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In a model of spontaneous scalarization of neutron stars proposed by Damour and Esposite-
Farese, a general relativistic branch becomes unstable to trigger tachyonic growth of a scalar field φ
toward a scalarized branch. Applying this scenario to cosmology, there is fatal tachyonic instability
of φ during inflation and matter dominance being incompatible with solar-system constraints on
today’s field value φ0. In the presence of a four-point coupling g2φ2χ2/2 between φ and an inflaton
field χ, it was argued by Anson et al. that a positive mass squared heavier than the square of a
Hubble expansion rate leads to the exponential suppression of φ during inflation and that φ0 can
remain small even with the growth of φ after the radiation-dominated epoch. For several inflaton
potentials approximated as V (χ) = m2χ2/2 about the potential minimum, we study the dynamics of
φ during reheating as well as other cosmological epochs in detail. For certain ranges of the coupling
g, the homogeneous field φ can be amplified by parametric resonance during a coherent oscillation
of the inflaton. Incorporating the backreaction of created particles under a Hartree approximation,
the maximum values of φ reached during preheating are significantly smaller than those obtained
without the backreaction. We also find that the minimum values of g consistent with solar system
bounds on φ at the end of reheating are of order 10−5 and hence there is a wide range of acceptable
values of g. Thus, the scenario proposed by Anson et al. naturally leads to the viable cosmological
evolution of φ consistent with local gravity constraints, without modifying the property of scalarized
neutron stars.

I. INTRODUCTION

The physics in strong gravity regimes can be now
probed by the observations of gravitational waves (GWs)
emitted from a binary system containing black holes or
neutron stars (NSs) [1–3]. With the future high precision
data of GWs, it will be possible to probe the accuracy
of General Relativity (GR) and the possible deviation
from it [4–6]. In theories beyond GR, there are usu-
ally additional degrees of freedom that can be coupled to
gravity [7–13]. A simplest example is known as scalar-
tensor theories, in which a scalar field φ has nonminimal
or derivative couplings to gravity [14–20].

In the presence of a nonminimal coupling F (φ)R,
where F is a function of φ and R is the Ricci scalar,
it is known that NSs can have scalar hairs through an
indirect coupling between the scalar field and matter
mediated by gravity [21–30]. For the exponential cou-
pling F (φ) = e−2Qφ/MPl , where Q is a constant and
MPl is the reduced Planck mass, the fifth force prop-
agates around weak gravitational objects like the Sun.
From solar-system experiments, there is a tight bound
|Q| < 2 × 10−3 on the coupling strength [31, 32]. Then,
the deviation from GR in the vicinity of NSs is also sup-
pressed, so probing the modification of gravity from the
GW observations is challenging for the nonminimal cou-
pling F (φ) = e−2Qφ/MPl .

If we consider nonminimal couplings containing even
power-law functions of φ, it is possible to have a non-
trivial branch φ′(r) 6= 0 besides a GR branch φ′(r) = 0
on a static and spherically symmetric background with
the radial distance r. A typical example is the coupling

F (φ) = e−βφ
2/(2M2

Pl) proposed by Damour and Esposite-

Farese (DEF), where β is a constant [21, 22]. For strong
gravitational objects like NSs, the GR branch can be un-
stable to trigger tachyonic instability of the scalar field to
reach a nontrivial branch of φ. This phenomenon, which
is called spontaneous scalarization, occurs for negative
coupling constants in the range β ≤ −4.35 [23, 24, 33, 34].
Since the gravitational interaction for such scalarized NSs
exhibits the appreciable deviation from that in GR, it is
possible to probe the modification of gravity from binary
pulsar measurements [35–37] as well as the observations
of GWs emitted from a binary system containing at least
one NS [38, 39].

When spontaneous scalarization of NSs occurs, the
asymptotic value of the scalar field φ0 needs to be in the
range |φ0| . 10−3MPl|β|−1 for the consistency with local
gravity constraints [21]. This asymptotic value should
be determined by the cosmological evolution of φ from
the past to today. In the original DEF model, however,
the background cosmological scalar field largely deviates
from 0 for the coupling range β allowing for spontaneous
scalarization [40, 41]. This is attributed to the fact that
the negative coupling β leads to tachyonic growth of |φ|
during the cosmological evolution. Without severely fine-
tuned initial conditions, the amplitude of today’s field
value exceeds the upper limit constrained by solar system
tests of gravity. We note that the similar type of insta-
bilities is also present for spontaneously scalarized BHs
arising from a scalar Gauss-Bonnet coupling [42–44].

On the other hand, Anson et al. [45] proposed a mech-
anism of reconciling spontaneous scalarization with cos-
mology by incorporating a coupling g2φ2χ2/2 between
the scalar field φ and an inflaton field χ. Since the field
φ can have a positive effective mass squared g2χ2 larger
than the squared Hubble expansion rate during inflation,
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the amplitude of the homogeneous field φ exponentially
decreases. Even though |φ| increases after the onset of
the radiation era to today, it is expected that today’s field
value is still in the range |φ0| . 10−3MPl|β|−1. However,
the analysis of Ref. [45] does not accommodate the evo-
lution of φ during the post inflationary reheating period.
Indeed, for certain ranges of the coupling g, the four-
point coupling g2φ2χ2/2 leads to parametric resonance
of the homogeneous field φ and its perturbations during
a preheating stage after inflation [46–53]. Even for small
couplings g without the period of preheating, it can hap-
pen that the amplitude of φ grows during reheating by
the dominance of the negative nonminimal coupling over
the positive mass term g2χ2. Hence it is important to
clarify the coupling range of g in which the model can
be at work. We note that there are other mechanisms
for reconciling spontaneous scalarization with cosmology
[39, 41, 54, 55], but it is typically nontrivial to realize the
acceptable cosmological evolution of φ.

In the DEF model with the coupling g2φ2χ2/2, we will
study the cosmological evolution of the scalar field φ re-
sponsible for spontaneous scalarization. We pay particu-
lar attention to the dynamics during reheating in which
the further growth of |φ| can be expected. Since the in-
flaton potentials are approximated as V (χ) ' m2χ2/2
around χ = 0, the reheating period corresponds to an
effective matter era driven by the oscillation of a massive
inflaton field.

For coupling ranges of g in which the preheating stage
is present, we need to take into account the backre-
action of created φ particles that leads to the viola-
tion of coherent oscillations of χ. Without the back-
reaction, the maximum amplitude φmax of the field φ
reached during preheating can exceed a value constrained
by solar-system tests of gravity at the end of reheating
(|φR| . 10−11MPl). However, we will show that im-
plementing the backreaction under the Hartree approx-
imation [50, 52] leads to φmax significantly smaller than
10−11MPl. For two inflaton potentials considered in this
paper, φmax is less than the order of 10−38MPl. After
the system reaches an equilibrium state with the viola-
tion of coherent oscillations of the inflaton, the further
significant amplification of φ is not expected by the end
of reheating because the negative nonminimal coupling is
suppressed compared to g2χ2 in the background equation
of φ. Thus, even with the preheating epoch, the presence
of the coupling g2φ2χ2/2 allows the cosmological evolu-
tion of φ consistent with local gravity constraints on φ0.

For small coupling ranges of g in which preheating does
not occur, we do not need to implement the backreaction
of created particles. In such cases, we will solve the back-
ground equations of motion by the end of reheating with a
Born decay constant Γ taken into account. Depending on
the form of inflaton potentials, the nonminimal coupling
can overwhelm the term g2χ2 during reheating. Since
this leads to the growth of |φ| by the end of reheating, it
can happen that |φR| exceeds the upper bound 10−11MPl.
This is especially the case for a low-scale reheating sce-

nario with the reheating temperature of order MeV. For
two inflaton potentials, we will put lower bounds on the
coupling g consistent with solar-system constraints. In
both cases, the minimum values of g are of order 10−5,
so the mechanism proposed by Anson et al. [45] is at
work for wide ranges of the coupling g (including the
case where preheating occurs).

This paper is organized as follows. In Sec. II, we briefly
review the DEF model and derive the background equa-
tions of motion on the spatially-flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) spacetime in the presence of
the coupling g2φ2χ2/2. In Sec. III, we discuss the cosmo-
logical evolution of φ from the radiation era to today and
interpret a solar-system bound on φ0 as the constraint
on φ at the onset of radiation dominance. In Sec. IV, we
study the dynamics of the scalar field during inflation for
several inflaton potentials and find minimum values of g
above which the amplitude of φ exponentially decreases.
In Sec. V, we analyze the evolution of the homogeneous
field φ and its perturbations during the reheating stage
and derive minimum values of the coupling constant g
consistent with solar-system constraints. Sec. VI is de-
voted to conclusions.

II. THEORIES WITH SPONTANEOUS
SCALARIZATION

We consider theories given by the action

S =

∫
d4x
√
−gJ

[
M2

Pl

2
F (φ)R+ ω(φ)X + Linf

]
+Sm(gµν ,Ψm) , (2.1)

where gJ is a determinant of metric tensor gµν in the
Jordan frame, and X = −(1/2)gµν∇µφ∇νφ is a scalar
kinetic term with ∇µ being a covariant derivative opera-
tor. The φ-dependent function in front of X is chosen to
be [39, 56, 57]

ω(φ) =

(
1−

3M2
PlF

2
,φ

2F 2

)
F (φ) , (2.2)

where F,φ = dF/dφ. Brans-Dicke (BD) theories [14] cor-
respond to the particular nonminimal coupling F (φ) =
e−2Qφ/MPl , where a coupling constant Q is related to the
BD parameter ωBD as 3 + 2ωBD = 1/(2Q2) [32, 58]. In
theories of spontaneous scalarization, F (φ) contains even
power-law functions of φ.

We take into account the contribution of an inflaton
field χ as the Lagrangian

Linf = −1

2
gµν∇µχ∇νχ− V (χ)− 1

2
g2φ2χ2 , (2.3)

where V is the potential of χ. The last term in Eq. (2.3)
characterizes an interaction between φ and χ with a cou-
pling constant g. During inflation, this can generate a
large effective positive mass squared of φ relative to the
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square of the Hubble expansion rate. Then, it can com-
pensate a negative mass squared induced by the nonmin-
imal coupling F (φ)R responsible for spontaneous scalar-
ization. This allows a possibility for avoiding the tachy-
onic growth of φ during inflation [45].

In the presence of the four-point coupling g2φ2χ2/2, it
is known that a phenomenon called preheating [46, 52]
can occur after inflation during the coherent oscillation of
inflaton. In this stage, the scalar field φ and its perturba-
tions δφ can be amplified by parametric resonance. Since
the dynamics of the field φ during preheating were not
addressed in Ref. [45], we will study whether the presence
of this stage is harmless or not for the compatibility with
local gravity constraints on today’s field value φ0. For
this purpose, we also scrutinize the scalar-field dynamics
in other cosmological epochs from the onset of inflation
to today.

In Eq. (2.1), the action Sm incorporates the contri-
butions of matter fields Ψm such as radiation, nonrela-
tivistic matter, and dark energy. We assume that matter
fields are minimally coupled to gravity.

Under the conformal transformation ĝµν = F (φ)gµν ,
the action (2.1) is transformed to [8, 56]

Ŝ =

∫
d4x
√
−ĝ
[
M2

Pl

2
R̂− 1

2
ĝµν∇µφ∇νφ+ L̂inf

]
+Sm(F−1(φ)ĝµν ,Ψm) , (2.4)

where a hat represents quantities in the Einstein frame.
In the transformed frame, the scalar field φ is coupled to
matter fields through the metric tensor ĝµν .

We deal with the Jordan frame as a physical one and
perform all analyses in this frame by exploiting the action
(2.1). We consider the nonminimal coupling chosen by
DEF [21, 22]

F (φ) = e−βφ
2/(2M2

Pl) , (2.5)

where β is a constant. In this case, we have

ω(φ) =

(
1− 3β2φ2

2M2
Pl

)
e−βφ

2/(2M2
Pl) . (2.6)

Spontaneous scalarization of NSs can occur for the cou-
pling β ≤ −4.35 [23, 24, 33, 34]. In such cases, the GR
branch φ = 0 can be unstable to trigger tachyonic insta-
bility toward the other nontrivial branch φ 6= 0. From
binary pulsar measurements of the energy loss through
dipolar radiation, the coupling β was constrained to be
β ≥ −4.5 [35, 36]. Thus, the coupling constant β is re-
stricted in a limited range.

We consider a spatially-flat FLRW background given
by the line element

ds2 = −dt2 + a2(t)δijdx
idxj , (2.7)

where a(t) is a time-dependent scale factor. Incorporat-
ing the Born decay term Γχ̇ to complete the reheating
process (Γ is a decay constant and a dot represents a

derivative with respect to t) into the inflaton equation of
motion, it follows that

χ̈+ (3H + Γ) χ̇+ V,χ + g2φ2χ = 0 , (2.8)

where H = ȧ/a is the Hubble expansion rate. We will
consider the case H � Γ during inflation, so the decay
term Γχ̇ is important only at the late stage of reheating.
Due to the energy transfer from the inflaton to radiation,
the radiation energy density ρr satisfies the differential
equation

ρ̇r + 4Hρr = Γχ̇2 . (2.9)

The energy density ρm of nonrelativistic matter (cold
dark matter and baryons) obeys the continuity equation

ρ̇m + 3Hρm = 0 , (2.10)

with a vanishing pressure. As a source for dark energy,
we take the cosmological constant Λ into account.

The (00) and (11) components of gravitational field
equations following from the action (2.1) are given, re-
spectively, by

3M2
PlH(FH + F,φφ̇) =

1

2
χ̇2 + V +

1

2
ωφ̇2 +

1

2
g2φ2χ2

+ρr + ρm + Λ , (2.11)

−M2
PlF (2Ḣ + 3H2) = M2

Pl

(
F,φφ̈+ F,φφφ̇

2 + 2F,φHφ̇
)

+
1

2
χ̇2 − V +

1

2
ωφ̇2 − 1

2
g2φ2χ2 +

1

3
ρr − Λ . (2.12)

The scalar field φ obeys the differential equation

φ̈+ 3Hφ̇+m2
effφ = 0 , (2.13)

where

m2
eff ≡

1

ω

[
g2χ2 + 3βF

(
2H2 + Ḣ

)
− βωφ̇2

2M2
Pl

− 3β2Fφ̇2

2M2
Pl

]
.

(2.14)
To discuss the dynamics of inflation and reheating, we

consider the inflaton potentials of α-attractors [59] given
by

V (χ) =
3

4
αm2M2

Pl

[
1− exp

(
−
√

2

3α

χ

MPl

)]2

, (2.15)

where α is a positive dimensionless constant, and m is
a constant having a dimension of mass. In the limit
α → ∞, the potential (2.15) reduces to that in chaotic
inflation, i.e., V (χ) = m2χ2/2 [60]. Starobinsky’s model
with the Lagrangian L = R+R2/(6m2) [61] gives rise to
the potential (2.15) with α = 1 after a conformal trans-
formation to the Einstein frame [8]. For the numerical
simulation performed in Secs. IV and V, we will consider
the two potentials: (i) V (χ) = m2χ2/2, and (ii) the po-
tential (2.15) with α = 1.
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III. COSMOLOGICAL DYNAMICS FROM
RADIATION DOMINATION TO TODAY

In this section, we investigate a bound of the field value
φ at the onset of radiation dominance constrained from
solar system tests of gravity. In theories given by the
action (2.1), the post-Newtonian parameter γPPN is [21,
62]

γPPN − 1 = − 2α2
PPN(ϕ0)

1 + α2
PPN(ϕ0)

= − 2β2ϕ2
0

1 + β2ϕ2
0

, (3.1)

where ϕ = φ/(
√

2MPl) is a dimensionless field with to-
day’s value ϕ0, and αPPN = −F,ϕ/(2F ) = βϕ with

F = e−βϕ
2

. The Shapiro time delay measurements have
given the bound γPPN−1 = (2.1±2.3)×10−5 [63]. Since
γPPN − 1 is negative in the current theory, we adopt the
limit |γPPN − 1| ≤ 0.2 × 10−5. This corresponds to the
bound |βϕ0| ≤ 1× 10−3, so today’s field value φ0 is con-
strained to be

|φ0| ≤ 1.4× 10−3MPl|β|−1 . (3.2)

For β = −4.4, we have |φ0| ≤ 3.2 × 10−4MPl. In the
following, we will study how this constraint translates to
the upper limit of |φ| at the onset of radiation era.

After the reheating period ends, we can neglect the
contribution of the inflaton field χ in Eq. (2.14). More-
over, provided that the energy density of φ is negligible
relative to that of the background and that |φ| � MPl,
the effective mass squared (2.14) is approximated as

m2
eff ' 3β(2H2 + Ḣ). Then, the scalar-field equation

(2.13) approximately reduces to

φ′′ +
3

2
(1− weff)φ′ +

3

2
(1− 3weff)βφ ' 0 , (3.3)

where a prime represents the derivative with respect to
N = ln a, and weff = −1−2H ′/(3H) is the effective equa-
tion of state. If weff = constant, there is the following
growing-mode solution

φ ∝ aλ , (3.4)

where

λ =
3

4
(1− weff)

[√
1− 8β(1− 3weff)

3(1− weff)2
− 1

]
. (3.5)

During the radiation era (weff = 1/3), we have λ = 0 and
hence φ = constant. This property is attributed to the
fact that R vanishes on the exact radiation-dominated
background. In the matter-dominated era (weff = 0),
the negative mass squared of φ leads to the following
tachyonic growth of the field

φ ∝ a(3/4)
(√

1−8β/3−1
)
. (3.6)

During the epoch of cosmological constant domination,

the growth of φ is even stronger: φ ∝ a(3/2)
(√

1−8β/3−1
)
.

However, the dominance of dark energy over nonrelativis-
tic matter occurs only at low redshifts z . 0.3, so we can
approximately use Eq. (3.6) for the evolution of φ from
radiation-matter equality to today. Then, the field value
at radiation-matter equality can be estimated as

φeq = φ0(zeq + 1)
−(3/4)

(√
1−8β/3−1

)
, (3.7)

where zeq is determined by zeq = Ωm0/Ωr0−1, with Ωm0

and Ωr0 being today’s density parameters of nonrelativis-
tic matter and radiation respectively.

In Fig. 1, we plot the evolution of φ/Mpl and Ωr =
ρr/(3FH

2M2
Pl), Ωm = ρm/(3FH

2M2
Pl), and ΩDE =

Λ/(3FH2M2
Pl) for β = −4.4 between the radiation era

and today. We choose the initial conditions around red-
shift z = 109 to realize today’s value φ0 = 3.2×10−4MPl,
which corresponds to the upper limit consistent with
local gravity constraints. In this case the redshift at
radiation-matter equality is zeq ' 3470, so the analytic
estimation (3.7) gives φeq = 4.8 × 10−11MPl. This is
fairly close to the numerical value φeq = 6.0× 10−11MPl,
even though we ignored the epoch of late-time cosmic
acceleration for the analytic estimation of φ0.

FIG. 1. Evolution of φ/Mpl and Ωr, Ωm, and ΩDE versus
z+ 1 (= 1/a) for β = −4.4. The initial conditions are chosen
to realize today’s values φ0/Mpl = 3.2 × 10−4, Ωr0 = 9.2 ×
10−5, and ΩDE0 = 0.68.

In Fig. 1, we observe that φ slowly grows even at the
late stage of radiation era. This reflects the fact that
R = 6(2H2 + Ḣ) does not completely vanish due to the
presence of nonrelativistic matter. Numerically, we find
that φeq is larger than the initial value φR in the radiation
era by one order of magnitude. This is consistent with
the analytic estimation given in Ref. [45]. Multiplying
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the analytic value (3.7) by a factor 0.2, it is possible
to reproduce the numerical value of φR approximately.
Then, we have the following analytic formula

|φR| ' 0.2|φ0|
(

Ωm0

Ωr0

)−(3/4)
(√

1−8β/3−1
)
. (3.8)

For the model parameters used in the numerical simu-
lation of Fig. 1, i.e., φ0 = 3.2 × 10−4MPl, Ωm0 = 0.32,
and Ωr0 = 9.2×10−5, the analytic estimation (3.8) gives
|φR| = 9.6 × 10−12MPl. This is close to the numerical
value |φR| = 9.2× 10−12MPl.

Applying the formula (3.8) to Eq. (3.2), we obtain the
following upper bound

|φR| ≤ 2.8× 10−4MPl|β|−1

(
Ωm0

Ωr0

)−(3/4)
(√

1−8β/3−1
)
.

(3.9)
For β = −4.5 and β = −4.35, the criterion (3.9) gives
|φR| ≤ 7.5 × 10−12MPl and |φR| ≤ 1.1 × 10−11MPl, re-
spectively, where we used the same values of Ωm0 and
Ωr0 mentioned above. These bounds are close to the nu-
merically derived upper limits |φR| ≤ 7.1 × 10−12MPl

and |φR| ≤ 1.1 × 10−11MPl, respectively. Thus, in the
coupling range −4.5 ≤ β ≤ −4.35, the initial value of
|φR| at the onset of radiation era needs to be smaller
than the order 10−11MPl for the consistency with local
gravity constraints.

IV. INFLATIONARY EPOCH

In this section, we study the evolution of φ during infla-
tion in the presence of the coupling (1/2)g2φ2χ2 besides
the nonminimal coupling (2.5) with β < 0. We consider
two inflaton potentials: (i) V (χ) = m2χ2/2 and (ii) α-
attractor potential (2.15) with α = 1. The potential (i),
which corresponds to the limit α → ∞ of Eq. (2.15),
leads to the scalar spectral index ns ' 1 − 2/N and the
tensor-to-scalar ratio r ' 8/N , where N is the number of
e-foldings backward from the end of inflation to the epoch
at which the perturbations relevant to observed Cosmic
Microwave Background (CMB) temperature anisotropies
crossed the Hubble radius [53]. For N = 60 we have
ns ' 0.967 and r = 0.133, so the model is in tension
with the Planck2018 bound of the tensor-to-scalar ratio
r < 0.066 (95 % CL) [64].

Nevertheless, the potential (i) of chaotic inflation with
the four-point interaction g2φ2χ2/2 is a baseline model
widely studied in the context of preheating after inflation
[46–53]. We will accommodate this case in our analysis
for the purpose of understanding the difference from the
α-attractor with α = 1. In the model (ii) with α . O(1),
we have ns ' 1 − 2/N and r ' 12α/N2 [59], and hence
r = 3.3 × 10−3 for α = 1 and N = 60. If α . 40, the
α-attractor model is compatible with the Planck CMB
bound r < 0.066 and ns = 0.9661 ± 0.0040 (68 % CL)
[65].

In the current theory the field φ is present besides the
inflaton χ, so the existence of the former field can mod-
ify the prediction of inflationary observables like ns and
r. To avoid this, we consider the case in which the con-
tribution of φ to the background equations of motion
is suppressed around the e-folding N = 60 backward
from the end of inflation. This amounts to the conditions
β2φ2/(2M2

Pl)� 1, φ̇2 � H2M2
Pl, and g2φ2χ2 � V . Con-

sidering the coupling β in the range −4.5 ≤ β ≤ −4.35
with |φ̇| at most of order |Hφ|, the first two conditions
can be satisfied for |φ| . 0.1MPl. Then, the field value
φinf about the 60 e-folding backward from the end of in-
flation is in the range

|φinf | . 0.1MPl , and |φinf | . 0.1

√
V

g|χ|
. (4.1)

For the potential V (χ) = m2χ2/2, the latter condition
translates to |φinf | . 0.1m/g.

Under the conditions (4.1), the effective mass squared

(2.14) during inflation (|Ḣ| � H2 and 3H2M2
Pl ' V )

approximately reduces to

m2
eff ' g2χ2 + 6βH2 ' g2χ2 +

2βV

M2
Pl

. (4.2)

When g = 0, we have m2
eff < 0 and hence there is the

tachyonic growth of φ [45]. On the exact de-Sitter back-
ground, the growing-mode solution to Eq. (2.13) for g = 0
is given by

φ ∝ exp

[
3

2

(√
1− 8

3
β − 1

)
Ht

]
. (4.3)

During the time interval t = 10H−1, for instance, the
field φ is amplified by a factor 5×1016 for β = −4.4. This
enhancement of φ destroys the inflationary period driven
by the potential energy of χ. Even if the initial field value
φinf is fine-tuned to be extremely close to 0, there exists
a field perturbation δφ whose amplitude does not vanish
due to the uncertainty principle. After the Hubble radius
crossing, the perturbation δφ is amplified in a manner
analogous to the homogeneous field φ discussed above
[45]. Hence the existence of the nonminimal coupling
(2.5) with β = −O(1) violates the successful inflationary
prediction of primordial density perturbations sourced by
the perturbations of χ.

The nonvanishing coupling g gives rise to a positive
contribution to the mass squared (4.2). If g is in the
range

g >

√
2|β|V

MPl|χ|
, (4.4)

we have m2
eff > 0 and hence the exponential growth of

|φ| can be avoided.
Let us first consider the effective mass in the range

0 < m2
eff ≤ 9H2/4. Neglecting the variation of m2

eff
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during inflation, the growing-mode solution to Eq. (2.13)
is given by

φ ∝ exp

[
−3

2

(
1−

√
1−

4m2
eff

9H2

)
Ht

]
. (4.5)

When m2
eff = 0 we have φ = constant, while, for increas-

ing m2
eff , the decreasing rate of φ gets larger.

For the effective mass satisfying m2
eff > 9H2/4, the

coupling g is in the range

g >

√
(3− 8β)V

2MPl|χ|
, (4.6)

whose lower limit is larger than that in Eq. (4.4). In this
mass range, the field φ evolves as

φ ∝ exp

(
−3

2
Ht

)
cos

(√
1− 9H2

4m2
eff

mefft

)
. (4.7)

Then, the amplitude of φ decreases as |φ| ∝ e−3Ht/2 ∝
a−3/2 with the oscillation induced by the effective mass
meff [66–69], where we used the approximate solution
a ∝ eHt during inflation. On using the number of e-
foldings Ninf relevant to the observation of CMB tem-
perature anisotropies, the amplitude of φ at the end of
inflation (denoted as |φI |) can be estimated as

|φI | = |φinf |e−3Ninf/2 . (4.8)

For Ninf = 60 and φinf = 0.1MPl, the estimation (4.8)
gives |φI | = 8 × 10−41MPl, so there is the strong sup-
pression of |φ| during inflation. Notice that, for m2

eff >
9H2/4, the decreasing rate of |φ| does not depend on g.

A. Quadratic potential

For the inflaton potential V (χ) = m2χ2/2, the in-

equalities (4.4) and (4.6) translate to g >
√
|β|m/MPl

and g >
√

3/8− β m/MPl, respectively. We consider the
mass m = 6×10−6MPl constrained from the Planck nor-
malization of CMB temperature anisotropies [64]. For
β = −4.4, the conditions (4.4) and (4.6) correspond to
g > 1.26× 10−5 and g > 1.31× 10−5, respectively.

In Fig. 2, we plot the evolution of |φ|/MPl for four
different coupling constants g. We choose the initial field
value φinf as a maximum satisfying the two conditions
given in Eq. (4.1). In case (a) the coupling g = 1.27 ×
10−5 is slightly larger than the value g = 1.26 × 10−5

corresponding to m2
eff = 0, so the field φ mildly decreases

according to Eq. (4.5). As g increases in the range 1.26×
10−5 < g < 1.31 × 10−5, the decreasing rate of φ tends
to be larger as we observe in cases (b) and (c) of Fig. 2.
For g > 1.31 × 10−5, the amplitude of φ decreases in

FIG. 2. Evolution of |φ|/MPl versus ln a during inflation for
the potential V (χ) = m2χ2/2 with β = −4.4 and m = 6.0 ×
10−6MPl. The initial field values of scalar fields are chosen
to be χ = 15.38MPl, with φ corresponding to the maximum
of Eq. (4.1). In this case, the number of e-foldings during
inflation is N = 60. Each line corresponds to (a) g = 1.27 ×
10−5, (b) g = 1.29 × 10−5, (c) g = 1.31 × 10−5, and (d)
g = 1.0× 10−3.

proportion to a−3/2 with oscillations. Thus, provided
the condition (4.6), i.e.,

g >

√
3

8
− β m

MPl
, (4.9)

is satisfied, the field value at the end of inflation is
suppressed to be in the range |φI | . 10−40MPl. For
such couplings, unless |φ| is amplified by a factor more
than 1029 during reheating, the bound |φR| . 10−11MPl

can be satisfied at the onset of radiation era. For
the coupling g in the range

√
2|β|V /(MPl|χ|) < g <√

(3− 8β)V /(2MPl|χ|), the suppression of φ during in-
flation is not necessarily significant, so the growth of φ
during reheating matters to satisfy the bound |φR| .
10−11MPl.

B. α-attractor with α = 1

Let us consider the α-attractor potential (2.15) with
α = 1. In this case, the right hand-sides of Eqs. (4.4)
and (4.6) depend on the value of χ. Under the slow-
roll approximation, the number of e-foldings backward
from the end of inflation (inflaton value χf ) can be com-

puted by N = M−2
Pl

∫ χ
χf
V/V,χ dχ. In the present case,

we have N = (3/4)[1/y − 1/yf + ln(y/yf )], where y =



7

e−
√

2/3χ/MPl and yf = e−
√

2/3χf/MPl . The field value
at the end of inflation is determined by the condition
εV = (M2

Pl/2)(V,χ/V )2 = 1, and hence χf = 0.940MPl

and yf = 0.464. For N = 60, we have y = 1.165 × 10−2

and χ = 5.453MPl, in which case the Planck normal-
ization of primordial curvature perturbations gives the
constraint m ' 1.1× 10−5MPl.

Since χ & O(MPl) during the inflationary period,
the potential (2.15) is nearly constant in this regime
and hence the term g2χ2 in Eq. (4.2) decreases faster
than 2|β|V/M2

Pl. Unlike the quadratic potential, there
are some ranges of the coupling g for which g2χ2 is
initially larger than 2|β|V/M2

Pl, but the latter domi-
nates over the former during inflation. On using the
value χ = 5.453MPl at N = 60 with β = −4.4 and
m = 1.1 × 10−5MPl, the condition (4.4) for the realiza-
tion of positive m2

eff translates to g > 5.12× 10−6.

FIG. 3. Evolution of |φ|/MPl versus ln a during inflation
for the α-attractor potential (2.15) with α = 1, β = −4.4,
and m = 1.1 × 10−5MPl. The initial field values of scalar
fields are chosen to be χ = 5.418MPl, with φ corresponding
to the maximum of Eq. (4.1). Each case corresponds to (a)
g = 5.5× 10−6, (b) g = 6.5× 10−6, (c) g = 1.68× 10−5, and
(d) g = 1.0× 10−3.

In case (a) of Fig. 3, we plot the evolution of |φ|/MPl

during inflation for g = 5.5× 10−6. In this case the field
initially decreases because m2

eff > 0, but it starts to grow
at some point because g2χ2 drops below 2|β|V/M2

Pl. This
enhancement of φ largely modifies the dynamics of infla-
tion in such a way that the total number of e-foldings does
not reach even 40. As we observe in case (b) of Fig. 3, the
growth of φ also occurs for the coupling g = 6.5× 10−6.
In this case, the field value φ at the end of inflation is of
order 10−11MPl, so the dynamics of inflation driven by
the field χ is hardly modified. In Sec. V, we will study

whether or not the existence of a subsequent reheating
stage leads to additional growth of φ exceeding the bound
|φR| < 10−11MPl.

If we demand that the condition (4.4), i.e., m2
eff > 0,

holds by the end of inflation (at which χf = 0.940MPl),
then the coupling g is constrained to be

g > 0.698
√
|β| m
MPl

. (4.10)

Substituting the values β = −4.4 and m = 1.1×10−5MPl

into Eq. (4.10), we have g > 1.61 × 10−5. Similarly,
the condition (4.6) translates to g > 1.68 × 10−5. The
evolution of |φ|/Mpl for g = 1.68 × 10−5 is plotted as
case (c) in Fig. 3. We observe that the field exhibits
exponential decrease |φ| ∝ a−3/2 by the end of inflation.
Numerically, we find that, even for the marginal coupling
g = 1.61× 10−5, φ decreases in a similar manner to case
(c). Hence the condition (4.10) is practically sufficient to
ensure the exponential suppression of φ during the whole
stage of inflation. As we see in case (d), the decreasing
rate of φ for g = 1.0× 10−3 is practically the same as in
case (c). The only difference between cases (c) and (d) is
the choice of initial conditions, where we have selected the
maximum value of |φinf | satisfying the conditions (4.1).
For larger g, |φinf | tends to be smaller.

V. REHEATING EPOCH

After the end of inflation, the Universe enters a re-
heating stage in which the inflaton field χ oscillates
around the potential minimum. The field value χI at
the onset of reheating is determined by the condition
εV = (M2

Pl/2)(V,χ/V )2 = 1, so that χI = 1.414MPl for
V (χ) = m2χ2/2 and χI = 0.940MPl for the α-attractor
potential (2.15) with α = 1. Around χ = 0, the poten-
tial (2.15) approximately reduces to the quadratic one:
V (χ) ' m2χ2/2.

In the presence of the coupling g2φ2χ2/2, the back-
ground field φ and its perturbations can be resonantly
amplified by broad parametric resonance during reheat-
ing for the coupling g in the range g2χ2 � m2 [46, 52].
The resonant growth of the variance of φ affects the evo-
lution of the homogeneous mode of χ through the back-
reaction of created particles [50, 52, 70]. To incorporate
this effect, we expand the inhomogeneous field δφ(t,x)
in terms of the Fourier series, as

δφ(t,x) =
1

(2π)3

∫
d3k δφk(t)eik·x , (5.1)

where k is a comoving wavenumber with k = |k|. Under
a Hartree approximation, the zero-momentum mode of
χ is the only nonvanishing component of inflaton [50].
Using this approximation with V (χ) ' m2χ2/2 in the
reheating stage, Eq. (2.8) is modified to

χ̈+ (3H + Γ) χ̇+
[
m2 + g2

(
φ2 + 〈δφ2〉

)]
χ = 0 , (5.2)
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where φ is the homogeneous value of the field, and 〈δφ2〉
is the vacuum expectation value given by

〈δφ2〉 =

∫
dk

k
Pδφk

, (5.3)

with the power spectrum

Pδφk
=

k3

2π2
|δφk|2 . (5.4)

The Fourier modes δφk(t) obey the differential equa-
tion

δ̈φk+

(
3H +

ω,φφ̇

ω

)
˙δφk+

(
k2

a2
+M2

eff

)
δφk = 0 , (5.5)

where

M2
eff =

1

ω

[
g2χ2 − 3F,φφM

2
Pl(2H

2 + Ḣ)

+ (φ̈+ 3Hφ̇)ω,φ +
φ̇2

2
ω,φφ

]
. (5.6)

To the right hand-sides of Eqs. (2.11) and (2.12), we take
into account the perturbed density 〈ρδφ〉 and the pressure
〈Pδφ〉 of produced φ particles, respectively. Assuming
that the conditionsm� H and 〈δφ2〉 �M2

Pl hold during
reheating, we have

〈ρδφ〉 =
ω(φ)

2

[
〈 ˙δφ

2
〉+

1

a2
〈∂δφ〉2

]
+

1

2
g2χ2〈δφ2〉, (5.7)

〈Pδφ〉 =

[
ω(φ)

2
− βF (φ)

] [
〈 ˙δφ

2
〉+

1

a2
〈∂δφ〉2

]
−1

2
g2χ2〈δφ2〉 , (5.8)

where

〈 ˙δφ
2
〉 =

∫
dk

k2

2π2
| ˙δφk|2 , (5.9)

〈∂δφ〉2 =

∫
dk

k4

2π2
|δφk|2 . (5.10)

Defining the rescaled perturbed field

δϕk = a3/2ω1/2δφk , (5.11)

Eq. (5.5) can be expressed in the form

δ̈ϕk + Ω2
k δϕk = 0 , (5.12)

where

Ω2
k =

k2

a2
− 9

4
H2 − 3

2
Ḣ +

1

ω

[
g2χ2 − 3F,φφM

2
Pl(2H

2 + Ḣ)

+
1

2
(φ̈+ 3Hφ̇)ω,φ +

φ̇2ω2
,φ

4ω

]
. (5.13)

The typical wavenumber relevant to the parametric ex-
citation of φ particles is k/aI ∼ m, where aI is the scale

factor at the onset of reheating. The perturbations with
k/aI ∼ m are deep inside the Hubble radius during in-
flation (k/a � H), so the dominant contribution to Ω2

k
is the term k2/a2. For such modes, we choose a positive-
frequency solution in the Bunch-Davies vacuum state as

δϕk =
1√
2Ωk

e−i
∫

Ωkdt , (5.14)

which corresponds to an initial condition of δϕk at the
onset of reheating. For the modes k/aI ∼ m, the fre-
quency Ωk can be approximated as Ωk ' k/a during
inflation except for the last short period in which k2/a2

drops below M2
eff . Then, the amplitude of δφk around

the beginning of reheating is estimated as

|δφk(tI)| '
1

aI
√
ω
√

2k
. (5.15)

The square root of the power spectrum (5.4) for the mode
k/aI ' m is given by√

Pδφk
(tI) '

1√
ω

k

2πaI
' m

2π
, (5.16)

where we used the approximation ω ' 1 in the second
equality. The perturbation δφk excited by parametric
resonance has a typical initial amplitude m/(2π). For
the quadratic potential V = m2χ2/2 and the α-attractor

potential (2.15) with α = 1, we have
√
Pδφk

(tI) ≈
10−6MPl.

Let us also estimate the power spectrum of larger-scale
modes of δφk that exit the Hubble radius during infla-
tion. We are interested in the range of coupling g where
parametric resonance occurs during preheating, in which
case M2

eff > 9H2/4 during inflation. After the Hubble
radius crossing during inflation (k < aH), Ω2

k is of or-
der M2

eff ' g2χ2/ω. Around the onset of reheating, the
amplitude of |δφk| can be estimated as

|δφk|(tI) '
1

a
3/2
I

√
ω
√

2Meff

. (5.17)

This corresponds to the power spectrum

Pδφk
(tI) '

1

4π2ωMeff

(
k

aI

)3

' 1

4π2

H3
inf

Meff
e−3Ninf ,

(5.18)
where Hinf is the value of H at the Hubble radius cross-
ing. In the second equality of Eq. (5.18), we have sub-
stituted k = ainfHinf and used the number of e-foldings
Ninf = ln(aI/ainf). For the perturbations relevant to
the observed CMB temperature anisotropies, we have
Ninf = 55 ∼ 60. Taking the value Ninf = 60, the ampli-
tude of perturbations δφk at the beginning of reheating
is of order √

Pδφk
(tI) ' 10−40 Hinf√

rM
, (5.19)
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where rM ≡Meff/Hinf . For the inflationary scale Hinf '
10−4MPl, we have

√
Pδφk

(tI) ' 10−44MPl/
√
rM . This

suppression of the large-scale modes of δφk is analo-
gous to what happens for the homogeneous field φ, see
Eq. (4.8). The positive mass squared M2

eff greater than
the order H2

inf leads to the exponential decrease of δφk
for the perturbations that exit the Hubble radius long
before the end of inflation. From the above discussion,
the large-scale perturbations δφk with wavenumbers k in
the range k/aI � m hardly contribute to the vacuum
expectation value 〈δφ2〉.

Provided the background field φ is suppressed during
inflation, its contributions to Eqs. (2.8) and (2.11)-(2.12)
can be ignored in the early stage of reheating. The initial
reheating period in which χ oscillates coherently can be
identified by a temporal matter era where the scale factor
evolves as a ∝ t2/3 withH = 2/(3t). For the approximate
potential V ' m2χ2/2 around χ = 0, the background
Eqs. (2.8) and (2.11) reduce to χ̈+ 3Hχ̇+m2χ ' 0 and
4M2

Pl/(3t
2) ' χ̇2/2 +m2χ2/2, respectively. The solution

consistent with the virial relation 〈χ̇2/2〉 = 〈m2χ2/2〉
averaged over oscillations is given by

χ = χI
tI
t

sin(mt) , with χI ≡
√

8

3

MPl

mtI
, (5.20)

where χI is the amplitude at the onset of reheating
(t = tI). The inflaton field oscillates with the amplitude
decreasing in proportion to 1/t.

Ignoring the contributions of time derivatives of φ and
terms −9H2/4− 3Ḣ/2 in Eq. (5.13) during the coherent
oscillation of χ, the perturbation δϕk obeys the Mathieu
equation

d2δϕk
dz2

+ [Ak − 2q cos(2z)] δϕk = 0 , (5.21)

where

Ak =

(
k

ma

)2

+ 2q +
2β

3z2
, (5.22)

q = qI

(
tI
t

)2

, qI =
g2χ2

I

4m2
, (5.23)

z = mt . (5.24)

As we see in Eq. (2.13), the homogeneous mode ϕ =
a3/2φ satisfies the same form of equation as (5.21) with
the limit k/(ma) → 0 in Eq. (5.22). If the parameter
qI is in the range qI � 1, it is known that there is an
epoch of the preheating period in which δφk and φ are
amplified by broad parametric resonance [46, 52]. Since
χI is of order MPl for the inflaton potentials discussed in
Sec. IV, preheating can occur in the coupling range

g � m

MPl
. (5.25)

For the exact quadratic potential V = m2χ2/2, the mass
m is constrained to be m = 6.0 × 10−6MPl from the

Planck normalization, so the condition (5.25) translates
to g � 6.0×10−6. Since the parameter q decreases as q ∝
1/t2 due to cosmic expansion, the growth of the variance
〈δφ2〉 actually occurs for g & 10−4 [49, 50, 52]. In the α-
attractor model with α = 1, we have m = 1.1× 10−5MPl

from the Planck normalization, so the bound (5.25) cor-
responds to g � 1.1× 10−5. In this case, the field value
χI at the onset of reheating is smaller than that for the
exact quadratic potential, so the larger coupling g is re-
quired for the realization of broad parametric resonance.

For the coupling g in the range (5.25), the homoge-
neous field φ is exponentially suppressed (|φ| ∝ a−3/2)
during inflation. Since we are considering the coupling
constant around β ∼ −4, the term 2β/(3z2) in Eq. (5.22)
is less than the order 1 for z & 1. Provided that
g � m/MPl, the condition 2q � 2|β|/(3z2) is satisfied
during preheating, so the nonminimal coupling β hardly
affects the dynamics of δφk. If g ∼ m/MPl, the param-
eter 2q is of the same order as 2|β|/(3z2) and hence the
coupling β cannot be ignored. In such cases, however,
the absence of parametric resonance does not lead to the
growth of the field variance 〈δφ2〉. For the range of g
where the preheating does not occur, we do not take the
backreaction into account.

For wavenumbers in the range k/aI � m, the term
(k/maI)

2 is much larger than 1. Although k/(ma) de-
creases during reheating, the parametric excitation of δφk
is not significant for k/aI very much larger than m. We
recall that the perturbations δφk with k/aI � m as well
as the homogeneous mode φ are subject to the expo-
nential suppression during inflation. Then, the main
contribution to 〈δφ2〉 at the beginning of preheating
comes from the modes distributed around k/aI ∼ m.
We compute the variances (5.3) and (5.9)-(5.10) for the
wavenumbers up to k/aI . 102m by using the initial
condition (5.14) at the onset of reheating.

A. Quadratic potential

Let us first study the reheating dynamics for the in-
flaton potential V (χ) = m2χ2/2. As we showed in
Sec. IV A, the amplitude of φ decreases as |φ| ∝ a−3/2

during inflation for g > 1.31 × 10−5. Parametric reso-
nance occurs for g & 10−4, in which regime the field value
φI at the onset of reheating is determined by Eq. (4.8),
where φinf is limited as Eq. (4.1). When g & 10−4, the
second condition of (4.1) gives the upper bounds of φinf

and φI . For larger g, the maximum values of φinf and
φI tend to be smaller. In the numerical simulation given
below, we use the maximum allowed values of φI con-
strained by Eq. (4.1) as the initial condition of reheating.

In Fig. 4, we show the evolutions of |φ|, χ2, and
〈δφ2〉 during the early stage of reheating for the coupling
g = 2.0× 10−3 with β = −4.4, m = 6.0× 10−6MPl, and
Γ = 1.0×10−13MPl, in which case qI = 5.6×104. In this
case, the variance 〈δφ2〉 starts to increase by paramet-
ric resonance and eventually catches up with the back-



10

FIG. 4. Evolutions of |φ|, χ2, 〈δφ2〉 during the early stage
of reheating for the quadratic potential V (χ) = m2χ2/2 with
g = 2.0 × 10−3, β = −4.4, m = 6.0 × 10−6MPl, and Γ =
1.0 × 10−13MPl (x = |φ|, χ2, 〈δφ2〉 in the figure). Here φ is
normalized by MPl, while χ2 and 〈δφ2〉 are normalized by
M2

Pl. The initial field value φI at the onset of reheating is
determined by the evolution of φ during inflation discussed
in Sec. IV. The red and green lines correspond to the cases
in which the backreaction of created particles is included and
neglected, respectively.

ground inflaton density χ2. After 〈δφ2〉 grows to the or-
der m2/g2, the backreaction of created particles starts to
violate the coherent oscillation of χ. In Fig. 4, this prop-
erty can be seen after χ2 drops below 〈δφ2〉. The growth
of 〈δφ2〉 terminates by the violation of coherent oscilla-
tions of χ. In the regime where qI is sufficiently larger
than 1, our numerical analysis shows that the maximum
values of 〈δφ2〉 reached during preheating have the ap-
proximate dependence 〈δφ2〉max ∝ 1/

√
qI . This property

agrees with what was found for a minimally coupled the-
ory (β = 0) [50]. This means that, for increasing g in the
range qI � 1, 〈δφ2〉max tends to be suppressed.

In Fig. 4, we observe that the homogeneous field φ
stops growing after 〈δφ2〉 catches up with χ2. Hence the
backreaction induced by the growth of 〈δφ2〉 terminates
the parametric excitation of φ as well. For g = 2.0×10−3,
the maximum value of |φ| reached during preheating is
of order φmax = 10−40MPl. If we do not take the back-
reaction of created particles into account, |φ| continues
to grow by the time at which the resonance parameter q
drops below the order 1. Without the backreaction ef-
fect, the maximum field value φmax for g = 2.0× 10−3 is
of order 10−21MPl, which is enormously larger than the
value 10−40MPl obtained by implementing the backreac-

tion (see Fig. 4).
In Fig. 5, we plot the evolution of |φ| for four differ-

ent values of g. Provided that g & 10−4, |φ| is initially
amplified by parametric resonance. For g = 1.0 × 10−4,
which corresponds to the parameter qI = 1.4×102, there
is an initial short period in which |φ| is enhanced, but
the growth is limited due to the early entry to the region
q . 1. For g & 10−2, the growth of |φ| is terminated by
the backreaction of created particles. When g ' 10−2,
we find that φmax is of order 10−38MPl. In this case,
the maximum value of |φ| obtained without the backre-
action is of order 10−3MPl, which is 1035 times as large as
the value 10−38MPl. This shows the importance of prop-
erly implementing the backreaction effect to estimate the
maximum value of φmax reached during preheating.

FIG. 5. Evolution of |φ|/MPl versus mt during the early
stage of reheating for the quadratic potential V (χ) = m2χ2/2
with β = −4.4, m = 6.0× 10−6MPl, and Γ = 1.0× 10−13MPl.
Each line corresponds to (a) g = 1.0 × 10−4 (black), (b) g =
3.0 × 10−3 (red), (c) g = 1.5 × 10−2 (blue), and (d) g =
5.0× 10−2 (green).

As g increases in the coupling range g & 10−2, φmax

tends to be suppressed in comparison to the value around
g = 10−2. Indeed, we can confirm this property in Fig. 5
for the coupling g = 5.0 × 10−2. Then, for g & 10−4,
the maximum values of |φ| obtained under the Hartree
approximation are in the range

φmax . 10−38MPl . (5.26)

This is significantly smaller than the upper limit |φR| '
10−11MPl constrained from the post-Newtonian bound
at the end of reheating.

We note that our approximation scheme does not in-
corporate nonlinear effects like rescattering. However, it
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is known that the rescattering of φ particles off the infla-
ton condensate tends to limit the growth of 〈δφ2〉 further
[49]. This means that the growth of the homogeneous
field φ should be also limited, so it is expected that the
maximum values of φ do not exceed those derived un-
der the Hartree approximation. After the rescattering of
produced particles, the variance 〈δφ2〉 reaches an equilib-
rium state. At this stage, the significant amplification of
the homogeneous field from |φ| . 10−38MPl to the value
exceeding the order 10−11MPl by the end of reheating is
unexpected.

In particular, the effective mass squared (2.14) is ap-
proximately given by m2

eff ' g2χ2 + 3βH2/2 in the tem-
poral matter era during reheating. Until the onset of
the radiation era at which the inflaton field χ completely
decays to radiation, the negative coupling term 3βH2/2
does not completely dominate over the positive contribu-
tion g2χ2 to m2

eff . Hence the strong tachyonic instability
of φ induced by the negative nonminimal coupling con-
stant β is not expected at the late stage of reheating.
Eventually, the Born decay term Γχ̇ in Eq. (2.8) starts
to work to convert the inflaton density to the radiation
density.

Thus, for g & 10−4, the growth of |φ| saturated by
the backreaction during preheating allows the field value
φR at the end of reheating consistent with the post-
Newtonian constraint.

For g . 10−4, the preheating stage is absent and hence
we do not need to incorporate the backreaction effect.
For g . 10−5, the coupling g does not overwhelm the
negative nonminimal coupling β in the effective mass of
φ. Then, φ is not subject to the strong suppression during
inflation. In Fig. 6, we plot the evolution of |φ|/MPl

during inflation and reheating for three different values
of g with the decay constant Γ = 1.0 × 10−9MPl. We
integrate the background equations of motion by the end
of reheating (time tR) at which ρr catches up with the
inflaton density ρχ = χ̇2/2 + V (χ). In case (a) the field
value at t = tR is of order 10−10MPl, so it exceeds the
solar-system bound |φR| . 10−11MPl. In cases (b) and
(c), the field values at t = tR are of orders 10−15MPl

and 10−20MPl, respectively, which are well within the
bound |φR| . 10−11MPl. This means that, for Γ = 1.0×
10−9MPl, the coupling in the range g ≥ 1.28× 10−5 can
be consistent with the solar-system constraint.

In Fig. 6, we observe that, after the initial rapid de-
crease of |φ| during inflation, |φ| exhibits mild decrease
in the reheating period. This reflects the fact that g2χ2

is larger than the term 3|β|H2/2 during reheating. The
field value φR at the end of reheating depends on the de-
cay constant Γ. For decreasing Γ, |φR| tends to be smaller
because of the longer period of reheating. We also note
that the field value φI at the beginning of reheating de-
pends on the duration of inflation. For the minimum
number of e-foldings N = 60, the criterion consistent
with the bound |φR| . 10−11MPl is given by

g ≥ 1.3× 10−5 , (5.27)

FIG. 6. Evolution of |φ|/MPl versus ln(mt) during inflation
and reheating for the quadratic potential V (χ) = m2χ2/2
with β = −4.4, m = 6.0× 10−6MPl, and Γ = 1.0× 10−9MPl.
Each line corresponds to (a) g = 1.27 × 10−5 (red), (b) g =
1.28 × 10−5 (blue), and (c) g = 1.29 × 10−5 (green). Two
black dashed lines show the evolution of the inflaton density
ρχ and radiation density ρr. We integrate the background
equations by the time at which ρr catches up with ρχ.

irrespective of the values of Γ smaller than H at the end
of inflation. Thus, the mechanism proposed by Anson et
al. [42] works even for small couplings of order 10−5.

B. α-attractor with α = 1

We also study the dynamics of φ in the α-attractor
model with α = 1. In the α-attractor model, the
field value χI = 0.940MPl at the onset of reheating
is smaller than that for the exact quadratic potential.
Hence we require larger couplings g to enhance both φ
and 〈δφ2〉 by parametric resonance in comparison to the
case of quadratic potential. In the numerical simula-
tion of Fig. 7, we observe that |φ| does not grow for
g = 1.0 × 10−4, but parametric resonance occurs for
g = 1.0× 10−3.

Numerically, we find that the maximum value of |φ|
reached for g = 5.0× 10−3 is of order φmax = 10−38MPl

under the Hartree approximation. As g increases in the
range g & 5 × 10−3, φmax tends to be decreased. This
property can be seen in Fig. 7 for the couplings g =
1.0 × 10−2 and g = 1.0 × 10−1. Thus, for any couplings
with g & 10−4, the maximum values of |φ| reached during
preheating are in the range

φmax . 10−38MPl , (5.28)
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which are again much smaller than the post-Newtonian
upper limit φR ' 10−11MPl at the end of reheating.

FIG. 7. Evolution of |φ|/MPl versus mt during the early
stage of reheating for the α-attractor potential (2.15) with
α = 1, β = −4.4, m = 1.1×10−5MPl, and Γ = 1.0×10−13MPl.
Each line corresponds to (a) g = 1.0× 10−4 (black), (b) g =
1.0×10−3 (red), (c) g = 5.0×10−3 (blue), (d) g = 1.0×10−2

(green), and (e) g = 1.0× 10−1 (brown).

If we ignore the backreaction of created φ particles,
φmax can be significantly larger than the upper limit
(5.28). When g = 1.0×10−1, for example, the numerical
value of φmax derived by neglecting the backreaction ef-
fect is of order 10−2MPl, which is very much larger than
10−11MPl. Thus, inclusion of the backreaction is cru-
cially important for the proper estimation of φmax. The
upper limit φmax = O(10−38MPl) derived in the presence
of the preheating stage is similar to that obtained for the
quadratic inflaton potential.

For the coupling g smaller than the order 10−5, the
field φ is not subject to strong suppression during in-
flation. Since parametric resonance does not occur for
such small couplings, we do not need to implement
the backreaction of created φ particles. In Fig. 8, we
show the evolution of |φ| during inflation and reheating
for three different values of g with the decay constant
Γ = 1.0 × 10−9MPl. In cases (a) and (b) the field val-
ues at the end of reheating (time t = tR) are of order
10−11MPl and 10−25MPl, respectively, so case (b) is con-
sistent with the solar system limit |φR| . 10−11MPl.

We need to caution that, in both cases (a) and (b),
|φ| grows during reheating due to the dominance of the
negative nonminimal coupling 3βH2/2 relative to g2χ2 in
m2

eff (whose dominance starts to occur during inflation).
If we consider a very low energy-scale reheating where
the reheating temperature is of order MeV [71, 72], the

FIG. 8. Evolution of |φ|/MPl versus ln(mt) during inflation
and reheating for the α-attractor potential (2.15) with α = 1,
β = −4.4, m = 1.1× 10−5MPl, and Γ = 1.0× 10−9MPl. Each
line corresponds to (a) g = 6.7×10−6 (red), (b) g = 8.0×10−6

(blue), and (c) g = 1.6×10−5 (green). Two black dashed lines
show the evolution of the inflaton density ρχ and radiation
density ρr. The background equations are integrated by the
time at which ρr catches up with ρχ.

decay constant is of order Γ ' 1 sec−1 ' 10−43MPl. In
this case, the time at the end of reheating is estimated as
tR ' 1/Γ ' 1043M−1

Pl and hence ln(mtR) ' 88. In case
(b), for example, the order of |φ| increases by one order of
magnitude during the time interval ln(m∆t) = 2. Then,
for the MeV scale reheating, the field value φR exceeds
the limit even in case (b).

To avoid the increase of |φ| during reheating, we re-
quire that m2

eff is positive by the end of inflation. As
we discussed in Sec. IV B, this translates to the condi-
tion g > 1.61 × 10−5 for the α-attractor with α = 1.
In case (c) of Fig. 8, we plot the evolution of |φ| for
g = 1.6×10−5. This corresponds to the marginal case in
which the monotonic growth of |φ| during reheating can
be avoided. Then, provided that

g ≥ 1.6× 10−5 , (5.29)

the field value at the end of reheating does not exceed the
solar-system limit irrespective of the decay constant Γ.
For the coupling range g & 10−3 in which the preheating
epoch is present, the maximum field value is limited as
Eq. (5.28). In this coupling regime, g2χ2 dominates over
3|β|H2/2 after inflation and hence the growth of |φ| from
the end of preheating to the onset of radiation era is not
expected to occur.
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VI. CONCLUSIONS

In this paper, we studied the cosmological evolution
of a scalar field φ in the presence of a nonminimal cou-

pling e−βφ
2/(2M2

pl)R and a four-point coupling g2φ2χ2/2
between φ and the inflaton field χ. This nonminimal cou-
pling gives rise to the phenomenon of spontaneous scalar-
ization of NSs for β ≤ −4.35. If we apply the original
DEF scenario to cosmology, the scalar field φ is subject to
tachyonic instability during the periods of cosmic acceler-
ation and matter dominance. In Ref. [45], it was argued
that the coupling g2φ2χ2/2 allows a possibility for curing
this problem by realizing a positive mass squared during
inflation.

Since the dynamics of the field φ during the post
inflationary reheating period was not addressed in the
literature, we have studied the cosmological evolution
from the onset of inflation to today including the reheat-
ing stage. To satisfy solar-system constraints, the field
value at the beginning of radiation era is constrained as
Eq. (3.9). For the coupling β relevant to the occurrence
of spontaneous scalarization, this bound corresponds to
|φR| . 10−11MPl.

Provided that the effective mass squared (2.14) is
larger than the order of H2 during inflation, the field
φ is subject to the exponential suppression (|φ| ∝ a−3/2)
by the end of inflation. For the quadratic and α-attractor
potentials with α = 1, we showed that this suppression
of φ occurs for the coupling g in the ranges (4.9) and
(4.10), respectively, whose minimum values are both of
order 10−5. With these two potentials, the parametric
excitation of φ and its perturbations during preheating
can occur for g & 10−4 and g & 10−3, respectively. If we
do not take the backreaction of created φ particles into
account, the maximum values of |φ| reached during pre-
heating can exceed the order of 10−11MPl. Incorporat-
ing the backreaction under the Hartree approximation,
however, we found that φmax is smaller than the order
of 10−38MPl. After the termination of parametric reso-
nance, the further growth of |φ| is unexpected by the end
of reheating because the g2χ2 term dominates over the
negative nonminimal coupling in the equation of motion
of φ.

In the regime of small couplings g without the pre-
heating stage, we also numerically solved the background
equations of motion by the end of reheating with the

Born decay term taken into account. For the quadratic
inflaton potential, the amplitude of φ decreases during
reheating in the range of couplings g that gives a posi-
tive mass squared during inflation. In this case, provided
g ≥ 1.3 × 10−5, the model is consistent with the solar-
system bound |φR| . 10−11MPl. For the α-attractor
with α = 1, m2

eff can change its sign during inflation by
the presence of a negative nonminimal coupling even if
m2

eff > 0 at the onset of inflation. In such cases, the
growth of |φ| also occurs in the reheating period, see
Fig. 8. If we consider a low-scale reheating scenario with
the reheating temperature of order MeV, the monotonic
growth of |φ| during a long period of the reheating era
can conflict with the limit |φR| . 10−11MPl. Provided
g ≥ 1.6×10−5, we found that the α-attractor with α = 1
can be consistent with the solar-system bound irrespec-
tive of the decay constant Γ.

We thus showed that, for natural couplings in the range
g & 10−5, the scenario proposed by Anson et al. leads
to the viable cosmological evolution of φ consistent with
today’s local gravity constraints. Since the inflaton field
decays to radiation by the onset of radiation era, it does
not affect the process of spontaneous scalarization of NSs
which can occur in later cosmological epochs. Interest-
ingly, the field φ responsible for spontaneous scalarization
can also exhibit the phenomenon of parametric resonance
in the early Universe. It is then possible to probe this
scenario not only from the gravitational waveform emit-
ted from compact binaries but also from the gravitational
wave background.

While we focused on the cosmology in the DEF model
with the coupling g2φ2χ2/2, it may be of interest to ex-
tend the analysis to the cases in which higher-order φ-
dependent terms like φ4 in F (φ) [41] or k-essence terms
like X2 [39] are also present. This may widen parameter
spaces of the coupling constant β consistent with binary
pulsar constraints. These issues are left for future works.
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