , (2.108)

where the curvature tensor is defined by

Rk
ijl ≡ ∂jΓ

k
il − ∂lΓ

k
ij + Γm

il Γ
k
mj − Γm

ijΓ
k
ml . (2.109)

The vanishing of the curvature tensor indicates that a manifold is flat that is the compo-

nents of the metric gjl are constant. [26, 28–30].

∇jVi

∇jVi

∇jVi

∇jVi

Figure 7 The parallel transport process on completing the parallelogram.
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2.5 Heuristic introduction to the Wilson loop

A Wilson loop (or Wilson line) is an observable in gauge theory obtained from

the holonomy of the gauge connection. It is usually discussed in the language of dif-

ferential geometry involving the infinitesimal parallel transport. TheWilson line along

path C is given by

W = Pei
∫
C Aµdxµ

, (2.110)

whereP is the path-ordering operator andAµ are the components of the gauge connection.

If one consider parallel transport along a closed loop C, we obtain

W = Pei
∮
C Aµdxµ

, (2.111)

which is called theWilson loop [31, 32].

Source B

Figure 8 Aharonov-Bohm effect.

In order to see the Wilson loop in action, we shall consider the Aharonov-Bohm

effect. The setup of the experiment is illustrated in figure 8. The electrons are emitted,

one at a time, by a source and then a beam of electrons splits into two and each beam past

infinite long solenoid on different sides [33]. Turning off and turning on the magnetic

field inside the solenoid would affect the interference pattern of the electron, since the

electron experiences the present of the vector potentialA.
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To analyse this effect, we use the Feynman’s path integral formalism. The La-

grangian of a free charged particle in the magnetic field is given by

L =
m

2

(
dx

dt

)2

+
q

c

dx

dt
·A = L0 +

q

c

dx

dt
·A , (2.112)

where L0 is the free particle Lagrangian. Let define S0 as the action of the free particle.

Then the action of the system is

S = S0 +
q

c

∫
A · dx

dt
dt = S0 +

q

c

∫
A · dx , (2.113)

and let

Sabove path = S0 +
q

c

∫
above path

A · dx , (2.114)

Sbelow path = S0 +
q

c

∫
below path

A · dx , (2.115)

be the actions of the path going above and the below the cylinder, respectively. From

Equation (2.83), the propagator is proportional to function e i
}S . Then the propagator

which obtains from two different paths

K =

∫
above path

D [x(t)]e
i
}Sabove path +

∫
below path

D [x(t)]e
i
}Sbelow path

=

∫
above path

D [x(t)]e
i
} [S0+

q
c

∫
above path A·dx] +

∫
below path

D [x(t)]e
i
} [S0+

q
c

∫
below path A·dx]

=

∮
D [x(t)]e

i
}Sabove

(
1 + e

i
} [S0+

q
c

∫
below A·dx−Sabove]

)
=

∮
D [x(t)]e

i
}Sabove

(
1 + e

iq
}c [

∫
below A·dx−

∫
above A·dx]

)
. (2.116)

The exponential term inside the bracket can be expressed in a closed path (the trajectory

goes around the solenoid and back to the origin)

e
iq
}c [

∫
below path A·dx−

∫
above path A·dx] = e

iq
}c(

∮
A·dx) . (2.117)

The object in Equation (2.117) is nothing but Wilson loop representing the phase dif-

ference between the upper path and the lower path. Applying Stoke’s theorem, we find

that

iq

}c

∮
A · dx =

iq

}c

∫
enclosed

B · ds =
iq

}c
Φenclosed , (2.118)
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where Φenclosed is a magnetic flux inside the solenoid [16,34]. Then the interference pat-

tern will be proportional to magnetic field in the solenoid. In addition, Equation (2.117)

implies that the upper path cannot be continuously deformed to the lower path because of

the presenting magnetic field inside the solenoid. Topologically, we can think that there

is a hole in the space (2 dimension plane) as an obstacle in the path deformation process.

Then the upper path and the lower path are not homotopic to each other, see figure 9 [19].

(a) Turn off the magnetic field. (b) Turn on the magnetic field.

Figure 9 The topological point of view.



CHAPTER III

MULTI-TIME CLASSICAL AND QUANTUMMECHANICS

In this chapter, we shall give a main result of the work, namely the multi-time

formalism. In the first section, the multi-time system will be discussed together with

the consistency condition both in Hamiltonian and Lagrangian descriptions. Later, the

quantum version for both descriptions will be derived.

3.1 Multi-time Hamiltonian

Suppose there is a set of Hamiltonians {H1, H2, ..., HN} and amulti-timeHamil-

ton’s principal functionS associated with a set of time variables t = (t1, t2, ..., tN), where

tj ∈ R . We then look for solutions for a set of the first order differential equations given

by

∂

∂tj
S(q, t) +Hj

(
q, t,

∂

∂q
S(q, t)

)
= 0 , (3.1)

where q ∈ Rd and j = 1, 2, 3, ..., N . It is well known that the set of equations in Equa-

tion (3.1) is the multi-time Hamilton-Jacobi equations and is overdetermined. Then, to

get a nontrivial solution, one may need all Hamiltonians to commute in an appropriate

way known as the Hamiltonian commuting flows. To obtain that particular consistency

condition, we look at the compatible flows between ti and tj . What we have now are

∂S

∂tj
= −Hj

(
q, t,

∂S

∂q

)
∂2S

∂ti∂tj
= − ∂

∂ti
Hj

(
q, t,

∂S

∂q

)
= −∂Hj

∂ti
− ∂Hj

∂ ∂S
∂qk

· ∂
∂ti

∂S

∂qk

= −∂Hj

∂ti
− ∂Hj

∂ ∂S
∂qk

·
(
− ∂

∂qk
Hi

(
q, t,

∂S

∂q

))
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∂2S

∂ti∂tj
= −∂Hj

∂ti
− ∂Hj

∂ ∂S
∂qk

·

(
−∂Hi

∂qk
− ∂Hi

∂ ∂S
∂ql

· ∂

∂qk

∂S

∂ql

)

= −∂Hj

∂ti
+
∂Hj

∂ ∂S
∂qk

·

(
∂Hi

∂qk
+
∂Hi

∂ ∂S
∂ql

· ∂2S

∂qk∂ql

)

= −∂Hj

∂ti
+
∂Hj

∂pk
·
(
∂Hi

∂qk
+
∂Hi

∂pl
· ∂2S

∂qk∂ql

)
, (3.2)

and

∂2S

∂tj∂ti
= −∂Hi

∂tj
+
∂Hi

∂pk
·
(
∂Hj

∂qk
+
∂Hj

∂pl
· ∂2S

∂qk∂ql

)
, (3.3)

where pk = ∂S
∂qk

. The compatibility requires(
∂2

∂tj∂ti
− ∂2

∂ti∂tj

)
S = 0 , (3.4)

leading to the condition [7, 35]

−∂Hi

∂tj
+
∂Hj

∂ti
− {Hi, Hj} = 0 , (3.5)

where {A,B} is the standard Poisson bracket between A and B.

3.2 Multi-time Lagrangian

Next, we will express the consistency condition for multi-time evolution in

terms of the Lagrangian of the classical system. We start to give the action functional

along path Γ, see figure 10 in the case of two-time variables, defined on the space of time

variables

SΓ[t] =

∫
Γ

N∑
i=1

Lidti , (3.6)

where Li = Li(dqi/dti, qi; t) is the Lagrangian for ith particle. We introduce a new

variable σ0 6 σ 6 σ1 such that (t1(σ), t2(σ), ..., tN(σ)) and this new variable is actually

a parametrisation of the path Γ. Then the action (3.6) becomes

SΓ[t(σ)] =

∫ σ1

σ0

Ldσ , where L =
N∑
i=1

Li
dti
dσ

. (3.7)
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In order to capture the consistency condition for multi-time evolution, we consider the

time variation ti → ti + δti resulting in a new path Γ′ with the action

SΓ′ [t(σ) + δt(σ)] =

∫ σ1

σ0

dσ

(
N∑
i=1

Li (t+ δt)
d (ti + δti)

dσ

)
. (3.8)

q(t1(σ0), t2(σ0))

q(t1(σ1), t2(σ1))

(t1(σ0), t2(σ0))

(t1(σ1), t2(σ1))
Γ

δt

Γ′

t1

q

t2

Figure 10 The variation of the path on the space of two-time variables.

Employing Taylor series to expand Lagrangians and ignoring the higher-order terms,

each Lagrangian can be expressed as

Li (t+ δt) = Li (t) +
N∑
j=1

δtj
∂Li

∂tj
+ ... , i = 1, 2, ..., N . (3.9)

The variation of the action is given by

SΓ′ [t(σ) + δt(σ)]− SΓ[t] ≡ δS

≈
∫ σ1

σ0

dσ

{
N∑
i=1

(
N∑
j=1

δtj
∂Li

∂tj

)
dti
dσ

+
N∑
i=1

Li
dδti
dσ

}
. (3.10)

Using integration by parts, Equation (3.10) becomes

δS =

∫ σ1

σ0

dσ

{
N∑

i,j=1

δti

(
∂Lj

∂ti
− ∂Li

∂tj

)
dtj
dσ

}
, ∀i ̸= j . (3.11)

Imposing the condition of the principle of least action δS = 0, we obtain

∂Lj

∂ti
=
∂Li

∂tj
, ∀i ̸= j . (3.12)
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Equation (3.12)1 is nothing but the consistency condition for the multi-time evolution in

terms of the Lagrangian. Consequently, under condition (3.12) the action remains the

same under the path variation on the space of time variables. There is nothing but the

path-independent feature of the evolution on the space of time variables.

Remark: We shall point out that one can do the variation on the action with respect

to the coordinate variables resulting in a set of Euler-Lagrange equations together with

constraints [36].

From the geometric point of view, Equation (3.12) can also be obtained. Sup-

pose that α is a differential (k-1)-form. The generalised Stokes’ theorem states that the

integral of its exterior derivative over the surface of smooth oriented k-dimensional man-

ifold Σ is equal to its integral of along the boundary ∂Σ of the manifold Σ [37]:∫
∂Σ

α =

∫∫
Σ

dα . (3.13)

We now introduce an object dS from Equation (3.6) given by

dS =
N∑
i=1

Lidti , (3.14)

as a 1-form on the N -dimensional space of independent variables and, therefore, the

action (3.6) becomes S =
∫
Γ
dS. Applying an exterior derivative to the smooth function

coefficients which, in this case, is the Lagrangianα =
∑N

i=1 Lidti, the exterior derivative

of α is

dα =
∑
i

dLi ∧ dti

=
N∑

1≤i<j≤N

(dLi ∧ dti + dLj ∧ dtj)

1This equation was first derived in a different context, the integrable 1-dimensional many-body system

[36], to capture also the consistency condition.
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dα =
N∑

1≤i<j≤N

(
∂Li

∂ti
dti +

∂Li

∂tj
dtj

)
∧ dti +

(
∂Lj

∂ti
dti +

∂Lj

∂tj
dtj

)
∧ dtj

=
N∑

1≤i<j≤N

∂Li

∂ti
dti ∧ dti +

∂Li

∂tj
dtj ∧ dti +

∂Lj

∂ti
dti ∧ dtj +

∂Lj

∂tj
dtj ∧ dtj

=
N∑

1≤i<j≤N

−∂Li

∂tj
dti ∧ dtj +

∂Lj

∂ti
dti ∧ dtj

=
N∑

1≤i<j≤N

(
∂Lj

∂ti
− ∂Li

∂tj

)
dti ∧ dtj . (3.15)

Then, Equation (3.13) becomes∮
∂Σ

N∑
i=1

Lidti =

∫∫
Σ

N∑
1≤i<j≤N

(
∂Lj

∂ti
− ∂Li

∂tj

)
dti ∧ dtj . (3.16)

The left-hand side of Equation (3.16) is equivalent to
∫
Γ
dS −

∫
Γ′ dS. The consistent

system exists the path independent property and means that Lagrangian 1-form is closed-

form. Thus, the right-hand side of Equation (3.16) vanishes, since the exterior derivative

operating on the closed-form gives a vanishing result. Therefore, we obtain

∂Lj

∂ti
− ∂Li

∂tj
= 0 , i, j = 1, 2, 3, ..., N and i ̸= j , (3.17)

which are the consistency conditions of the system that evolves in the N -dimensional

space of independent variables. The main point is that Equation (3.16) is the Lagrangian

version of parallel transport feature, which is explained in the next section, see Equation

(3.55) if one defines

Fij =
∂Lj

∂ti
− ∂Li

∂tj
, i, j = 1, 2, 3, ..., N and i ̸= j , (3.18)

and of course, consequently, the consistency condition (3.17) of multi-time evolution can

be treated as the zero curvature condition in terms of the Lagrangians.

We find that the condition (3.12) violates if there is the interaction. To see this,

we give a simple example as follows. Given L1 = mq̇12

2
+ kq1q2 and L2 = mq̇22

2
, where
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q1 = q1(t1), q2 = q2(t2), k is the constant and then

∂L1

∂t2
= kq1

∂q2
∂t2

, (3.19)

∂L2

∂t1
= 0 . (3.20)

Therefore,

∂L1

∂t2
̸= ∂L2

∂t1
. (3.21)

Thus the presence of the interaction leads to inconsistency. We shall see later in the quan-

tum case that the presence of the interaction gives also incompatible quantum evolution

in terms of the propagators.

3.3 Multi-time Schrödinger wave mechanics

For multi-time quantum case, suppose there are N particles in the systems and

(q1, q2, .., qN) is a set of coordinates. The single-timewave function is given byΨ(q1, q2, ..., qN , t)

and the relativistic version isΦ(q1, t1, q2, t2, ..., qN , tN) satisfyingN separable time-dependent

Schrödinger equations2 [1, 2](
Hj +

1

i

∂

∂tj

)
Φ(q1, t1, q2, t2, ..., qN , tN) = 0 , j = 1, 2, ..., N , (3.22)

whereHj are the free Schrödinger Hamiltonians (or free Dirac Hamiltonians). The ordi-

nary probability amplitude is retrieved by setting all-time coordinates equal

Φ(q1, t, q2, t, ..., qN , t) = Ψ(q1, q2, ..., qN , t) . (3.23)

Here the single-time wave function Ψ satisfies the standard Schrödinger equation (2.64)

and H =
∑N

j=1Hj . Equation (3.23) and (2.64) suggest that the multi-time wave func-

tion coincides with the single-time wave function with respect to the Lorentz frame on

configurations of N space-time points [8].

2From now on, we set } = 1.
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Here comes to an interesting feature of the system of Equation (3.22). The

multi-time evolution must satisfy a certain condition. Suppose the multi-time wave func-

tion evolves from the initial point (0, 0) to the final point (t1, t2)3. In the case of time-

independent Hamiltonians, we define U1(t1) = e−iH1t1 as the unitary time operator in t1

direction and U2(t2) = e−iH2t2 as the unitary time operator in t2 direction. There are two

different ways to proceed the evolution map as follows

Φ(0, 0)

Φ(t1, t2)

Φ(t1, 0)

Φ(0, t2)

U1

U2U2

U1

Figure 11 Two compatible maps of the wave function from the initial point (0, 0) to

the final point (t1, t2).

Φ(t1, t2) = e−iH2t2Φ(t1, 0) = e−iH2t2e−iH1t1Φ(0, 0) = U2U1Φ(0, 0) , (3.24)

and

Φ(t1, t2) = e−iH1t1Φ(0, t2) = e−iH1t1e−iH2t2Φ(0, 0) = U1U2Φ(0, 0) . (3.25)

From Equation (3.24) and (3.25), the evolution is compatible if and only if

[H1, H2] = 0 , (3.26)

which is called the consistency condition or integrability criterion for the multi-time evo-

lution, see figure 11. In the case of the time-dependent Hamiltonian, one could obtain

the consistency condition [3]

∂Hj

∂tk
− ∂Hk

∂tj
− i [Hj, Hk] = 0 , ∀j ̸= k . (3.27)

3For simplicity, we consider only two-time variables.
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Here Equation (3.27) can be considered as the quantum analogue of Equation (3.5). We

can derive this condition for simplicity only two time variables. First we introduce the

time evolution of the wave function in t1 direction from (0, 0) to (t1, 0)

ϕ(t1, 0) = U(t1, 0)ϕ(0, 0) , (3.28)

where U(t1, 0) = Te−i
∫ t1
0 H1(T,t2=0)dT which can be expanded in the Dyson series as we

show Equation (2.74) in the last chapter

U(t1, 0) = I +
∞∑
n=1

(−i)n
∫ t1

0

dT1

∫ T1

0

dT2..

∫ Tn−1

0

dTnH1(T1, t2)..H1(Tn, t2) . (3.29)

Next we proceed the evolution in the t2 direction from (t1, 0) to (t1, t2), we fix the first

time variable t1, resulting in

ϕ(t1, t2) = U2(t1, t2)ϕ(t1, 0) = U2(t1, t2)U(t1, 0)ϕ(0, 0) , (3.30)

where U2(t1, t2) = Te−i
∫ t2
0 H2(t1,T )dT . On the other hand, one can go with t2 and then t1

resulting in

ϕ(t1, t2) = U1(t1, t2)ϕ(0, t2) = U1(t1, t2)U(0, t2)ϕ(0, 0) , (3.31)

where U(0, t2) = Te−i
∫ t2
0 H2(t1=0,T )dT and U1(t1, t2) = Te−i

∫ t1
0 H1(T,t2)dT . We take the

paths shown in figure 12 to work with a small rectangle with side lengths ∆t1 and ∆t2

for each time direction in order to get same end points of each path. The evolution of

each time direction for the lower corner path can be written as

U(t1, 0) = I + (−i)1
∫ t1

0

dT1H1(T1, 0)

+ (−i)2
∫ t1

0

dT1

∫ T1

0

dT2H1(T1, 0)H1(T2, 0) + ... , (3.32)

U2(t1, t2) = I + (−i)1
∫ t2

0

dT1H2(t1, T1)

+ (−i)2
∫ t2

0

dT1

∫ T1

0

dT2H2(t1, T1)H2(t1, T2) + ... , (3.33)
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Φ(0, 0)

Φ(t1, t2)

Φ(t1, 0)

Φ(0, t2)

U(t1, 0)

U2(t1, t2)U(0, t2)

U1(t1, t2)

Figure 12 A small rectangle of the time evolution with side lengths ∆t1 and ∆t2 for

each time direction from the initial point (0, 0) to the final point (t1, t2).

and for the upper corner path can be written as

U(0, t2) = I + (−i)1
∫ t2

0

dT1H2(0, T1)

+ (−i)2
∫ t2

0

dT1

∫ T1

0

dT2H2(0, T1)H2(0, T2) + ... , (3.34)

U1(t1, t2) = I + (−i)1
∫ t1

0

dT1H1(T1, t2)

+ (−i)2
∫ t1

0

dT1

∫ T1

0

dT2H1(T1, t2)H1(T2, t2) + ... . (3.35)

Since the Hamiltonian operator depends on two time variables, then we find that

H1(T1, 0) = H1(0, 0) + (T1 − 0)
∂H1(0, 0)

∂t1
+ (0− 0)

∂H1(0, 0)

∂t2
+ ...

= H1(0, 0) + T1
∂H1(0, 0)

∂t1
+ ... , (3.36)

H1(T2, 0) = H1(0, 0) + (T2 − 0)
∂H1(0, 0)

∂t1
+ (0− 0)

∂H1(0, 0)

∂t2
+ ...

= H1(0, 0) + T2
∂H1(0, 0)

∂t1
+ ... , (3.37)

H1(T1, t2) = H1(0, 0) + (T1 − 0)
∂H1(0, 0)

∂t1
+ (t2 − 0)

∂H1(0, 0)

∂t2
+ ...

= H1(0, 0) + T1
∂H1(0, 0)

∂t1
+∆t2

∂H1(0, 0)

∂t2
+ ... , (3.38)

H1(T2, t2) = H1(0, 0) + (T2 − 0)
∂H1(0, 0)

∂t1
+ (t2 − 0)

∂H1(0, 0)

∂t2
+ ...

= H1(0, 0) + T2
∂H1(0, 0)

∂t1
+∆t2

∂H1(0, 0)

∂t2
+ ... , (3.39)
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and

H2(0, T1) = H2(0, 0) + (0− 0)
∂H2(0, 0)

∂t1
+ (T1 − 0)

∂H2(0, 0)

∂t2
+ ...

= H2(0, 0) + T1
∂H2(0, 0)

∂t2
+ ... , (3.40)

H2(0, T2) = H2(0, 0) + (0− 0)
∂H2(0, 0)

∂t1
+ (T2 − 0)

∂H2(0, 0)

∂t2
+ ...

= H2(0, 0) + T2
∂H2(0, 0)

∂t2
+ ... , (3.41)

H2(t1, T1) = H2(0, 0) + (t1 − 0)
∂H2(0, 0)

∂t1
+ (T1 − 0)

∂H2(0, 0)

∂t2
+ ...

= H2(0, 0) + ∆t1
∂H2(0, 0)

∂t1
+ T1

∂H2(0, 0)

∂t2
+ ... , (3.42)

H2(t1, T2) = H2(0, 0) + (t1 − 0)
∂H2(0, 0)

∂t1
+ T2

∂H2(0, 0)

∂t2
+ ...

= H2(0, 0) + ∆t1
∂H2(0, 0)

∂t1
+ T2

∂H2(0, 0)

∂t2
+ ... . (3.43)

Using Equation (3.36) - (3.43), the unitary operators can be expressed as

U(t1, 0) = I − iH1(0, 0)∆t1 −
i

2

∂H1(0, 0)

∂t1
(∆t1)

2

− 1

2
H2

1 (0, 0)(∆t1)
2 + ... , (3.44)

U2(t1, t2) = I − iH2(0, 0)∆t2 − i
∂H2(0, 0)

∂t1
∆t1∆t2 −

i

2

∂H2(0, 0)

∂t2
(∆t2)

2

− 1

2
H2

2 (0, 0)(∆t2)
2 + ... , (3.45)

U(0, t2) = I − iH2(0, 0)∆t2 −
i

2

∂H2(0, 0)

∂t2
(∆t2)

2

− 1

2
H2

2 (0, 0)(∆t2)
2 + ... , (3.46)

U1(t1, t2) = I − iH1(0, 0)∆t1 −
i

2

∂H1(0, 0)

∂t1
(∆t1)

2 − i
∂H1(0, 0)

∂t2
∆t2∆t1

− 1

2
H2

1 (0, 0)(∆t1)
2 + ... . (3.47)

For ∆t1 → 0 and ∆t2 → 0, we can ignore higher-order terms and then the evolutions

(3.30) and (3.31) are compatible if and only if

U2(t1, t2)U(t1, 0) = U1(t1, t2)U(0, t2)
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leading to

∂H1

∂t2
− ∂H2

∂t1
− i [H1, H2] = 0 . (3.48)

This proves the consistency condition (3.27) on the evolution of the multi-time system

with the time-dependent Hamiltonians and the full derivation can be found in appendix

B.

Remark: The wave function Φ is defined only on the space-like configurations and the

system of multi-time equations with interaction automatically violates the consistency

condition [3].

t⃗i

t⃗f

γ γ′

(a)

γ

(b)

Figure 13 (a) Two different paths γ and γ′ from the initial point t⃗i to the final point

t⃗f . (b) A loop γ.

The condition (3.27) implies the path-independent feature of the time evolu-

tion in the context of multi-time quantum theory. This can be seen by the following

construction. If we consider the path which is parametised by γ, see figure 13a, where

γ : [0, 1] from the initial point γ(0) = t⃗i = (t1
i, t2

i, ..., tN
i) to the final point γ(1) =

t⃗f = (t1
f , t2

f , ..., tN
f ), the time evolution operator along this particular path is given by

Uγ = Te−i
∫
γ

∑
j Hjdtj . (3.49)

Another path parametised by γ′, see also figure 13a, where γ′ : [0, 1] from the initial

point γ′(0) = t⃗i = (t1
i, t2

i, ..., tN
i) to the final point γ′(1) = t⃗f = (t1

f , t2
f , ..., tN

f ), the
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time evolution operator along this path is given by

Uγ′ = Te−i
∫
γ′

∑
j Hjdtj . (3.50)

The path-independent feature requires the condition Uγ = Uγ′ .

In the language of geometry, we can put the path-independent feature as the

parallel transport process. To see this, we define the covariant derivative

▽j = ∂j − iAj , (3.51)

where ∂j = ∂/∂tj and connection coefficient Aj = −Hj . Then Uγ can be treated as the

parallel transport operator along the path γ known as the order path integral or Wilson

line. For an arbitrary loop γ, see figure 13b, one can express the transport operator in the

form

Uγ = Te−i
∮
γ

∑
j Hjdtj , (3.52)

which is known as the Wilson loop. Then the path-independent property is nothing but

saying that all closed paths γ have trivial holonomy, i.e., Uγ = I . As a consequence, a

gauge connection possesses trivial holonomies if and only if its curvature F is defined

as

Fjk ≡ −∂Hk

∂tj
+
∂Hj

∂tk
− i
[
Hj, Hk

]
(3.53)

vanishes [3]:

Fjk = 0 ∀j ̸= k . (3.54)

With the definition of the curvature, we can rewrite the argument of the exponential of

the time evolution operator as

− i

∮
∂Σ

∑
j

Hjdtj = −i
∫∫

Σ

∑
ij

Fijdti ∧ dtj , (3.55)

whereΣ is a 2-dimensional surface whose boundary is ∂Σ. Obviously, condition (3.54) is

identical to Equation (3.27) so we can consider the consistency condition in the viewpoint

of curvature. We knew that curvature is the tool to test the difference of vector that parallel
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transported along a closed path. If the direction of the initial and the final vector is not

different, there is no curvature of the surface, Fjk = 0, which means flat surface [3, 38,

39]. Consequently, the consistency condition (3.27) of the multi-time wave function can

be treated as the zero curvature condition.

3.4 Multi-time Propagator

To capture the quantum version of the consistency condition in terms of the

Lagrangian, the appropriate approach is the Feynman path integrationmethod. Wewould

like to discuss the multi-time evolutions in the Feynman picture.

Compatible evolutions: For simplicity, we consider the evolutions of the multi-

time wave function from the initial point (t1, t2) to the final point (t′1, t′2), see figure 14,

in two different paths in the context of Feynman path integration on the space of time

variables.

(q1, q2, t1, t2)

(q′1, q
′
2, t

′
1, t

′
2)

(q̃1, q̃2, t
′
1, t2)

(q̄1, q̄2, t1, t
′
2)

γ′

γ

Figure 14 Two different paths γ and γ′ from the initial point (t1, t2) to the final point

(t′1, t
′
2).

The first path(solid line): The transition of the multi-time wave function from point

(t1, t2) to (t′1, t′2) evolves from t1 to t′1 with the unitary operator U1, then evolves from t2

to t′2 with the unitary operator U2. The lower-half path can be captured in terms of the
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propagator as follows

〈
q′1, q

′
2

∣∣Φy(t
′
1, t

′
2)
〉
= ⟨q′1, q′2 |U2U1|Φ(t1, t2)⟩

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q′1, q′2 |U2| q̃2, q̃1⟩ ⟨q̃2, q̃1 |U1| q1, q2⟩

× ⟨q2, q1|Φ(t1, t2)⟩

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q′2 |U2| q̃2⟩ ⟨q′1|q̃1⟩ ⟨q̃1 |U1| q1⟩ ⟨q̃2|q2⟩

× Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q′2 |U2| q̃2⟩ ⟨q̃1 |U1| q1⟩ δ(q′1 − q̃1)δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2 ⟨q′2 |U2| q2⟩ ⟨q′1 |U1| q1⟩Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2K2(q

′
2, t

′
2; q2, t2)K1(q

′
1, t

′
1; q1, t1)

× Φ(q1, q2, t1, t2) . (3.56)

The second path(dashed line): The transition of the multi-time wave function from

point (t1, t2) to (t′1, t′2) through the upper-half path is given by

〈
q′1, q

′
2

∣∣Φp(t
′
1, t

′
2)
〉
= ⟨q′1, q′2 |U1U2|Φ(t1, t2)⟩

=

∫∫∫∫
dq̄1dq̄2dq1dq2 ⟨q′1, q′2 |U1| q̄2, q̄1⟩ ⟨q̄2, q̄1 |U2| q1, q2⟩

× ⟨q2, q1|Φ(t1, t2)⟩

=

∫∫∫∫
dq̄1dq̄2dq1dq2 ⟨q′1 |U1| q̄1⟩ ⟨q′2|q̄2⟩ ⟨q̄2 |U2| q2⟩ ⟨q̄1|q1⟩

× Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̄1dq̄2dq1dq2 ⟨q′1 |U1| q̄1⟩ ⟨q̄2 |U2| q2⟩ δ(q′2 − q̄2)δ(q̄1 − q1)

× Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2 ⟨q′1 |U1| q1⟩ ⟨q′2 |U2| q2⟩Φ(q1, q2, t1, t2)
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Φp (q
′
1, q

′
2, t

′
1, t

′
2) =

∫∫
dq1dq2K1(q

′
1, t

′
1; q1, t1)K2(q

′
2, t

′
2; q2, t2)

× Φ(q1, q2, t1, t2) . (3.57)

Tomake the both transitions compatible, one requiresΦy (q
′
1, q

′
2, t

′
1, t

′
2) = Φp (q

′
1, q

′
2, t

′
1, t

′
2),

resulting in ∫∫
dq1dq2 {K2K1 −K1K2}Φ(q1, q2, t1, t2) = 0 . (3.58)

If now we define Ky (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2) = K2(q

′
2, t

′
2; q2, t2)K1(q

′
1, t

′
1; q1, t1) as a

lower-half propagator andKp (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2) = K1(q

′
1, t

′
1; q1, t1)K2(q

′
2, t

′
2; q2, t2)

as an upper-half propagator. Since Φ(q1, q2, t1, t2) cannot be zero, then Equation (3.58)

gives us

Ky (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2) = Kp (q

′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2) . (3.59)

Here we obtain the consistency condition for the multi-time evolution in terms of the

propagator. This equation is nothing but the commuting propagators: [K1, K2] = 0

reflecting the path-independent property of the propagator on the space of time variables.

One can treat these commuting propagators as the parallel transport operation

in terms of Lagrangian. Now we may write the Wilson line associated with path γ as

Kγ (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

=

∫ q′2

q2

D [q̃2(t̃2)]

∫ q′1

q1

D [q̃1(t̃1)]e
i
∫
γ L1(q̃1,∂t̃1

q̃1)dt̃1+L2(q̃2,∂t̃2
q̃2)dt̃2 , (3.60)

and the Wilson line associated with path γ′ as

Kγ′ (q′1, t
′
1, q

′
2, t

′
2; q1, t1, q2, t2)

=

∫ q′1

q1

D [q̃1(t̃1)]

∫ q′2

q2

D [q̃2(t̃2)]e
i
∫
γ′ L1(q̃1,∂t̃1

q̃1)dt̃1+L2(q̃2,∂t̃2
q̃2)dt̃2 . (3.61)

The result in this section can be easily extended to the case of N time variables and the

Wilson line γ in terms of the propagator is given by

Kγ (q
′
1, t

′
1, q

′
2, t

′
2, ..., q

′
N , t

′
N ; q1, t1, q2, t2, ..., qN , tN)

= P
N∏
i=1

∫ q′i

qi

D [q̃i(t̃i)]e
i
∫
γ

∑N
i=1 Li(q̃i,∂t̃i

q̃i)dt̃i , (3.62)



46

where P stands for the permutation.

Time loops: We consider the other consistency condition in terms of the prop-

agator that is the case of the loop evolution of the multi-time wave function. Before

proceeding with the computation, we need to establish some useful relations. We start to

consider the transition of the wave function from (q, t) to (q′, t′) given by

Φ(q′, t′) =

∫
dqK(q′, t′; q, t)Φ(q, t) . (3.63)

Next, we consider the transition from (q′, t′) to (q̃, t̃) given by

Φ(q̃, t̃) =

∫
dq′K(q̃, t̃; q′, t′)Φ(q′, t′) . (3.64)

Combining Equation (3.64) with Equation (3.63), we obtain

Φ(q̃, t̃) =

∫∫
dq′dqK(q̃, t̃; q′, t′)K(q′, t′; q, t)Φ(q, t) . (3.65)

To change the transition (3.65) to the loop transition, we impose

Φ(q̃, t̃) =

∫∫
dq′dqK(q̃, t̃; q′, t′)K(q′, t′; q, t)Φ(q, t)

=

∫
dqδ(q̃ − q)Φ(q, t̃) = Φ(q̃, t̃) , (3.66)

therefore, one requires

δ(q̃ − q) =

∫
dq′K(q̃, t̃; q′, t′)K(q′, t′; q, t) = K(q̃, t; q, t) , (3.67)

where (t̃ − t) = δt → 0. Equivalently, Equation (3.67) can be expressed in terms of

Lagrangians as

δ(q̃ − q) = lim
δt→0

∫
dq′
[∫ q̃

q′
D [q̄(t̄)]ei

∫ t̃
t′ L(q̄,∂t̄q̄)dt̄

] [∫ q′

q

D [q̄(t̄)]ei
∫ t′
t L(q̄,∂t̄q̄)dt̄

]

= lim
δt→0

∫
dq′
∫ q̃

q′
D [q̄(t̄)]

∫ q′

q

D [q̄(t̄)]e
i
(∫ t̃

t′ L(q̄,∂t̄q̄)dt̄+
∫ t′
t L(q̄,∂t̄q̄)dt̄

)

= lim
δt→0

∫ q̃

q

D [q̄(t̄)]ei
∫ t̃
t L(q̄,∂t̄q̄)dt̄ =

∫ q̃

q

D [q̄(t̄)]ei
∮
L(q̄,∂t̄q̄)dt̄ . (3.68)
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(q1, q2, t1, t2)

(q′1, q
′
2, t

′
1, t

′
2)

(q̃1, q̃2, t
′
1, t2)

(q̄1, q̄2, t̂1, t
′
2)

(q̂1, q̂2, t̂1, t̂2)

(a)

(q̂1, q̂2, t1, t2)

(q′1, q
′
2, t

′
1, t

′
2)

(q̃1, q̃2, t
′
1, t2)

(q̄1, q̄2, t1, t
′
2)

γ

(b)

Figure 15 (a) The evolution from the initial point (q1, q2, t1, t2) to the final point

(q̂1, q̂2, t̂1, t̂2). (b) A loop evolution γ can be obtained by imposing q̂i = qi

and t̂i = ti, where i = 1, 2.

Now we are ready to consider the loop evolution. Let define U1(t
′
1 − t1) as the

time evolution operator from t1 to t′1, U2(t
′
2 − t2) as the time evolution operator from

t2 to t′2, U ′
1(t̂1 − t′1) as the time evolution operator from t′1 to t̂1 and U ′

2(t̂2 − t′2) as the

time evolution operator from t′2 to t̂2. The transition map, shown in figure 15a, can be

expressed as

〈
q̂1, q̂2

∣∣Φ(t̂1, t̂2)〉 = ⟨q̂1, q̂2 |U ′
2U

′
1U2U1|Φ(t1, t2)⟩

Φ
(
q̂1, q̂2, t̂1, t̂2

)
=

∫∫
dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2U1| q1, q2⟩

〈
q2, q1

∣∣Φ(t1, t2)〉
=

∫∫
dq1dq2

∫
dq̄2
〈
q̂2
∣∣U ′

2(t̂2 − t′2)
∣∣ q̄2〉 ⟨q̄2 |U2(t

′
2 − t2)| q2⟩

×
∫
dq̃1
〈
q̂1
∣∣U ′

1(t̂1 − t′1)
∣∣ q̃1〉 ⟨q̃1 |U1(t

′
1 − t1)| q1⟩Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2

∫
dq̄2K2(q̂2, t̂2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2)

×
∫
dq̃1K1(q̂1, t̂1; q̃1, t

′
1)K1(q̃1, t

′
1; q1, t1)Φ(q1, q2, t1, t2) . (3.69)

The full derivation of Equation (3.69) can be found in appendix. Using the condition

(3.67) where (t̂1 − t1) = δt1 → 0 and (t̂2 − t2) = δt2 → 0, we have

δ(q̂2 − q2) =

∫
dq̄2K2(q̂2, t̂2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2) = K2(q̂2, t2; q2, t2) , (3.70)

δ(q̂1 − q1) =

∫
dq̃1K1(q̂1, t̂1; q̃1, t

′
1)K1(q̃1, t

′
1; q1, t1) = K1(q̂1, t1; q1, t1) . (3.71)
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Substituting Equation (3.70) and (3.71) into Equation (3.69), we find that

Φ (q̂1, q̂2, t1, t2) =

∫∫
dq1dq2δ(q̂2 − q2)δ(q̂1 − q1)Φ(q1, q2, t1, t2)

= Φ(q̂1, q̂2, t1, t2) , (3.72)

which gives us the loop evolution shown in figure 15b.

Next, the condition for the propagator in Equation (3.69) can be expressed in

terms of the Lagrangian as

δ (q̂2 − q2) δ (q̂1 − q1)

=

∫
dq̄2K2(q̂2, t̂2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2)

∫
dq̃1K1(q̂1, t̂1; q̃1, t

′
1)K1(q̃1, t

′
1; q1, t1)

=

∫
dq̄2

[∫ q̂2

q̄2

D [q̌2(ť2)]e
i
∫ t̂2
t′2

L2(q̌2,∂ť2 q̌2)dť2
] [∫ q̄2

q2

D [q̌2(ť2)]e
i
∫ t′2
t2

L2(q̌2,∂ť2 q̌2)dť2

]
×
∫
dq̃1

[∫ q̂1

q̃1

D [q̌1(ť1)]e
i
∫ t̂1
t′1

L1(q̌1,∂ť1 q̌1)dť1
] [∫ q̃1

q1

D [q̌1(ť1)]e
i
∫ t′1
t1

L1(q̌1,∂ť1 q̌1)dť1

]
=

[∫ q̂2

q2

D [q̌2(ť2)]e
i
∫ t̂2
t2

L2(q̌2,∂ť2 q̌2)dť2

] [∫ q̂1

q1

D [q̌1(ť1)]e
i
∫ t̂1
t1

L1(q̌1,∂ť1 q̌1)dť1

]
. (3.73)

Taking δt1 → 0 and δt2 → 0, we obtain

δ (q̂2 − q2) δ (q̂1 − q1)

=

[
lim

δt2→0

∫ q̂2

q2

D [q̌2]e
i
∫ t̂2
t2

L2(q̌2,∂ť2 q̌2)dť2

] [
lim

δt1→0

∫ q̂1

q1

D [q̌1]e
i
∫ t̂1
t1

L1(q̌1,∂ť1 q̌1)dť1

]
=

[∫ q̂2

q2

D [q̌2]e
i
∮
L2(q̌2,∂ť2 q̌2)dť2

] [∫ q̂1

q1

D [q̌1]e
i
∮
L1(q̌1,∂ť1 q̌1)dť1

]
. (3.74)

The result in Equation (3.74) can be immediately extended to the case ofN time variables

resulting in
N∏
k=1

∫ q̂k

qk

D [q̌k]e
i
∮
γ Lk(q̌k,∂ťk

q̌k)dťk =
N∏
k=1

δ(q̂k − qk) . (3.75)

In the language of theWilson line, we have the propagator for the loop γ, shown

figure 15b for the two-time variables, as

Kγ(q̂1, t1, q̂2, t2, ..., q̂N , tN ; q̂1, t1, q̂2, t2, ..., q̂N , tN) =
N∏
k=1

∮
D [q̌k]e

i
∮
γ Lk(q̌k,∂ťk

q̌k)dťk

= I . (3.76)
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What we have from Equation (3.76) is the following. The quantum transition between

two endpoints will be not contributed from the loops. In other words, the loops can be

excluded from the whole evolution as shown in figure 16.

t1

t2

t1

t2

Figure 16 The close loop does not contribute to the evolution.

Example: Next, we will give an explicit computation to illustrate the path independent

property, i.e., a loop evolution. Here, for simplicity, we choose a free particle to work

with and the propagator is given by

K(q′, t′; q, t) =

√
m

2πi(t′ − t)
e

im
2

(q′−q)2

(t′−t) . (3.77)

We now compute the propagator along the time variables ti, where i = 1, 2

Ki(q̂i, t̂i; qi, ti)

=

∫
dq̄iKi(q̂i, t̂i; q̄i, t

′
i)Ki(q̄i, t

′
i; qi, ti)

=

∫
dq̄i

√
m

2iπ(t̂i − t′i)

√
m

2iπ(t′i − ti)
e

im
2

(q̂i−q̄i)
2

(t̂i−t′
i
) e

im
2

(q̄i−qi)
2

(t′
i
−ti)

=

∫
dq̄i

m

2iπ

√
1

(t̂i − t′i)(t
′
i − ti)

e
im

2(t̂i−t′
i
)
(q̂2i −2q̂iq̄i+q̄2i )e

im
2(t′

i
−ti)

(q̄2i −2q̄iqi+q2i )

=

∫
dq̄i

m

2iπ

√
1

(t̂i − t′i)(t
′
i − ti)

e
q̂2i

(
im

2(t̂i−t′
i
)

)
e
q2i

(
im

2(t′
i
−ti)

)
e
q̄2i

(
im

2(t̂i−t′
i
)
+ im

2(t′
i
−ti)

)

×e
q̄i

(
−imq̂i
(t̂i−t′

i
)
+

−imqi
(t′
i
−ti)

)

=
m

2iπ

√
2π

(−im)(t̂i − ti)
e
q̂2i

(
im

2(t̂i−t′
i
)

)
e
q2i

(
im

2(t′
i
−ti)

)

×e
(−im)2

−2im

(
q̂i

(t̂i−t′
i
)
+

qi
(t′
i
−ti)

)2(
(t̂i−t′i)(t

′
i−ti)

(t̂i−ti)

)
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Ki(q̂i, t̂i; qi, ti) =

√
m

2iπ(t̂i − ti)
e
q̂2i

im
2(t̂i−t′

i
)

(
1− (t′i−ti)

(t̂i−ti)

)
e
q2i

im
2(t′

i
−ti)

(
1− (t̂i−t′i)

(t̂i−ti)

)
e
2q̂iqi

(
−im

2(t̂i−ti)

)

=

√
m

2iπ(t̂i − ti)
e

im
2(t̂i−ti)

(q̂2i −2q̂iqi+q2i )

=

√
m

2iπ(t̂i − ti)
e

im
2(t̂i−ti)

(q̂i−qi)
2

. (3.78)

Imposing t̂i − ti = δti and taking δti → 0, we obtain [18]

Ki(q̂i, ti; qi, ti) = lim
δti→0

√
m

2iπδti
e

im
2δti

(q̂i−qi)
2

= δ(q̂i − qi) , (3.79)

which are indeed Equation (3.70) for i = 2 and Equation (3.71) for i = 1.

Including interaction: The last point is that wewill consider the systemwith the

interaction. For simplicity, we work with the Hamiltonian for the system of two particles

H = H1 +H2 + V12 , (3.80)

where V12 is a potential representing the interaction between the particles and Hi is the

free Hamiltonian for the ith-particle. What we are going to do is the same process as in

figure 14.

Let us first define the unitary operatorsU1(t
′
1, t1) = e−i(H1+V12)(t′1−t1) andU2(t

′
2, t2)

= e−iH2(t′2−t2). Then the propagator for the lower corner path is given by

Ky (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

= ⟨q′1, q′2 |U2U1| q1, q2⟩

=

∫∫
dq̃1dq̃2 ⟨q′1, q′2 |U2| q̃2, q̃1⟩ ⟨q̃2, q̃1 |U1| q1, q2⟩

=

∫∫
dq̃1dq̃2 ⟨q′1|q̃1⟩ ⟨q′2 |U2| q̃2⟩ ⟨q̃2, q̃1 |U1| q1, q2⟩

=

∫∫
dq̃1dq̃2δ(q

′
1 − q̃1)K2(q

′
2, t

′
2; q̃2, t2) ⟨q̃2, q̃1 |U1| q1, q2⟩

=

∫
dq̃2K2(q

′
2, t

′
2; q̃2, t2)

〈
q̃2

∣∣∣ ⟨q′1 |U1| q1⟩
∣∣∣q2〉

=

∫
dq̃2K2(q

′
2, t

′
2; q̃2, t2) ⟨q̃2 |G(q′1, t′1; q1, t1; q̂2)| q2⟩

=

∫
dq̃2K2(q

′
2, t

′
2; q̃2, t2) ⟨q̃2|q2⟩G(q′1, t′1; q1, t1; q̃2, t2; q2, t2)
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Ky (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

=

∫
dq̃2K2(q

′
2, t

′
2; q̃2, t2)δ(q̃2 − q2)G(q

′
1, t

′
1; q1, t1; q̃2, t2; q2, t2)

= K2(q
′
2, t

′
2; q2, t2)G(q

′
1, t

′
1; q1, t1; q2, t2; q2, t2) , (3.81)

and the propagator for the upper corner path is given by

Kp (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

= ⟨q′1, q′2 |U1U2| q1, q2⟩

=

∫∫
dq̄1dq̄2 ⟨q′1, q′2 |U1| q̄2, q̄1⟩ ⟨q̄2, q̄1 |U2| q1, q2⟩

=

∫∫
dq̄1dq̄2 ⟨q′1, q′2 |U1| q̄2, q̄1⟩ ⟨q̄1|q1⟩ ⟨q̄2 |U2| q2⟩

=

∫∫
dq̄1dq̄2 ⟨q′1, q′2 |U1| q̄2, q̄1⟩ δ(q̄1 − q1)K2(q̄2, t

′
2; q2, t2)

=

∫
dq̄2 ⟨q′2 |⟨q′1 |U1| q1⟩| q̄2⟩K2(q̄2, t

′
2; q2, t2)

=

∫
dq̄2 ⟨q′2 |G′(q′1, t

′
1; q1, t1; q̂2)| q̄2⟩K2(q̄2, t

′
2; q2, t2)

=

∫
dq̄2 ⟨q′2|q̄2⟩G′(q′1, t

′
1; q1, t1; q

′
2, t

′
2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2)

=

∫
dq̄2δ(q

′
2 − q̄2)G

′(q′1, t
′
1; q1, t1; q

′
2, t

′
2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2)

= G′(q′1, t
′
1; q1, t1; q

′
2, t

′
2; q

′
2, t

′
2)K2(q

′
2, t

′
2; q2, t2) , (3.82)

where q̂2 is a position operator for the 2nd particle which is being fixed during the evolu-

tion of the 1st particle. Then we find that the propagators for the upper and lower paths

are not the same. This implies that the quantum evolution of the system with interaction

is path-dependent. Of course, this path-dependent feature is a direct consequence of the

violation of the consistency condition (3.12).

Example: Here we will show the explicit example. We choose to work with the following

Lagrangians

L1 =
mq̇1

2

2
+ kq1q2 =

mq̇1
2

2
+ Fq1 ;F = kq2

L2 =
mq̇2

2

2
. (3.83)
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The propagator for a free particle with the constant force F with the Lagrangian L =

mq̇2

2
+ Fq is given by [17]

KF (q′, t′; q, t) =

√
m

2πi(t′ − t)
e
i

{
m
2

(q′−q)2

t′−t
+F

2
(q′+q)(t′−t)− F2

24m
(t′−t)3

}
. (3.84)

We will process the same transition given in figure 14. Then the propagator of the lower

path can be written as

Ky (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

= ⟨q′1, q′2 |U2U1| q1, q2⟩

=

√
m

2πi(t′2 − t2)
e

im
2

(q′2−q2)
2

t′2−t2

×
∫
dq̃2⟨q̃2|

√
m

2πi(t′1 − t1)
e
i

{
m
2

(q′1−q1)
2

t′1−t1
+F

2
(q′1+q1)(t′1−t1)− F2

24m
(t′1−t1)3

}
|q2⟩

=

√
m

2πi(t′2 − t2)
e

im
2

(q′2−q2)
2

t′2−t2

√
m

2πi(t′1 − t1)
e

im
2

(q′1−q1)
2

t′1−t1

×
∫
dq̃2⟨q̃2|e

i

{
kq̂2
2

(q′1+q1)(t′1−t1)−
k2q̂22
24m

(t′1−t1)3
}
|q2⟩

= K2(q
′
2, t

′
2; q2, t2)K1(q

′
1, t

′
1; q1, t1)

∫
dq̃2 ⟨q̃2|q2⟩ e

i

{
kq̃2
2

(q′1+q1)(t′1−t1)− k2q̃2
2

24m
(t′1−t1)3

}

= K2(q
′
2, t

′
2; q2, t2)K1(q

′
1, t

′
1; q1, t1)

×
∫
dq̃2δ(q̃2 − q2)e

i

{
kq̃2
2

(q′1+q1)(t′1−t1)− k2q̃2
2

24m
(t′1−t1)3

}

= K2(q
′
2, t

′
2; q2, t2)K1(q

′
1, t

′
1; q1, t1)e

i

{
kq2
2

(q′1+q1)(t′1−t1)−
k2q22
24m

(t′1−t1)3
}
. (3.85)

We proceed with the same computation for the upper path and we obtain

Kp (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

= ⟨q′1, q′2 |U1U2| q1, q2⟩

=

∫
dq̄2⟨q′2|

√
m

2πi(t′1 − t1)
e
i

{
m
2

(q′1−q1)
2

t′1−t1
+F

2
(q′1+q1)(t′1−t1)− F2

24m
(t′1−t1)3

}
|q̄2⟩

×
√

m

2πi(t′2 − t2)
e

im
2

(q′2−q2)
2

t′2−t2

=

√
m

2πi(t′1 − t1)
e

im
2

(q′1−q1)
2

t′1−t1

∫
dq̄2⟨q′2|e

i

{
kq̂2
2

(q′1+q1)(t′1−t1)−
k2q̂22
24m

(t′1−t1)3
}
|q̄2⟩

×
√

m

2πi(t′2 − t2)
e

im
2

(q′2−q2)
2

t′2−t2



53

Kp (q
′
1, t

′
1, q

′
2, t

′
2; q1, t1, q2, t2)

= K1(q
′
1, t

′
1; q1, t1)

∫
dq̄2 ⟨q′2|q̄2⟩ e

i

{
kq̄2
2

(q′1+q1)(t′1−t1)− k2q̄2
2

24m
(t′1−t1)3

}
K2(q

′
2, t

′
2; q2, t2)

= K1(q
′
1, t

′
1; q1, t1)

∫
dq̄2δ(q

′
2 − q̄2)e

i

{
kq̄2
2

(q′1+q1)(t′1−t1)− k2q̄2
2

24m
(t′1−t1)3

}

×K2(q
′
2, t

′
2; q2, t2)

= K1(q
′
1, t

′
1; q1, t1)K2(q

′
2, t

′
2; q2, t2)e

i

{
kq′2
2

(q′1+q1)(t′1−t1)−
k2q′2

2

24m
(t′1−t1)3

}
. (3.86)

This simple calculation shows that the interaction causes the violation of the relation

(3.12) and consequently the commutation of the propagators. Of course, the path-independent

is no longer applicable. In the geometry point of view, the present of the interaction can

be viewed as a course of temporal space curvature and therefore, the parallel transport of

different paths would give different results.
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SUMMARY

We study the multi-time formalism both in the Hamiltonian and Lagrangian de-

scriptions. There is a necessary condition for the evolution of the system to be con-

sistence. This condition is called the integrability condition. In the Hamiltonian me-

chanics, the system of Hamilton-Jacobi equations will possess an non-trivial common

solution if the Poisson bracket of a pair of Hamiltonians vanishes known as the Hamilto-

nian commuting flows. In quantum level, there is a set of Schrödinger equations. These

Schrödinger equations will have a common solution if all Hamiltonians are commute.

With this commutation relation allows us to express the time evolution operator in terms

of the Wilson loop and the Hamiltonian is nothing but the gauge variable. In geometrical

view, the consistency condition can be viewed as the parallel transport completing the

parallelogram.

We succeed to capture the consistency condition for the multi-time evolution in

terms of the Lagrangian as the consequence of the variation of the action on the space

of time variables. This consistency condition implies that the action is invariant under

the local deformation, fixing end-points, of the path on the space of time variables. Ac-

tually, if we think that the continuous path is constituted from tiny discrete elements,

then, path-independent property in the continuous-time case is a direct consequence of

path-independent in the discrete-time case. Furthermore, with this property, there is a

family of paths(homotopy), sharing the endpoints, that can be continuously transformed

to each other in N -dimensional space of time variables. The consistency condition for

the multi-time quantum evolution in terms of Feynman’s path integrals is derived. The

important point is the path-independent feature of the multi-time propagator which can

be summarised as follows. In general, there are an infinite number of paths from the

initial point to the final point on the space of time variables, see figure 17 in the case of
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t1

t2

Figure 17 The possible paths, including shortest path, zigzag path and path with

loops, t1 − t2 space from the initial point to the final point.

two-time variables. With a set of Lagrangians {L1, L2, ..., LN} satisfying the consistency

condition, the propagator remains unchanged under the variation of the path on the space

of time variables, and of course, this is nothing but the path-independent feature of the

multi-time propagator. This would suggest that, apart from taking all possible paths in

the configuration space as we normally do in the standard single-time path integration,

one may need to take also the all possible paths in the space of time variables for the case

of the multi-time path integration4. In the view of the geometry, the path-independent

feature can be captured in terms of the parallel transport process on the flat space of

time variables since the curvature vanishes. Then the consistency condition for a set of

Lagrangians can be viewed as the zero curvature condition.

4This terminology arises also in the context of integrable systems [41]
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APPENDIX



APPENDIX A THE DERIVATION OF THE TRANSITION
MAP

Here we show the derivation of the transition that evolves from (t1, t2) to (t̂1, t̂2),

see figure 15a.

〈
q̂1, q̂2

∣∣Φ(t̂1, t̂2)〉 = ⟨q̂1, q̂2 |U ′
2U

′
1U2U1|Φ(t1, t2)⟩

Φ
(
q̂1, q̂2, t̂1, t̂2

)
=

∫∫
dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2U1| q1, q2⟩

〈
q2, q1

∣∣Φ(t1, t2)〉
=

∫∫
dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2U1| q1, q2⟩Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2| q̃1, q̃2⟩ ⟨q̃2, q̃1 |U1| q1, q2⟩

× Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2| q̃1, q̃2⟩ ⟨q̃1 |U1| q1⟩

〈
q̃2
∣∣q2〉

× Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1U2| q̃1, q̃2⟩ ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫
dq′1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1| q′1, q′2⟩ ⟨q′2, q′1 |U2| q̃1, q̃2⟩

× ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫
dq′1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1| q′1, q′2⟩ ⟨q′2 |U2| q̃2⟩

×
〈
q′1
∣∣q̃1〉 ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫
dq′1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2U
′
1| q′1, q′2⟩ ⟨q′2 |U2| q̃2⟩

× δ(q′1 − q̃1) ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫∫∫
dq̄1dq̄2dq

′
1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2| q̄1, q̄2⟩

× ⟨q̄1, q̄2 |U ′
1| q′1, q′2⟩ ⟨q′2 |U2| q̃2⟩ δ(q′1 − q̃1) ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)
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Φ
(
q̂1, q̂2, t̂1, t̂2

)
=

∫∫∫∫∫∫∫∫
dq̄1dq̄2dq

′
1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2| q̄1, q̄2⟩

× ⟨q̄1 |U ′
1| q′1⟩

〈
q̄2
∣∣q′2〉 ⟨q′2 |U2| q̃2⟩ δ(q′1 − q̃1) ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫∫∫
dq̄1dq̄2dq

′
1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂1, q̂2 |U ′

2| q̄1, q̄2⟩

× ⟨q̄1 |U ′
1| q′1⟩ δ(q̄2 − q′2) ⟨q′2 |U2| q̃2⟩ δ(q′1 − q̃1) ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)

=

∫∫∫∫∫∫∫∫
dq̄1dq̄2dq

′
1dq

′
2dq̃1dq̃2dq1dq2 ⟨q̂2 |U ′

2| q̄2⟩
〈
q̂1
∣∣q̄1〉

× ⟨q̄1 |U ′
1| q′1⟩ δ(q̄2 − q′2) ⟨q′2 |U2| q̃2⟩ δ(q′1 − q̃1) ⟨q̃1 |U1| q1⟩ δ(q̃2 − q2)

× Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̄2dq̃1dq1dq2 ⟨q̂2 |U ′

2| q̄2⟩
∫
dq̄1δ(q̂1 − q̄1) ⟨q̄1 |U ′

1| q′1⟩

×
∫
dq′2δ(q̄2 − q′2) ⟨q′2 |U2| q̃2⟩

∫
dq′1δ(q

′
1 − q̃1) ⟨q̃1 |U1| q1⟩

×
∫
dq̃2δ(q̃2 − q2)Φ(q1, q2, t1, t2)

=

∫∫∫∫
dq̄2dq̃1dq1dq2 ⟨q̂2 |U ′

2| q̄2⟩ ⟨q̄2 |U2| q2⟩ ⟨q̂1 |U ′
1| q̃1⟩ ⟨q̃1 |U1| q1⟩

× Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2

∫
dq̄2
〈
q̂2
∣∣U ′

2(t̂2 − t′2)
∣∣ q̄2〉 ⟨q̄2 |U2(t

′
2 − t2)| q2⟩

×
∫
dq̃1
〈
q̂1
∣∣U ′

1(t̂1 − t′1)
∣∣ q̃1〉 ⟨q̃1 |U1(t

′
1 − t1)| q1⟩Φ(q1, q2, t1, t2)

=

∫∫
dq1dq2

∫
dq̄2K2(q̂2, t̂2; q̄2, t

′
2)K2(q̄2, t

′
2; q2, t2)

×
∫
dq̃1K1(q̂1, t̂1; q̃1, t

′
1)K1(q̃1, t

′
1; q1, t1)Φ(q1, q2, t1, t2) . (A.1)

This proves the equation of transition (3.69) on the evolution-counter clockwise of two-

time system.



APPENDIX B THE DERIVATION OF THE CONSIS-
TENCY CONDITION FOR THE MULTI-
TIME SYSTEM WITH THE TIME-
DEPENDENT HAMILTONIANS

The detailed derivation of the consistency condition for the multi-time system

with the time-dependent Hamiltonians is given in this section. We work with a small

rectangle as shown in figure 12. The time evolution operators is given by substituting

Equation (3.36) - (3.43) into Equation (3.32) - (3.35)

U(t1, 0) = I − i

∫ t1

0

dT1H1(T1, 0)−
∫ t1

0

dT1

∫ T1

0

dT2H1(T1, 0)H1(T2, 0) + ...

= I − i

∫ t1

0

dT1

(
H1(0, 0) + T1

∂H1(0, 0)

∂t1

)
−
∫ t1

0

dT1

∫ T1

0

dT2

(
H1(0, 0) + T1

∂H1(0, 0)

∂t1

)(
H1(0, 0) + T2

∂H1(0, 0)

∂t1

)
+ ...

= I − i

[
H1(0, 0)T1 +

T 2
1

2

∂H1(0, 0)

∂t1

]t1
0

−
∫ t1

0

dT1

∫ T1

0

dT2

(
H2

1 (0, 0) +H1(0, 0)T2
∂H1(0, 0)

∂t1
+H1(0, 0)T1

∂H1(0, 0)

∂t1

+ T1T2

(
∂H1(0, 0)

∂t1

)2
)

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1

)
−
∫ t1

0

dT1

[
H2

1 (0, 0)T2 +H1(0, 0)
T 2
2

2

∂H1(0, 0)

∂t1
+H1(0, 0)T1T2

∂H1(0, 0)

∂t1

+ T1
(T 2

2 )

2

(
∂H1(0, 0)

∂t1

)2
]T1

0

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1

)
−
∫ t1

0

dT1

(
H2

1 (0, 0)T1 +H1(0, 0)
T 2
1

2

∂H1(0, 0)

∂t1
+H1(0, 0)T

2
1

∂H1(0, 0)

∂t1

+
T 3
1

2

(
∂H1(0, 0)

∂t1

)2
)

+ ...
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U(t1, 0) = I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1

)
−

[
H2

1 (0, 0)
T 2
1

2
+H1(0, 0)

T 3
1

6

∂H1(0, 0)

∂t1
+H1(0, 0)

T 3
1

3

∂H1(0, 0)

∂t1

+
T 4
1

8

(
∂H1(0, 0)

∂t1

)2
]t1
0

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1

)
−

(
H2

1 (0, 0)
(∆t1)

2

2
+H1(0, 0)

(∆t1)
3

6

∂H1(0, 0)

∂t1

+H1(0, 0)
(∆t1)

3

3

∂H1(0, 0)

∂t1
+

(∆t1)
4

8

(
∂H1(0, 0)

∂t1

)2
)

+ ... , (B.1)

U2(t1, t2) = I − i

∫ t2

0

dT1H2(t1, T1)−
∫ t2

0

dT1

∫ T1

0

dT2H2(t1, T1)H2(t1, T2) + ...

= I − i

∫ t2

0

dT1

(
H2(0, 0) + ∆t1

∂H2(0, 0)

∂t1
+ T1

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

∫ T1

0

dT2

(
H2(0, 0) + ∆t1

∂H2(0, 0)

∂t1
+ T1

∂H2(0, 0)

∂t2

)
×
(
H2(0, 0) + ∆t1

∂H2(0, 0)

∂t1
+ T2

∂H2(0, 0)

∂t2

)
+ ...

= I − i

[
H2(0, 0)T1 +∆t1T1

∂H2(0, 0)

∂t1
+
T 2
1

2

∂H2(0, 0)

∂t2

]t2
0

−
∫ t2

0

dT1

∫ T1

0

dT2

(
H2

2 (0, 0) +H2(0, 0)∆t1
∂H2(0, 0)

∂t1

+H2(0, 0)T2
∂H2(0, 0)

∂t2
+H2(0, 0)∆t1

∂H2(0, 0)

∂t1
+ (∆t1)

2

(
∂H2(0, 0)

∂t1

)2

+∆t1T2
∂H2(0, 0)

∂t1

∂H2(0, 0)

∂t2
+H2(0, 0)T1

∂H2(0, 0)

∂t1

+∆t1T1
∂H2(0, 0)

∂t2

∂H2(0, 0)

∂t1
+ T1T2

(
∂H2(0, 0)

∂t2

)2
)

+ ...
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U2(t1, t2) = I − i

(
H2(0, 0)∆t2 +∆t1∆t2

∂H2(0, 0)

∂t1
+

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

[
H2

2 (0, 0)T2 + 2H2(0, 0)∆t1T2
∂H2(0, 0)

∂t1

+H2(0, 0)
T 2
2

2

∂H2(0, 0)

∂t2
+ (∆t1)

2T2

(
∂H2(0, 0)

∂t1

)2

+∆t1
T 2
2

2

∂H2(0, 0)

∂t1

∂H2(0, 0)

∂t2
+H2(0, 0)T1T2

∂H2(0, 0)

∂t1

+∆t1T1T2
∂H2(0, 0)

∂t2

∂H2(0, 0)

∂t1
+ T1

T 2
2

2

(
∂H2(0, 0)

∂t2

)2
]T1

0

+ ...

= I − i

(
H2(0, 0)∆t2 +∆t1∆t2

∂H2(0, 0)

∂t1
+

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

(
H2

2 (0, 0)T1 + 2H2(0, 0)∆t1T1
∂H2(0, 0)

∂t1

+H2(0, 0)
T 2
1

2

∂H2(0, 0)

∂t2
+ (∆t1)

2T1

(
∂H2(0, 0)

∂t1

)2

+∆t1
T 2
1

2

∂H2(0, 0)

∂t1

∂H2(0, 0)

∂t2
+H2(0, 0)T

2
1

∂H2(0, 0)

∂t1

+∆t1T
2
1

∂H2(0, 0)

∂t2

∂H2(0, 0)

∂t1
+
T 3
1

2

(
∂H2(0, 0)

∂t2

)2
)

+ ...

= I − i

(
H2(0, 0)∆t2 +∆t1∆t2

∂H2(0, 0)

∂t1
+

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−

[
H2

2 (0, 0)
T 2
1

2
+ 2H2(0, 0)∆t1

T 2
1

2

∂H2(0, 0)

∂t1
+H2(0, 0)

T 3
1

6

∂H2(0, 0)

∂t2

+ (∆t1)
2T

2
1

2

(
∂H2(0, 0)

∂t1

)2

+∆t1
T 3
1

6

∂H2(0, 0)

∂t1

∂H2(0, 0)

∂t2

+H2(0, 0)
T 3
1

3

∂H2(0, 0)

∂t1
+∆t1

T 3
1

3

∂H2(0, 0)

∂t2

∂H2(0, 0)

∂t1

+
T 4
1

8

(
∂H2(0, 0)

∂t2

)2
]t2
0

+ ...

= I − i

(
H2(0, 0)∆t2 +∆t1∆t2

∂H2(0, 0)

∂t1
+

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−

(
H2

2 (0, 0)
(∆t2)

2

2
+H2(0, 0)∆t1(∆t2)

2∂H2(0, 0)

∂t1

+H2(0, 0)
(∆t2)

3

6

∂H2(0, 0)

∂t2
+ (∆t1)

2 (∆t2)
2

2

(
∂H2(0, 0)

∂t1

)2

+∆t1
(∆t2)

3

6

∂H2(0, 0)

∂t1

∂H2(0, 0)

∂t2
+H2(0, 0)

(∆t2)
3

3

∂H2(0, 0)

∂t1

+∆t1
(∆t2)

3

3

∂H2(0, 0)

∂t2

∂H2(0, 0)

∂t1
+

(∆t2)
4

8

(
∂H2(0, 0)

∂t2

)2
)

+ ., (B.2)
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U(0, t2) = I − i

∫ t2

0

dT1H2(0, T1)−
∫ t2

0

dT1

∫ T1

0

dT2H2(0, T1)H2(0, T2) + ...

= I − i

∫ t2

0

dT1

(
H2(0, 0) + T1

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

∫ T1

0

dT2

(
H2(0, 0) + T1

∂H2(0, 0)

∂t2

)(
H2(0, 0) + T2

∂H2(0, 0)

∂t2

)
+ ...

= I − i

[
H2(0, 0)T1 +

T 2
1

2

∂H2(0, 0)

∂t2

]t2
0

−
∫ t2

0

dT1

∫ T1

0

dT2

(
H2

2 (0, 0) +H2(0, 0)T2
∂H2(0, 0)

∂t2
+H2(0, 0)T1

∂H2(0, 0)

∂t2

+ T1T2

(
∂H2(0, 0)

∂t2

)2
)

+ ...

= I − i

(
H2(0, 0)∆t2 +

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

[
H2

2 (0, 0)T2 +H2(0, 0)
T 2
2

2

∂H2(0, 0)

∂t2
+H2(0, 0)T1T2

∂H2(0, 0)

∂t2

+ T1
(T 2

2 )

2

(
∂H2(0, 0)

∂t2

)2
]T1

0

+ ...

= I − i

(
H2(0, 0)∆t2 +

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−
∫ t2

0

dT1

(
H2

2 (0, 0)T1 +H2(0, 0)
T 2
1

2

∂H2(0, 0)

∂t2
+H2(0, 0)T

2
1

∂H2(0, 0)

∂t2

+
T 3
1

2

(
∂H2(0, 0)

∂t2

)2
)

+ ...

= I − i

(
H2(0, 0)∆t2 +

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−

[
H2

2 (0, 0)
T 2
1

2
+H2(0, 0)

T 3
1

6

∂H2(0, 0)

∂t2
+H2(0, 0)

T 3
1

3

∂H2(0, 0)

∂t2

+
T 4
1

8

(
∂H2(0, 0)

∂t2

)2
]t2
0

+ ...

= I − i

(
H2(0, 0)∆t2 +

(∆t2)
2

2

∂H2(0, 0)

∂t2

)
−

(
H2

2 (0, 0)
(∆t2)

2

2
+H2(0, 0)

(∆t2)
3

6

∂H2(0, 0)

∂t2

+H2(0, 0)
(∆t2)

3

3

∂H2(0, 0)

∂t2
+

(∆t2)
4

8

(
∂H2(0, 0)

∂t2

)2
)

+ ... , (B.3)
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U1(t1, t2) = I − i

∫ t1

0

dT1H1(T1, t2)−
∫ t1

0

dT1

∫ T1

0

dT2H1(T1, t2)H1(T2, t2) + ...

= I − i

∫ t1

0

dT1

(
H1(0, 0) + T1

∂H1(0, 0)

∂t1
+∆t2

∂H1(0, 0)

∂t2

)
−
∫ t1

0

dT1

∫ T1

0

dT2

(
H1(0, 0) + T1

∂H1(0, 0)

∂t1
+∆t2

∂H1(0, 0)

∂t2

)
×
(
H1(0, 0) + T2

∂H1(0, 0)

∂t1
+∆t2

∂H1(0, 0)

∂t2

)
+ ...

= I − i

[
H1(0, 0)T1 +

T 2
1

2

∂H1(0, 0)

∂t1
+∆t2T1

∂H1(0, 0)

∂t2

]t1
0

−
∫ t1

0

dT1

∫ T1

0

dT2

(
H2

1 (0, 0) +H1(0, 0)T2
∂H1(0, 0)

∂t1

+H1(0, 0)∆t2
∂H1(0, 0)

∂t2
+H1(0, 0)T1

∂H1(0, 0)

∂t1
+ T1T2

(
∂H1(0, 0)

∂t1

)2

+ T1∆t2
∂H1(0, 0)

∂t1

∂H1(0, 0)

∂t2
+H1(0, 0)∆t2

∂H1(0, 0)

∂t2

+ T2∆t2
∂H1(0, 0)

∂t2

∂H1(0, 0)

∂t1
+ (∆t2)

2

(
∂H1(0, 0)

∂t2

)2
)

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1
+∆t2∆t1

∂H1(0, 0)

∂t2

)
−
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0

dT1

[
H2

1 (0, 0)T2 +H1(0, 0)
T 2
2

2

∂H1(0, 0)

∂t1

+ 2H1(0, 0)∆t2T2
∂H1(0, 0)

∂t2
+H1(0, 0)T1T2

∂H1(0, 0)

∂t1

+ T1
T 2
2

2

(
∂H1(0, 0)

∂t1

)2

+ T1∆t2T2
∂H1(0, 0)

∂t1

∂H1(0, 0)

∂t2

+
T 2
2

2
∆t2

∂H1(0, 0)

∂t2

∂H1(0, 0)

∂t1
+ (∆t2)

2T2

(
∂H1(0, 0)

∂t2

)2
]T1

0

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1
+∆t2∆t1

∂H1(0, 0)

∂t2

)
−
∫ t1

0

dT1

(
H2

1 (0, 0)T1 +H1(0, 0)
T 2
1

2

∂H1(0, 0)

∂t1

+ 2H1(0, 0)∆t2T1
∂H1(0, 0)

∂t2
+H1(0, 0)T

2
1

∂H1(0, 0)

∂t1
+
T 3
1

2

(
∂H1(0, 0)

∂t1

)2

+∆t2T
2
1

∂H1(0, 0)

∂t1

∂H1(0, 0)

∂t2
+
T 2
1

2
∆t2

∂H1(0, 0)

∂t2

∂H1(0, 0)

∂t1

+ (∆t2)
2T1

(
∂H1(0, 0)

∂t2

)2
)

+ ...
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U1(t1, t2) = I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1
+∆t2∆t1

∂H1(0, 0)

∂t2

)
−

[
H2

1 (0, 0)
T 2
1

2
+H1(0, 0)

T 3
1

6

∂H1(0, 0)

∂t1
+ 2H1(0, 0)∆t2

T 2
1

2

∂H1(0, 0)

∂t2

+H1(0, 0)
T 3
1

3

∂H1(0, 0)

∂t1
+
T 4
1

8

(
∂H1(0, 0)

∂t1

)2

+∆t2
T 3
1

3

∂H1(0, 0)

∂t1

∂H1(0, 0)

∂t2
+
T 3
1

6
∆t2

∂H1(0, 0)

∂t2

∂H1(0, 0)

∂t1

+ (∆t2)
2T

2
1

2

(
∂H1(0, 0)

∂t2

)2
]t1
0

+ ...

= I − i

(
H1(0, 0)∆t1 +

(∆t1)
2

2

∂H1(0, 0)

∂t1
+∆t2∆t1

∂H1(0, 0)

∂t2

)
−

(
H2

1 (0, 0)
(∆t1)

2

2
+H1(0, 0)

(∆t1)
3

6

∂H1(0, 0)

∂t1

+H1(0, 0)∆t2(∆t1)
2∂H1(0, 0)

∂t2
+H1(0, 0)

(∆t1)
3

3

∂H1(0, 0)

∂t1

+
(∆t1)

4

8

(
∂H1(0, 0)

∂t1

)2

+∆t2
(∆t1)

3

3

∂H1(0, 0)

∂t1

∂H1(0, 0)

∂t2

+
(∆t1)

3

6
∆t2

∂H1(0, 0)

∂t2

∂H1(0, 0)

∂t1

+ (∆t2)
2 (∆t1)

2

2

(
∂H1(0, 0)

∂t2

)2
)

+ ... . (B.4)

Ignoring higher-order terms, we obtain

U(t1, 0) = I − iH1(0, 0)∆t1 −
i

2

∂H1(0, 0)

∂t1
(∆t1)

2 − 1

2
H2

1 (0, 0)(∆t1)
2 , (B.5)

U2(t1, t2) = I − iH2(0, 0)∆t2 − i
∂H2(0, 0)

∂t1
∆t1∆t2 −

i

2

∂H2(0, 0)

∂t2
(∆t2)

2

− 1

2
H2

2 (0, 0)(∆t2)
2 , (B.6)

U(0, t2) = I − iH2(0, 0)∆t2 −
i

2

∂H2(0, 0)

∂t2
(∆t2)

2 − 1

2
H2

2 (0, 0)(∆t2)
2 , (B.7)

U1(t1, t2) = I − iH1(0, 0)∆t1 −
i

2

∂H1(0, 0)

∂t1
(∆t1)

2 − i
∂H1(0, 0)

∂t2
∆t2∆t1

− 1

2
H2

1 (0, 0)(∆t1)
2 . (B.8)
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Next, we consider the evolution for the lower corner path given by

U2(t1, t2)U(t1, 0) =

(
I − iH2(0, 0)∆t2 − i

∂H2(0, 0)

∂t1
∆t1∆t2 −

i

2

∂H2(0, 0)

∂t2
(∆t2)

2

− 1

2
H2

2 (0, 0)(∆t2)
2

)(
I − iH1(0, 0)∆t1 −

i

2

∂H1(0, 0)

∂t1
(∆t1)

2

− 1

2
H2

1 (0, 0)(∆t1)
2

)

= I − iH1(0, 0)∆t1 −
i

2

∂H1(0, 0)

∂t1
(∆t1)

2 − 1

2
H2

1 (0, 0)(∆t1)
2

− iH2(0, 0)∆t2 −H2H1∆t2∆t1 − i
∂H2(0, 0)

∂t1
∆t1∆t2 , (B.9)

and the evolution for the upper path given by

U1(t1, t2)U(0, t2) =

(
I − iH1(0, 0)∆t1 −

i

2

∂H1(0, 0)

∂t1
(∆t1)

2 − i
∂H1(0, 0)

∂t2
∆t2∆t1

− 1

2
H2

1 (0, 0)(∆t1)
2

)(
I − iH2(0, 0)∆t2 −

i

2

∂H2(0, 0)

∂t2
(∆t2)

2

− 1

2
H2

2 (0, 0)(∆t2)
2

)

= I − iH2(0, 0)∆t2 −
i

2

∂H2(0, 0)

∂t2
(∆t2)

2 − 1

2
H2

2 (0, 0)(∆t2)
2

− iH1(0, 0)∆t1 −H1H2∆t1∆t2 − i
∂H1(0, 0)

∂t2
∆t2∆t1 , (B.10)

where we neglect higher-order terms of∆t1 and∆t2. To make the both evolutions com-

patible, one requires U2(t1, t2)U(t1, 0)− U1(t1, t2)U(0, t2) = 0, resulting in

0 = −H1(0, 0)H2(0, 0)∆t1∆t2 − i
∂H1(0, 0)

∂t2
∆t2∆t1 +H2(0, 0)H1(0, 0)∆t2∆t1

+ i
∂H2(0, 0)

∂t1
∆t1∆t2

=

(
−H1(0, 0)H2(0, 0) +H2(0, 0)H1(0, 0)− i

∂H1(0, 0)

∂t2
+ i

∂H2(0, 0)

∂t1

)
∆t1∆t2

=

(
∂H1

∂t2
− ∂H2

∂t1
− i [H1, H2]

)
∆t1∆t2 . (B.11)

Therefore, the terms inside the bracket must vanish. This proves the consistency condi-

tion (3.27) on the evolution of the multi-time system with the time-dependent Hamilto-

nians.
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