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ABSTRACT

The de Rham-Gabadadze-Tolley (dRGT) black string solution is a cylin-

drically symmetric and static solution of the Einstein field equation with graviton

mass term. For the asymptotically de Sitter (dS) solution, it is possible to obtain

the black string with two event horizons corresponding to two thermodynamic sys-

tems. However, one found that the dRGT black string entropy is a non-extensive

quantity. This indicates that the dRGT black string is the non-extensive system.

The Rényi entropy is one of the entropic forms which is suitable to deal with the

non-extensive properties of the black string. In this work, we investigated the

possibility to obtain a stable black string by using the Rényi entropy in both sep-

arated and effective approaches. We found that the non-extensivity provides the

thermodynamically stable black string with moderate size in both approaches. The

transition from the hot gas phase to the moderate-sized stable black string in the

separated/effective description is a first-order/zeroth-order phase transition. The

significant ways to distinguish the black string from both approaches are discussed.
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full equation and approximation by fixing b1 = 1. Right panel
shows the comparison of δG obtained in full expression and ap-
proximation by fixing b0 = 0.1. The black solid curve represents
the bound for the local stability δc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



14 Left panel shows the comparison of temperatures of the system
evaluated at black string horizon, cosmic horizon and effective
system by fixing b0 = 0.1, b1 = 0.7 and δ = 2. Right panel shows
the comparison of temperatures of the system evaluated at black
string horizon and effective system by fixing b0 = 0.1, b1 = 0.7
and δ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

15 The effective temperature profile with various values of δ by fixing
b0 = 0.1, b1 = 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

16 Left panel shows the effective heat capacity profile with various
values of δ by fixing b0 = 0.1, b1 = 0.7. Right panel shows the
effective heat capacity profile compare to the temperature profile
by fixing b0 = 0.1, b1 = 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

17 Left panel shows the profile of the dimensionless Gibbs free en-
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Massive gravity is a theory that modifies general relativity (GR) at the

large scale by adding consistent interaction terms interpreted as a graviton mass

into the Einstein-Hilbert action. This theory can be used to describe the acceler-

ating expansion of the universe without introducing a cosmological constant, while

at local scales its predictions are the same as GR does. The field theory for mas-

sive graviton was firstly proposed by Fierz and Pauli in 1993 [1] by added the

interaction terms at the linearized level of GR. However, it was later found that

there is a discontinuity when taking the massless limit, pointed out by van Dam,

Veltman, and Zakharov in 1970 [2, 3] called van Dam-Veltman-Zakharov (vDVZ)

discontinuity. This discontinuity invoked further studies on the non-linear gen-

eralization of Fierz-Pauli massive gravity. However, in 1972 Boulware and Deser

found that additional mass terms in messive theory usually generate the ghost in-

stability, later called Boulware-Deser (BD) ghost [4]. Eventually, the theory of

massive gravity without ghost instability was proposed by de Rham, Gabadadze

and Tolley (dRGT) in 2010 [5, 6]. Although the dRGT massive gravity theory

is constructed by adding suitable mass term into GR, but it is difficult to find

the exact solutions in this theory. Nevertheless, spherically symmetric solutions

in dRGT massive gravity are also found [7, 8, 9, 10, 11, 12, 13]. The black hole

solutions have been intensively investigated, for example, thermodynamic prop-

erties [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], greybody factor

[29, 30, 31, 32], quasinormal modes [33, 34, 35], critical heat engine [36] and phase

transition in Ruppeiner geometry [37, 38].

It is interesting to ask whether a black hole can have cylindrical symmetry.
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Many investigations have led us to know that the gravitational collapse of massive

stars cannot form in cylindrical symmetry. This restriction comes from the Hoop

conjecture which states that the horizon can be formed when the mass of an object

gets compacted into a region whose circumference is less than its Schwarzschild

circumference, 4πMG in every direction [39]. However, the Hoop conjecture was

given for a spacetime with zero cosmological constants. This suggests that the

Hoop conjecture may be violated in asymptotically dS/AdS spacetime. Indeed,

Lemos shown that the cylindrical solutions can exist in the GR with the existence

of the cosmological constant [40, 41, 42]. With cylindrical symmetry, the horizons

usually are circular, and then such corresponding object is commonly known as the

black string. Since the dRGT solution is one of the solutions with asymptotically

dS/AdS spacetime, it is possible to obtain the black string solution. As a result, the

dRGT black string solution including their thermodynamical properties has been

investigated in [43]. The solution for the charged black string as well as rotating

black string are explored [44, 45] and the greybody factor [46] of the dRGT black

string also have been investigated.

It is important to note that the investigation on the black string is mostly

performed in the asymptotically AdS spacetime. This comes from the fact that dS

black string has no horizon, then it does not correspond to the thermodynamic sys-

tem. For the dRGT black string with asymptotically dS spacetime, even though

there exist horizons, the corresponding thermodynamic systems are found to be

unstable since there is a negative heat capacity when its thermodynamic quantities

are defined based on the Gibbs-Boltzmann statistics. This may be a consequence

of the fact that the entropy of the black hole including the black string is propor-

tional to its area and then corresponds to the non-extensive thermodynamic system.

Therefore, the Bekenstein-Hawking entropy based on the Gibbs-Boltzmann statis-

tics is not suitable to use to investigate the non-extensive system. Tsallis entropy is

a candidate for studying non-extensive systems [47, 48]. However, Tsallis entropy
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has the problem of the incompatibility with the zeroth law of thermodynamics [49].

In order to investigate thermodynamic properties we have to map the Tsallis en-

tropy to formal logarithm form, which is known as the Rényi entropy [50, 51]. It is

possible to obtain the stable black hole by considering the Rényi entropy instead

of the usual Gibbs-Boltzmann (GB) entropy [52, 53, 54, 55, 56, 57].

Due to the existence of multi horizons, the temperatures of the system

evaluated at each horizon are generically different. This means that the system

is not in the thermal equilibrium state. In order to study thermodynamics for

such a system, we can separate our consideration into two approaches. First,

the thermodynamic system of each horizon can be defined separately [58]. The

systems are treated to be in the quasi-equilibrium state, in which the timescale

of the heat transfer between each system is much longer than the timescale of the

thermodynamics process. Second, one can treat the whole system as a single system

called effective system described by the effective thermodynamic quantities [59, 60,

61, 62, 63, 64, 65, 66]. In this work, we investigate the thermodynamic properties of

the black string from Rényi entropy in dRGT massive gravity with asymptotically

dS spacetime. For the separated system approach, we analyze the local stability of

black string by considering the temperature profile and heat capacity. By analyzing

the Gibbs free energy, we found that it is possible to obtain the globally stable

black string. For the effective system approach, we use the suitable definition of

the effective quantities in [57] to perform the stability analysis in the same fashion

as done in separated system approach. For convenience, in this thesis, we now

dealing with the natural unit c = h̄ = G = kB = 1.
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1.2 Objectives

• To study thermodynamic stability of dRGT black string in the separated

system approach by using Rényi entropy.

• To study thermodynamic stability of dRGT black string in the effective sys-

tem approach by using Rényi entropy.



CHAPTER II

A BRIEF REVIEW OF GENERAL RELATIVITY

General relativity (GR) is the theory on the relationship between spacetime

and gravity, which was proposed by Albert Einstein in 1915. In particular, we can

say that gravity is the curvature of spacetime. Hence, we can explain this theory

by using the concept of differential geometry.

2.1 Manifold

To discuss the geometry of spacetime, we will build up the general continu-

ous object in which mathematical objects (e.g., vector field, tensor, or differential

operator) can live on. This is known as manifold. In mathematics, the manifold

can be defined as any set of points that are parameterized along with a set of

neighborhoods for each point. In a very small area, the manifold is locally flat.

In other words, a manifold is the object constructed by smoothly sewing many of

the local regions together as shown in Fig.1. The concept of the manifold is quite

abstract and complicated, one can see in [67, 68] for more details.

Figure 1 An example of manifold.
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2.2 Vectors, dual vector and tensor

In this section, we will introduce the kinds of mathematical objects on a

manifold. We begin with scalar fields on a manifold. The scalar or scalar field

ϕ(xµ) is the function of spacetime which is independent of the choice of coordinates.

Consider a curve γ parameterized by λ on a manifold and described in arbitrary

coordinate by xµ(λ). One can calculate the rate of change of a scalar function along

this curve by,

dϕ

dλ
=

∂ϕ

∂xµ
dxµ

dλ
= ∂µϕu

µ. (2.1)

This step allows us to introduce two types of objects on the manifold as follows:

uµ is a vector which is tangent to everywhere on a curve γ and ∂µϕ is a dual vector

interpreted as the gradient of the scalar function. Under the general coordinate

transformation, xµ → x′µ, one found that these objects transform as follows

∂µ′ϕ =
∂ϕ

∂xµ
∂xµ

∂xµ′ =
∂xµ

∂xµ′ ∂µϕ, and uµ
′
=
dxµ

′

dλ
=
∂xµ

′

∂xµ
dxµ

dλ
=
∂xµ

′

∂xµ
uµ. (2.2)

This suggest that the scalar function is invariant under the general coordinate

transformation,

ϕ′(x′µ) = ϕ(xµ). (2.3)

In curved spacetime, the vector fields are expressed as,

V = V µ∂µ, (2.4)

where V µ is contravariant component of the vector and ∂µ = eµ is the basis vector.

One can see that under the coordinate transformation, we have

V µ∂µ = V µ′
∂µ′ ,

= V µ′ ∂xµ

∂xµ′ ∂µ. (2.5)
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And then, the component of contravariant vector transforms as

V µ′
=
∂xµ

′

∂xµ
V µ. (2.6)

On the other hand, the component of covariant vector Xµ transforms as

Xµ′ =
∂xµ

∂xµ,
Xµ. (2.7)

The dual vector can be interpreted as a map of vector to scalar. Both vector and

dual vector can be thought of tensors of the rank (1, 0) and (0, 1) respectively.

Then, we can generalize the transformation to the tensor of higher rank (k, l) as

T µ′
1...µ

′
k

ν′1...ν
′
l
=
∂xµ

′
1

∂xµ1
. . .

∂xµ
′
k

∂xµk

∂xν1

∂xν
′
1
. . .

∂xνl

∂xν
′
l

T µ1...µk
ν1...νl (2.8)

The tangent vector at each point along the curve on a manifold is defined

in a tangent plane on the manifold at that point as illustrated in Fig.2, this plane

is called the tangent space, TP .

Figure 2 A tangent vector, V µ at the point P along the curve γ in tangent

space, TP on the manifold.
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2.3 The metric tensor

A very important tensor in GR is the metric tensor gµν , which is used

to define the inner product between two vectors, V µXµ = gµνV
νXµ, and also

represents the dynamical field in this theory. The metric tensor is a symmetric

tensor rank (0, 2). We usually assume that the metric is non degenerate, the inverse

metric gµν can be defined by

gµνgνσ = δµσ . (2.9)

The symmetry of gµν implies that gµν is also symmetric. Generally, the metric gµν

and its inverse can be used to raise and lower indices on vectors, one-forms, and

tensors. For example, V µ = gµνVν and Xµ = gµνX
ν . Moreover, the metric tensor

is invariant under the coordinate transformation,

gµν → gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν (2.10)

In order to understand the behavior of a particle in spacetime, we will

describe curved spacetime by determining the infinitesimal distance (or often call

interval), ds between two separated points, xµ and xµ + dxµ on the manifold. The

interval can be written in terms of the line element as

ds2 = gµνdx
µdxν , (2.11)

In the context of GR, the metric tensor is required to be one negative and three

positive eigenvalues with signature (−,+,+,+). One found that the sign of ds2

provides the characteristic feature of spacetime. When ds2 < 0 the interval is

timelike spacetime, while ds2 > 0 the interval is spacelike spacetime and ds2 = 0

correspond to lightlike spacetime.
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2.4 Covariant derivative

By definition, the vector evaluated at different points on manifold lives in

the different tangent spaces. To define the derivative of the vector field, one must

compare these vectors to the limit that the distance between them tends to zero.

In flat space, the partial derivative operator allows vectors at different points to

be compared. However, in curved spacetime, the partial derivative is not a good

operator because it depends on the coordinate system we used. Therefore, we

will introduce an additional object, known as the affine connection for mapping

one tangent space into the other on the manifold and then the derivative can be

generalized to be the operator which is independent of choices of coordinates, known

as the covariant derivative. In order to find the covariant derivative, let consider

the basis vector eµ at two nearby points in curved spacetime P and Q with lie on

coordinates xµ and xµ + dxµ respectively. Generally, the basis vectors at Q will

Figure 3 A tangent vector, V µ at the point P along the curve γ in tangent

space, TP on the manifold

infinitesimal different from the one at P [68], so that

eµ(Q) = eµ(P ) + δeµ. (2.12)

The standard partial derivative of the basis vector is given by δeµ/δxν in the limit

δxν → 0. However, the resulting vector will not lie on the tangent space at point P .
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Hence, we can define the derivative in the manifold of the basis vector by projecting

into the tangent space at point P as,

∂eµ
∂xν

≡
(

lim
δxν→0

δeµ
δxν

)
||TP

. (2.13)

We can expand the above derivative in terms of the basis vectors eµ(P ) at point P

as,

∂eµ
∂xν

= Γρ
µνeρ, (2.14)

where the symbol Γρ
µν denote the affine connection. Then, suppose that a vector

field, V is defined on some region of manifold. The derivative of this vector field

can be obtained by

∂V

∂xν
=

∂V µ

∂xν
eµ + V µ ∂eµ

∂xν
. (2.15)

By using the Eq.(2.14), one may write (2.15) as

∂V

∂xν
=

∂V µ

∂xν
eµ + V µΓρ

µνeρ,

=
∂V µ

∂xν
eµ + V ρΓµ

ρνeµ,

=

(
∂V µ

∂xν
+ V ρΓµ

ρν

)
eµ,

= ∇νV
µeµ, (2.16)

where

∇νV
µ = ∂νV

µ + V ρΓµ
ρν , (2.17)

is a covariant derivative of the vector. In the same way, the corresponding result

for the covariant component of the vector, V = Vµe
µ can be expressed as

∇νVµ = ∂νVµ − VρΓ
ρ
µν , (2.18)

This kind of derivative does not change the form under a general coordinate trans-

formation. This operator, ∇µ can reduce to the partial derivative, ∂µ in locally flat
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spacetime. In addition, we can extend to the tensor rank (k, l) as follows,

∇ρTµν = ∂ρTµν − TλνΓ
λ
ρµ − TµλΓ

λ
ρν , (2.19)

∇ρT
µν = ∂ρT

µν + TλνΓ
λ
ρµ + T µλΓλ

ρν , (2.20)

∇ρT
µ
ν = ∂ρT

µ
ν + T λ

ν Γ
µ
ρλ − T µ

λ Γ
λ
ρν , (2.21)

...

∇ρT
µ1µ2...µk

ν1ν2...νl = ∂ρT
µ1µ2...µk

ν1ν2...νl

+Γµ1

ρλT
λµ2...µk

ν1ν2...νl + Γµ2

ρλT
µ1λ...µk

ν1ν2...νl + ...

−Γλ
ρν1
T µ1µ2...µk

λν2...νl − Γλ
ρν2
T µ1µ2...µk

ν1λ...νl − ...(2.22)

One can say that the connection can be used to map one vector space into the

other. It is important to note that the connections are not tensor. It does not

transform as the components of a tensor, but the combination in Eq.(2.17) and

(2.18) can be transformed as a tensor. We can find the relationship of a connection

and metric tensor by introducing two additional assumptions as follows,

1. Torsion free: Γρ
µν = Γρ

νµ.

2. Metric compatibility: ∇ρgµν = 0.

We then expand the equation for metric compatibility into three different permu-

tations of the indices as follows,

∇ρgµν = ∂ρgµν − gανΓ
α
ρµ − gµαΓ

α
ρν , (2.23)

∇µgνρ = ∂µgνρ − gαρΓ
α
µν − gναΓ

α
µρ, (2.24)

∇νgρµ = ∂νgρµ − gαµΓ
α
νρ − gραΓ

α
µν . (2.25)

By using [Eq.(2.23)-Eq.(2.24)]-Eq.(2.25) and the first assumption; torsion free, we

than obtain

∂ρgµν − ∂µgνρ − ∂νgρµ + 2gραΓ
α
µν = 0. (2.26)
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Contracting with gρλ, we obtain

2(gρλgρα)Γ
α
µν = gρλ(∂µgνρ + ∂νgρµ − ∂ρgµν),

2(δλα)Γ
α
µν = gρλ(∂µgνρ + ∂νgρµ − ∂ρgµν),

Γλ
µν =

1

2
gρλ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.27)

This unique connection is so called Christoffel symbol. The study of manifolds

with the metric tensor, gµν and their associated connections is called Riemannian

geometry.

2.5 Parallel transport

To understand the description of spacetime curvature, we have introduced

the connection for mapping a vector from one tangent space to other on the man-

ifold and defined the covariant derivative to compare one vector and its neighbor.

But the question is, how to move a vector from one point to another? The answer

is to move a vector from one point to another by paralleling the path and keeping

the angle constant. This concept is known as parallel transport. Notice that, the

idea of parallel transport can be also used in flat spacetime. The crucial difference

between flat and curved spaces is that, in a curve space, the resulting from parallel

transport will depend on the path taken between the points while in flat space is

not [67].

Before going to parallel transport, it is worthwhile to understand the two

different kinds of curvature: extrinsic and intrinsic curvature. Considering a sur-

face that rounds up a cylinder, we immediately know that it is curved. On the

other hand, a cylinder can be made by rolling a flat paper, so that the geometry

of a cylinder corresponds to the original flat paper. This means that the distance

between any points on the surface of the cylinder is the same as in the flat pa-

per. This kind of curvature so called extrinsic curvature must be measured by an

observer in higher-dimension. The intrinsic curvature is the actual curvature of
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Figure 4 Parallel transport of a vector along the curve parameterized by

λ.

spacetime without using the notion of a higher-dimensional spacetime, while the

extrinsic curvature is based on the notion of a higher-dimensional spacetime [69].

Hence, when we talk about curved spacetime, meaning the intrinsic curvature of

spacetime.

To construct the parallel transport equation of vector V ν on a curve xµ(λ)

parameterized by λ with fixing the angle and norm, we have to define the directional

covariant derivative, given by

D

dλ
=
dxµ(λ)

dλ
∇µ. (2.28)

The vector V ν must be constant along the curve. Hence, the directional

covariant derivative of V ν which is used to define parallel transport can be expressed
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as

D

dλ
V ν = 0,

dxµ

dλ
∇µV

ν = 0,

dxµ

dλ

(
∂µV

ν + Γν
ρµV

ρ
)

= 0,

dV ν

dλ
+ Γν

ρµ

dxµ

dλ
V ρ = 0. (2.29)

We then define the parallel transport equation for the tensor rank (k, l)

along the path xµ(λ), via(
D

dλ
T

)µ1µ2...µk

ν1ν2...νl ≡
dxσ

dλ
∇σT

µ1µ2...µk
ν1ν2...νl = 0 (2.30)

2.6 Geodesic equation

To study particle motion in general relativity, we have to discuss the shortest

distance between two points in the Riemannian manifold, as known geodesics. The

geodesic equation can be defined by taking parallel transport to the tangent vector.

In other words, a geodesic is a curve along which the tangent vector is parallel

transported. Hence, the geodesic equation can be obtained by

D

dλ

(
dxν

dλ

)
= 0,

dxµ

dλ
∇µ

(
dxν

dλ

)
= 0,

dxµ

dλ

(
∂µ

(
dxν

dλ

)
+ Γν

ρµ

(
dxρ

dλ

))
= 0,

dxµ

dλ
∂µ

(
dxν

dλ

)
+ Γν

ρµ

dxµ

dλ

(
dxρ

dλ

)
= 0,

d2xν

dλ2
+ Γν

ρµ

dxµ

dλ

dxρ

dλ
= 0. (2.31)

Note that one can be derived the geodesic equation by using the variation

principle of as action for a particle moving in spacetime.
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2.7 Curvature Tensor

The curvature of the spacetime can be examined by using a difference of the

vector field resulting from the parallel transport around a closed loop. Mathemati-

cally, the difference of vector field is equivalent to the commutator of two covariant

derivatives which is proportional to the vector field. As a result, this commutator

can be written as,

[∇µ,∇ν ]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ,

= (∂µ(∇νV
ρ)− Γλ

µν(∇λV
ρ)− (∂ν(∇µV

ρ)− Γρ
µσ(∇νV

σ))),

=
[
∂µ(∂νV

ρ + Γρ
νσV

σ)− Γλ
µν(∂λV

ρ + Γρ
λσV

σ)
]

−
[
∂ν(∂µV

ρ + Γρ
µσV

σ)− Γρ
µσ(∂νV

σ + Γσ
µλV

λ)
]
,

= Rρ
σµνV

σ, (2.32)

where Rρ
σµν is Riemann tensor which is a measure of the spacetime curvature and

can be expressed as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (2.33)

One can see that in flat spacetime the connection is zero, Γρ
µν = 0 then ∂σΓρ

µν = 0,

thus Riemann tensor will be zero at every point. Therefore, the non zero of the

Riemann tensor implies the existence of spacetime curvature.

It is easy to see properties of Riemann tensor, Rρ
σµν because the indices µ

and ν are related to covariant derivatives ∇µ and ∇ν . Therefore, we will see that

the Riemann tensor is anti-symmetric for swapping the order of µ and ν,

Rρ
σµν = −Rρ

σνµ. (2.34)

The further properties for Riemann tensor can be found by lowering an index and
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swapping the order through the component (2.33) as follows as,

Rρσµν = −Rσρµν , (2.35)

Rρσµν = −Rρσνµ, (2.36)

Rρσµν = Rµνρσ, (2.37)

where Rρσµν = gρλR
λ
σµν . Moreover, one can write the sum of cyclic identity as

Rρσµν +Rρµνσ +Rρνσµ = 0. (2.38)

The Riemann tensor also obeys the Bianchi identity, given by

∇[λRµν]ρσ = 0, (2.39)

where the square brackets denote totally anti-symmetric over the indices inside.

In addition, we can construct the curvature tensor rank (0, 2) by considering the

contractions of the Riemann tensor. The resulting is called Ricci tensor, which is

defined by

Rµν = Rρ
µρν . (2.40)

We can see that the symmetric of Ricci tensor is inherited from the Riemann tensor,

gσρRσµρν = gρσRρνσµ, (2.41)

giving us,

Rµν = Rνµ. (2.42)

As a consequence of the symmetry for Ricci tensor, one can see that the trace of

Ricci tensor is giving the curvature scalar which is known as Ricci scalar, is then

defined by

R = Rµ
µ = gµνRµν . (2.43)
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2.8 Einstein field equation

We have discussed curvature in the previous section. In this section, we

will construct the equation to relate matter/energy and gravity. One side of the

equation would describe the spacetime curvature constructed from R, Rµν or Rρ
µνσ

and the other side should be proportional to the energy momentum tensor, T µν

since it contains all information of the matter/energy. Therefore, the relation can

be written as

f(R) ∝ Tµν , (2.44)

where f(R) is any function of curvature tensors. One may assume that the equation

might be written as

Rµν = kTµν , (2.45)

where k is a proportional constant. However, the Eq.(2.45) is not possible, because

the energy momentum tensor satisfies the conservation equation, ∇µT
µν but the

Ricci tensor does not in general. Hence, we have to find other quantities to satisfy

this condition. Fortunately, Bianchi identity (2.39) provides us the conservation

quantity, which can be expressed as

∇λRµνρσ −∇λRνµρσ +∇µRνλρσ −∇µRλνρσ +∇νRλµρσ −∇νRµλρσ = 0, (2.46)

2 [∇λRµνρσ +∇µRνλρσ +∇νRλµρσ] = 0. (2.47)

Contracting with gλρ to the Eq. (2.47), we obtain

0 = 2gλρ [∇λRµνρσ +∇µRνλρσ +∇νRλµρσ] ,

= 2 [∇ρRµνρσ −∇µRνσ +∇νRλµρσ] . (2.48)
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Contracting with gµσ to the Eq.(2.48), we then obtain

0 = 2gµσ [∇ρRµνρσ −∇µRνσ +∇νRλµρσ] ,

= 2 [−∇ρRνρ −∇σRσν +∇νR] ,

= 2 [−2∇ρRνρ +∇νR] ,

= 2[−2∇ρRνρ + gρν∇ρR],

= −4∇ρ(Rνρ −
1

2
gνρR). (2.49)

The terms in a bracket from the Eq.(2.49) is called the Einstein tensor,

Gµν = Rµν −
1

2
gµνR. (2.50)

Therefore, we will see that the Bianchi identity in the Eq.(2.39) is equivalent to,

∇µGµν = 0. (2.51)

Hence, the relationship between gravity and matter/energy can be written as,

Gµν = 8πTµν , (2.52)

where the constant k = 8π, obtained by using the solutions in the Newtonian limit,

see the detail in the appendix A . The Eq.(2.52) is called Einstein’s field equations,

it is very important in GR. It helps us to understand how the gravitational field

responds to matter. Furthermore, this equation has been used to describe the

expansion of the universe, the behavior of black holes, the propagation of the

gravitational wave, etc.
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2.9 The Einstein-Hilbert action

Most theories in physics can be described by the variational principle. Ein-

stein’s field equation is also obtained this way. Hear, we will show the action

corresponding to Einstein’s field equation in the vacuum, and the energy momen-

tum tensor is also obtained by using the variational principle. We begin with the

vacuum case, the action for spacetime curvature part can be written as,

S =

∫
d4x

√
−gL, (2.53)

where L is Lagrangian density and g = det(gµν).

According to GR, the Lagrangian density L must be covariant scalar quan-

tities since there is a general coordinate transformation. By the restriction, one

can write the action as,

SEH =

∫
d4x

√
−gR. (2.54)

This is Einstein-Hilbert action. In fact, this action was firstly constructed by David

Hilbert, using the variational principle in 1915 [70] the same year that GR was

proposed while Einstein himself derived the equations independently. Therefore,

this action was later called The Einstein-Hilbert action.

Using R = gµνRµν , and varying this action with respect to the metric tensor

gµν , we then obtain

δSEH =

∫
d4xδ(

√
−ggµνRµν),

=

∫
d4x
[
(δ
√
−g)gµνRµν +

√
−g(δgµν)Rµν +

√
−ggµν(δRµν)

]
. (2.55)

Using the identity ln(detM) = Tr(lnM), where detM ̸= 0, we can write

ln(g) = Tr(ln gµν), (2.56)
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varying the Eq.(2.56), we then obtain

δ ln(g) = δTr(ln gµν),
1

g
δg = gµνδgµν ,

δg = ggµνδgµν . (2.57)

It is found that,

δ
√
−g = 1

2
√
−g

δ(−g) = − 1

2
√
−g

ggµνδgµν , (2.58)

=
1

2

√
−ggµνδgµν . (2.59)

Varying the inverse metric tensor can be obtained by,

gµρg
νρ = δνµ,⇒ (δgµρ)g

ρν + gµρδg
ρν = 0, (2.60)

δgµν = −gµρgνσδgρσ. (2.61)

Then, the Eq.(2.59) can be written as

δ
√
−g = −1

2

√
−ggµνδgµν . (2.62)

Substituting the Eq.(2.62) to the Eq.(2.55), we obtain

δSEH =

∫
d4x

[
−1

2

√
−ggρσδgρσgµνRµν +

√
−g(δgµν)Rµν +

√
−ggµν(δRµν)

]
,

=

∫
d4x

√
−g
(
Rµν −

1

2
gµνR

)
δgµν +

∫
d4x

√
−ggµν(δRµν). (2.63)

Let’s consider the second term which is proportional to δRµν . The varying for Ricci

tensor can be written as,

δRµν = δRρ
µρν = ∂ρδΓ

ρ
µν − ∂µδΓ

ρ
νρ + δΓρ

ρσΓ
σ
µν + Γρ

ρσδΓ
σ
µν − δΓρ

µσΓ
σ
νρ − Γρ

µσδΓ
σ
νρ,

= ∂ρδΓ
ρ
µν + δΓσ

µνΓ
ρ
ρσ − δΓρ

νσΓ
σ
µρ − δΓρ

µσΓ
σ
νρ

− (∂µδΓ
ρ
νρ + δΓσ

νρΓ
ρ
µσ − δΓρ

ρσΓ
σ
µν − δΓρ

νσΓ
σ
µρ),

= ∇ρ(δΓ
ρ
µν)−∇ν(δΓ

ρ
µρ). (2.64)
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Therefore, the second term in the Eq.(2.63) can be expressed as∫
d4x

√
−ggµν(δRµν) =

∫
d4x

√
−g
(
∇ρ(δ(g

µνΓρ
µν))−∇ν(δ(g

µνΓρ
µρ))

)
. (2.65)

One can see that the Eq.(2.65) is an integration of the total derivative. It is

considered as the boundary term, which can be set to zero to make the variation

vanish at infinity. Hence, the variation of the action in the Eq.(2.63) can be written

as,

δSEH =

∫
d4x

√
−g
(
Rµν −

1

2
gµνR

)
δgµν . (2.66)

The equation of motion can be obtain by solving δSEH = 0, and then we have

Rµν −
1

2
gµνR = 0 → Gµν = 0. (2.67)

This is Einstein’s field equation in the vacuum. Next, we consider Einstein’s field

equation with sources. We thus include the action for matter field into our consid-

eration. Therefore, the action corresponding to the Einstein’s field equation with

matter can be written in the form as,

S = SEH + Sm =

∫
d4x

√
−g
( 1

2k
R + Lm

)
, (2.68)

where Sm and Lm are action and Lagrangian density for matter respectively. Then,

varying this action with respect to the metric tensor gµν , we obtain

δS =

∫
d4x
(√

−g 1

2k
Gµνδg

µν + δLm

)
,

=

∫
d4x

√
−g 1

2k

(
Gµν +

2κ√
−g

δLm

δgµν
)
δgµν . (2.69)

Requiring δS = 0, the Einstein’s field with matter can be written as

Gµν +
2k√
−g

δLm

δgµν
= 0. (2.70)
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Comparing to the Einstein’s field equations in the Eq.(2.52), we then have

Tµν = − 2√
−g

δLm

δgµν
, (2.71)

=
−2√
−g

δ(
√
−gLm)

δgµν
, (2.72)

=
−2√
−g

(√
−g δLm

δgµν
+ Lm

δ
√
−g

δgµν

)
, (2.73)

= −2δLm

δgµν
+ Lmgµν (2.74)

where k = 8π.

In many situations in GR, the source of the gravitational field can be taken

to be the suitable matter which is called the perfect fluid. Generally, the perfect

fluid is defined as a fluid that has no heat transfer and no viscosity. The energy

momentum tensor for the perfect fluid is written as [69],

Tµν = (P + ρ)UµUν + Pgµν , (2.75)

where P , ρ and Uµ are pressure, energy density and four velocity of the fluid

respectively. When the fluid is at the rest, Uµ = (1, 0, 0, 0) so the energy momentum

tensor can be written as,

Tµν =



ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


. (2.76)



CHAPTER III

BLACK HOLE/STRING SOLUTION AND BLACK
HOLE THERMODYNAMICS

3.1 The first look of black hole solution

The Einstein’s field equation is a complicated non-linear differential equa-

tion. It is quite difficult to solve it analytically. However, the first exact solution

for Einstein’s field equation was found by Karl Schwarzschild [71]. From the fact

that the shape of the astronomical object is almost a sphere, it is useful to assume

that the spacetime geometry around the object is spherically symmetric. For more

simplicity, the spacetime is assumed to be static meaning that the components

of the metric tensor, gµν are independent of x0 and the line element, ds2 is in-

variant under timereversal symmetry, x0 → −x0. By imposing two conditions to

Einstein’s field equation one can say that the Schwarzschild solution represents the

static spherically symmetric spacetime surrounding some massive spherical object

without matter or energy. In general, the line element for static and spherical

symmetric spacetime can be expressed as,

ds2 = −A(r)dt2 +B(r)dr2 + C(r)r2dΩ2 (3.1)

where A(r), B(r) and C(r) are arbitrary function of r and dΩ2 = dθ2 + sin2 θdϕ2

is the metric on a unit 2-sphere. Since GR is invariant under general coordinate

transformation, one can transform the line element in the Eq.(3.1) to other types

of coordinate system without losing generality. For convenience, let’s us define the

new radial parameter, r̃ = r
√
C(r). Therefore, the line element in the Eq.(3.1)

can be written in the form of r̃ as

ds2 = −A(r̃)dt2 +B(r̃)dr̃2 + r̃2dΩ2. (3.2)
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Defining new function e2α(r̃) and e2β(r̃) as A(r̃) and B(r̃) respectively and then

removing the tilde, one obtains the line element as

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2. (3.3)

The spherical metric can be written in the form as,

gµν =



−e2α(r) 0 0 0

0 e2β(r) 0 0

0 0 r2 0

0 0 0 r2sin2θ


. (3.4)

The inverse of this metric is obtained by gµρgρν = δµν = I, and then we obtain

gµν =



−e−2α(r) 0 0 0

0 e−2β(r) 0 0

0 0 r−2 0

0 0 0 r−2sin−2θ


. (3.5)

As mentioned, we are interested in spacetime outside of a spherical mass

object. Let us start by considering the Einstein’s field equation for empty space-

time,

Gµν = Rµν −
1

2
gµνR = 0. (3.6)

Contracting with gµν , we obtain

gµνRµν −
1

2
gµνgµνR = 0, (3.7)

R− 1

2
(4)R = 0, (3.8)

→ R = 0. (3.9)

Substituting it to the Eq.(3.6), one obtains

Rµν −
1

2
gµν(0) = 0,

→ Rµν = 0. (3.10)
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Notice that for Rµν = 0 and R = 0, it doesn’t mean that the spacetime is not

curved since the Riemann tensor, Rρ
σµν does not necessarily equal to zero.

Let us label coordinates xµ = (x0, x1, x2, x3) as (t, r, θ, ϕ) for computing

curvature quantities. By requiring the conditions for spherical symmetry, ∂ϕgµν = 0

and static spacetime, ∂0gµν = 0, the non vanishing independent components of the

Christoffel symbol can be written as

Γ0
01 =

1

2
g00(∂0g01 + ∂1g00 − ∂0g01) =

1

2
g00(∂1g00) = α′, (3.11)

Γ1
00 =

1

2
g11(∂0g10 + ∂0g10 − ∂1g00) = −1

2
g11∂1g00 = e2(α−β)α′, (3.12)

Γ1
11 =

1

2
g11(∂1g11 + ∂1g11 − ∂1g11) = −1

2
g11∂1g11 = β′, (3.13)

Γ1
22 =

1

2
g11(∂2g12 + ∂2g12 − ∂1g22) = −1

2
g11∂1g22 = −re−2β, (3.14)

Γ1
33 =

1

2
g11(∂3g13 + ∂3g13 − ∂1g33) = −1

2
g11∂1g33 = −re−2β sin2 θ, (3.15)

Γ2
12 =

1

2
g22(∂1g22 + ∂2g21 − ∂2g12) =

1

2
g22∂1g22 =

1

r
, (3.16)

Γ2
33 =

1

2
g22(∂3g23 + ∂3g23 − ∂2g33) = −1

2
g22∂2g33 = − sin θ cos θ, (3.17)

Γ3
13 =

1

2
g33(∂1g33 + ∂3g31 − ∂3g13) =

1

2
g33∂1g33 =

1

r
, (3.18)

Γ3
23 =

1

2
g33(∂2g33 + ∂3g32 − ∂3g23) =

1

2
g33∂2g33,= cot θ, (3.19)

where prime denotes the derivative with respect to r. By using the results of

Christoffel symbols, the non vanishing independent components of the Ricci tensor
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can be written as

R00 = Rρ
0ρ0 = ∂ρΓ

ρ
00 − ∂0Γ

ρ
ρ0 + Γρ

ρλΓ
λ
00 − Γρ

0λΓ
λ
ρ0,

= ∂1Γ
1
00 + Γ1

11Γ
1
00 + Γ2

21Γ
1
00 + Γ3

31Γ
1
00 − Γ0

01Γ
1
00,

=
e2(α−β)

r

[
rα′′ + rα′2 − rα′β′ + 2α′] (3.20)

R11 = Rρ
1ρ1 = ∂ρΓ

ρ
11 − ∂1Γ

ρ
ρ1 + Γρ

ρλΓ
λ
11 − Γρ

1λΓ
λ
ρ1,

= ∂1Γ
1
11 − ∂1Γ

0
01 − ∂1Γ

1
11 − ∂1Γ

2
21 − ∂1Γ

3
31 + Γ0

01Γ
1
11 + Γ1

11Γ
1
11

+ Γ2
21Γ

1
11 + Γ3

31Γ
1
11 − Γ0

10Γ
0
01 − Γ1

11Γ
1
11 − Γ2

12Γ
2
21 − Γ3

13Γ
3
31,

= −1

r

[
rα′′ + rα′2 − rβ′α′ − 2β′] (3.21)

R22 = Rρ
2ρ2 = ∂ρΓ

ρ
22 − ∂2Γ

ρ
ρ2 + Γρ

ρλΓ
λ
22 − Γρ

2λΓ
λ
ρ2,

= ∂1Γ
1
22 − ∂2Γ

3
32 + Γ0

01Γ
1
22 + Γ1

11Γ
1
22 + Γ3

31Γ
1
22 − Γ2

21Γ
1
22 − Γ3

23Γ
3
32,

= e−2β [r(β′ − α′)− 1] + 1 (3.22)

R33 = sin2 θR22. (3.23)

Each component of Eq.(3.10) leads to three equations as follows

e2(α−β)

r

[
rα′′ + rα′2 − rα′β′ + 2α′] = 0, (3.24)

−1

r

[
rα′′ + rα′2 − rβ′α′ − 2β′] = 0, (3.25)

e−2β [r(β′ − α′)− 1] + 1 = 0. (3.26)

Multiplying Eq.(3.25) by e2(α−β) and then combining with Eq (3.24), we obtain

2(α′ + β′) = 0. (3.27)

As a consequent result in the Eq.(3.27) one find that,

(α + β)′ = 0, → α + β = C, → α = −β + C, (3.28)

where C is an integration constant. The line element from Eq.(3.3) becomes

ds2 = −e−2β+Cdt2 + e2βdr2 + r2dΩ2. (3.29)
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To find the constant C, let us use the fact that the metric is asymptotically

flat. In other words, the spacetime must be approached flat at very far from this

massive object, r → ∞. One can write the line element as

ds2flat = −dt2 + dr2 + r2dΩ2. (3.30)

In this limit we immediately have the condition β(r) = 0 so that the constant C

must be zero. The line element thus becomes

ds2 = −e−2βdt2 + e2βdr2 + r2dΩ2. (3.31)

Next, we will find the expression of β. From Eq.(3.28), we then have

α = −β. (3.32)

Substituting it to Eq.(3.26), we obtain

e−2β [r(β′ − α′)− 1] + 1 = 0,

e−2β [r(2β′)− 1] + 1 = 0,

re−2β2β′(r)− e−2β + 1 = 0,

e−2β − re−2β2β′ = 1,

(re−2β)′ = 1. (3.33)

Integrating this, one obtains

e−2β = 1 +
D

r
, (3.34)

where D is the integration constant. Eventually, we now have the line element in

the form,

ds2 = −
(
1 +

D

r

)
dt2 +

(
1 +

D

r

)−1

dr2 + r2dΩ2. (3.35)

In order to interpret the constant D, we have to use the fact that GR should

be reduced to Newton’s theory of gravity (or weak gravitational) in a limit called

Newtonian limit. We have 3 assumptions as follows
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1. The particle moves slowly with respect to the speed of light.

2. The gravitational field is static (unchanging with time).

3. The gravitational field is weak so it can be considered as a perturbation

of flat space.

Let us consider the trajectory of particle described by the geodesic equation

d2xρ

dλ2
+ Γρ

µν

dxµ

dλ

dxν

dλ
= 0. (3.36)

For the time-like particle, the affine parameter, λ can be used as the proper time

τ . By the first assumption; the particle moving slowly means that,

dxi

dτ
≪ dx0

dτ
. (3.37)

The geodesic equation can be approximated as

0 =
d2xρ

dτ 2
+ Γρ

µν

dxµ

dτ

dxν

dτ
,

=
d2xρ

dτ 2
+ Γρ

00

dx0

dτ

dx0

dτ
+ 2Γρ

0i

dx0

dτ

dxi

dτ
+ Γρ

ij

dxi

dτ

dxj

dτ︸ ︷︷ ︸
can be ignored due to Eq.(3.37)

,

≈ d2xρ

dτ 2
+ Γρ

00

dx0

dτ

dx0

dτ
. (3.38)

For static spacetime, the metric does not change with time ∂0gµν = 0. As a result

the Christoffel symbol Γρ
00 becomes.

Γρ
00 =

1

2
gρσ(∂0gσ0 + ∂0gσ0 − ∂σg00) = −1

2
gρσ∂σg00. (3.39)

By the last assumption; the weakness of gravitational field allows us to decompose

the metric into the flat spacetime plus a small perturbation,

gµν = ηµν + hµν , | hµν |≪ 1, (3.40)

where hµν is the perturbed metric. From the definition of the inverse metric,
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gµρgρν = δµν and consider at first order of h, one find that

δµν = gµρgρν ,

= (ηµρ + δgµρ)(ηρν + hρν),

= ηµρηρν + ηµρhρν + δgµρηρν +�����:≈ 0
δgµρhρν ,

= δµν + (ηµρhρν + δgµρηρν)︸ ︷︷ ︸
=0

. (3.41)

Then, we obtain

δgµρηρν = −ηµρhρν ,

δgµρ = −ηρνηµρhρν = −hµρ. (3.42)

As a result, the inverse metric can be written as

gµν = ηµν − hµν . (3.43)

Substituting gµν and gµν into the Eq.(3.39), one obtains

Γρ
00 = −1

2
(ηρσ − hρσ)∂σ(η00 + h00),

= −1

2

[
ηρσ����*0

∂ση00 + ηρσ∂σh00 − hρσ����*0
∂ση00 −������:≈ 0

hρσ∂σh00

]
,

= −1

2
ηρσ∂σh00. (3.44)

The geodesic equation in Eq.(3.38) for the Newtonian limit is then expressed as

0 =
d2xρ

dτ 2
− 1

2
ηρσ∂σh00

dx0

dτ

dx0

dτ
. (3.45)

Since h00 is static, ∂0h00 = 0 it implies that the zero component the above equation

can be written as,

d2x0

dτ 2
= 0, → d

dτ
(
dx0

dτ
) = 0. (3.46)

This means that dx0/dτ is constant. Using the relation

d

dτ
=
dx0

dτ

d

dx0
, (3.47)
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we therefore obtain

d2xρ

d(x0)2
=

1

2
ηρσ∂σh00. (3.48)

Since h00 does not depend on x0, and the flat spacetime metric is diagonal (the

component ηi0 vanishes), the Eq. (3.48) can be written as

d2xi

d(x0)2
=

1

2
ηij∂jh00 =

1

2
∂ih00. (3.49)

The result in Eq.(3.49) is also written in the familiar form as

a⃗ =
1

2
∇⃗h00. (3.50)

where ∇⃗ denotes the gradient of h00 and a is the acceleration corresponding to the

gravitational force acts on a spherically symmetric mass M in Newton’s theory,

which is obtained by

F⃗ = −Mm

r2
r⃗, → a⃗ = −M

r2
r⃗ = ∂r

(
M

r

)
r̂. (3.51)

By compare the Eq.(3.50) and (3.51), we obtain

h00 =
2M

r
. (3.52)

Hence, we now obtained

g00 = η00 + h00 = −1 +
2M

r
= −

(
1− 2M

r

)
. (3.53)

By comparing this result to the line element in Eq.(3.35), the integration constant

can be written as, D = −2M . Therefore, we now obtain the Schwarzschild solution

as

ds2 = −fdt2 + 1

f
dr2 + r2dΩ2, f ≡ 1− 2M

r
. (3.54)

It is important to note that M is a parameter that has a mass dimension

to make curved spacetime, which can be interpreted as the Newtonian mass at
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r → ∞. Note also that in the limit M → 0 and/or r → ∞, we retrieve the flat

space. The spacetime for the Schwarzschild solution is not well defined at every

point. It is obvious to see that the metric components are infinite at r = 0 and

r = 2M . These points is called singularity. However, the components of a metric

depends on the choice of coordinate. The singularity may disappear if we choose

the other suitable coordinates. In order to find the real singular of spacetime, we

have to find the scalar quantity which is not dependent on the choice of coordinates.

For example, the Kretschmann scalar can be written as

K = RµνρσRµνρσ =
48M2

r6
. (3.55)

One can see that the Kretschmann scalar is diverge at only r = 0. Therefore, the

spacetime for the Schwarzschild solution indeed diverges at r = 0. This point is

called real singularity. It is impossible to eliminate by coordinate transformation

while at r = 2M is a coordinate singularity.

3.2 Event horizon

As we mentioned before, the event horizon is a surface on which even the

light cannot escape. Hence, one can say that the event horizon is a null surface

where its normal vector is a null vector at every point. Consider an arbitrary

surface such that,

Φ(xµ) = constant = 0. (3.56)

The normal vector of this surface can be written as

∂µΦ = nµ. (3.57)

If the normal vector is a null vector, this implies that it is a tangent vector to the

surface. Therefore, the condition of the null surface in which the normal vector is

a null vector can be written as.

nµn
µ = 0. (3.58)
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Let us consider the Schwarzschild case in which Φ = f(r). The condition for null

surface in the Eq.(3.58) can be written as,

gµνnµnν = gµν∂µf∂νf = g11(∂1f)
2 = 0 (3.59)

Therefore, the event horizon for Schwarzschild metric is

g11 = 0 ⇒ 1− 2M

r
= 0 ⇒ r = 2M. (3.60)

The radius at r = 2M is known as the Schwarzschild radius rs. There is a dramatic

thing that happened when we cross inside the event horizon, time and space would

be reversed. The metric signature change form (−,+,+,+) to (+,−,+,+). The

light-cone will be flipped in which x and t exchange at r = rs. Hence, for the

region r < rs, we have to move forward in the direction of decreasing r to r = 0.

The objects with mass enough to collapse to a size smaller than the Schwarzschild

radius will continue to collapse until it becomes a certain point in spacetime with

infinite curvature. The result of this collapse is known as a Schwarzschild black

hole. Anything that enters a black hole must inevitably slam into the singularity

at r = 0. Therefore one can say that there is no particles or even electromagnetic

waves can come out from the black hole. Note also that, an observer outside a

black hole will never be able to perceive what is happening in spacetime within a

black hole since the signals close to the event horizon get infinitely red-shifted.

The concept of null surface can be used to define the Killing horizon, which

is used to resolve the conflict of the definition of surface gravity as we will discuss

in the Sec 3.6.
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3.3 Reissner-Nordström black hole

In this subsection, we will consider spherically symmetric and static space-

time with charge. The Einstein–Hilbert action with the electromagnetic field can

be written as,

S =

∫
d4x

√
−g
(

1

2k
R− 1

4
F µνFµν

)
(3.61)

where Fµν = ∇µAν −∇νAµ is the electromagnetic field strength tensor and Aµ is

component of gauge field. The energy momentum tensor of the charged object can

obtain by

Tµν =
1

4π

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ
)
, (3.62)

where k = 8π. In flat spacetime, components of the field strength tensor can be

written in terms of the electric field E and magnetic field B as

Fµν =



0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


. (3.63)

To obtain the energy momentum tensor satisfying spherical symmetry, the

electric components Eθ, Eϕ and magnetic components Bθ, Bϕ must vanish, and

Er, Br must depend only on r. Therefore, the field strength tensor can be written

the form as

Fµν =



0 −E(r) 0 0

E(r) 0 0 0

0 0 0 −r2 sin θB(r)

0 0 r2 sin θB(r) 0


. (3.64)

The equations of motion can be described by Maxwell’s equation,

∇µF
µν = 0, (3.65)

∇ρFµν +∇µFνρ +∇νFρµ = 0. (3.66)
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Since F µν is antisymmetric tensor, one can write the covariant derivative in the

Eq.(3.65) as,

∇µF
µν = ∂µF

µν + Γµ
µρF

ρν + Γν
µρF

µρ,

= ∂µF
µν +

1√
−g

∂ρ
√
−gF ρν + Γν

µρ

1

2�������:0
(F µρ − F ρµ),

=
1√
−g

∂ρ(
√
−gF ρν) = 0. (3.67)

For the spherical coordinates we have g = −e2(α+β)r4 sin2 θ, substituting g into the

Eq.(3.67), we obtain

1

e(α+β)r2 sin θ∂µ(e
(α+β)r2 sin θF µν) = 0. (3.68)

Considering ν = 0, the above equation becomes

0 =
1

e(α+β)r2 sin θ∂µ(e
(α+β)r2 sin θF µ0),

=
1

e(α+β)r2 sin θ∂1(e
(α+β)r2 sin θF 10),

=
1

e(α+β)r2 sin θ∂1(e
(α+β)r2 sin θg11g00F10),

=
1

e(α+β)r2 sin θ∂r(e
(α+β)r2 sin θ(e−2β)(−e−2α)E),

= − 1

e(α+β)r2
∂r(e

−(α+β)r2E). (3.69)

As a result, we obtain the electric field as

E =
C

e−(α+β)r2
, (3.70)

where C is integration constant. To interpret the constant C, we have to use the

fact that the spacetime must be flat at vary large r when α ≈ β ≈ 0, so that the

function E must reduce to the electric field of a point charge as follows

Er→∞ =
q

r2
, ⇒ C = q, (3.71)

where q is electric charge. Therefore, the function E representing the electric field

of a charged object can be written as

E = q
e(α+β)

r2
. (3.72)
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In order to find B, we have to use the component (ρµν) = (rθϕ) for the Eq.(3.66).

Therefore, we now obtain

∂rFθϕ = −∂r(r2 sin θB) = 0, (3.73)

which implies that

B =
C

r2
, (3.74)

where C is a constant. However, for the large r, the constant C can be interpreted

as the magnetic charge, p. Therefore, the function B representing the magnetic

field of a point magnetic monopole can be written as

B =
p

r2
. (3.75)

Next, computing the non vanishing components of the energy-momentum tensor,

T00 =
1

4π

(
F0ρF

ρ
0 − 1

4
g00FρσF

ρσ
)
,

=
1

4π

(
F0ρg

ρνF0ν −
1

4
g00g

ραgσβFρσFαβ

)
,

=
1

4π

(
F01g

11F01 −
1

4
g00[g

00g11F01F01 + g11g00F10F10 + g22g33F23F23

+ g33g22F32F32]
)
,

=
1

4π

(
F01g

11F01 −
1

4
g002(g

00g11F01F01 + g22g33F23F23)
)
,

=
1

4π

(
e−2βE2 +

1

2
e2α(−e−2(α+β)E2 +

1

r2
1

r2sin2θ
r4sin2θB2)

)
,

=
1

4π

(
e−2βE2 +

1

2
e2α(−e−2(α+β)E2 +B2)

)
,

=
1

8π
e2α
(
e−2(α+β)E2 +B2

)
, (3.76)

T11 =
1

4π

(
F1ρF

ρ
1 − 1

2
g11(−e−2(α+β)E2 +B2)

)
,

=
1

4π

(
F10g

00F10 −
1

2
g11(−e−2(α+β)E2 +B2)

)
,

=
1

4π

(
− e−2αE2 − 1

2
e2β(−e−2(α+β)E2 +B2)

)
,

= − 1

8π
e2β
(
e−2(α+β)E2 +B2

)
, (3.77)
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T22 =
1

4π

(
F23g

33F23 −
1

2
g22(−e−2(α+β)E2 +B2)

)
,

=
1

4π

(
r−2 sin−2 θ(r4 sin2 θB2)− 1

2
r2(−e−2(α+β)E2 +B2)

)
,

=
1

4π

(
r2B2 − 1

2
r2(−e−2(α+β)E2 +B2)

)
, (3.78)

T33 =
1

4π

(
F32g

22F32 −
1

2
g33(−e−2(α+β)E2 +B2)

)
,

=
1

4π

(
r2 sin2 θB2 − 1

2
r2 sin2 θ(−e−2(α+β)E2 +B2)

)
. (3.79)

Therefore,

T 0
0 = g00T00 = − 1

8π

(
e−2(α+β)E2 +B2

)
. (3.80)

T 1
1 = g11T11 = − 1

8π

(
e−2(α+β)E2 +B2

)
. (3.81)

T 2
2 = g22T22 =

1

8π

(
e−2(α+β)E2 +B2

)
. (3.82)

T 3
3 = g33T33 =

1

8π

(
e−2(α+β)E2 +B2

)
. (3.83)

Substituting these results to the Einstein’s field equation in Eq.(2.52), we obtain

−e
−2β

r2

(
e2β + 2rβ′ − 1

)
= −

(
e−2(α+β)E2 +B2

)
, (3.84)

e−2β

r2

(
− e2β + 2rα′ + 1

)
= −

(
e−2(α+β)E2 +B2

)
, (3.85)

e−2β

r

(
α′ − β′ + r(α′′ − α′β′ + α′2)

)
=
(
e−2(α+β)E2 +B2

)
. (3.86)

The Eq.(3.84) - Eq.(3.85), one obtains

α′ + β′ = 0 ⇒ α = −β + C, (3.87)

where C is a integration constant. By using the same fashion as same as in

Schwarzschild case, one can obtain C = 0. From the Eq.(3.84), one can solve
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for β as

e−2β
(
e2β + 2rβ′ − 1

)
= r2

(
e−2(−β+β)E2 +B2

)
,

1 + 2rβ′e−2β − e−2β = r2(E2 +B2),

1− d

dr
(re−2β) =

(q2
r2

+
p2

r2

)
,

d

dr
(re−2β) = 1−

(q2
r2

+
p2

r2

)
,

re−2β = r +
1

r

(
q2 + p2

)
+D,

e−2β = 1 +
1

r2

(
q2 + p2

)
+
D

r
,

e−2β = 1− 2M

r
+
Q2

r2
, (3.88)

where the integration constant D = −2M obtained by using the Newtonian limit

and Q2 = q2 + p2. Therefore, the solution can be expressed as

ds2 = −∆dt2 +∆−1dr2 + r2dΩ2, ∆ ≡
(
1− 2M

r
+
Q2

r2

)
. (3.89)

This is known as the Reissner-Nordström metric, which describes spacetime with

spherical symmetry and charges inside. Note that, in limit Q→ 0, we retrieve the

Schwarzschild solution. From this metric, it can be seen that the singularity occurs

at ∆ = 0 and r = 0. However, from the Kretschmann scalar

K = RµνρσRµνρσ =
12(Mr −Q2)2

r8
+

2Q4

r8
, (3.90)

one can see that the real singularity is occurring only at r = 0 while the singularity

locates at ∆ = 0 is just the coordinate singularity. The two roots of ∆ are given

by

r± =M ±
√
M2 −Q2. (3.91)

The singularity at r = r± will be the location of the event horizon. Moreover, one

can write the the Reissner-Nordström metric in terms of r± as,

ds2 = −fdt2 + f−1dr2 + r2dΩ2, f ≡ (r − r+)(r − r−)

r2
. (3.92)
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However, there are three possible physical interpretations of r± depending

on M and Q as follows;

1. M2 < Q2: In this case, the spacetime has an only real singularity at

r = 0. There is no event horizon for ∆ = 0. The observer outside the black

hole can perceive the information about a singularity. This is a naked singularity.

However, the naked singularity is not considered as reasonable situation in physics

since in this case there is a problem with negative energy and also contradicts the

cosmic censorship conjecture.

2. M2 > Q2: For this case, there are two horizons located at r = r±, where

the horizon at r− and r+ are inner and outer horizon respectively. Therefore, one

can obtain the Reissner-Nordström black hole or charge black hole. The metric

signature of Reissner-Nordström solution are given by

• r > r+: (−,+,+,+)

• r− < r < r+: (+,−,+,+)

• r < r−: (−,+,+,+).

From the metric signatures, one can see that geodesic for the observers inside this

black hole does not necessarily end at r = 0 since the observer are forced to move

in the direction of decreasing r only for r− < r < r+.

3. M2 = Q2: This case is known as the extremal Reissner-Nordström black

hole solution. The event horizon at r− and r+ will be merge as a single horizon at

r = M . The extremal black holes are extremely unstable, when matter falls into

this black hole, the mass of the black hole will be increased to more than its charge,

M2 > Q2, and then becomes to the normal Reissner-Nordström black hole.
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3.4 Kerr black hole

Previously, we have studied the Einstein’s field equation with spherically

symmetric and static spacetime. In this subsection, we will consider the stationary

non zero angular momentum black hole with axial symmetry known as the rotating

black hole. The solution was found by Roy P. Kerr in 1963 [72]. Since the black

hole that we are considering is a rotating object, the Kerr solution is therefore

invariant under the combination of angular and time reversed transformation,

ϕ→ −ϕ, t→ −t. (3.93)

With the Boyer-Lindquist coordinate, the Kerr metric is given by

ds2 =−
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2 + ρ2dθ2+(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2, (3.94)

where

∆ = r2 − 2Mr + a2, ρ2 = (r2 + a2 cos2 θ) (3.95)

and a is the angular momentum per unit mass,

a =
J

M
. (3.96)

In the limit, a→ 0 one can see that ρ→ r and then this gives us the Schwarzschild

solution. The real singularity for this metric can be obtain by evaluating the

Kretschmann scalar,

RµνρσRµνρσ =
6M2

ρ2
[
2r2(r2 − 3a2 cos2 θ)2 − a2 cos2 θ(3r2 − a2 cos2 θ)2

]
. (3.97)

As a result, the Kretschmann scalar is diverge at ρ2 = (r2 + a2 cos2 θ) = 0. There-

fore, the real singularity arise at

r = 0, θ =
π

2
. (3.98)
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In the Boyer-Lindquist coordinate, this corresponds to

z = 0, x2 + y2 = a2. (3.99)

Hence, one can see that the real singularity for Kerr black hole is not a certain

point in spacetime, but the circular ring with radius a. The events horizons are

located at the points at which g11 → ∞, it can be found by,

∆ = r2 − 2Mr + a2 = 0. (3.100)

By solving the above equation, there are two horizon located at

r± =M ±
√
M2 − a2. (3.101)

It is also found that there are three possible physical interpretations of r± similar

to the Reissner-Nordström case.

1. M2 < a2: In this case, there exists the naked singularity.

2. M2 > a2: For this case, we obtain the Kerr black hole. There are exist

the inner and outer horizon two horizons located at at r− and r+ respectively

which play the same role as in Reissner-Nordström case. The metric signature is

(+,−,+,+) for r− < r < r+, and (−,+,+,+) for r > r+ and r < r−.

3. M2 = a2: In this case, we obtain the extreme Kerr black hole.

There is something spacial for the Kerr black hole. To see this, we will

consider the behavior of the stationary limit surfaces. The condition for these

surface can be written as,

g00 = − 1

ρ2
(r2 − 2M + a2 cos2 θ) = 0. (3.102)

Then, we obtain the stationary limit surfaces are located at

r =M ±
√
M2 − a2 cos2 θ. (3.103)

It can be seen that, the smaller root in the Eq.(3.103) is inside the inner horizon,

r−, while the larger root is outside the outer horizon, r+ except at θ = 0, π these
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surfaces coincide with the event horizon. Moreover, the inner surface at θ = π/2

also coincides with the real singularity. The region between the outer horizon and

the larger stationary limit surfaces is known as the ergosphere as illustrated in

Fig.5. The outer boundary of the ergosphere is called the ergosurface as ill. This

region does not exist in both Reissner-Nordström and Schwarzschild case. The

observer or even the light inside the ergosphere will be move in the direction of the

rotation of the black hole. Here is an example of the dragging of inertial frame.

This phenomena provides that the rotation can be made the spacetime curvature.

However, the ergosphere is outside the outer horizon so that the particle in this

region can be escape from this black hole.

Figure 5 Horizon structure around the Kerr Black hole.

We can generalize the Kerr solution to the most general solution by including

the electric charge q and magnetic charge p and replacing 2Mr with 2Mr−(q2+p2).
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As a result, the resulting metric is known as the Kerr-Newman metric, given by

ds2 =−
(
1− 2Mr −Q2

ρ2

)
dt2 − 2(2Mr −Q2)a sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2 + ρ2dθ2+(

r2 + a2 +
(2Mr −Q2)a2 sin2 θ

ρ2

)
sin2 θdϕ2, (3.104)

where Q2 = q2 + p2, ∆ = r2 − (2Mr −Q2) + a2. Note that, this metric reduces to

the Schwarzschild metric for a = 0 and Q = 0, and also reduces to the Reissner-

Nordström metric if a = 0 but Q ̸= 0.

3.5 Schwarzschild de Sitter black hole

Nowadays, there have been several observations that suggest that our uni-

verse is expanding with acceleration. Although we study the universe based on

GR, it may be only valid at the local gravity scale, whereas the large scale GR

cannot be used to describe the accelerating expansion of the universe without in-

troducing an exotic matter. Hence, a modification of GR called modified gravity

theory is another possible way to explain this phenomenon. The familiar one is the

cosmological constant model. The key idea of this model is that the accelerating

expansion of the universe is driven by something called the cosmological constant

Λ, so the black hole solution should involk to the cosmological constant. In this

subsection, we will solve the static and spherical symmetric solution for GR with

cosmological constant. The action for this modified gravity theory can be written

as

S =
1

16π

∫
d4x

√
−g
(
R− 2Λ

)
. (3.105)

This solution was found by Tangherlini [73]. Note that the asymptotic behavior of

spacetime will depend on the sign of cosmological constant, they can be asymptot-

ically flat (Λ = 0), de Sitter (Λ > 0) or Anti-de Sitter (Λ < 0). Then, varying this
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action with respect to the metric tensor gµν , we have

δS =
1

16π

∫
d4x
(
δ(
√
−gR)− 2δ

√
−gΛ

)
,

=
1

16π

∫
d4x
(√

−gGµνδg
µν +

√
−ggµνδgµνΛ

)
,

=
1

16π

∫
d4x

√
−g
(
Gµν + gµνΛ

)
δgµν . (3.106)

The Einstein’s field equation is then obtained as

Gµν = −gµνΛ, (3.107)

→ Gµ
ν = −δµνΛ. (3.108)

Substituting the result in the Eq.(3.108) into Einstein’s field equation, we then

obtained the non vanishing components of the Einstein tensor as,

G0
0 = −e

−2β

r2

(
e2β + 2rβ′ − 1

)
= −Λ, (3.109)

G1
1 =

e−2β

r2

(
− e2β + 2rα′ + 1

)
= −Λ, (3.110)

G2
2 = G3

3 =
e−2β

r

(
α′ − β′ + r(α′′ − α′β′ + α′2)

)
= −Λ. (3.111)

Combining Eq.(3.109) and Eq.(3.110), we obtained

2r(α′ + β′) = 0, ⇒ α = −β. (3.112)

Hence, The line element for this solution becomes

ds2 = −e−2βdt2 + e2βdr2 + r2dΩ2. (3.113)

One can solve the solution for β by using the Eq.(3.109) as follows

−e
−2β

r2

(
e2β + 2rβ′ − 1

)
= −Λ,

1 + 2re−2ββ′ − e−2β = r2Λ (3.114)
d

dr

(
re−2β

)
= 1− r2Λ. (3.115)

Integrating this equation, we obtain

e−2β = 1 +
D

r
− Λ

3
r2. (3.116)
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The integration constant D can be obtained by using the Newtonian limit as D =

−2M . Therefore, we obtain

e−2β = 1− 2M

r
− Λ

3
r2. (3.117)

Substituting back into the line element in Eq.(3.113), we obtain the static and

spherical symmetric solution for GR with the cosmological constant as follow

ds2 = −fdt2 + f−1dr2 + r2dΩ2, f ≡ 1− 2M

r
− Λ

3
r2. (3.118)

Generally, for the asymptotically dS case, there exist two event horizons: the

smaller one is a black hole horizon, rb and the larger one is a cosmic horizon

rc, where the observer is in the middle between the two event horizons.

3.6 Surface gravity

The surface gravity, κ is one of the important properties for the study of

black hole thermodynamics. It is measured in the dimension of acceleration. In

Newtonian theory, the surface gravity on the Earth surface can be written as

κEarth =
M

R2
Earth

, (3.119)

which corresponds to the acceleration of the particle on the Earth’s surface. How-

ever, for the black hole case, one cannot define surface gravity as the acceleration

experienced by a test particle at the surface of the object, because there is no real

surface. Therefore, the surface gravity for the black hole may be defined analo-

gously to the acceleration corresponding to the force acting on the test mass at

the horizon, as measured by the observer at infinity. In order to define the surface

gravity of a simple static black hole with the metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (3.120)

let us consider a 4-velocity of the particle stay at rest,

uµ =
dxµ

dτ
= (

dt

dτ
, 0, 0, 0), (3.121)
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where τ is the proper time of the particle and t is a time of the observer at far

away. By definition, the proper time interval between two events along a timelike

path P is defined as,

dτ =

∫
P

√
−gµνdxµdxν =

∫
P

√
−g00dx0, → dτ = f 1/2dt. (3.122)

Therefore, we now obtain,

uµ = (f−1/2, 0, 0, 0). (3.123)

The 4-acceleration can be defined as

aµ = uν∇νu
µ = ut∇tu

µ. (3.124)

It is found that the non zero component of aµ is determined by

a1 = u0(∂0u
1 + Γ1

00u
0) = f−1Γ1

00 =
1

2
f ′, (3.125)

the proper acceleration can be defined as

a =
√
aµaµ =

√
g11a

1,

= f−1/2f
′

2
. (3.126)

The proper acceleration diverges at the event horizon. However, the surface gravity

corresponds to the acceleration used to hold the particle at the horizon from the

observer at infinity. One could imagine the particle connected to infinity by a very

long massless string. If the observer at infinity moves the string with a very small

distance δl, the amount of work that the observer has received is written as

δW∞ = m0a∞δl, (3.127)

where m0 is considered as a mass of the particle. At the position of the particle

nearby the horizon, the amount of work is

δW (r) = m0a(r)δl. (3.128)
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These amounts of work are different, but we can imagine that the amount of work

at position r can be converted into radiation which is then radiates to the observer

at infinity. In this process, the energy of radiation is factor by √
−g00 due to the

red-shift effect,

δE∞ =
√
−g00m0a(r)δl. (3.129)

By the energy conservation, δE∞ = δW∞, we thus obtain

a∞ = a(r)
√
−g00 =

1

2
f ′. (3.130)

Therefore, the surface gravity can be properly defined by taking a particle at the

horizon as

κ = a∞(rh) =
1

2
f ′(rh). (3.131)

For the general case, we can mathematically define the surface gravity by

the idea that there is a surface in which the normal vector is the Killing vector, a

vector field that preserves the metric tensor. And then, the surface gravity κ can

be defined via

kµκ = −1

2
∇µ(k

νkν), (3.132)

where kµ is the Killing vector. Note that, if the component of the metric is inde-

pendent of one of the coordinates, then the spacetime must automatically have a

Killing vector in a direction independent of that coordinate. For static and spher-

ically symmetric black holes which are represented by the Eq.(3.120) the metric is

independent of time. In other words, there is a time translation invariant. Hence, it

is suitable to use the timelike vector as a Killing vector, kµ(t) = (1, 0, 0, 0). Therefore,

the surface gravity can be written as

kµ(t)κ = −1

2
∂µ(gρνk

ρ
(t)k

ν
(t)),

= −1

2
∂µ(g00k

0k0),

= −1

2
∂µ(g00). (3.133)
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It is obvious to see that g00 is the only function of r, which shows that ∂µ(g00) is

in the direction of r while we expect it to be in the direction of t. This conflict

can be resolved by noting that surface gravity is evaluated at the Killing horizon,

a surface for a suitably chosen Killing vector become normal and null, such as

kµ(t) = (k0, k1, 0, 0) one can see in [67, 74, 75] for more details about Killing horizon

and Killing vector. Therefore, we obtain the condition as,

gµνk
ν
(t)k

µ
(t) = g00(k

0)2 + g11(k
1)2 = 0 (3.134)

and then one obtains,

k1 =

√
−g00
g11

k0 = fk0. (3.135)

We eventually obtain,

g11k
1κ = g11(fk

0)κ = −1

2
∂1(g00),

κ =
1

2
∂r(f(r)) =

|f ′(r)|
2

|r=rh . (3.136)

As a result, one found that the surface gravity for other kinds of black hole in

general relativity as follows;

• Schwarzschild black hole:

κ =
M

r2h
, where rh = 2M. (3.137)

• Reissner-Nordström black hole:

κ =

√
M2 −Q2

r2h
, where rh =M +

√
M2 −Q2. (3.138)

• Schwarzschild de Sitter black hole:
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κ =
M

r2h
− Λ

3
rh,where rh =

2

Λ1/2
cos
(
1

3
cos−1

(
−3MΛ1/2

)
− 2πk

3

)
, (3.139)

with k = 0, 1, 2 for the three distinguished solutions. In order to obtain two hori-

zons, the cosmological constant must lie on the range 0 < Λ ≤ 1/9M2. As a result,

for k = 2, rh is negative, and for k = 1 and k = 0, the solutions can be respectively

approximated as

rh|k=1 ≈ 2M, rh|k=0 ≈
√

3

Λ
−M. (3.140)

It is important to note that, the definition of surface gravity in the Eq.(3.133)

was originally formulated from the component (0, 0) of the line element, hence the

formulation κ = |f ′(r)|
2

|r=rh can be used to calculate the surface gravity in other

static solutions, i.e., the static and cylindrical symmetric black hole solution.

For the Kerr black hole the Killing vector which is normal vector is defined

as the linear combination of the time-translation and rotational Killing vector,

given by

kµ = Kµ
(t) + ΩHK

µ
(ϕ), (3.141)

where ΩH interpret as the angular velocity of the black hole, Kµ
(t) = ∂t = (1, 0, 0, 0)

and Kµ
(ϕ) = ∂ϕ = (0, 0, 0, 1), the surface gravity can be written as,

κ =

√
M2 − a2

r2h + a2
, (3.142)

where rh = M +
√
M2 − a2 and ΩH = a

a2+r2+
. One can extend the surface gravity

to the case of Kerr–Newman black hole as

κ =

√
M2 − a2 −Q2

r2h + a2
, where rh =M +

√
M2 − a2 −Q2. (3.143)
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3.7 Black hole thermodynamics

The study of black hole thermodynamics began in 1971, Stephen Hawking

found that the surface area of the black hole cannot decrease in any physical process

[76]. This means that the area of a resulting black hole from the merging of

two black holes is always greater than the sum of the areas of the original ones.

Therefore, the area law of the black hole can be formulated as

δA ≥ 0. (3.144)

In 1973, Jacob Bekenstein conjectured that the surface area of a black hole can play

the role of its entropy [77]. However, if a black hole carries entropy, the black hole

would have temperature and must emit thermal radiation. Nevertheless, according

to GR, nothing can come out form the black hole. Therefore, the temperature of

a black hole will be equal to zero.

The contradiction of this entropy was fixed by Hawking in 1974 [78]. He

claimed that black holes could be interpret as thermal objects. And if we study

the properties of a black hole by using GR and taking the quantum effect into the

account, black holes can emit thermal radiation (Hawking radiation) corresponding

to a certain temperature (Hawking temperature) given by

TH =
κ

2π
=

|f ′(rh)|
4π

. (3.145)

As a consequent result, the black hole can carries entropy. The entropy of black

hole was defined by the area of the black hole as

SBH =
A

4
, (3.146)

where SBH is Bekenstein–Hawking entropy. According to the area law, one can see

that the entropy of black hole can never decrease in any process,

∆SBH ≥ 0. (3.147)
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From this analogy, one can see that the Eq.(3.147) is similar to the second law

of thermodynamics. Therefore, there is a deep connection between black hole

mechanics and thermodynamics. One can formulate the law of black hole mechanics

equivalently to the law of thermodynamics as follow [79],

• The zeroth law of black hole thermodynamics

In a stationary state of black hole the surface gravity κ is constant over an

event horizon. It is analogous to the zeroth law of thermodynamics, which states

that the temperature is constant for the system in thermal equilibrium.

• The first law of black hole thermodynamics

The 1st is originally coming from the rotating black hole, it provides us how

the energy M (proportional to mass) of the black hole change with its area A,

charge Q, and angular momentum J . The 1st law of black hole thermodynamics

states that the changes in mass, angular momentum, and surface area are related

by [75],

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ, (3.148)

where ΩH and ΦH are angular velocity and electric potential at the horizon respec-

tively. One can see that the expression in Eq.(3.148) is analogous to the first law

of thermodynamics,

dE = TdS − PdV. (3.149)

It is obvious to see that the first term in RHS of Eq.(3.148), κ
8πG

δA can be in-

terpreted as heat term appears in the first law of thermodynamics and the term

ΩHδJ + ΦHδQ corresponds to the work terms of the first law. Moreover, one was

found that the state variables in the 1st law are also satisfied the relation

M = 2TS + 2ΩHJ + 2ΦHQ, (3.150)
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which is known as the Smarr formula. The way to derive the Smarr formula can

be seen in [80].

• The second law of black hole thermodynamics

As previously discussed, the surface area of the black hole cannot decrease

in any physical process,

δA ≥ 0. (3.151)

This law is similar to the second law of thermodynamic, which state that in any

physically allowed process the total entropy of the universe cannot decrease, δS ≥ 0

• The third law of black hole thermodynamics

For the black hole, the third law may be stated that it is impossible to obtain

a black hole with κ = 0. However, it is obvious to see that this law is violated since

κ always be zero for the extreme black hole. In this case, the area of the black hole

does not need to be zero as κ = 0.

We also analyze the local stability of the black hole solutions by studying

its heat capacity,

C =
dM

dT
, (3.152)

it can be seen that the system with locally stable requires a positive heat capacity.

The system with negative heat capacity will radiate thermal energy. Then the

system gets hotter and eventually vanishes.

The global stability can be studied by considering the Gibbs free energy,

G =M − TS. (3.153)

Thermodynamically stable systems prefer the lower free energy, which means that

the system with lower Gibbs free energy at a given temperature prefers to exist
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compared to those with higher free energy. For example, if the free energy of the

system without a black hole is zero, thus black hole can be formed by the condition,

G < 0.

3.8 Separated and Effective System

In the case of Schwarzschild-de Sitter black hole, there generally exist two

horizons; black hole horizon rb and cosmic horizon rc. As a result, there are two

distinct temperatures, given by

T (rb) =
f ′(rb)

4π
and T (rc) = −f

′(rc)

4π
. (3.154)

This suggests that the systems are not in thermal equilibrium. This is one of the

obstructions to investigate thermodynamics of Schwarzschild-de Sitter black hole.

To fix such a problem we can separate our consideration into two approaches as

follows;

1. The thermodynamic system of each horizon can be defined separately

and independently. The systems are treated to be in the quasi-equilibrium state,

in which the timescale of the heat transfer between each system is much longer

than the timescale of the thermodynamics process. Therefore, each system can

be characterized by its thermodynamics behaviour. In order to find the first law

of this system, let us treat the mass parameter M as the homogeneous function

with degree 1/2 as M = M(S, P−1) where S = πr2 is the entropy of the system

and the cosmological constant is interpreted as the pressure of the system given by

Λ = −8πP . By using Euler’s theorem, it is obvious to see that M can be expressed

as

1

2
M = S

∂M

∂S
+ P−1 ∂M

∂P−1
= S

∂M

∂S
− P

∂M

∂P
(3.155)

By using the Smarr formula of the Schwarzschild-de Sitter black hole the mass



53

parameter M can be expressed as

M =
rh
2

(
1− Λ

3
r2h

)
= ±2TS − 2PV. (3.156)

As a result, the temperature and volume can be defined as

T = ±
(
∂M

∂S

)
P

, V =

(
∂M

∂P

)
S

. (3.157)

Therefore, the first law of black hole thermodynamic evaluated at each horizon can

be written as

dM(rb) = T (rb)dS(rb) + V (rb)dP, (3.158)

dM(rc) = −T (rc)dS(rc) + V (rc)dP, (3.159)

where M plays the role of enthalpy of the system. In order to study the thermody-

namical stability of the system, the heat capacity and Gibbs free energy are defined

as,

C(rb,c) =

(
∂M

∂T

)
P

= T (rb,c)

(
∂S(rb,c)

∂T (rb,c)

)
P

, (3.160)

and

G(rb,c) =M(rb,c)− T (rb,c)S(rb,c). (3.161)

2. The systems can be considered as a single system called an effective

system. In this approach, one can think that an observer is located in the region

between a black horizon and a cosmic horizon. Therefore, the thermodynamic

system can be characterized by effective thermodynamics quantities. For this case,

the entropy of the effective system can be written as the sum of entropies of each

system,

S = S(rb) + S(rb). (3.162)

The effective system is satisfied the following first law,

dM = TeffdS + AeffdB, (3.163)
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where Teff is the effective temperature and Aeff is some effective quantity. One can

see that S and B are entropy and another state function, which depends on two

horizons rb and rc,

S = S(rb, rc), B = B(rb, rc). (3.164)

The total derivative of S and B can be written as

dS =

(
∂S

∂rb

)
rc

drb −
(
∂S

∂rc

)
rb

drc. (3.165)

dB =

(
∂B

∂rb

)
rc

drb +

(
∂B

∂rc

)
rb

drc. (3.166)

The minus sign in the second term on the right hand side of the Eq.(3.165) comes

from the idea that we live in the region between the black hole horizon and cosmic

horizon. When we identify the direction of heat flow, one found that it will be an

opposite sign of each other as seen in the heat term from the Eq.(3.158) and (3.159).

The consequent entropy of the system will be increased for the black hole horizon

and will be increased for the cosmic horizon which is in the opposite direction

to the black hole horizon one. One can find the expression of drb by subtracting(
∂B
∂rc

)
rb

Eq.(3.165)+
(

∂S
∂rc

)
rb

Eq.(3.166),

drb =

(
∂B
∂rc

)
rb
dS +

(
∂S
∂rc

)
rb
dB[(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

] . (3.167)

The expression of drc can be obtained by subtracting
(

∂B
∂rb

)
rc

Eq.(3.165)-(
∂S
∂rb

)
rc

Eq.(3.166),

drc = −

(
∂B
∂rb

)
rc
dS +

(
∂S
∂rb

)
rc
dB[(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

] . (3.168)

Since M is also a function of rb and rc, Hence we can write the total derivative of

M as

dM =

(
∂M

∂rb

)
rc

drb +

(
∂M

∂rc

)
rb

drc. (3.169)
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Substituting Eq.(3.167) and Eq.(3.168) into the total derivative of M we then

obtain

dM =

(
∂M
∂rb

)
rc

(
∂B
∂rc

)
rb
dS +

(
∂M
∂rb

)
rc

(
∂S
∂rc

)
rb
dB[(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

]

−

(
∂M
∂rc

)
rb

(
∂B
∂rb

)
rc
dS +

(
∂M
∂rc

)
rb

(
∂S
∂rb

)
rc
dB[(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

] (3.170)

=


(

∂M
∂rb

)
rc

(
∂B
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂B
∂rb

)
rc(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

 dS

+

−

(
∂M
∂rb

)
rc

(
∂S
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂S
∂rb

)
rc(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

 dB, (3.171)

Comparing to Eq.(3.163), we can see

Teff =

(
∂M
∂rb

)
rc

(
∂B
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂B
∂rb

)
rc(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

, (3.172)

Aeff = −

(
∂M
∂rb

)
rc

(
∂S
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂S
∂rb

)
rc(

∂B
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂B
∂rb

)
rc

. (3.173)

For the case of M play role of the enthalpy of system, the first law becomes

dM = TeffdS + VeffdP, (3.174)

The effective temperature are define in terms of rb and rc as

Teff =

(
∂M

∂S

)
P

=

(
∂M
∂rb

)
rc

(
∂P
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂P
∂rb

)
rc(

∂P
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂P
∂rb

)
rc

. (3.175)

It is found that the effective temperature is related to the temperatures at the black

hole and cosmic horizons as follows

Teff =

(
1

T (rb)
+

1

T (rc)

)−1

. (3.176)
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The effective volume of the system can be obtained by

Veff =

(
∂M

∂P

)
S

= −

(
∂M
∂rb

)
rc

(
∂S
∂rc

)
rb
−
(

∂M
∂rc

)
rb

(
∂S
∂rb

)
rc(

∂P
∂rc

)
rb

(
∂S
∂rb

)
rc
+
(

∂S
∂rc

)
rb

(
∂P
∂rb

)
rc

. (3.177)

It is also found that the effective volume related to the volume and temperature

evaluated at the black hole and cosmic horizons can be written as

Veff = Teff

(
V (rb)

T (rb)
+
V (rc)

T (rc)

)
. (3.178)

The heat capacity of the effective system is defined as

C =

(
∂M

∂Teff

)
P

. (3.179)

The Gibbs free energy of the effective system is defined as

G =M − TeffS. (3.180)

The existence of the positive cosmological constant provides the system with

negative heat capacity when the thermodynamic quantities are defined based on

the Gibbs-Boltzmann statistics. This may come from the fact that the black hole is

not an extensive system since its entropy is proportional to its area. By using the

Rényi entropy instead of the Gibbs-Boltzmann one, one found that, it is possible to

have the positive slope for temperature of the system which is directly related to the

positive heat capacity. As a result, the system in our consideration is local stable

in some certain range. The thermodynamics of black hole with the cosmological

constant by using Rényi entropy is also investigated [54, 57].
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3.9 Non-extensive system and Reýi entropy

Since the entropy of black hole is proportional to its area. This suggests

that black hole is not an extensive system. Hence, we can not write the Bekenstein-

Hawking entropy in the extensive entropic forms (i.e. S(X,Y ) = S(X) + S(Y )).

This may be a consequence from the fact that the traditional entropy is scaled by its

volume while the Bekenstein–Hawking entropy is scaled by the area of black hole.

Hence, the thermodynamics behaviors based on the Gibbs-Boltzmann statistics

maybe not be suitable for the case of black hole. For more understand, let’s consider

the Bekenstein–Hawking entropy for the Schwarzschild black hole,

SBH =
4πr2

4
= π(2M)2, (3.181)

M =

√
SBH

4π
, (3.182)

where the mass M is an extensive quantity. Hence, the total mass of the system

can be written as

M12 =M1 +M2 (3.183)

where M1 and M2 are mass of subsystem. Therefore, the total entropy correspond-

ing to this mass can be obtained by

M2
12 =M2

1 + 2M1M2 +M2
2 , (3.184)

SBH12 = SBH1 + 2
√
SBH1SBH2 + SBH2 . (3.185)

From the Eq.(3.185), it can be seen that the Bekenstein–Hawking entropy is the

non-extensive quantity. It is worthwhile to study the entropy for black holes by

using a more general form which can be applied to the non-extensive system. The

Tsallis entropy is one of such non-extensive entropy, defined as

ST =
∑
i

pi lnq

(
1

pi

)
=

1

1− q

(∑
i

pqi − 1

)
, (3.186)



58

where pi is the probability of finding the microstate ith and 0 < q < ∞ is the

non-extensive parameter. Notice that the Tsallis entropy can be reduced to Gibbs-

Boltzmann one (the entropy formula: SGB = −
∑

i pi ln pi) in the limit q → 1,

ST |q→1 =
∑
i

pi ln
(
1

pi

)
= −

∑
i

pi ln pi = SGB. (3.187)

However, as we seen in the Eq.(3.185), the Bekenstein–Hawking entropy also has

the non-additive composition rule. In order to study non-extensive thermodynam-

ics system, we have to relax one of the Shannon-Khinchin axioms of the entropy

function called the strong additivity to a weaker non-additive composition rule.

The general form of the non-additive composition rule of the entropic function can

be expressed as,

S(X,Y ) = S(X) + S(Y ) + λS(X)S(Y ), (3.188)

where λ ∈ R is non-extensive parameter. The composition rule for the Tsallis

entropy from Eq.(3.186) can be written as

ST12 = ST1 + ST2 + (1− q)ST1ST2 . (3.189)

By comparing to the Eq.(3.188), we obtain λ = 1 − q. The applications of the

Tsallis entropy can be seen in [81, 82, 83]. Nevertheless, the Tsallis entropy is

incompatible with the zeroth law of thermodynamics, it is not easy to define the

empirical temperature for any system with non-extensive entropy (with the non-

additive composition rule). To fix such a problem, one can use the formal logarithm

map proposed by Biró and Ván to transform the entropy from the non-additive to

the additive one [49]. We thus obtain the entropy for the non-extensive system

with additive composition rule as,

L(ST ) =
1

1− q
ln [1 + (1− q)ST ] =

1

1− q
ln
(∑

i

pqi

)
, (3.190)

where L(ST ) is the formal logarithms of Tsallis entropy. It is found that this form

of entropy looks similar to the form of the Rényi entropy proposed by Rényi in 1959
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[50]. In other words, the expression in the Eq.(3.190) is indeed the Rényi entropy,

L(ST ) = SR. Notice that, when taking limit q → 1 and using L’hopital’s rule the

Rényi entropy can be reduced to the Gibbs-Boltzmann one,

lim
q→1

1

1− q
ln
(∑

i

pqi

)
= − lim

q→1

d

dq
ln
(∑

i

pqi

)
,

= − lim
q→1

1∑
i p

q
i

∑
i

pqi ln pi,

= −
∑
i

pi ln pi. (3.191)

By assuming that the Bekenstein–Hawking entropy of the black hole is re-

garded as the Tsallis statistics entropy. Therefore, it is possible to write the Rényi

entropy in terms of Bekenstein–Hawking entropy as

SR =
1

λ
ln(1 + λSBH), (3.192)

with λ valid in the range −∞ < λ < 1. Note also that, by taking limit λ → 0

the Rényi entropy can be reduced to the Gibbs-Boltzmann one, this limit is called

Gibbs-Boltzmann limit.
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3.10 Black string solution

In GR, the axial symmetry has two important particular cases, one is spher-

ical symmetry which is also widely investigated. The another is cylindrical sym-

metry. In an astrophysical context, cylindrical symmetry has been applied to the

study of cosmic strings which in the role of conical singularities. However, many

investigations have led us to know that in order to form a black hole, the mass

of an object must be radially compacted into a region whose circumference is in

all directions. This implies that the gravitational collapse of massive stars can-

not form in cylindrical symmetry. This restriction leads to the formulation of the

Hoop conjecture which states that the horizon can be formed if and only if the

mass of an object gets compacted into a region whose circumference is less than its

Schwarzschild circumference, 4πM in every direction. However, the Hoop conjec-

ture was formulated for a spacetime with zero cosmological constants. This suggests

that the Hoop conjecture may be violated in asymptotically dS/AdS spacetime.

Indeed, in 1995 Lemos have been shown that there are charged and rotating

black hole solutions in cylindrical symmetry with AdS spacetime [40, 42]. This

cylindrically static black hole solutions in an anti-de Sitter spacetime are called as

black strings. Subsequently, the pioneering works on the black string are also inves-

tigated [84, 85, 86]. With cylindrical symmetry, the horizons are usually circular,

and then such corresponding object is commonly known as the black string. In this

section, we will show how to obtain the cylindrical symmetry solutions of Einstein’s

field equations with a negative cosmological constant. The Einstein-Hilbert action

with cosmological constant, Λ is given by

S =
1

16π

∫
d4x

√
−g
(
R− 2Λ

)
. (3.193)

Assume that the spacetime is static and cylindrically symmetric, the metric can be
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written as in the from,

ds2 = −A(r)dt̄2 +B(r)dr2 + C(r)r2dΩ2, dΩ2 = dφ̄2 + α2
gdz

2. (3.194)

Therefore, we obtain the solution of Einstein’s field equation with cosmological

constant as,

ds2 = −fdt̄2 + dr2

f
+ r2dφ̄2 + α2

gr
2dz2, f ≡ α2

gr
2 − b

αgr
, (3.195)

−∞ < t̄ <∞, 0 ≤ r <∞, 0 ≤ φ̄ < 2π, −∞ < z <∞.

where r is the radial coordinate, b is the integral constant which is related to the

mass of black string and α2
g ≡ −1

3
Λ > 0. One found that the constant b = 4M by

using Gauss’s law where M is the ADM mass per unit length in z direction. The

Eq.(3.195) is called static black string solution. One can see that this metric are

diverge at αgr = b1/3 and αgr = 0. Since the Kretschmann scalar is given by,

K = RµνρσRµνρσ = 24α4
g

(
1 +

b2

2α6
gr

6

)
, (3.196)

the real singularity is located at αgr = 0. It is important to note that the study of

the thermodynamics of the black string is mostly performed in the asymptotically

AdS spacetime since in dS spacetime the black string has no horizon, then it does

not correspond to the thermodynamic system. However, one found that it is pos-

sible to exist two horizons in the case of dRGT black string with asymptotically

dS spacetime and their thermodynamics also investigated as we will show in the

Chapter 5.



CHAPTER IV

MASSIVE GRAVITY THEORY

Massive gravity is a theory that modifies GR at the large scale by adding

suitable interaction terms interpreted as a graviton mass into the Einstein-Hilbert

action. The field theory for massive graviton was firstly proposed by Fierz and

Pauli in 1993 [1] by adding the interaction terms at the linearized level of GR.

However, it was later found that there was a discontinuity when taking the limit of

massless compared with GR, pointed out by van Dam, Veltman, and Zakharov in

1970 [2][3]. This discontinuity invoked further studies on the non-linear generaliza-

tion of Fierz-Pauli massive gravity. However, in 1972 Boulware and Deser found

that additional mass terms usually generate the ghost instability for gravitational

theorie [4]. Eventually, the theory of massive gravity without ghost instability was

proposed by de Rham, Gabadadze and Tolley (dRGT) in 2010 [5] [6]. We will

dedicate this section to explain the construction of this theory.

4.1 Massless theory

Massive gravity is the theory that corresponds to a massive spin-2 field,

described by a symmetric tensor field hµν . In order to construct the theory with

massive graviton, we should start with the massless one. The Lagrangian density

of the massless spin-2 field should contain only the kinetic terms. Therefore, the

possible contribution of kinetic terms in Lagrangian density should be written as,

Lspin−2
kin = ∂ρhµν [a1∂ρhµν + a2∂(µhν)ρ + a3ηµν∂ρh+ a4ηρ(µ∂ν)h], (4.1)

where the curve brackets in the subscribe indices denote totally symmetric over

the indices and h is the trace of hµν , h = hµν . The constant a1, a2, a3 and a4 are

dimensionless coefficients. The constant will be chosen later to avoid the existence

of the ghost instability, which is represents a degree of freedom with the wrong sign
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of kinetic term. To determine these constants, we split the symmetric tensor field

hµν into a transverse tensor field part h(T )
µν and a longitudinal vector field part h(L)µ

as

hµν = h(T )
µν + 2∂(µh

(L)
ν) , and h = h(T ) + 2∂ρh(L)ρ , (4.2)

where transverse part satisfies ∂µh(T )
µν = 0. After substituting it back to the kinetic

term the Eq.(4.1), we thus see the field equation containing the ghost instability

appear from higher derivative part. It can be written in the form as,

Lhigher−der
kin = (2a1 + a2)h

(L)ν∂2∂2h(L)ν + (2a1 + 3a2 + 4a3 + 4a4)h
(L)ν∂2∂ν∂

ρh(L)ρ

− 2(a2 + a4)h
(T )
µν ∂

µ∂ν∂ρh(L)ρ − 2(2a3 + a4)h
(T )∂2∂ρh(L)ρ , (4.3)

where ∂2 = ∂ν∂
ν = ηµν∂µ∂ν . In order to eliminate higher derivative terms, all

terms in Eq.(4.3) must have vanished. As a result a1, a2, a3 and a4 must satisfy

2a1 = −a2 = −2a3 = a4. (4.4)

Then, the parameter a1 can be set as a1 = −1/8 to follow standard conventions.

Eventually, the Lagrangian density for a massless spin-2 field is written as

Lspin−2
kin = −1

8
∂ρh(T )µν

[
∂ρh

(T )
µν − 2∂(µh

(T )
ν)ρ − ηµν∂ρh

(T ) + 2ηρ(µ∂ν)h
(T )
]
,

=
1

8
h(T )µν

[
∂2h(T )

µν − 2∂ρ∂(µh
(T )
ν)ρ − ηµν∂

2h(T ) + 2∂(µ∂ν)h
(T )
]
,

= −1

4
h(T )µν

(
−1

2

[
∂2h(T )

µν − 2∂ρ∂(µh
(T )
ν)ρ + ∂µ∂νh

(T ) − ηµν∂
2h(T )

])
(4.5)

− 1

4
h(T )µν [−1

2
∂ν∂µh

(T )],

= −1

4
h(T )µν

(
− 1

2

[
∂2h(T )

µν − 2∂ρ∂(µh
(T )
ν)ρ + ∂µ∂νh

(T ) − ηµν∂
2h(T )

]
(4.6)

− 1

2

[
ηµν∂ρ∂σh

(T )ρσ
] )
,

= −1

4
h(T )µν Êρσ

µνh
(T )
ρσ , (4.7)

where Êρσ
µνh

(T )
ρσ = −1

2

[
∂2hµν − 2∂ρ∂(µhν)ρ + ∂µ∂νh+ ηµν(∂ρ∂σh

ρσ − ∂2h)
]

and Êρσ
µν is

the Licherowichz operator. Not only the transverse part h(T )
µν but the whole field of
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hµν also satisfy,

Lspin−2
kin = −1

4
hµν Êρσ

µνhρσ. (4.8)

We also found that the kinetic term is invariant under the linear gauge transfor-

mation,

hµν → hµν + 2∂(µξν) (4.9)

where ξµ is an arbitrary vector field. One can find the equation of motion by

varying the action with respect to hµν ,

δhS =

∫
d4xLspin−2

kin (4.10)

= −1

8

∫
d4x


δhµν [∂2hµν − ∂ρ∂µhνρ − ∂ρ∂νhµρ + ∂µ∂νh+ ηµν(∂ρ∂σh

ρσ − ∂2h)]

+hµν∂
2δhµν − hµν∂ρ∂µδh

νρ − hνµ∂ρ∂νδh
µρ + hµνηρσ∂µ∂νδh

ρσ

+h∂ρ∂σδh
ρσ − hηµν∂

2hδhµν

 ,

= −1

8

∫
d4x

 ∂2hµν − ∂ρ∂µhνρ − ∂ρ∂νhµρ + ∂µ∂νh+ ηµν(∂ρ∂σh
ρσ − ∂2h)

+∂2hµν − ∂ν∂ρh
ρ
µ − ∂µ∂ρh

ρ
µ + ηµν∂

ρ∂σh
ρσ + ∂µ∂νh− ηµν∂

2h

 δhµν ,
= −1

4

∫
d4x

[
∂2hµν − ∂ρ∂µhνρ − ∂ρ∂νhµρ + ∂µ∂νh+ ηµν(∂ρ∂σh

ρσ − ∂2h)
]
δhµν .

(4.11)

As a result, the equation of motion can be expressed as

∂2hµν − ∂ρ∂µhνρ − ∂ρ∂νhµρ + ∂µ∂νh+ ηµν(∂ρ∂σh
ρσ − ∂2h) = 0. (4.12)

However, the gauge symmetry in Eq.(4.9) is no longer exist in the massive theory.

In addition, the massless spin-2 is compatible with the linearization of GR. One

can perturb the metric as,

gµν = ηµν + hµν , |hµν | ≪ ηµν (4.13)

where is hµν a symmetric perturbed metric about Minkowski metric, ηµν . By

keeping only the first order in hµν , the Christoffel symbol, Ricci tensor and, Ricci
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scalar can be written as follows,

Γ(1)ρ
µν =

1

2
ηµν(∂µhνσ + ∂νhµσ − ∂ρhµν) +

1

2
hµν(∂µηνσ + ∂νηµσ − ∂ρηµν) (4.14)

=
1

2
(∂µh

ρ
ν + ∂νh

ρ
µ − ∂ρhµν) (4.15)

R(1)
µν = ∂ρΓ

ρ
µν − ∂µΓ

ρ
ρν , (4.16)

=
1

2
ηρσ(∂ρ∂µhνσ − ∂ρ∂νhµσ − ∂ρ∂σhµν)−

1

2
ηρσ∂µ∂νhρσ, (4.17)

=
1

2
(∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh), (4.18)

R(1) = ηµνR(1)
µν = ∂µ∂νh

µν − ∂2h. (4.19)

The linearized Einstein tensor can be written as,

G(1) = R(1)
µν − 1

2
ηµνR

(1), (4.20)

=
1

2
(∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh)−

1

2
ηµν(∂µ∂νh

µν − ∂2h). (4.21)

Hence, the field equations for the linearized GR in vacuum can be written as

∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh− ηµν(∂µ∂νh

µν − ∂2h) = 0. (4.22)

This is the same form as one in the Eq.(4.12), thus GR is a theory of a

massless spin-2 field. Moreover, the hµν is able to be decomposed as a scalar mode

h00, vector mode h0i and tensor mode hij. After substituting this decomposition to

the linearized Einstein’s field equation in Eq.(4.22), it is found that only the tensor

modes are the propagating degrees of freedom. However, by using the linear gauge

transformation in Eq.(4.9), one found that the tensor mode can be fixed as hii = 0

and ∂ihij = 0. These eliminate one and three degrees of freedom respectively.

Therefore, in the massless theory, there are two propagating degrees of freedom.
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4.2 Linear massive theory

In this section, we will move our consideration to a massive spin-2 field. The

massive theory will consist of the kinetic term and the additional mass term. The

simplest contributions for the mass terms are constructed from quadratic order of

the field hµν such as hµνhµν and h2. As a result, the general form of Lagrangian of

the mass terms can be written as

Lspin−2
mass = m2

g(b1hµνh
µν + b2h

2), (4.23)

where b1 and b2 are dimensionless parameter. mg is a constant interpreted as the

graviton mass. As the same step with the case of massless, we will obtain the

Lagrangian density for massive spin-2 field as

Lspin−2
mass = m2

g


b1

h(T )
µν h(T )µν + 2h

(T )
µν ∂µh(L)ν + 2h

(T )
µν ∂νh(L)µ

+2∂µh(L)ν∂µh
(L)
ν + 2∂µh(L)ν∂νh

(L)
µ


+b2((h

(T )2 + 4h(T )∂ρh
(L)ρ + 4∂ρh

(L)ρ∂σh
(L)σ)

 . (4.24)

From the Eq. (4.24), these mass terms do not contain any higher derivative terms

for a tensor field, h(T )
µν and a vector field, h(L)µ . However, there are more degrees

of freedom hiding in the vector field h
(L)
µ . To see these modes, we thus choose to

decompose longitudinal part as

h(L)µ = l⊥µ + ∂µl
∥, (4.25)

where l⊥µ and l∥ are vector mode and scalar mode respectively. The vector mode sat-

isfies ∂µl⊥µ = 0. Then, applying this decomposition to the mass term in Eq.(4.24).

As a result, we obtain the higher order derivative for the longitudinal part as

L(L)highter−der
mass = m2

g[b1(2∂
µh(L)ν∂µh

(L)
ν + 2∂µh(L)ν∂νh

(L)
µ ) + b2(4∂ρh

(L)ρ∂σh
(L)σ)],

= m2
g(b1 + b2)l

∥∂2∂2l∥. (4.26)

To eliminate higher order derivative term, the condition must be satisfy

b1 = −b2. (4.27)
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We also set b1 = −1/8 to obtain the standard convention. Finally, this mass term

can be written as

Lspin−2
mass = −1

8
m2

g(h
2
µν − h2). (4.28)

The mass terms were proposed by Fierz and Pauli (FP) in 1939 called Fierz-

Pauli (FP) mass term. These mass terms break diffeomorphism invariant (gauge

symmetry),

L′spin−2
mass = −1

8
m2

g(h
′2
µν − h′2),

= −1

8
m2

g

(
(hµν + 2∂(µξν))(h

µν + 2∂(µξν))− (h+ 2∂ρξ
ρ(h+ 2∂σξ

σ)
)
,

= Lspin−2
mass − 1

4
m2

g (2hµν∂
µξν + ∂µξν∂

µξν + ∂µξν∂
νξµ − 2h∂ρξ

ρ − 2∂ρξ
ρ∂σξ

σ) ,

̸= Lspin−2
mass . (4.29)

However, there is a procedure to restore the gauge symmetry to the theory which

is called the Stückelberg trick as we will discuss in the next section. Therefore, one

can write the Lagrangian density for FP massive theory as

LFP = −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g(h
2
µν − h2). (4.30)

We can count the number of propagating degrees of freedom for the FP

massive theory by examining the constraint of the equation of motion of this mas-

sive theory which is obtained by varying the FP action with respect to hµν . As a

result, we obtain

∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh+ ηµν(∂

2h− ∂ρ∂σh
ρσ) +m2

g(hµν − ηµνh) = 0.

(4.31)

Operating with ∂µ, one obtains ∂ρ∂
2hρν + ∂µ∂ρ∂νh

ρ
µ − ∂µ∂2hµν − ∂2∂νh

+∂ν∂
2h− ∂ν∂ρ∂σh

ρσ +m2
g(∂

µhµν − ∂νh)

 = 0,

m2
g(∂

µhµν − ∂νh) = 0. (4.32)
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As a result, we have

∂µhµν = ∂νh. (4.33)

Substituting the Eq.(4.33) into the field equation Eq.(4.31), we obtain

∂µ∂νh− ∂2hµν +m2
g(hµν − ηµνh) = 0. (4.34)

Taking trace of above equation, we then obtain h = 0. From the (4.33), we also get

∂µhµν = 0. Substituting constraints h = 0 and ∂µhµν = 0 to (4.34), one obtains,

(∂2 −m2
g)hµν = 0. (4.35)

One can see that hµν in four dimensions contains ten independent components

with five constraints, four from ∂µhµν = 0 and one from h = 0. Therefore, in four

dimensions, the FP massive theory contain propagating five degrees of freedom.

4.3 Stückelberg trick

One of the differences between massless and massive theories is the exis-

tence of linear gauge symmetry. In order to construct the massive theory which

is invariant under the gauge transformation, one can use the Stückelberg trick to

restore the gauge symmetry to the massive theories [87]. To make the mass term

invariant, we start with full Lagrangian density for the FP theory with the matter,

L = −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g(h
2
µν − h2) +

1

2MPl

hµνT
µν , (4.36)

where a coefficient 1/2MPl is the constant corresponding to Newton’s gravitational

force and the source term corresponds to the coupling between the spin-2 field hµν

and the matter field T µν . For the Stückelberg trick, one can introduce Stückelberg

field χµ which transforms to preserve under gauge invariant Replacing hµν by hµν+

2∂(µχν), then substituting these quantities into Eq.(4.36), the Lagrangian density
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becomes

L = −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g

[
(hµν + 2∂(µχν))

2 − (h+ 2∂ρχ
ρ)2
]

+
1

2
MPl(hµν + 2∂(µχν))T

µν ,

= −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g

[
(hµν − h2) + 2(∂µχν∂

µχν − (∂ρχ
ρ)2)

+ 4(hµν∂
µχν − h∂ρχ

ρ)
]
+

1

2
MPl(hµνT

µν − 2χµ∂νT
µν),

= −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g

[
(hµν − h2) + FµνFµν + 4(hµν∂

µχν − h∂ρχ
ρ)
]

+
1

2
MPl(hµνT

µν − 2χµ∂νT
µν), (4.37)

where Fµν = ∂µχν −∂νχµ is taken in the same form as Maxwell stress tensor. Note

that the matter is general matter, it is not necessary to be conserved. In order to

obtain a canonical form of Maxwell’s kinetic term, the Stückelberg field would be

rescaled as χµ ⇒ χµ/mg. Therefore, a result is expressed as

L =− 1

4
hµν Êρσ

µνhρσ −
1

8
m2

g(h
2
µν − h2)− 1

8
FµνFµν − 1

2
mg(hµν∂

µχν − h∂ρχ
ρ)

+
1

2MPl

(
hµνT

µν − 2

mg

χµ∂νT
µν
)
. (4.38)

It is found that the above Lagrangian density is invariant under the gauge trans-

formations hµν → hµν + 2∂(µξν) and χµ → χµ − ξν .

In the massless limit of the FP massive theory the total number of the

propagating degrees of freedom is four, two for tensor hµν and two for vector χµ

meaning that there is a jump in the number of propagating degrees of freedom.

To fix it, we have to introduce a Stückelberg scalar field π which transforms as

π → π− θ where θ is an arbitrary scalar field. By replacing χµ with χµ + ∂µπ, the

Lagrangian density becomes,

L = −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g(h
2
µν − h2)− 1

8
FµνFµν − 1

2
mg(hµν∂

µχν − h∂ρχ
ρ)

− 1

2
(hµν∂

µ∂νπ − h∂2π) +
1

2MPl

(hµνT
µν − 2χµ∂νT

µν + 2π∂µ∂νT
µν). (4.39)

Note that, we also rescale as π ⇒ π/mg to obtain the above Lagrangian density.

However, we also found that when taking limit mg → 0 the Stückelberg field will
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be coupled to the divergence of matter. The problem has arisen if we consider the

non conserved matter. It is useful for moving our attention to the conserved matter

∂µT
µν = 0. Therefore, the Lagrangian density can be written as,

L = −1

4
hµν Êρσ

µνhρσ −
1

8
m2

g(h
2
µν − h2)− 1

8
FµνFµν − 1

2
mg(hµν∂

µχν − h∂ρχ
ρ)

− 1

2
(hµν∂

µ∂νπ − h∂2π) +
1

2MPl

hµνT
µν . (4.40)

In order to discuss about the number of propagating degree of freedom, we

will consider the Lagrangian density in the other suitable frame with,

hµν = h′µν + πηµν , χµ = χ′
µ, π = π′. (4.41)

Therefore, the Lagrangian density for the Eq.(4.40) at the massless limit can be

written as

Lmg→0 = −1

4
(h′µν + π′ηµν)Êρσ

µν (h
′
ρσ + π′ηρσ)−

1

8
F ′

µνF ′µν

− 1

2
[(h′µν + π′ηµν)∂

µ∂νπ′ − (h′ + 4π′)∂2π′] +
1

2MPl

(h′µν + π′ηµν)T
µν ,

= −1

4
h′µν Êρσ

µνh
′
ρσ −

1

8
F ′

µνF ′µν +
3

4
π′∂2π′ +

1

2MPl

h′µνT
µν +

1

2MPl

π′T.

(4.42)

It is found that this Lagrangian density explicitly propagates two for tensor, two

for vector and one for scalar degrees of freedom. The total number of degrees of

freedom is five. Nevertheless, one can see that the scalar mode is coupled with the

matter in the last term in the Eq.(4.42). The problem emerges because this feature

does not exists in massless theory. This indicates that the FP massive theory may

not be a good enough theory.
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4.4 van Dam-Veltman-Zakharov discontinuity

In the previous section, we have already constructed the gauge invariant for

FP massive theory and eliminated the problem of the unsmoothness of the degree of

freedom at the massless limit. However, there are many aspects about discontinuity

at the massless limit. As we know that the massless theory (linearized GR) is nice

with observable predictions in the solar system scale, thus massive theory at the

massless limit could not contradict this fact. But, the predictions of FP massive

theory do not uniformly reduce to linearized GR in the limit mg → 0, such as the

bending of light for massive theory at the massless limit is 3/4 times of the result in

massless one. In other words, the gravity in the FP massive theory is weaker than

the massless one by 3/4 where taking mg → 0. The failure of the FP linear massive

theory at the massless limit was pointed out by van Dam, Veltman, and Zakharov in

1970 called van Dam-Veltman-Zakharov (vDVZ) discontinuity. However, in 1972,

Vainshtein found a mechanism in which the non-linear terms have to be added to

solve the vDVZ discontinuity and later known as the Vainshtein mechanism [88, 89].

The non-linear terms can suppress the effect of scalar mode in massless limits at

the shot distance.

4.5 Non-linear massive theory

As we have know that the kinetic term of the linear massive theory is the

linearization of GR, so that it should be promoted to non-linear contribution as

Lspin−2,linear
kin = −1

4
hµν Êρσ

µνhρσ → Lnon−linear
kin, =

M2
Pl

2
R[g]. (4.43)

The non-linear version is invariant under the general coordinate transformation,

xµν → yµν ,

gµν(x) →
∂yρ

∂xµ
∂yρ

∂xν
gρσ(y(x)). (4.44)

In order to construct the mass term for this non-linear massive theory, we have
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to introduce the other metric additional to the physical metric gµν . Because when

dealing with the matrix gµν any contributions are constants, there are not different

from the cosmological constant. Therefore, the massive theory requires the new

reference metric in which different form gµν . However, one loses the interpretation of

the massive spin-2 field, but still obtains a consistent theory. In our consideration,

we choose to introduce the non dynamical reference metric, fµν (or often known as

the fiducial metric),

fµν = gµν −
Hµν

MPl

, (4.45)

where Hµν plays the role the perturbed field similar to one in linear case. However,

the fiducial metric fµν does not transform as a tensor under a general coordinate

transformation. As a result, the mass terms breaks the gauge symmetry. One can

restore the symmetry for fµν by introduce the Stückelberg scalar field ψµ̄ which

transforms as ψµ̄(x) → ψµ̄(y(x)), and then promoting the fiducial metric, fµν to a

tensor f̂µν as,

fµν ⇒ f̂µν = ∂µψ
ρ̄∂νψ

σ̄fρ̄σ̄, (4.46)

where the bar index runs over four dimensional spacetime but does not depend

on the unbar index. By setting ψµ̄ = xµ̄, one simply obtains fµν = f̂µν . It is the

unitary gauge. As we can see in the Eq.(4.46) f̂µν transforms as a tensor under

general coordinate transformation and each of ψµ̄ transform as the scalar field.

Then, the extension of non-linear FP mass term is promoted to be

Lnon−linear
FP,mass = −1

2
m2

g(HµνH
µν −H2),

= −1

2
m2

gM
2
Pl([(I− X)2]− [I− X]2), (4.47)

where I is the identity matrix and Xµ
ν is a new tensor quantity, defined by Xµ

ν =

gµρfρν . Note that, we can written Hµν in terms of X as

Hµ
ν =MPl(δ

µ
ν − gµρfρν) =MPl(δ

µ
ν − Xµ

ν ). (4.48)
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We have already construct the non-linear mass terms which is invariant under

general coordinate transformation. Therefore, the action for the non-linear FP

massive gravity theory can be written as

Snon−linear
FP =

∫
d4x

√
−gM

2
Pl

2

[
R +m2

g

(
[I− X]2 − [(I− X)2]

)]
(4.49)

However, this non-linear theory still has a problem due to the higher derivative

terms which generate the ghost known as the Boulware-Deser (BD) ghost.

4.6 Boulware-Deser (BD) ghost

To see the appearance of ghost terms at the non-linear level, we will use the

Stückelberg trick by expands the Stückelberg scalar as,

ψµ̄ = xµ̄ − 1

MPl

φµ̄. (4.50)

where xµ̄ and φµ̄ are the coordinates and infinitesimal scalar field respectively.

Therefore, the reference metric can be written as,

fµν = ∂µ(x
ρ̄ − 1

MPl

φρ̄)∂ν(x
σ̄ − 1

MPl

φσ̄)fρ̄σ̄, (4.51)

By considering on the flat reference metric fρ̄σ̄ = ηρ̄σ̄, we obtain,

fµν = ∂µ(x
ρ̄ − 1

MPl

φρ̄)∂ν(x
σ̄ − 1

MPl

φσ̄)ηρ̄σ̄,

= ηρ̄σ̄(∂µx
ρ̄∂νx

σ̄ − ∂µx
ρ̄∂νφ

σ̄

MPl

− ∂νx
σ̄∂µφ

ρ̄

MPl

+
1

M2
Pl

∂µφ
ρ̄∂νφ

σ̄),

= ηµν −
2

MPl

∂(µφν) +
1

M2
Pl

∂µφ
ρ̄∂νφ

σ̄ηρ̄σ̄. (4.52)

Therefore, the fluctuations about flat spacetime, hµν can be written as

hµν = gµν − fµν −
2

MPl

∂(µφν) +
1

M2
Pl

∂µφ
ρ̄∂νφ

σ̄ηρ̄σ̄. (4.53)

Hence, in this case, we can write the tensor Hµν in terms of hµν as

Hµν =MPl(gµν − fµν),

= hµν + 2∂(µφν) −
1

MPl

ηρσ∂µφ
ρ∂νφρ. (4.54)
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Then, splitting the field φµ into the transverse mode χµ and longitudinal mode π,

we obtain

φµ =
1

mg

χµ +
1

m2
g

∂µπ. (4.55)

Substituting the above equation into the Eq.(4.54), we therefore obtain

Hµν = hµν +
2

mg

∂(µχν) +
2

m2
g

∂µ∂νπ − 1

MPlm2
g

∂µχ
ρ∂νχρ −

1

MPlm3
g

∂µ∂
ρπ∂νχρ

− 1

MPlm3
g

∂µχ
ρ∂ν∂ρπ − 1

MPlm4
g

∂µ∂
ρπ∂ν∂ρπ. (4.56)

To see the higher derivative terms, we will ignore tensor and vector mode and only

focus on the scalar mode π . Therefore, the tensor X can be expressed as,

Xµ
ν,π = δµν − 2

MPlm2
g

∂µ∂νπ +
1

M2
Plm

4
g

∂µ∂ρπ∂
ρ∂νπ. (4.57)

Substituting the above equation to the mass term in Eq.(4.47) and then the FP

mass term will reads,

Lnon−linear
FP,mass,π = − 2

m2
g

([Π2]− [Π]2) +
2

MPlm4
g

([Π3]− [Π][Π2]) +
2

M2
Plm

6
g

([Π4]− [Π2]2),

(4.58)

where Πµ
ν ≡ ∂µ∂νπ. After integration by parts, the first term [Π2] − [Π]2 is just

a boundary term. The second and third provide higher derivative terms in the

equation of motion of π which contain a ghost stability called BD ghost. Not only

the massive theory with the mass term in Eq.(4.47) contain the BD ghost, but the

theory with various mass terms is also proven that there exists this ghost degree

of freedom. This non-linear massive theory is unpopular to study. Until 2010, de

Rham, Gabadadze and Tolley succeed to construct the appropriate form of the

non-linear mass terms which eliminates BD ghost.
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4.7 dRGT massive gravity theory

The general form of the non-linear massive gravity theory without ghost

instability is the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory [5, 6].

The action for dRGT Massive gravity is given by

SdRGT =

∫
d4x

√
−gM

2
Pl

2

[
R +m2

gU(g, f)
]
, (4.59)

where U is a potential term characterizing the behavior of the mass term. The

suitable form of potential, U is given by

U = U2 + α3U3 + α4U4, (4.60)

where α3 and α4 are free parameters of the theory. The potential U2,U3 and U4

can be written as follows,

U2 = [K]2 − [K2], (4.61)

U3 = [K]3 − 3[K][K2] + 2[K3], (4.62)

U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4], (4.63)

where

Kµ
ν = δµν −

√
gµρfρν = δµν −Mµ

ν . (4.64)

The rectangular brackets denote the trace of metric Kµ
µ ,

[Kn] = (Kn)µµ and (Kn)µν = Kµ
ρ2
Kρ2

ρ3
...K

ρ(n−1)
ρn Kρn

ν for n ≥ 2. (4.65)

The above potential is indeed a suitable form in which the ghost instability is

eliminated. It is noticed that this ghost-free theory is not constructed only from

the physical metric gµν but also the reference or fiducial metric fµν . The fiducial

metric fµν is non-dynamical field. Therefore, the field equations obtained by the

varying the action with respect to fµν is just the constraints. In other words, fµν

plays a role of the Lagrange multiplier in order to construct the suitable form of
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the mass terms. To see that there is no ghost appears in dRGT massive gravity,

we will consider,

Xµ
ν = gµρfρν = (

√
gµαfαρ)(

√
gρβfβν) (4.66)

= (δµρ −Kµ
ρ )(δ

ρ
ν −Kρ

ν ) (4.67)

= δµν − 2Kµ
ν +Kµ

ρK
ρ
ν (4.68)

By comparing to the Eq.(4.57), one found thatKµ
ν is proportional to Πµ

ν . Therefore,

one can see that the combination in the Eq.(4.60) is consistent with no ghost

instability. It is useful to construct the mass term in which the scalar mode being

the total derivative L(2)
der = [Π2]− [Π]2 as in the Galileon theory [90]. The equation

of motion of the theory can be obtained by varying the action in Eq.(4.59) with

respect to dynamical metric gµν . It can be read as,

Gµν +m2
gXµν = 0, (4.69)

where Gµν is the Einstein tensor and Xµν is the effective energy-momentum ten-

sor associated with a part from varying the potential term, which can be written

explicitly form as

Xµν = Kµν − [K]gµν − α

[
K2

µν − [K]Kµν +
[K]2 − [K2]

2
gµν

]
+ 3β

[
K3

µν − [K]K2
µν +

1

2
Kµν

(
[K]2 − [K2]

)
− 1

6
gµν
(
[K]3 − 3[K][K2] + 2[K3]

)]
.

(4.70)

Here, the free parameters α3 and α4 are redefined in convenient form as

α3 =
α− 1

3
, α4 =

β

4
+

1− α

12
. (4.71)

According to the Bianchi identity, one also has the constraint for the effective

energy-momentum tensor Xµν as

∇µXµν = 0, (4.72)
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where ∇µ denotes the covariant derivative associated with the metric gµν . Note

that these constraints can also be derived from varying the action with respect to

the fiducial metric.

4.8 Decoupling limit

As we mention before the Vainshtein mechanism is used to screen the effect

of the coupling between scalar mode and the matter at a short distance. Hence,

there is a specific distance from the source in which the non-linear effect is required

which is called the Vainshtein radius, rV . The linear version of the massive gravity

theory is valid in the region r ≫ rV while the non-linear effect become important

at r ≪ rV . Note that, for distances less than the Vainshtein radius, the non-linear

massive gravity can be reduced to GR. However, the non-linear massive theory

is an effective field theory, valid only in the classical regime. For the quantum

regime, we need to use the other quantum theory. This means that the Vainshtein

mechanism is no longer valid at the very short distance scale. To simplify, we will

consider the static and spherical symmetric source, the Vainshtein radius can be

defined by

rv =
1

Λλ

(
Msource

MPl

)1/λ

. (4.73)

where the Λλ is the cutoff scale for non-linear theories. One found that at the scale

below Λλ, the scalar mode will be strongly coupled to the other fields again which is

called the strong coupling scale. This breaks our attention about the classical scale

and move to consider the other scale in the quantum theory. To find the strong

coupling scale, one can consider the potential term includes generic interactions

between the tensor mode hµν , vector mode χµ and scalar mode π. The general

form of the interaction can be written as

Lint = m2
gM

2
Pl(h)

nh(∂χ)nχ(∂2π)nπ , (4.74)

where nh, nχ and nπ are the power of h, ∂χ and ∂2π respectively which are existed
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because of the decomposition of Hµν . Then we normalize these fields as

h′µν =MPlhµν , χ′ = mgMPlχµ, π′ = m2
gMPlπ. (4.75)

The interaction becomes,

Lint = m2
gM

2
Pl

(
h′

MPl

)nh
(

∂χ′

mgMPl

)nχ
(

∂2π′

m2
gMPl

)nπ

,

=M
2−nh−nχ−nπ

Pl m2−nχ−nπ
g (h′)nh(∂χ′)nχ(∂2π′)nπ ,

=

(
M

2−nh−nχ−nπ
4−nh−2nχ−3nπ

Pl m
2−nχ−nπ

4−nh−2nχ−3nπ
g

)4−nh−2nχ−3nπ

(h′)nh(∂χ′)nχ(∂2π′)nπ ,

=

(MPlm
4−nh−2nχ−3nπ
2−nh−nχ−nπ

−1

g

) 2−nh−nχ−nπ
4−nh−2nχ−3nπ

4−nh−2nχ−3nπ

(h′)nh(∂χ′)nχ(∂2π′)nπ ,

=
[(
MPlm

λ−1
g

) 1
λ

]4−nh−2nχ−3nπ

(h′)nh(∂χ′)nχ(∂2π′)nπ ,

= Λ
4−nh−2nχ−3nπ

λ (h′)nh(∂χ′)nχ(∂2π′)nπ , (4.76)

where the cutoff scale is

Λλ =
(
MPlm

λ−1
g

) 1
λ , λ =

4− nh − 2nχ − 3nπ

2− nh − nχ − nπ

. (4.77)

Since, we consider in the interaction terms not normal mass terms, therefore nh +

nχ + nπ > 2. The lowest interaction scale for the arbitrary non-linear massive

gravity theory besides the dRGT massive gravity is in the case of nh = 0, nχ = 0

and nπ = 3,

Λλ = Λ5 = (MPlm
4
g)

1/5. (4.78)

This is the cutoff for such non-linear theories. One can see that in the limit mg →

0, MPl → ∞ and Λ5 is fixed, the only interaction from the scalar mode exists

for this scale while the other interactions will disappear. However, the Λ5 does

not exist in dRGT massive gravity because the specific form of U can make the

interaction disappear. It is found the next scale is the Λ4 which are in the case of

nh = 0, nχ = 0, nπ = 4 and nh = 0, nχ = 1, nπ = 2. The interaction in the first
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case is also eliminate by U , while for the second case, the Lagrangian density can

be written in the form of the total derivative which is boundary terms. It is found

that the cutoff for dRGT massive gravity is,

Λ3 = (MPlm
2
g)

1/3, (4.79)

see more detail in [89]. One can see that the dRGT massive gravity theory can be

use to explain the nature at the scale between the Vainshtein radius and the Λ3

scale. For a scale larger than Vainshtein radius, the linear FP massive theory is

viable. However, the massive theory is useless at the scale smaller than Λ3.



CHAPTER V

THERMODYNAMICS OF BLACK STRING FROM
RÉNYI ENTROPY IN DE RHAM-GABADAZE-TOLLEY

MASSIVE GRAVITY THEORY

The black string is a result from cylindrically symmetric solution of Einstein

field equation with cosmological constant analogous to the black hole which is a

result from spherically symmetric solution. With respect to the cylindrical symme-

try, an event horizon is a cylindrical shell of radius r analogous to the Schwarzschild

radius of the black hole. It is found that the thermodynamic properties of the black

string can be investigated in the same fashion as in the black hole case. For exam-

ple, the entropy of the black string is proportional to its area or the temperature

can be obtained via the surface gravity at the horizon as T = |κ|
2π

= |f ′(r)|
4π

and then

the equivalent laws of thermodynamics are in the same form.

In this chapter, the thermodynamic properties of black string from Rényi

entropy in dRGT massive gravity theory are investigated. This is one of the black

string solutions, which is significantly different from that one obtained in GR with

the cosmological constant. We are also interested in the dS branch of the solu-

tion. As a result, the black string with multiple horizons yields the thermodynamic

systems with different temperatures, which corresponds to non-equilibrium ther-

modynamic states. Therefore, in order to study the thermodynamics of the black

string, we separate our consideration into two approaches; separated system ap-

proach and effective system approach. For the separated case, the thermodynamic

systems can be investigated separately by assuming that the systems are separated

far enough and the temperatures of the systems do not significantly differ. For the

effective case, we can treat the systems as a single system described by the effective

thermodynamic quantities.
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5.1 dRGT black string solution

In this section, we are interested in one of the cylindrically symmetric so-

lutions in dRGT massive gravity theory. The line element corresponding to cylin-

drical system can be written as,

ds2 = −n(r)dt2 + 2d(r)dtdr +
dr2

f(r)
+ L(r)2dΩ2, (5.1)

−∞ < t <∞, 0 ≤ r <∞, 0 ≤ φ < 2π, −∞ < z <∞, (5.2)

where dΩ2 = dφ2+α2
gdz

2 is a metric on 2-D surface and αg is a constant in the unit

of mass. The solution can be classified into two branches: d(r) = 0 or L(r) = l0r,

where l0 is a constant which can be written in terms of the parameters α and β

[43] as

l0 =

(
α + 3β ±

√
α2 − 3β

)
2α + 3β + 1

. (5.3)

For this present work, it is convenient to investigate in the branch d(r) = 0. The

line element for this branch can be written as

ds2 = −n(r)dt2 + dr2

f(r)
+ L(r)2dΩ2. (5.4)

Let us choose the fiducial metric in the form of

fµν = diag
(
0, 0, h(r)2, h(r)2α2

g

)
, (5.5)

where the h(r) plays the role of the radial function similar to the radial coordinate

r. By using the metric form in the Eq.(5.4), the non vanishing components of the
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Christoffel symbol can be written as

Γ0
01 =

1

2
g00(∂0g01 + ∂1g00 − ∂0g01) =

1

2
g00(∂1g00),

=
1

2
(−n)−1∂r(−n) =

1

2
n−1n′, (5.6)

Γ1
00 =

1

2
g11(∂0g10 + ∂0g10 − ∂1g00) = −1

2
g11∂1g00,

= −1

2
(f)∂r(n) =

1

2
fn′ (5.7)

Γ1
11 =

1

2
g11(∂1g11 + ∂1g11 − ∂1g11) = −1

2
g11∂1g11,

= −1

2
f−1f ′, (5.8)

Γ1
22 =

1

2
g11(∂2g12 + ∂2g12 − ∂1g22) = −1

2
g11∂1g22,

= −fLL′, (5.9)

Γ1
33 =

1

2
g11(∂3g13 + ∂3g13 − ∂1g33)

′ = −1

2
g11∂1g33,

= −fLL′α2
g, (5.10)

Γ2
12 =

1

2
g22(∂1g22 + ∂2g21 − ∂2g12) =

1

2
g22∂1g22,

= L−1L′, (5.11)

Γ3
13 =

1

2
g33(∂1g33 + ∂3g31) =

1

2
g33∂1g33,

= L−1L′, (5.12)

where prime denotes the derivative with respect to r. Then, the non vanishing

components of the Ricci tensor become,

R00 =
f ′n′

4
+
fL′n′

L
− f(n′)2

4n
+
fn′′

2
, (5.13)

R11 = −f
′L′

fL
− f ′n′

4fn
+

(n′)2

4n2
− 2L′′

L
− n′′

2n
, (5.14)

R22 = −Lf
′L′

2
− f(L′)2 − fLL′n′

2n
− fLL′′, (5.15)

R33 = α2
gR22, (5.16)



83

and then, one obtains,

R0
0 = g00R00 = (−n)−1

(
f ′n′

4
+
fL′n′

L
− f(n′)2

4n
+
fn′′

2

)
(5.17)

R1
1 = g11R11 = f

(
−f

′L′

fL
− f ′n′

4fn
+

(n′)2

4n2
− 2L′′

L
− n′′

2n

)
(5.18)

R2
2 = R3

3 = g22R22 = L−2

(
−Lf

′L′

2
− f(L′)2 − fLL′n′

2n
− fLL′′

)
. (5.19)

Therefore, the Ricci scalar can be written as

R = R0
0 +R1

1 +R2
2 +R3

3,

= −

Lnf ′(4nL′ + Ln′) + f
[
4n2(L′)2 + 4LnL′n′

+L(−L(n′)2 + 8n2L′′ + 2Lnn′′)
]


2L2n2

. (5.20)

The components of the Einstein tensor become,

G0
0 =

(LfL′ + f((L′)2 + 2LL′′))

L2
, (5.21)

G1
1 =

fL′(nL′ + Ln′)

L2n
, (5.22)

G2
2 = G3

3 =
(nf ′(2nL′ + Ln′) + f(2nL′n′ − L(n′)2 + 4n2L′′ + 2Lnn′′))

L4n2
. (5.23)

For computing the effective energy-momentum tensor expressed in the Eq.(4.70),

we must be firstly find the quantities Kµ
ν , [K], [K2] and [K3]. Let us start with,

K0
0 = K1

1 = 1, (5.24)

K2
2 = K3

3 = 1− h

L
. (5.25)

And then, (K2)µν and (K3)µν can be written as,

(K2)00 = (K2)11 = 1, (5.26)

(K2)22 = (K2)33 = (1− h

L
)2, (5.27)

(K3)00 = (K3)11 = 1 (5.28)

(K3)22 = (K3)33 = (1− h

L
)3. (5.29)
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Next, we will find the trace for K,

[K] = K0
0 +K1

1 +K2
2 +K3

3 ,

= 2 +

(
1− h

L

)
+

(
1− αfh

αgL

)
, (5.30)

[K2] = (K2)00 + (K2)11 + (K2)22 + (K2)33,

= 2 + 2

(
1− h

L

)2

, (5.31)

[K3] = (K3)00 + (K3)11 + (K3)22 + (K3)33,

= 2 + 2

(
1− h

L

)3

. (5.32)

Eventually, The component of effective tensor expressed in the Eq.(4.70) can be

written as follows,

X0
0 =

−1

L2

h[3β(h− L)− L] + L[−(1 + 3β)h+ 3(1 + β)L]

+α[h(h− 2L) + L(−2h+ 3L)]

 , (5.33)

X1
1 =

−1

L2

h[3β(h− L)− L] + L[−(1 + 3β)h+ 3(1 + β)L]

+α[h(h− 2L) + L(−2h+ 3L)]

 , (5.34)

X2
2 = X3

3 = −3(1 + α + β) +
(1 + 2α + 3β)h

L
. (5.35)

By substituting the component Einstein tensor and effective energy momen-

tum tensor into the Eq.(4.69), and then using the equations for (0, 0) and (1, 1)

components, we have

(G0
0 +m2

gX
0
0 )− (G1

1 +m2
gX

1
1 ) = 0, (5.36)

(LfL′ + f((L′)2 + 2LL′′))

L2
− fL′(nL′ + Ln′)

L2n
= 0, (5.37)

1

Ln
(nf ′L′ + 2nfL′′ − fL′n′) = 0, (5.38)

n

l

d

dr

(
fL′

n

)
= = 0. (5.39)

In order to obtain the black string solution with f(r) = n(r), the function

L(r) must be proportional to r. Hence, we can set L(r) = r for the following
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investigation. We now have only two independent functions, f(r) and h(r). One

can use the two independent equations to find these two functions such that the

conservation of the energy momentum tensor in Eq.(4.72) and the (0, 0) component

of the modified Einstein equation in Eq.(4.69).

By the conservation of the energy momentum tensor, one obtains

∇µX
µ
ν = 0, (5.40)

∂µX
µ
ν + Γµ

ρµX
ρ
µ − Γρ

µνX
µ
ρ = 0, (5.41)

h′ (2r(1 + 2α + 3β)− 2h(α + 3β))

r2
= 0. (5.42)

Then, two exact solutions of h(r) are given by

h(r) =
r(1 + 2α + 3β)

(α + 3β)
, (5.43)

h(r) = h0 = constant. (5.44)

The (0, 0) component of the modified Einstein equation can be written in

the form as

G0
0 = −m2

gX
0
0 , (5.45)

(rf ′ + f)

r2
= −m2

g

2h−3r
r

+ α
(

h(2r−h)
r2

− 3r−2h
r

)
+β
(

3h(r−h)
r2

− 3(r−h)
r

)
 . (5.46)

Substituting the solutions of h(r) from Eq.(5.43) and Eq.(5.44) to the above equa-

tion, we thus have the two solutions for the horizon function as follows

f1(r) =

(
−
m2

g(1 + α + α2 − 3β)

3(α + 3β)

)
r2 − b

r
, (5.47)

f2(r) = −(m2
g(1 + α + β))r2 − b

r
+m2

gh0(1 + 2α + 3β)r +m2
gh

2
0(α + 3β), (5.48)

where b is an integration constant. The Eq.(5.47) coincides with the Lemos black

string in GR with a cosmological constant Λ. It is already widely investigated.

Hence, we will consider only the solution in the Eq.(5.48). For Convenient, one can
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rewrite the Eq. (5.48) as

f2(r) = F(r) = −4M

r
−m2

g

(
r2 − c1r − c0

)
, (5.49)

where M = MADM/αg and MADM is the Arnowitt-Deser-Misner mass per unit

length of the z-coordinate. It is important to emphasize that the mass parameter

M is actually in the unit of length since G is assigned to be the natural unit

for this consideration. The parameters c1 and c0 are expressed in terms of the

aforementioned parameters as follows,

c1 ≡ −h
(
1 + 2α + 3β

1 + α + β

)
, c0 ≡ h2

(
α + 3β

1 + α + β

)
. (5.50)

5.2 Horizon structure

The horizons of the black string can be defined in the same way as found

in the black hole case by solving F(r) = 0. As a result, the number of possible

solutions depends on the sign of m2
g. For m2

g > 0 the solution becomes the asymp-

totic dS branch which exists in two horizons, while m2
g < 0 the solution becomes

the asymptotic AdS branch which exists in three horizons. In this work, we will

investigate the structure of the horizons by restricting our attention to the asymp-

totically dS solution. In the limit c0 = c1 = 0 and mg = αg, the dRGT black string

solution reduces to the Lemos’ black string solution,

F(r) = −4M

r
− α2

gr
2. (5.51)

For this case, one found that it is not possible to obtain the horizons because

F(r) is always negative. This means that the effects of c0 and c1 are significantly

required for the existence of the horizons. Therefore, the structure of graviton mass

is necessarily important. For convenience, we rewrite the function F(r) in terms

of dimensionless quantities by redefining parameters as follows

r = xrV , c1 = 3× 22/3b1rV , c0 = 3× 22/3b0r
2
V , rV =

(
M

m2
g

)1/3

. (5.52)
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Here, rV is a Vainshtien radius at which the graviton mass plays a major part of

the gravitational interaction for the radius being much larger than the Vainshtien

radius r ≫ rV , while it is suppressed at the scale below the Vainshtien radius

r ≪ rV . As a result, the horizon function can be rewritten as

f(x) =
rV
M

F(r) = −4

x
− x2 +

(
3× 22/3b1

)
x+

(
3× 22/3b0

)
. (5.53)

The extremum can be found by solving f ′(x) = 0, then we obtain

3× 22/3b1 −
4

x2
+ 2x = 0. (5.54)

Therefore, we obtain the extremum as

x0 =
1

21/3

(
b1 +

b21
B1

+B1

)
, (5.55)

where

B1 =

(
2 + b31 + 2

√
1 + b31

)1/3

. (5.56)

Substituting the extremum value to the Eq. (5.53), so the value of the function

f(x) at extremum is written as

f(x0) =
6

21/3
b0 −

1

22/3

(
b1 +

b21
B1

+B1

)2

+
6b1
22/3

(
b1 +

b21
B1

+B1

)
− 4× 21/3(

b1 +
b21
B1

+B1

) .
(5.57)

One can see that, the parameter b0 (or c0) does not influence the extremum of

f(x). In order to obtain the condition for existence of the horizons, one requires

that f(x0) ≥ 0. As a result, we then find the relation between b0 and b1 to satisfy

this condition as follows

b0 ≥

(
b1 +

b21
B1

+B1

)3
− 6b1

(
b1 +

b21
B1

+B1

)2
+ 8

6× 21/3
(
b1 +

b21
B1

+B1

) . (5.58)

The region for which there exist horizons can be illustrated in Fig. 6. It is obviously

to see that it is not possible to have horizon at the origin (b1, b0) = (0, 0). Therefore,
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there is no horizon for usual black string as we have found. It is more convenient

for us to consider the case b1 ∼ 0, since we can analyze the possibility of finding a

deviation from the Lemos’ black string. For this case, one has a condition on b0 as

b0 & 1− 21/3b1.
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Figure 6 The region of the existence of the horizons in (b1, b0) space,

where the shaded area corresponds to a horizon region.
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Figure 7 The left and right panels show the behaviors of the function

f(x) for various values of b0 (with fixing b1 = 0) and b1 (with fixing b0 = 0),

respectively.
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5.3 Separated thermodynamic systems

In this section , we will investigate the thermodynamic properties of the

dRGT black string by considering the thermodynamic system of each horizon de-

fined separately. The black string mass M in terms of horizon radius can be found

by solving F(r) = 0, and then it can be expressed as

M(r) = −r
4
m2

g(r
2 − c1r − c0). (5.59)

The Hawking temperature of the dRGT black string can be written in terms of the

horizons as

Tb,c = ±
m2

g(c0 + 2c1rb,c − 3r2b,c)

4πrb,c
. (5.60)

In our consideration, we restrict on the dS branch of the solution, there are exist

only two horizons: the smaller one denotes by black string horizon, rb and the larger

one denotes by the cosmic horizon, rc. Note that, the quantity with subscript ‘‘b”

(or ‘‘c”) is the quantity defined for the system of black string horizon (or cosmic

horizon) . The plus and minus signs in Eq. (5.60) denote the temperatures for black

string horizon and cosmic horizon respectively. As a result, the dRGT black string

corresponds to two thermodynamic systems with different temperatures. Note also

that both temperatures are positive for the whole viable range of parameters.

The entropy of the black string can be defined by using the area law as same

as in the black hole case. As a result, the entropy known as the Bekenstein-Hawking

entropy can be written as

SBH =
πr2

2
, (5.61)

where SBH = A/(4αg) and A = 2πr× αgr is the area of the cylinder shell per unit

length of the z-coordinate. Hence, the above entropy SBH is actually in the unit

of the square of length. In order to further study the thermodynamics of the black

string with more general form of the first law, let us consider the Smarr formula of
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the black string by treating the mass parameter M in Eq. (5.59) as a homogeneous

function of all parameters in the theory. As a result, we found that M can be

written as the homogeneous function with degree 1/2 as M =M(SBH ,m
−2
g , c21, c0).

By using Euler’s theorem, the black string mass can be written as

1

2
M = SBH

∂M

∂SBH

+m−2
g

∂M

∂m−2
g

+ c21
∂M

∂c21
+ c0

∂M

∂c0
. (5.62)

We choose to define the thermodynamic pressure proportional to m2
g given by

P =
3

8π
m2

g. (5.63)

The conjugate variables of SBH , P, c1 and c0 can be respectively computed

as follows:

T = ± ∂M

∂SBH

= Tb,c, (5.64)

V =
∂M

∂P
=

2πr3h
3

(
−1 +

c1
rh

+
c0
r2h

)
, (5.65)

Φ1 =
∂M

∂c1
=

2

3
πPr2h, (5.66)

Φ0 =
∂M

∂c0
=

2

3
πPrh. (5.67)

Therefore, the Smarr formula can be rewritten as

M = ±2TSBH − 2PV + Φ1c1 + 2Φ0c0. (5.68)

It is important to note that the temperature defined in Eq. (5.64) is exactly

the same with one defined via the surface gravity in Eq. (5.60). Moreover, the

thermodynamic volume in Eq. (5.65) is already absorbed αg in the same fashion

as M and S in the Eqs. (5.59) and (5.61), respectively. Therefore, its unit is the

cubic of the length not the volume per unit length in z-coordinate. Interestingly,

it is possible to obtain the positive thermodynamic volume and pressure for the

solution in the dRGT massive gravity while, in the solution in GR with cosmological

constant, either volume or pressure should be negative as follows:

PGR = ± 3

8π
m2

g, VGR = ∓2πr3h
3

. (5.69)



91

Here, all parameters are chosen to have only positive values. Therefore, the struc-

ture of the graviton mass can be treated as corrections to the thermodynamic

volume. As a result, the first law of thermodynamics corresponding to the dRGT

black string can be written as

dM = ±TdSBH + V dP + Φ1dc1 + Φ0dc0. (5.70)

However, as we have seen, the black string entropy is proportional to the

surface area of the black string’s horizons, instead of its volume. Therefore, the

black string entropy is not an extensive variable. In this context, it is worthwhile

to investigate the thermodynamic system by using the non-extensive entropy. In

this work, we will use the Rényi entropy which can be written in terms of the

Bekenstein-Hawking entropy as,

SR =
1

λ
ln(1 + λSBH). (5.71)

In our work, we focus on the thermodynamic system by fixing c1 and c0.

Therefore, the first laws of the thermodynamic system evaluated at the black string

horizon and cosmic horizon can be written respectively as

dM = TR(b)dSR(b) + VbdP, dM = −TR(c)dSR(c) + VcdP. (5.72)

It is obvious to see that the thermodynamic volumes Vb,c are not correspond to the

non-extensivity effect, since both M and P are independent of the non-extensive

parameter λ. As a result, the Rényi temperature for both systems can be written

as

TR(b) =

(
∂M

∂SR(b)

)
P

=
m2

g(c0 + 2c1rb − 3r2b )

4πrb

(
1 + λ

πr2b
2

)
= Tb

(
1 + λ

πr2b
2

)
(5.73)

TR(c) = −
(

∂M

∂SR(c)

)
P

=
−m2

g(c0 + 2c1rc − 3r2c )

4πrc

(
1 + λ

πr2c
2

)
= Tc

(
1 + λ

πr2c
2

)
.

(5.74)
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Conveniently, let us write temperatures in terms of dimensionless variables

as follows

T̄R(b) =
r2V

3× 22/3M
TR(b) =

(
b0 + 2b1x− 2−2/3x2

)
(1 + x2δ)

4πx
, (5.75)

T̄R(c) =
r2V

3× 22/3M
TR(c) =

−
(
b0 + 2b1y − 2−2/3y2

)
(1 + y2δ)

4πy
, (5.76)

where

rb = xrV , rc = yrV , λ = δ
2

πr2V
. (5.77)

Note that both temperatures in Eq.(5.75) and Eq.(5.76) are positive for the range

0 < rb < rc or 0 < x < 22/3
(
b1 +

√
b21 +

b0
22/3

)
and 22/3

(
b1 +

√
b21 +

b0
22/3

)
< y <

1
21/3

(
3b1 +

√
6× 21/3b0 + 9b21

)
. For the extremal black string, the parameters x

and y are equal to x = y = 22/3
(
b1 +

√
b21 +

b0
22/3

)
. For the case of dS solution in

which m2
g > 0 and b1 = b0 = 0, the slope of the temperature is always negative. It

implies that system is locally unstable. However, in the case of dRGT with Rényi

entropy, it is possible to find the extrema of the temperature. This means that

it is possible to have the positive value of slope of the temperature. To find the

extremum of T̄R(b), one can solve a condition,

dT̄R(b)

dx
= 8b1xδ + b0

(
− 2

x2
+ 2δ

)
− 21/3(1 + 3x2δ) = 0. (5.78)

Note that the explicit expression of the extrema points of T̄R(b) is very lengthy and

difficult to analyze. Therefore, we choose to find the extrema points of T̄R(b) by

approximating b1 ∼ 0 to make it easier to analyze. As a result, the solution can be

written as

xex± =
25/3

3
b1 (1±∆)± b0

b1∆

[
1 +

3

2

δ

δc
(1±∆)

]
, (5.79)

∆ =

√
1− δc

δ
, δc =

3

8× 21/3b21
. (5.80)

To obtain a real positive value of xex, we need δ > δc. Therefore, the dRGT black

string will be locally stable if δ > δc = 3/(8× 21/3b21) as shown explicitly in the left



93

panel in Fig. 8. Note that, in the GB limit, there are no extrema for temperature.

The temperature profile for varying b1 is illustrated in the right panel in Fig. 8. As

δ=1

δ=0.8

δ=δc

δ=0
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Figure 8 Left panel shows the temperature profile at black string horizon

with various values of δ by fixing b0 = 0.1, b1 = 0.7. Right panel shows the

temperature profile at black string horizon with various values of b1 by

fixing b0 = 0.1, δ = 1.

seen in Eq. (5.80), the bound in δ depends only on the parameter b1. Therefore,

it is possible to express the bound in b1 as b1c =
√

3/(8× 21/3δc). Obviously,

the bound in b1 is indeed the lower bound implied from the parameter b1c being

inversely proportional to the non-extensive parameter δc.

For the thermodynamic system evaluated at the cosmic horizon, the slope

of temperature is always positive for the range 22/3
(
b1 +

√
b21 +

b0
22/3

)
< y <

1
21/3

(
3b1 +

√
6× 21/3b0 + 9b21

)
. It is possible to find the extrema of T̄R(c) by solv-

ing dT̄R(c)

dy
= 0. However, these points are out of the range y in our consideration.

This implies that there are no extrema for temperature evaluated at cosmic horizon.

Therefore, the thermodynamic system evaluated at the cosmic horizon is always lo-

cally stable since T̄R(c) and dT̄R(c)

dy
are always positive. The behavior of temperature

at cosmic horizon is shown in the left panel in Fig. 9.

Next, let us discuss on the thermodynamic volumes Vb,c. Their dimensionless
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Figure 9 Left panel shows the temperature profile at cosmic horizon

with various values of δ by fixing b0 = 0.1, b1 = 0.7 . Right panel shows

the temperature profile at cosmic horizon with various values of b1 by

fixing b0 = 0.1, δ = 1 .

expressions can be written as

V̄b =
1

πr3V
Vb =

2

3
x3
(
−1 + 3× 22/3

b1
x

+ 3× 22/3
b0
x2

)
, (5.81)

V̄c =
1

πr3V
Vc =

2

3
y3
(
−1 + 3× 22/3

b1
y
+ 3× 22/3

b0
y2

)
. (5.82)

One can see that these volumes can be negative if the horizon radii are large enough.

Therefore, it is possible to tune the values of b0 and b1 in which both Vb and Vc are

positive within the rang with positive temperature as illustrated in Fig. 10.

The existence of local minimum temperature is provided locally stable-

unstable phase transitions. This behavior can be obtained by analyzing the slope

of the temperature, which is proportional to the heat capacity. Note that, in our

consideration, the slope of the temperature directly infers the sign of the heat ca-

pacity. The positiveness of the heat capacity can be determined from the positive

slope of the temperature. For the locally thermodynamic stability, the system is

required to have positive heat capacity. As M playing the role of enthalpy, the
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Figure 10 The volume profile evaluated at black string horizon (left) and

cosmic horizon (right) with fixing b0 = 0.1, b1 = 0.7.

heat capacity for the system with fixing pressure can be written as

CR(b,c) = ±
( ∂M

∂TR(b,c)

)
P
, (5.83)

C̄R(b) =
x2(b0 + 2b1x− 2−2/3x2)

22/3b0 (δx2 − 1)− x2 (−4× 22/3b1δx+ 3δx2 + 1)
, (5.84)

C̄R(c) =
y2(b0 + 2b1y − 2−2/3y2)

22/3b0 (δy2 − 1)− y2 (−4× 22/3b1δy + 3δy2 + 1)
. (5.85)

The behaviors of heat capacity are shown in Fig. 11. One can see that at the black

string horizon, there are three ranges of x in which C̄R(b) is positive for the middle

part and the others are negative. Moreover, one found that C̄R(b) changes the sign

at extremum points of temperature. As a result, the moderate-sized black string

is locally stable while the smaller and larger ones are locally unstable. In other

words, there are three possible states of black string. The small black string with

higher temperature will radiate thermal energy then it will eventually evaporate

away, while the other with the lower temperature will evolve to the moderate-sized

black string which lies on the ranges of positive C̄R(b). The large black string with

higher temperature will evaporate as losing its mass through thermal radiation and

then becomes to moderate-sized eventually. Therefore, the moderated-sized black

string state is more stable than the other states. Note that, in the GB limit, it is

not possible to have a positive value of the heat capacity as shown in the black line
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in the right panel in Fig. 11.

For the heat capacity evaluated at the cosmic horizon, there are no divergent

points for C̄R(c), since there are no extrema of T̄R(c) for the range of y in our

consideration. Therefore, there is no phase transition for the system evaluated at

rc. Moreover, one finds that the heat capacity of this system is always positive.

This is also compatible with the slope of the temperature that we have analyzed.
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Figure 11 Left panel shows the heat capacity profile at black string

horizon with various values of δ by fixing b0 = 0.1, b1 = 0.7. Right panel

shows the heat capacity profile at black string horizon with various values

of δ by fixing b0 = 0.1, b1 = 0.7.

We have already analyzed the local stability of the black string by consider-

ing the behavior of the heat capacity. Now, we will investigate the global stability

by considering the Gibbs free energy. The Gibbs free energy can be expressed as

GR(b,c) =M − TR(b,c)SR(b,c). (5.86)

The dimensionless version of the Gibbs free energy for black string and cosmic
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horizon can be respectively written as

ḠR(b) =
GR(b)

2−4/3M
= x

(
3b0 + x(3b1 −

x2

22/3
)

)
− 3(b0 + 2b1x− 2−2/3x2)(1 + x2δ) ln(1 + x2δ)

2xδ
, (5.87)

ḠR(c) =
GR(c)

2−4/3M
= y

(
3b0 + x(3b1 −

y2

22/3
)

)
+

3(b0 + 2b1y − 2−2/3y2)(1 + y2δ) ln(1 + y2δ)

2yδ
. (5.88)

The system with lower Gibbs free energy at a given temperature prefers to exist

compared to those with higher free energy. This state is called being globally

stable. For example, if the free energy of the system without black string is zero,

thus black string can be formed by the condition G < 0. The behavior of Gibbs free

energy against the temperature is shown in the left panel in Fig. 12. Notice that

the entropy of black string is always positive so that slope of the graph GR − TR

is always negative, since
(

∂GR(b,c)

∂TR(b,c)

)
P
= −SR(b,c). This implies that if entropy keeps

increasing, the slope will be more negative. Form the left panel Fig. 12, one

can see that there exist two cusps corresponding to two extremum point in the

temperature profile denoted by xex±. However, the slopes of the Gibbs free energy

at these points are still continuous. These points also correspond to the locally

stable-unstable phase transitions, since
(

∂2GR(b)

∂T 2
R(b)

)
P
∝ CR(b), where the heat capacity

diverges and changes the sign at these points. This is also shown explicitly in the

right panel in Fig. 12. The local maximum/minimum of the Gibbs free energy is

at the same point with the minimum/maximum of the temperature. We can see

that, for the range from x = 0 to x = xex−, the Gibbs free energy increases as

temperature decreases, while the Gibbs free energy decreases as the temperature

increases for the range from x = xex− to x = xex+, and lastly the Gibbs free energy

will increases with temperature decreasing again for the range from x = xex+ to

x = 22/3
(
b1 +

√
b21 +

b0
22/3

)
. According to this result, it is possible to obtain the

globally stable black string with the dimensionless horizon radius between x = xex−
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to x = xex+, since there is a part with negative free energy at a given temperature.
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Figure 12 Left panel shows the Gibbs free energy against the tempera-

ture at black string horizon with various values of δ by fixing b0 = 0.1,

b1 = 0.7. Right panel shows the Gibbs free energy and the temperature

with respect to x by fixing b0 = 0.1, b1 = 0.8 and δ = 1.

Moreover, from the left panel in Fig. 12, we can see that there exists a

critical value of δ such that it is not possible to obtain negative Gibbs free en-

ergy. Therefore, the lower bound for δ can be found by requiring the condition

ḠR(b)|xex+ < 0. This value will be denoted by δG. In principle, one can find the

expression of δG in terms of parameters b0 and b1, since xex+ depends on b0, b1 and

δ. However, the expression is very lengthy and it is not suitable to show explicitly.

In order to obtain the analytical expression of δG, we use numerical method evalu-

ating point by point to show that the bound δG slightly depends on the parameter

b0 as shown in the left panel in Fig. 13. From this figure, one can see that the

approximated value of the bound is still trustable for b0 ≪ 1. Therefore, one can

use the approximation b0 ∼ 0 in order to find the analytic expression of δG. By

substituting xex+ from Eq. (5.79) to ḠR(b) in Eq. (5.87) and then using approxi-

mation b0 ≪ 1 and ∆ ∼ 0 (the approximated free energy denotes as ḠR(app)), the
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bound can be expressed as

δG =
9

8

[
e

{
7
6
+PL

(
− 7

6e7/6

)}
− 1

]
21/3b21

+
b0
2b41

= 3

[
e

{
7
6
+PL

(
− 7

6e7/6

)}
− 1

]
δc +

b0
2b41

, (5.89)

where PL(z) is the ProductLog function. This function returns the value of x by

solving z = xex. From the right panel in Fig. 13, one can see that the bound from

the above expression is very closed and slightly greater than to the numerical result.

From this figure, one also see that it is in the same shape with δc but stronger than

δc.
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Figure 13 Left panel shows the comparison of δG obtained from ḠR(b)

in full equation and approximation by fixing b1 = 1. Right panel shows

the comparison of δG obtained in full expression and approximation by

fixing b0 = 0.1. The black solid curve represents the bound for the local

stability δc

In order to have both locally and globally thermodynamic stability, the sys-

tem at black string horizon must be satisfied the condition δ > δG. It is important

to note that there exists a point such that the Gibbs free energy of the non black

string state (or hot gas state) and black string state are the same. At this point,

the hot gas will transform to the moderate-sized black string. Since the slope of
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the Gibbs free energy at the transition point is discontinuous, the transition is the

first-order phase transition commonly known as the Hawking-Page phase transi-

tion. For the system evaluated at cosmic horizon, there are no extrema for TR(c).

Therefore, there are no cusps as found in one evaluated at black string horizon.

Moreover, ḠR(c) is always negative, and then the black string is stable for the range

of δ > δG.

5.4 effective thermodynamic systems

For the effective system approach, the whole system is regarded as a single

system. The entropy of the effective system is supposed to be an addition of those

of two systems as

S = SR(b) + SR(c) =
1

λ
ln
(
1 + λ

πr2b
2

)
+

1

λ
ln
(
1 + λ

πr2c
2

)
=

1

λ
ln
[(

1 + λ
πr2b
2

)(
1 + λ

πr2c
2

)]
. (5.90)

To obtain the real value of the effective entropy, it requires the condition as(
1 + λ

πr2b
2

)(
1 + λ

πr2c
2

)
> 0. (5.91)

To satisfy this condition, it is sufficient to restrict our consideration on the positive

value of λ, λ > 0. In this work, we choose to consider the parameter M =M(S, P )

as the enthalpy of the system, since this choice allows us to compare the result with

the separated system approach. As a result, the first law for the effective system

approach can be written as

dM = TeffdS + VeffdP, (5.92)

where the pressure of this effective system is also defined as the same as one in a

separated system approach, i.e., P = 3
8π
m2

g. For the effective system, the sign of

heat transfer evaluated at the cosmic horizon is opposite to one at the black string

horizon. This is because the observer stays between both horizons. Moreover,



101

the resulting quantities match the first law of thermodynamics. As a result, the

effective temperature can be written in terms of TR(b) and TR(c) as

1

Teff
=

(
∂SR(b)

∂M

)
P

−
(
∂SR(c)

∂M

)
P

=
1

TR(b)

+
1

TR(c)

. (5.93)

And then the effective temperature is expressed as

Teff =
m2

g

[
rc (2c1 − 3rc) + c0

][
rb (2c1 − 3rb) + c0

]
(πλr2b + 2) (πλr2c + 2)

8π (rb − rc)

c0 (2− πλrbrc) + rbrc

3
{
πλ (rbrc + r2b + r2c ) + 2

}
−2πc1λ (rb + rc)



.

(5.94)

It is important to note that the effective temperature can be reduced to the

black string temperature for the limit rc → ∞ and to one for cosmic horizon by

taking rb → 0,

lim
rc→∞

Teff =
m2

g (c0 + 2c1rb − 3r2b )

4πrb

(
1 + λ

πr2b
2

)
= TR(b), (5.95)

lim
rb→0

Teff = −
m2

g (c0 + 2c1rc − 3r2c )

4πrc

(
1 + λ

πr2c
2

)
= TR(c). (5.96)

Since this effective temperature depends on rb and rc which are independent, the

slope of the temperature profile does not imply the sign of the heat capacity as

we have analyzed in a separated one. This is because the heat capacity is evalu-

ated as the change of temperature with fixing the pressure. Hence, to obtain the

temperature profile satisfying the behavior of the heat capacity, we have to find

the relation between rb and rc such that the pressure is held fixed. By using the

horizon equations F(rb) = 0 and F(rc) = 0, one obtains the relation as,

rcF(rc)− rbF(rb) = 0. (5.97)

As a result, rc can be written in terms of rb as

rc =

√
2c1rb − 3r2b + c21 + 4c0 + rb − c1

2
. (5.98)
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Substituting rc from the above equation to Teff in Eq. (5.94), then we obtain

Teff = Teff(rb). Therefore, the dimensionless version for this effective temperature

can be written as

T̄eff =
r2V

3× 22/3M
Teff(rb)|rb=xrv (5.99)

=


(1 + x2δ)

(
x(2 3

√
4b1 − x) + 22/3b0

)
×
[
22/3b1

(√
3β + 2x

)
+ 6 3

√
2b21 + 4 3

√
4b0 − x

(√
3β + x

) ]
×
[
δ
(
3 3
√
4
√
3βb1 + 18 3

√
2b21 + 6 3

√
4b0 − x

(√
3β + x

))
+ 2
]




4 3
√
4π
(√

3β + 3 22/3b1 − 3x
)

×

[
x
(
36b31δ + 22/3b1 (3− 2δx2) + 6 3

√
2b21δ

(√
3β + x

)
+
√
3β − x

)
+2b0

(
12 3

√
2b1δx+ 22/3

(
δx
(√

3β − x
)
+ 1
)) ]



,

(5.100)

where β =
√

4× 22/3b0 + 6 3
√
2b21 + 2× 22/3b1x− x2. It is more convenient to use

the numerical plot to see the behavior as shown in the Fig. 14. From the left panel

in this figure, one can see that there exists the positive slope of the temperature.

This implies that there is the suitable size of the black string corresponding to the

positive heat capacity. The locus is similar to one for the system evaluated at the

black string horizon. It is also seen that the effective temperature is always less

than one evaluated at the black string horizon which is compatible with formula

(5.93). As a result, at certain size of the stable black string, the effective tem-

perature is always less than one evaluated at the black string horizon. Moreover,

from the right panel in Fig. 14, there exists a particular low temperature (e.g. T̄3)

at which only the black string in effective system approach will be locally stable

while one for the separated system approach is not. For the same argument, there

exists a particularly high temperature (e.g. T̄1) at which only the black string in

effective system approach will not be locally stable while one for the separated

system approach is locally stable. Moreover, for a particular temperature (e.g. T̄2)



103

at which the systems in both approaches are locally stable, the black string from

the effective system approach is always larger than one in the separated system

approach. Therefore, this criteria provide us with how to distinguish the thermo-

dynamic description for the dRGT black string if this black string really exists in

nature.
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Figure 14 Left panel shows the comparison of temperatures of the system

evaluated at black string horizon, cosmic horizon and effective system

by fixing b0 = 0.1, b1 = 0.7 and δ = 2. Right panel shows the comparison

of temperatures of the system evaluated at black string horizon and

effective system by fixing b0 = 0.1, b1 = 0.7 and δ = 2

Let us consider the effect of non-extensive parameter on the temperature

profile for the effective system approach. Since it has the similar locus as one in

the separated system approach, it is possible to exist the lower bound of the non-

extensive parameter as shown in Fig. 15. In order to find the bound, one can use

the same strategy as performed in the previous section by finding the condition to

have a positive real solution of the equation ∂rbTR(b) = 0. However, for the effective

case, the temperature depends on both rb and rc. Therefore, one has to find the

condition for the existence of the extrema along the direction with fixing pressure.
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As a result, the equation for the effective system approach can be written as

F (rb, rc) = ∂rbTR(b) +H(rb, rc) = 0, H(rb, rc) = ∂rcTR(c)

T 2
R(b)

T 2
R(c)

drc
drb

. (5.101)

As we have analyzed previously, ∂rbTR(b) is a convex function and depends only

on rb. The additional function H(rb, rc) is always negative, since ∂rcTR(c) > 0 and
drc
drb

< 0. Moreover, since the function H(rb, rc) has a part which is divided by T 2
R(c),

it will be a small function. Note that TR(c) is much greater than TR(b) as found

in the left panel in Fig. 14. Therefore, the function F (rb, rc) can be written as a

convex function subtracted by a small positive function. By using Eq. (5.98), the

function, F (rb, rc), can be written as a function of only rb. Therefore, one can find

the condition on δ to satisfy the Eq.(5.101), since it is the convex function. By

using numerical method, one can find the bound on the non-extensive parameter

as

δeff ≥ 1.254

(
3

8× 21/3b21

)
= 1.254δc. (5.102)

One can see that the bound from the effective system approach is stronger than one

in the separated system approach, δeff > δc. This also infers from Eq. (5.101), since

the convex function for effective system approach is lower than one in separated

system approach. The behavior of the temperature profile with various values of δ

is illustrated in Fig. 15.

Before discussing on the local stability, let us consider the effective volume

which is computed from the Eq.(3.178)

Veff = Teff

(
Vb
TR(b)

+
Vc
TR(c)

)
. (5.103)

It can be realized that Vc = Vc(rc) is indeed the same function as Vb = Vb(rb), just

replacing the different range of the horizon radius, rc → rb. Hence, using this fact

and Eq. (5.93), the effective is identical to Vb for the variable rb and to Vc for the

variable rc,

Veff(rb) = Vb(rb), Veff(rc) = Vc(rc). (5.104)
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Figure 15 The effective temperature profile with various values of δ by

fixing b0 = 0.1, b1 = 0.7.

It is then possible to choose suitable values of the parameters b0 and b1 correspond-

ing to the effective volume being positive within its viable range. One also notes

that this effective volume is independent of the non-extensive parameter λ or δ.

Now, let us consider the heat capacity at constant pressure. The thermo-

dynamic system is locally stable if heat capacity is positive. The heat capacity of

the effective system can be found by

Ceff =
( ∂M
∂Teff

)
P
=

∂rbMdrb + ∂rcMdrc
∂rbTeffdrb + ∂rcTeffdrc

(5.105)

=
2πC2

1 (rb − rc)
3 (c0 + 2c21 − 5c1 (rb + rc) + 3 (3rbrc + r2b + r2c ))

C4 − C2

[
C1C3 (C6 − 2(c1 − 3rb)(rb − rc))

+C3C5C6rc(rc − rb)− 2C1C6πλrb(rb − rc)(2 + πλr2b )

]


, (5.106)
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where

C1 = c0 (2− πλrbrc) + rbrc
(
−2πc1λ (rb + rc) + 3πλ

(
rbrc + r2b + r2c

)
+ 6
)
, (5.107)

C2 = (rc (2c1 − 3rc) + c0) (−rb − 2rc + c1) , (5.108)

C3 =
(
πλr2b + 2

) (
πλr2c + 2

)
, (5.109)

C4 = (rb (2c1 − 3rb) + c0)
2 (−2rb − rc + c1)

(
πλr2b + 2

)
2

×
(
r2c
(
−9πλr2c + 4πc1λrc − 6

)
+ c0

(
πλr2c − 2

))
, (5.110)

C5 = 2πc1λ (2rb + rc)− 3πλ
(
2rbrc + 3r2b + r2c

)
+ πc0λ− 6, (5.111)

C6 = rb (2c1 − 3rb) + c0. (5.112)

From the right panel in Fig. 16, one can see that the heat capacity diverges

at the extrema of the temperature and the positive part corresponds to the positive

slope of the temperature. The dimensionless version of the heat capacity can be

written as,

C̄eff =
Ceff

π22/3r2V
(5.113)

=
X 2

1 (x− y)3
(
22/3b0 + 12 3

√
2b12 − 5 22/3b1(x+ y) + x2 + 3xy + y2

)
X 2

3X6 (δx
2 + 1)

2 (
3 22/3b1 − 2x− y

)
− 2X1X2X3X4(x− y) (δy2 + 1) δx

+2X1X2X4

(
22/3b1 − x

)
(δx2 + 1) (x− y) (δy2 + 1)

+X1X2X3X4 (δx
2 + 1) (δy2 + 1) + X2X3X4X5y (δx

2 + 1) (x− y) (δy2 + 1)


,

(5.114)

X1 = 22/3b0(δxy − 1)− xy
(
−2 22/3b1δ(x+ y) + δx2 + δxy + δy2 + 1

)
, (5.115)

X2 = 22/3b0 + y
(
2 22/3b1 − y

)
, (5.116)

X3 = x
(
x− 2 22/3b1

)
− 22/3b0, (5.117)

X4 = −3 22/3b1 + x+ 2y, (5.118)
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X5 = 22/3b0δ + 2 22/3b1δ(2x+ y)− 3δx2 − 2δxy − δy2 − 1, (5.119)

X6 = 22/3b0
(
δy2 − 1

)
+ y2

(
4 22/3b1δy − 3δy2 − 1

)
, (5.120)

y =
1

2

(√
3

√
4 22/3b0 + 6

3
√
2b21 + 2 22/3b1x− x2 + 3 22/3b1 − x

)
. (5.121)

Note that we have used the dimensionless variables for the plot in Fig. 16 and

the variable rc is transformed to rb by using relation in Eq. (5.98). From the

left panel in this figure, one found that the heat capacity is always negative for

δ < δeff and the middle part becomes positive for δ > δeff. This is compatible to the

analysis of the temperature profile. Summarily, for the effective system approach,

the moderated-sized black string is locally stable for δ > δeff.
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Figure 16 Left panel shows the effective heat capacity profile with various

values of δ by fixing b0 = 0.1, b1 = 0.7. Right panel shows the effective heat

capacity profile compare to the temperature profile by fixing b0 = 0.1,

b1 = 0.7.
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Let us move to consider the global stability, which can be determined by

considering the value of the Gibbs free energy. According to effective description,

the effective Gibbs free energy can be written as

Geff =M − Teff

(
SR(b) + SR(c)

)
, (5.122)

= −rb
4
m2

g(r
2
b − c1rb − c0)

−

m2
g

(πλr2b + 2) (πλr2c + 2) 1
λ

ln
[(

1 + λ
πr2b
2

)(
1 + λπr2c

2

)]
[
rc (2c1 − 3rc) + c0

][
rb (2c1 − 3rb) + c0

]


8π (rb − rc)


c0 (2− πλrbrc)+

rbrc

[
3
(
πλ (rbrc + r2b + r2c ) + 2

)
−2πc1λ (rb + rc)

]


. (5.123)

The behavior of the effective Gibbs free energy is shown in the left panel in

Fig. 17. From this figure, it is found that the Gibbs free energy corresponding to

the locally stable size of the black string is always negative. Therefore, the locally

stable black string is always globally stable. This feature is different from one for

the separated system approach in which there is a part of parameter corresponding

to the positive value of Gibbs free energy. Hence, there is no other bound of δ for

the Gibbs free energy in effective description. Note that the part between cusps of

Ḡeff corresponds to the moderate-sized black string. It is important to note also

that the slope of the lines plotted in the left panel in Fig. 17 does not correspond

to the entropy, since the negative sign is needed to add in the change in entropy at

the cosmic horizon. As a result, the cusps for the effective system approach is not

sharp as found in one for the separated system approach. This is also see from the

right panel in Fig. 17.

Moreover, it is found that the effective free energy at a certain temperature

is more negative compared to one for the system evaluated at the black string

horizon as shown in the right panel in Fig. 17. By comparing to the free energy of

the hot gas which is zero, it is found that the Gibbs free energy is discontinuous.
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Figure 17 Left panel shows the profile of the dimensionless Gibbs free

energy Ḡeff = 24/3

M
Geff against the effective temperature with various val-

ues of δ by fixing b0 = 0.1, b1 = 0.7. The right panel shows the comparison

of the Gibbs free energy for separated system approach and effective

system approach with b0 = 0.1, b1 = 0.7 and δ = 2.15.

As a result, for the effective system approach, the hot gas phase has to undergo a

zeroth-order phase transition in order to evolve into the moderate-sized stable black

string in the effective system. This is one of the key differences to the separated

system approach in which the transition is the first-order type as we have discussed.



CHAPTER VI

CONCLUSION

In the present work, we aim to investigate the thermodynamic properties

of the dRGT black string with asymptotically dS spacetime. When we study the

thermodynamic behavior of dRGT black string in the dS branch, there are usually

exist two horizons. These two horizons correspond to two thermal systems with

generically different temperatures. As a result, the systems are out of thermal

equilibrium. Therefore, in this work, the investigation can be performed in two

different approaches as follows. Firstly, in the separated system approach, the

thermodynamic system can be defined separately and treated to be in a quasi-

equilibrium state. Secondly, in the effective system approach, one can treat the

systems as a single system described by the effective thermodynamic quantities. For

these approaches, the thermodynamic system in consideration can be in the thermal

equilibrium. For another obstruction for the dS branch, the system is unstable

since the dRGT black string has a negative heat capacity when its thermodynamic

quantities are defined based on the Gibbs-Boltzmann statistics. The Rényi entropy

can be used to investigate the possibility to obtain the stable dRGT black string.

We begin the investigation by showing that the existence of two horizons is a

generic property of the dRGT black string with asymptotically dS spacetime. We

found that it is possible to find the region for the existence of the horizons in the

parameter space (b1, b0) as shown in the Fig.6.

For the separated system approach, we examined the non-extensivity by re-

placing the Rényi entropy with the Gibbs-Boltzmann ones. As a result, we obtained

the positive slope of the temperature which corresponds to the positive heat capac-

ity. This suggests that it is possible to obtain the locally stable black string. It is

found that the bound on the non-extensive parameter is obey δ > δc = 3/(210/3b21).

We further investigate the global stability by considering the sign of the Gibbs
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free energy. By requiring that the Gibbs free energy of the preferred black string

must be negative, it is found that the lower bound is stronger than one obtained

from local stability, δG > δc. Furthermore, we found that in the range δ > δG

it is possible to obtain the first-order Hawking-Page phase transition which is the

transition between the thermal radiation or hot gas phase and the stable black

string phase. Note that, in the viable range of the black string system δ > δG, the

system evaluated at the cosmic horizon is both locally and globally stable.

For the effective system approach, we still restrict on the first law which is

in the same form as one in the separated system approach. However, the entropy of

the effective system is considered as in the additive form of those of the separated

systems. The temperature and volume are treated as effective quantities. As

a result, it is possible to find the region of parameter space with positive heat

capacity corresponding to a locally stable black string. The lower bound of the non-

extensivity parameter can be obtained by analyzing the possibility of the existence

of the local extrema of the temperature. We found that the bound in the effective

system approach is stronger than one in separated system approach, δeff = 1.254δc.

This implies that the thermodynamic stability of the black string in the effective

system approach requires the non-extensive nature of the system greater than one

in the separated system approach. For the global stability, we found that the Gibbs

free energy in the range with local stability is always negative. Therefore, there is

no further bound on the non-extensive parameter, the locally stable black string is

always globally stable. The Hawking-Pages phase transition is found to undergo

from hot gas to the black string with the zeroth-order phase transition. This is one

of the important results to distinguish between the two approaches since it is the

first-order phase transition for the separated system approach.

In conclusion, we found that it is possible to have the thermodynamically

stable dRGT black string by considering the Rényi entropy instead of using the
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Gibbs-Boltzmann ones. Moreover, we also found the way to distinguish the black

string from both approaches. In particular, we found that there exist particular

temperatures in which the black string in both approaches will be locally stable.

In this case, the black string in the effective system approach is always larger than

the one in the separated system approach. Moreover, there exist particular tem-

peratures for which only black string in the effective or separated system approach

is stable. As a result, these particular temperatures can be used to distinguish

between the two approaches.
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APPENDIX A HOW TO FIND A PROPORTIONAL CON-

STANT IN THE EINSTEIN’S FIELD EQUA-

TION

In order to find the constant k in the Einstein’s field equation, one can use

the fact that GR can be reduced to the Newtonian theory in the Newtonian limit.

In Newtonian theory, one has Poisson equation as

∇⃗2Φ = 4πρ. (A.1)

Consider the trace of Einstein’s field equation,

gµν(Rµν −
1

2
gµνR) = R− 2R = kgµνTµν (A.2)

R = −kT (A.3)

Then, substituting back to Einstein’s field equation, one obtains,

Rµν = k(Tµν −
1

2
gµνT ) (A.4)

By using the (0, 0) component, we can write Einstein’s field equation as

R00 =
1

2
kρ, (A.5)

where, T00 = ρ and T = g00T00 = −ρ. By comparing the result in the Eq.(3.50)

and Newton’s second law of motion in Newtonian theory,

F⃗ = −m∇⃗Φ = ma⃗ = m
1

2
∇⃗h00, (A.6)

we thus obtain h00 = −2Φ. Therefore, we can compute R00 for g00 = η00−h00 with

keep only first order in h00 as,

R00 = −1

2
∂i∂

ih00 = ∇⃗2Φ. (A.7)
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Comparing the Eq.(A.1), (A.5) and (A.7),

R00 = ∇⃗2Φ =
1

2
kρ = 4πρ, (A.8)

we eventually obtain,

k = 8π. (A.9)
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