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Abstract

A new notion of integrability called the multi-dimensional consistency for the integrable systems with the 
Lagrangian 1-form structure is captured in the geometrical language for quantum level. A zero-curvature 
condition, which implies the multi-dimensional consistency, will be a key relation, e.g. Hamiltonian opera-
tors. Therefore, the existence of the zero-curvature condition directly leads to the path-independent feature 
of the mapping, e.g. multi-time evolution in the Schrödinger picture. Another important result is the for-
mulation of the continuous multi-time propagator. With this new type of the propagator, a new perspective 
on summing all possible paths unavoidably arises as not only all possible paths in the space of dependent 
variables but also in the space of independent variables must be taken into account. The semi-classical 
approximation is applied to the multi-time propagator expressing in terms of the classical action and the 
fluctuation around it. Therefore, the extremum propagator, resulting in path independent feature on the 
space of independent variables, would guarantee the integrability of the system.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Classically, the standard notion of integrability of the Hamiltonian systems is the Liouville-
Arnold theorem [1,2]. In this notion of integrability, the Hamiltonian systems, whose the evolu-
tion is given on 2N -dimensional manifold called the cotangent bundle, must possess N invariant 
quantities which are independent and in involution. A key feature in this context is the Hamilto-
nian commuting flows as a direct consequence of the involution. Alternatively, the integrability 
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can be inferred from the existence of the r-matrix, which is equivalent with the involution rela-
tion, through the language of the Lax matrices [1].

In the discrete context, the standard Liouville-Arnold theorem can be constructed [3]. How-
ever, the discrete world is quite fascinate in the sense that all variables are treated on the 
same equal footing. Consequently, there are various notions of integrability, e.g. existence of 
r-matrix [4], singularity confinement [5] and algebraic entropy [6]. However, there is one re-
markable aspect of integrable multi-dimensional discrete systems known as a multi-dimensional 
consistency [7]. With this feature, one can consistently express the difference equations in a 
multi-dimensional lattice, i.e., two dimensional lattice system can be consistently embedded in a 
three dimensional lattice such that the quadrilateral equations describing three side-to-side con-
nected surfaces of a cube can be solved for a coincide result with a given initial conditions [8]. 
This feature is known as the consistency-around-the cube (CAC). Later, Adler, Bobenko and 
Suris employed this property to classify the quadrilateral equations for two dimensional lattice 
known as the ABS list [9]. Another important aspect of the multi-dimensional consistency in 
the discrete level is the Lagrangian multi-form theory. Lobb and Nijhoff first set out to formu-
late the discrete theory for 2-form and 3-form cases [8,10]. A key relation in this context is the 
Lagrangian closure relation, which holds on the solution of the system, as a direct result of the 
variation of the action with respect to independent variables. The existence of the Lagrangian 
closure relation guarantees the constant value of the action under local deformation of the sur-
face in the 2-form case and the volume in the 3-form case on the space of independent variables. 
Soon later, the 1-from case was formulated by Yoo-Kong, Lobb and Nijhoff [11] in both discrete 
and continuous levels through an important model known as the Calogero-Moser system [12,13], 
see also [14]. Again, the existence of the Lagrangian 1-form closure relation guarantees the con-
stant value of the action under local deform of the curve on the space of independent variables. 
Therefore, the feature implies path-independent property and the multi-time evolution does not 
depends on the choice of paths, but rather the end points on the space of independent variables. 
Indeed, this is nothing but the multi-dimensional consistency feature1 which is represented in 
the level of Lagrangians.2 After these pioneer works, a series of papers has been producing and 
pushing further in various aspects as well as various systems [15–29].

In quantum realm, the notion of integrability is not well established. Naively, one can follow 
the canonical quantisation by promoting a set of invariances or a set of Hamiltonians to be a 
set of Hamiltonian operators. Therefore, the integrability demands commutator of the Hamil-
tonian operators to be zero.3 However, Weigert [30] provided an encounter example, which is 
non-integrable system, satisfying the vanishing commutator condition. However, many attempts 
have been put further to investigate quantum integrability on demanding a quantum correction
terms h̄2 [31–33], promoted from the invariances of the counterpart of classical system and com-
mutations of them, see in [34]. In discrete level, a key tool to study quantum integrable system 
is the quantum mapping was established in [35] and was applied in the integrability context in 
[36,37]. Alternatively, Feynman approach on quantising the system might be a better choice [38]. 
The pioneer works on this direction were investigated by Field and Nijhoff [39], see also [40] in 

1 One needs to include the variation with respect to dependent variables resulting in the generalised Euler-Lagrange 
equations and constraints. These equations all together give us a compatible system of equations describing the multi-time 
evolution of the system.

2 As we mentioned earlier that the multi-dimensional consistency was first formulated on the level of discrete equations 
of motion.

3 This can be viewed as the quantum analogue of the involution.
2
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the discrete systems. Recently, King and Nijhoff set out to formulate quantum path integration 
incorporated with the quadratic Lagrangian multi-form structure in the discrete level [41]. What 
they did is to impose the periodic reduction on linearised discrete KdV in one particular direc-
tion, resulting in the discrete harmonic oscillator. Imposing on another discrete direction, one 
obtains another discrete harmonic oscillator. Therefore, the discrete Lagrangians for these har-
monic oscillators can be explicitly written. Consequently, the explicit form of the multi-discrete 
propagator can be obtained, since the Gaussian integral can be used in this case. An intriguing 
feature of this multi-discrete propagator is path-independent feature on the space of independent 
discrete variables. In other words, the multi-discrete propagator remains the same under local 
deformation of the discrete paths on the space of independent discrete variables. Then, in this 
quantum scenario, one might have to take all possible discrete paths not only on the space of 
dependent variables, but also on the space of independent variables into account. This new con-
ceptual view on propagator was first proposed by Nijhoff [42] in the continuous case to capture 
the multi-dimensional consistency in language of the path integrals. However, the explicit con-
nection between the discrete set up and the Nijhoff’s continuous proposal for the Lagrangian 
multi-form of the propagator is still missing. In this contribution, the multi-time propagator 
for the case of arbitrary Lagrangian 1-forms is constructed and integrability condition is given 
through the scheme called the quantum variational principle.

The structure of this paper is as follows. In section 2.1, a set of multi-time Schrödinger 
equations is given and the consistency of these equations will be derived resulting in the zero-
curvature condition for the Hamiltonian operators. Then the unitary multi-time operator is 
expressed in terms of the Wilson line and this unitary multi-time operator possesses the path-
independent as a direct result of the zero-curvature condition of the Hamiltonian operators. In 
section 2.2, the multi-time propagator is systematically derived. A new type of the functional 
measure is defined, since all possible path on the space dependent variables and independent 
variables must be included. The semi-classical method is applied and then integrability, indi-
cating by path-independent feature on the space of independent variables, of the system shall 
be given based on the closure relation of Lagrangians. In section 3, the summary together with 
important remarks will be given.

2. Multi-dimensional consistency as integrability

Let us first recall the two main features used to indicate the integrability of the classical 
system. For the Hamiltonian systems with N degrees of freedom, there exists a set of first in-
tegrals (treated as Hamiltonains) {H1, H2, ..., HN }, which are independent and in involution: 
{Hl, Hk} = 0 , l �= k = 1, 2, ..., N , or equivalently, ∂Hl/∂tk = ∂Hk/∂tl , l �= k = 1, 2, ..., N . 
Consequently, the involution leads to an important feature known as the Hamiltonian commuting 
flows. On the Lagrangian side, there also exists a set of Lagrangian 1-form {L1, L2, ..., LN }, 
which satisfies the relations: ∂Ll/∂tk = ∂Lk/∂tl , l �= k = 1, 2, ..., N known as the closure 
relation. Both involution and closure relation imply the multi-dimensional consistency of the 
multi-time evolution of the system. At this point, it is very natural to extend the idea to the 
quantum level. In the standard manner, with the existence of the Hamiltonian, one can lift to the 
quantum case with the Schrödinger approach. With the existence of the Hamiltonian hierarchy, 
one expects to have a set of Schrödinger equations and therefore, the compatible multi-time evo-
lution of the wave function is what we are interested. Alternatively, one can prefer to quantise the 
system with Feynman approach based on the action and Lagrangian. In the same analogy, there 
3
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exists the Lagrangian hierarchy. Then, one also expects to have multi-time propagators with a 
compatible multi-time evolution.

2.1. Schrödinger picture and zero-curvature condition

In this section, the multi-time evolution of the wave function will be studied. To de-
rive a set of Schrödinger equations, we shall promote a set of non-autonomous Hamiltoni-
ans {H1, H2, ..., HN }, associated with time variables t ≡ {t1, t2, ..., tN }, to be a set of non-
autonomous Hamiltonian operators {Ĥ1, Ĥ2, ..., ĤN }, resulting in

ih̄
∂

∂tl
|�(t)〉 = Ĥl |�(t)〉 , l = 1,2, ...,N , (2.1)

where |�(t)〉 is the eigenstate for Ĥl, l = 1, 2, ..., N .

Theorem 2.1. Let |�(t)〉 be a multi-time normalised vector in a Hilbert space H and {Ĥl :
H �→ H , l = 1, 2, . . . , N} be a set of non-autonomous Hamiltonian operators. All Schrödinger 
equations in (2.1) will be consistent if

∂Ĥk

∂tl
− ∂Ĥl

∂tk
− i

h̄

[
Ĥk, Ĥl

]= 0 , k �= l = 1,2, ...,N , (2.2)

hold.

Proof. The quantities ∂tl − (1/ih̄)Ĥl , where l = 1, 2, ..., N , can be treated as the covariant 
derivative and the system of equations (2.1) is overdetermined. Thus, Ĥl , where l = 1, 2, ..., N , 
must satisfy a compatible condition such that

∂2

∂tl∂tk
|�(t)〉 = ∂2

∂tk∂tl
|�(t)〉 . (2.3)

This (2.3) is nothing but equivalently

∂Ĥk

∂tl
− ∂Ĥl

∂tk
− i

h̄

[
Ĥk, Ĥl

]= 0 , k �= l = 1,2, . . . ,N , (2.4)

which is therefore the zero-curvature condition for the Hamiltonian operators.
Alternatively, if we define a unitary operator for the multi-time evolution Û(t) such that

|�(t)〉 = Û(t) |�(0)〉 , (2.5)

where Û†(t)Û(t) = I with 〈�(t)|�(t)〉 = 〈�(0)|�(0)〉, the equations (2.1) give a set of equations

ih̄
∂

∂tl
Û(t) = ĤlÛ(t) , l = 1,2, ...,N . (2.6)

If we are interested in the unitary evolution associated with time variable tl, we obtain

Ûl(t) = Ûl(0,0, . . . , tl , . . . ,0,0) = Te
− i

h̄

´ tl
0 Ĥldtl , (2.7)

where T is time-ordering operator. Therefore, on the space of time variables, the unitary operator, 
which maps the state along the path � shown in Fig. 1a, is given by4

4 The construction of the composite map is given in appendix A.
4
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Fig. 1. The evolution of system on the space of 2 time variables.

Û�(t) = Û1 ◦ Û2 · · · ◦ ÛN = Te
− i

h̄

´
�

∑N
j=1 Ĥj dtj . (2.8)

Equation (2.8) is nothing but the Wilson line representation of the operator Û and the Hamil-
tonian operators will be treated as the gauge variables in this situation. Under the local de-
formation: � �→ �′, the evolution is consistent: Û� = Û�′ . Therefore, this relation implies the 
path-independent feature of the multi-time evolution of the state |�〉. Equivalently, this path-
independent feature gives identity for the loop evolution, see Fig. 1b, such that

Û�(t) = Te
− i

h̄

¸
C=∂S

∑N
j=1 Ĥj dtj = Pe

− i
h̄

˜
S
∑N

k�l

∑N
l=1 Ẑlkdtl∧dtk = I , (2.9)

where T is a time-ordering operator for a loop path5 and P is a surface-ordering operator [43,44]
and

Ẑlk = Û−1
γ

(
∂Ĥk

∂tl
− ∂Ĥl

∂tk
− i

h̄

[
Ĥk, Ĥl

])
Ûγ = 0 (2.10)

is a twisted curvature [44] in the Schrödinger picture where γ represents an arbitrary path con-
necting between the origin and t. The vanishing curvature is nothing but the equation (2.4). We 
finally note that this compatible multi-time evolution is actually a commutation of multi-time 
unitary operators: [Ûl , Ûk] = 0. Therefore, this commutativity can be treated as a quantum inte-
grability in the Schrödinger’s picture. �
We note that the relation (2.4) is a quantum version of the involution of the Hamiltonians in the 
classical context

∂Hk

∂tl
− ∂Hl

∂tk
+ {Hk,Hl

}= 0 ,

which gives a core feature of the classical integrability known as the Hamiltonian commuting 
flows.

Remark. The integrable quantum systems must possess the zero-curvature condition, but the 
converse is not necessary true [30].

5 The definition of the time-ordering operator is given in appendix B.
5
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Fig. 2. Some possible paths on the space of independent discrete variables.

2.2. Feynman picture and compatible multi-time propagators

Let us first briefly outline what we are going to do in this section. We shall first give derivation 
with a general setup and later fit our results with a recent development on quantum multi-
dimensional consistency [41]. Therefore, we would like to provide some key points of King 
and Nijhoff work. What they did is investigate the two dimensional periodic reduction of the 
lattice KdV, resulting in two different discrete-time harmonic oscillators. By doing redefinition 
of discrete parameters, one obtains two different continuous harmonic oscillators

d2q

dt2
1

+ ω2
1q = 0 , (2.11)

d2q

dt2
2

+ ω2
2q = 0 , (2.12)

where q(t1, t2) is position variables and (t1, t2) are two different time variables. Here the mass of 
the system is set to be one. The variables ω1 and ω2 play the role of frequency for the first and 
second systems, respectively. Then, they study properties of the multi-time propagator (in the 
discrete setup) for the quadratic Lagrangian 1-form case. The King-Nijhoff formula for multi-
discrete propagator

K(qb(M,N );qa(0,0)) =
∑
�∈B

N�K�(qb(M,N );qa(0,0) (2.13)

possesses the path independent feature on the space of independent variables, see Fig. 2. Then 
loops will not contribute to the propagator as a direct result of Lagrangian closure relation. Here 
N� is a normalising factor and B is a set of all possible paths in the discrete space of independent 
variables. What we will do next is to extend their result to the continuous case. We first would 
like to provide some basic ingredients for the standard propagator (the single-time propagator) 
given by
6



T. Kongkoom and S. Yoo-Kong Nuclear Physics B 987 (2023) 116101
Fig. 3. The fluctuation around the classical path qc(t) with the initial point q(t ′) and the final point q(t ′′).

K
(
q′′, t ′′;q′, t ′

)=:
q′′ˆ

q′
D[q(t)]e i

h̄
S[q(t)]

. (2.14)

Here S[q(t)] = ´ t ′′
t ′ L(q, q̇; t)dt is the action functional and L(q, q̇; t) is the standard Lagrangian. 

The notation 
´ q′′

q′ D[q(t)] plays the role of the functional measure over the configuration space 

of the paths (spatial paths). The role of the propagator is to map the state from 
〈
q′|�(t ′)

〉
to 〈

q′′|�(t ′′)
〉
.

In practice, the propagator (2.14) is not convenient for the calculation. Therefore, the semi-
classical approximation method is applied by considering all constructive contributions around 
the classical path. To proceed such method, we write q(t) = qc(t) + y(t), see Fig. 3, where qc(t)

is the classical path and y(t) is a fluctuation with the boundary conditions: y(t ′′) = y(t ′) = 0. 
Doing the expansion with respect to the fluctuation, the propagator becomes

K
(
q′′, t ′′;q′, t ′

)= e
i
h̄
S[qc(t)]Q(q′′, t ′′,q′, t ′) [1 +O(h̄)] , (2.15)

where

Q(q′′, t ′′,q′, t ′) =
q′′ˆ

q′
D[y(t)]e

i
2h̄

´ t ′′
t ′ dτ

´ t ′′
t ′ dσ

(
y(τ )

δ2S[qc(t)]
δq(τ )δq(σ )

y(σ )

)
. (2.16)

Here Q(q′′, t ′′, q′, t ′) is a smooth function of end points since the variable y is integrated out. 
The explicit form the function Q(q′′, t ′′, q′, t ′) can be formally expressed as [45,46]

Q(q′′, t ′′,q′, t ′) = det

(
i

2πh̄

∂2S[qc(t)]
∂q(t ′′)∂q(t ′)

) 1
2

. (2.17)

With all basic ingredients above, we are now ready to extend the notion of the propagator 
(2.14) into the case of multi-time Lagrangian 1-forms.

Definition 2.1 (A multi-time propagator). Let L =∑N
j=1 Ljdtj be a Lagrangian 1-form, where 

Lj = Lj

(
q,
{

∂q
∂tj

; j = 1,2, . . . ,N
}

; t
)

. On the space of independent variables (time variables) 

parameterised by a variable s such that t(s), where s′ < s < s′′, the multi-time propagator is 
given by
7
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Fig. 4. The two dimensional space of time variables t1 and t2 partitioning by the plaquettes with the size ε1 × ε2.

K(q(t(s′′)), s′′;q(t(s′)), s′) =
q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]e i
h̄

´
{�:�∈B} L , (2.18)

where L = ds
∑N

j=1 Ljdtj /ds and ́ D[q(s); � ∈ B] is the functional measure over all possible 
spatial-temporal paths. Here � ∈ B, where B is a family of paths connecting the point t(s′) with 
the point t(s′′) on space of time variables.

To construct the multi-time propagator (2.18), we shall first start with the case of 2 time vari-
ables (t1, t2) for simplicity. We therefore partition space into N ×N ,6 see Fig. 4. We also keep 
in mind that the continuum limit is already taken into account. This means that the propagator in 
each line element, e.g. (i, j) − (i + ε1, j), where i, j ∈ [0, N ], can be automatically expressed 

in the form: K = ´ q(i+ε1,j)

q(i,j) D[q(t1, j)]e i
h̄

´ (i+ε1,j)

(i,j)
L1(t1,j)dt1 . Moreover, we will consider only the 

forward time steps (as we did in the standard single time case) and we will also employ the sym-
metry of the lattice by considering the first evolution in t1 together with all possible deformations 
and later t2 together with all possible deformations, see Fig. 5. To illustrate the idea, let’s consider 
first the simplest path � ∈ B1, where B1 is a set of the path configurations,7 shown in Fig. 5a. 
The propagator is given by

K(1) =
q(ε1N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(ε1N ,0)

6 One can consider the space without symmetry. However, at the end, we are going to consider the limit N → ∞. 
Therefore, it is simpler in terms of formulation with the symmetric case.

7 In this case, there is only one path configuration.
8
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Fig. 5. The 6 first configurations of possible paths.

×
q(ε1N ,ε2N )ˆ

q(ε1N ,0)

D[q(ε1N , t2)]e
i
h̄

(´ (ε1N ,0)

(0,0)
L1(t1,0)dt1+

´ (ε1N ,ε2N )

(ε1N ,0)
L2(ε1N ,t2)dt2

)
, (2.19)

where the superscript (1) denotes the first simplest path. The propagator in (2.19) contains all 
spatial paths along (0, 0) − (N , 0) and all spatial paths along (N , 0) − (N , N ). Both sections are 
glued by the completeness term 

´∞
−∞ dNq at the corner (N , 0). We note that, in equation (2.19), 

the normalising factor is dropped out for our convenient.
Next, for the paths given in 5a and 5b, the propagator can be written as

K(2) =
q(N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

×
q(N ,N )ˆ

q(N ,0)

D[q(N , t2)]e
i
h̄

(´ (N ,0)
(0,0)

L1(t1,0)dt1+
´ (N ,N )
(N ,0)

L2(N ,t2)dt2

)

+
N−1∑
n1=1

q(n1,0)ˆ
D[q(t1,0)]

∞̂

−∞
dNq(n1,0)

q(n1,N )ˆ
D[q(n1, t2)]

∞̂

−∞
dNq(n1,N )
q(0,0) q(n1,0)

9
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×
q(N ,N )ˆ

q(n1,N )

D[q(t1,N )]e i
h̄

(´ (n1,0)

(0,0)
L1(t1,0)dt1+

´ (n1,N )

(n1,0)
L2(n1,t2)dt2+

´ (N ,N )
(n1,N )

L1(t1,N )dt1

)
,

(2.20)

where (2) denotes the first two possible simple paths. Here we note again that, for simplicity, the 
width parameters ε1 and ε2 of the plaquette are dropped out. What we see is that the exponential 
terms in (2.20) are not the same for the first term and the second term. However, if we introduce 
a time parameterised variable s′ < s < s′′ such that t1(s) and t2(s), therefore, we have L =
(L1dt1/ds + L2dt2/ds)ds. Here, if we replace the n1 of the second term in (2.20) by N , one 
would obtain

q(N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

q(N ,N )ˆ

q(N ,0)

D[q(N , t2)]

×
∞̂

−∞
dNq(N ,N )

q(N ,N )ˆ

q(N ,N )

D[q(t1,N )]e i
h̄

´
{�:�∈B1∪B2} L

= 〈q(N ,N )| Û(N ,N ;N ,N )Û(N ,N ;N ,0)Û(N ,0;0,0) |q(0,0)〉
= 〈q(N ,N )| Û(N ,N ;N ,0)Û(N ,0;0,0) |q(0,0)〉

=
q(N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

q(N ,N )ˆ

q(N ,0)

D[q(N , t2)]e
i
h̄

´
{�:�∈B1∪B2} L , (2.21)

which is the propagator in (2.19). Then the propagator K(2) can be simply reduced to

K(2) =
N∑

n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

q(n1,N )ˆ

q(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,N )

×
q(N ,N )ˆ

q(n1,N )

D[q(t1,N )]e i
h̄

´
{�:�∈B1∪B2} L . (2.22)

Here B2 is a set of the path configurations in Fig. 5b. Diagrammatically, what we do in (2.22) is 
just shifting a vertical line from (1, 0) − (1, N ) to (N , 0) − (N , N ).

Next, we include the third possible path, see Fig. 5c, into the calculation. Now the propagator 
in this case becomes

K(3) =
q(N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

q(N ,N )ˆ

q(N ,0)

D[q(N , t2)]e
i
h̄

(´ (N ,0)
(0,0)

L1dt1+
´ (N ,N )
(N ,0)

L2dt2

)

+
N−1∑
n1=1

q(n1,0)ˆ
D[q(t1,0)]

∞̂

−∞
dNq(n1,0)

q(n1,N)ˆ
D[q(n1, t2)]

∞̂

−∞
dNq(n1,N )
q(0,0) q(n1,0)

10
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×
q(N ,N )ˆ

q(n1,N )

D[q(t1,N )]e i
h̄

(´ (n1,0)

(0,0)
L1dt1+

´ (n1,N)

(n1,0)
L2dt2+

´ (N ,N )
(n1,N )

L1dt1

)

+
N−1∑
m1=1

N−1∑
n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

q(n1,m1)ˆ

q(n1,0)

D[q(n1, t2)]

×
∞̂

−∞
dNq(n1,m1)

q(N ,m1)ˆ

q(n1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(N ,m1)

×
q(N ,N )ˆ

q(N ,m1)

D[q(N , t2)]e
i
h̄

(´ (n1,0)

(0,0)
L1dt1+

´ (n1,m1)

(n1,0)
L2dt2+

´ (N ,m1)

(n1,m1)
L1dt1+

´ (N ,N )
(N ,m1)

L2dt2

)
.

(2.23)

Here the labelled variables activating in Lagrangians on the exponent terms are omitted. We 
notice that the third term will be identical with the second term if m1 = N for every single n1
and will be the first term if we let m1 = 0. Here comes to a crucial point. The order of summation 
is matter since one might need to avoid the repeatity of arbitrary n1 at m1 = 0, see appendix C. 
Then, the sum over possible m1 comes first and sum over n1 comes second. The propagator K(3)

becomes

K(3) =
N−1∑
n1=1

N∑
m1=0

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

q(n1,m1)ˆ

q(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,m1)

×
q(N ,m1)ˆ

q(n1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(N ,m1)

q(N ,N )ˆ

q(N ,m1)

D[q(N , t2)]e
i
h̄

´
{�:�∈B1∪B2∪B3} L .

(2.24)

Here B3 is a set of the path configurations in Fig. 5c. Diagrammatically, what we do in (2.24) is 
shifting the horizontal line from (n1, 0) − (N , 0) to (n1, N ) − (N , N ) for n1 = [1, N ].

With the structure what we proceed so far, it is now not difficult to see that the propagator 
K(5), included Figs. 5a-5e, can be expressed in the form

K(5) =
( q(N ,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

q(N ,N )ˆ

q(N ,0)

D[q(N , t2)]

+
N−1∑
n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

q(n1,N )ˆ

q(n1,0)

D[q(n1, t2)]

×
∞̂

−∞
dNq(n1,N )

q(N ,N )ˆ
D[q(t1,N )]
q(n1,N )

11
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+
N−1∑
m1=1

N−1∑
n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

×
q(n1,m1)ˆ

q(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,m1)

×
q(N ,m1)ˆ

q(n1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(N ,m1)

q(N ,N )ˆ

q(N ,m1)

D[q(N , t2)]

+
N−1∑

n2=n1+1

N−1∑
m1=1

N−2∑
n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

×
q(n1,m1)ˆ

q(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,m1)

×
q(n2,m1)ˆ

q(n1,m1)

D[q(t1,m2)]
∞̂

−∞
dNq(n2,m1)

q(n2,N )ˆ

q(n2,m1)

D[q(n2, t2)]

×
∞̂

−∞
dNq(n2,N )

q(N ,N )ˆ

q(n2,N )

D[q(t1,N )]

+
N−1∑

m2=m1+1

N−1∑
n2=n1+1

N−2∑
m1=1

N−2∑
n1=1

q(n1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

×
q(n1,m1)ˆ

q(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,m1)

×
q(n2,m1)ˆ

q(n1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(n2,m1)

q(n2,m2)ˆ

q(n2,m1)

D[q(n2, t2)]

×
∞̂

−∞
dNq(n2,m2)

q(N ,m2)ˆ

q(n2,m2)

D[q(t1,m2)]

×
∞̂

−∞
dNq(N ,m2)

q(N ,N )ˆ

q(N ,m2)

D[q(N , t2)]
)

e
i
h̄

´
{�:�∈⋃5

l=1 Bl } L . (2.25)

The fourth path, see Fig. 5d, is nothing but the fifth one, see Fig. 5e, in case of m2 = N for every 
single m1 together with m1 = N − 1 and m2 = N . Moreover, the fifth path can be reduced to 
12
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be the third path in the case of m2 = m1 for every single m1 and the second one in the case of 
m1 = m2 = N . For the first path can be obtained from the fifth path by letting m1 = m2 = 0, but 
the case of m1 = 0 with any m2 �= 0 is the same with the case of m2 = m1 (third path). This over-
counted problem could be settled by fixing n1 = 1, see appendix D. The propagator, therefore, 
can be further simplified to

K(5) =
N−1∑
n2=2

N∑
m2=m1

N∑
m1=0

q(1,0)ˆ

q(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(1,0)

q(1,m1)ˆ

q(1,0)

D[q(1, t2)]
∞̂

−∞
dNq(1,m1)

×
q(n2,m1)ˆ

q(1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(n2,m1)

q(n2,m2)ˆ

q(n2,m1)

D[q(n2, t2)]
∞̂

−∞
dNq(n2,m2)

×
q(N ,m2)ˆ

q(n2,m2)

D[q(t1,m2)]
∞̂

−∞
dNq(N ,m2)

q(N ,N )ˆ

q(N ,m2)

D[q(N , t2)]e
i
h̄

´
{�:�∈⋃5

l=1 Bl } L .

(2.26)

Here the order of summation is still crucial since we would have the repeated paths where n2 is 
arbitrary at m2 = m1. Diagrammatically, what we do in (2.26) is first shifting the horizontal line 
from (1, 0) − (n2, 0) to (1, N ) − (n2, N ) and second shifting the another horizontal line from 
(n2, 0) − (N , 0) to (n2, N ) − (N , N ), where the second horizontal line must be always above 
the first one, for n2 = [2, N ].

By proceeding this deformation of the curve, we could account for all configurations of the 
path. The propagator, including the normalising factor,8 could be expressed as

K(All) =
N∑

mN−1≥···≥m2≥m1≥0

NmI

q(1,0)ˆ

q(0,0)

D[q(t1,0)]

×
(N−1∏

i=1

∞̂

−∞
dNq(i,mi−1)

q(i,mi)ˆ

q(i,mi−1)

D[q(i, t2)]
∞̂

−∞
dNq(i,mi)

×
q(i+1,mi)ˆ

q(i,mi)

D[q(t1,mi+1)]
) ∞̂

−∞
dNq(N ,mN−1)

×
q(N ,N )ˆ

q(N ,mN−1)

D[q(N , t2)]e
i
h̄

´
{�:�∈⋃2N−1

l=1 Bl }
L

, (2.27)

where mI = m1m2 · · ·mN−1 is multi-indices and m0 ≡ 0. Alternatively, in terms of diagram, we 
could imagine that we slice the horizontal line as N pieces (nl = 1 ; l = 0, 1, 2, . . . , N − 1) then 

8 This normalising factors are different from the normalising factor in equation (2.2), but they are specified to keep a 
preserved norm of quantum states.
13
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shift the second piece onward at m1, m2, . . . , mN−1, respectively, with conditions: mi � mj , 
where i > j .

We know that the equation (2.27) is just only the propagator starting in the t1-direction and 
all possible types of deformation. However, there is a path starting in the t2-direction as well. We 
therefore employ the symmetry of the lattice structure under interchange t1 and t2. Hence, the 
propagator can be presented as follows

K(q(t(s′′)), s′′;q(t(s′)), s′) =
q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]e i
h̄

´
{�:�∈B} L , (2.28)

where B is a family of paths connecting between t(s′) and t(s′′) on the space of 2 time variables 
and

q(s′′)ˆ

q(s′)

D[q(s);� ∈ B] =
q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]

= lim
N→∞
ε1,2→0

{ N∑
mN−1≥···≥m2≥m1≥0

NmI

q(ε1,0)ˆ

q(0,0)

D[q(t1,0)]
(N−1∏

i=1

∞̂

−∞
dNq(iε1,mi−1ε2)

×
q(iε1,miε2)ˆ

q(iε1,mi−1ε2)

D[q(iε1, t2)]
∞̂

−∞
dNq(iε1,miε2)

q((i+1)ε1,miε2)ˆ

q(iε1,miε2)

D[q(t1,miε2)]
)

×
∞̂

−∞
dNq(N ε1,mN−1ε2)

q(N ε1,N ε2)ˆ

q(N ε1,mN−1ε2)

D[q(N ε1, t2)]

+
N∑

nN−1≥···≥n2≥n1≥0

NnI

q(0,ε2)ˆ

q(0,0)

D[q(0, t2)]
(N−1∏

i=1

∞̂

−∞
dNq(ni−1ε1, iε2)

×
q(niε1,iε2)ˆ

q(ni−1ε1,iε2)

D[q(t1, iε2)]
∞̂

−∞
dNq(niε1, iε2)

q(niε1,(i+1)ε2)ˆ

q(niε1,iε2)

D[q(niε1, t2)]
)

×
∞̂

−∞
dNq(nN−1ε1,N ε2)

q(N ε1,N ε2)ˆ

q(nN−1ε1,N ε2)

D[q(t1,N ε2)]
}

. (2.29)

Here, ε1 and ε2 are put back into the formula. The new notation 
´
D[q(t(s)); � ∈ B] is a ex-

tended definition of the standard one 
´

D[q(t)]. Then the propagator in (2.28) represents sum all 
possible paths not only on the configuration space (standard one), but also all possible paths �
on the time space, see Fig. 6.

What we obtain in (2.28) is just the case of two times. Therefore, the process can be directly 
extended to the case of arbitrary N times by using a diagrammatic method. Here, we will sketch 
the idea in the case of three times. The propagator in this case will get a contribution from all 
14
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Fig. 6. All possible paths on the 2-time space.

possible types of deformation starting in t1-direction, see Fig. 7. Mathematically, we just simply 
shift each step in the t1-direction, resulting in

q(s′′)ˆ

q(s′)

D[q(s);� ∈ B] =
q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]

= lim
N→∞
ε1,2,3→0

( N∑
lN−1≥···≥l2≥l1≥0

N∑
mN−1≥···≥m2≥m1≥0

N�

q(ε1,0,0)ˆ

q(0,0,0)

D[q(t1,0,0)]
∞̂

−∞
dNq(ε1,0,0)

×
{ q(ε1,m1ε2,0)ˆ

q(ε1,0,0)

D[q(ε1, t2,0)]
∞̂

−∞
dNq(ε1,m1ε2,0)

q(ε1,m1ε2,l1ε3)ˆ

q(ε1,m1ε2,0)

D[q(ε1,m1ε2, t3)]

+
q(ε1,0,l1ε3)ˆ

q(ε1,0,0)

D[q(ε1,0, t3)]
∞̂

−∞
dNq(ε1,0, l1ε3)

q(ε1,m1ε2,l1ε3)ˆ

q(ε1,0,l1ε3)

D[q(ε1, t2, l1ε3)]
}

×
∞̂

−∞
dNq(ε1,m1ε2, l1ε3)

q(2ε1,m1ε2,l1ε3)ˆ

q(ε1,m1ε2,l1ε3)

D[q(t1,m1ε2, l1ε3)]
∞̂

−∞
dNq(2ε1,m1ε2, l1ε3)

×
{ q(2ε1,m2ε2,l1ε3)ˆ

D[q(2ε1, t2, l1ε3)]
∞̂

−∞
dNq(2ε1,m2ε2, l1ε3)
q(2ε1,m1ε2,l1ε3)

15
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×
q(2ε1,m2ε2,l2ε3)ˆ

q(2ε1,m2ε1,l1ε1)

D[q(2ε1,m2ε2, t3)]

+
q(2ε1,m1ε2,l2ε3)ˆ

q(2ε1,m1ε2,l1ε3)

D[q(2ε1,m1ε2, t3)]
∞̂

−∞
dNq(2ε1,m1ε2, l2ε3)

×
q(2ε1,m2ε2,l2ε3)ˆ

q(2ε1,m1ε2,l2ε3)

D[q(2ε1, t2, l2ε3)]
}

· · ·
q(N ε1,mN−1ε2,lN−1ε3)ˆ

q((N−1)ε1,mN−1ε2,lN−1ε3)

D[q(t1,mN−1ε2, lN−1ε3)]

×
∞̂

−∞
dNq(N ε1,mN−1ε2, lN−1ε3)

×
{ q(N ε1,N ε2,lN−1ε3)ˆ

q(N ε1,mN−1ε2,lN−1ε3)

D[q(N ε1, t2, lN−1ε3)]

×
∞̂

−∞
dNq(N ε1,N ε2, lN−1ε3)

q(N ε1,N ε2,N ε3)ˆ

q(N ε1,N ε2,lN−1ε3)

D[q(N ε1,N ε2, t3)]

+
q(N ε1,mN−1ε2,N ε3)ˆ

q(N ε1,mN−1ε2,lN−1ε3)

D[q(N ε1,mN−1ε2, t3)]
∞̂

−∞
dNq(N ε1,mN−1ε2,N ε3)

×
q(N ε1,N ε2,N ε3)ˆ

q(N ε1,mN−1ε2,N ε3)

D[q(N ε1, t2,N ε3)]
}

+ (the t2-symmetric term) + (the t3-symmetric term)

)
, (2.30)

where ε3 is a width of step-evolution in t3-direction and B is a family of paths connecting 
between t(s′) and t(s′′) on the space of 3 time variables.

Here, we define all possible permutations P of the functional measure such that

q(nε1,mi+1ε2,li+1ε3)ˆ

q(nε1,miε2,li ε3)

P
[
D[q(t2)],D[q(t3)]

]

= 1

P(2, ri+1)

( q(nε1,mi+1ε2,li ε3)ˆ
D[q(nε1, t2, liε3)]

∞̂

−∞
dNq(nε1,mi+1ε2, liε3)
q(nε1,miε2,li ε3)

16
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Fig. 7. The deformation of paths starting in t1-direction on the three-dimensional space of time variables.

×
q(nε1,mi+1ε2,li+1ε3)ˆ

q(nε1,mi+1ε2,li ε3)

D[q(nε1,mi+1ε2, t3)]

+
q(nε1,miε2,li+1ε3)ˆ

q(nε1,miε2,li ε3)

D[q(nε1,miε2, t3)]
∞̂

−∞
dNq(nε1,miε2, li+1ε3)

×
q(nε1,mi+1ε2,li+1ε3)ˆ

q(nε1,miε2,li+1ε3)

D[q(nε1, t2, li+1ε3)]
)

, (2.31)

where q(ti) means that ti is active but tj �=i are fixed. The factor P(2, ri+1) = 2!
(2−ri+1)! , where 

ri+1 = δmi,mi+1 + δli ,li+1 is placed to avoid the redundant path in some situations. Let us illustrate 
a simple case as follows. If t1 is fixed and t2 or t3 does not activate, the redundancy will exist. 
With condition n0 = m0 = l0 = 0, hence equation (2.30) will be simply expressed as

q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]

= lim
N→∞
ε1,2,3→0

( N∑
lN−1≥···≥l2≥l1≥0

N∑
mN−1≥···≥m2≥m1≥0

N�

q(ε1,0,0)ˆ

q(0,0,0)

D[q(t1,0,0)]

×
(N−1∏

i=1

∞̂

−∞
dNq(iε1,mi−1ε2, li−1ε3)

q(iε1,miε2,li ε3)ˆ

q(iε1,mi−1ε2,li−1ε3)

P
[
D[q(t2)],D[q(t3)]

]

×
∞̂

−∞
dNq(iε1,miε2, liε3)

q((i+1)ε1,miε2,li ε3)ˆ
D[q(t1,miε2, liε3)]

)

q(iε1,miε2,li ε3)

17
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×
∞̂

−∞
dNq(N ε1,mN−1ε2, lN−1ε3)

q(N ε1,N ε2,N ε3)ˆ

q(N ε1,mN−1ε2,lN−1ε3)

P
[
D[q(t2)],D[q(t3)]

]

+(the t2-symmetric term) + (the t3-symmetric term)

)
. (2.32)

For N -dimensional of time space, the functional measure over all possible spatial-temporal 
paths could be presented as

q(s′′)ˆ

q(s′)
D[q(s);� ∈ B] =

q(t(s′′))ˆ

q(t(s′))
D[q(t(s));� ∈ B]

= lim
N→∞

ε1,2,...,N →0

( N∑
αN
N−1≥···αN

2 ≥αN
1 ≥0

· · ·
N∑

α3
N−1≥···α3

2≥α3
1≥0

N∑
α2
N−1≥···α2

2≥α2
1≥0

N�

q(ε1,0,...,0)ˆ

q(0,0,...,0)

D[q(t1)]

×
(N−1∏

j=1

∞̂

−∞
dNq(jε1, α2

j−1ε2, . . . , αN
j−1εN )

×
q(jε1,α2

j
ε2,...αN

j
εN )ˆ

q(jε1,α2
j−1ε2,...αN

j−1εN )

P
[
D[q(t2)],D[q(t3)], · · · ,D[q(tN )]

]

×
∞̂

−∞
dNq(jε1, α2

j ε2, . . . , αN
j εN )

q((j+1)ε1,α2
j
ε2,...αN

j
εN )ˆ

q(jε1,α2
j
ε2,...αN

j
εN )

D[q(t1)]
)

×
∞̂

−∞
dNq(N ε1, α2

N−1ε2, . . . , αN
N−1εN )

×
q(N ε1,N ε2,...,N εN )ˆ

q(N ε1,α2
N−1ε2,...,αN

N−1εN )

P
[
D[q(t2)],D[q(t3)], · · · ,D[q(tN )]

]

+ (all symmetric terms)

)
, (2.33)

where αi
j is j th step-evolution in ti -direction and αi

0 = 0. Moreover, we define all possible per-
mutations P of the functional measure such that

q(jε1,α
2
j ε2,...,α

N
j εN )ˆ

q(jε1,α
2
j−1ε2,...,α

N
j−1εN )

P
[
D[q(t2)],D[q(t3)], · · · ,D[q(tN )]

]

= 1

P(N − 1, rj )

(
Summation of all possible permutations

)
, (2.34)

where rj =∑N
i=1 δαi ,αi .
j−1 j
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What we have now for the multi-time propagator in terms of the parameterised variable s is

K(q(t(s′′)), s′′;q(t(s′)), s′) =
q(t(s′′))ˆ

q(t(s′))

D[q(t(s));� ∈ B]e i
h̄

´
{�:�∈B} L , (2.35)

where 
´
D[q(t(s)); � ∈ B] measures the contribution of all possible paths q(t) and all possible 

paths � ∈ B, where B is a family of paths connecting between t(s′) and t(s′′) on the space of 
time variables.

Again, the propagator (2.35) is not appropriate for further consideration and, therefore, we 
shall apply the semi-classical approximation. Since we work with the parameterised time variable 
s, the action can be expanded in the same fashion with the single-time case, therefore the multi-
time propagator now becomes

K(q′′, s′′;q′, s′) = e
i
h̄
S[qc(s)]Q(q′′, s′′,q′, s′) [1 +O(h̄)] , (2.36)

where qc is a classical solution and

Q(q′′, s′′,q′, s′) =
y(s′′)=0ˆ

y(s′)=0

D[y(s);�]e
i

2h̄

´ s′′
s′ dτ

´ s′′
s′ dσ

(
y(τ )

δ2S[qc(s)]
δq(τ )δq(σ )

y(σ )

)
(2.37)

is a smooth function of end points.
Next, we will consider the multi-time propagator along an only arbitrary path � connecting 

between end points t′′ and t′ on space of time variables as follows

K�(q(t′′), t′′;q(t′), t′) = e
i
h̄
S�[qc(t)]Q�(q′′,q′, t′′, t′) [1 +O(h̄)] , (2.38)

where

Q�(q′′,q′, t′′, t′) =
y(t′′)=0ˆ

y(t′)=0

D�[y(t)]e
i

2h̄

∑N
j=1

´
� duj

´
� dvj

(
y(u)

δ2Sj,�[qc(t)]
δq(u)δq(v)

y(v)

)
. (2.39)

Here 
´

D�[y] is a functional measure all possible fluctuations y along path � on N -dimensional 
time-space and Sj,�[q(t)] = ´

�
Ljdtj . Therefore, the function Q� in (2.39) can be expressed, 

see appendix E, in the form

Q�(q′′,q′, t′′, t′) = det

(
i

2πh̄

∂2S�[qc(t)]
∂q(t′′)∂q(t′)

) 1
2

, (2.40)

where S�[q(t)] = ´
�

L .
Here is an interesting point. We knew that the Lagrangian is not unique since different La-

grangian would produce an identical equation of motion. Moreover, in the context of integrable 
systems, a different set of Lagragians, producing the same equations of motion, may not all sat-
isfy the closure relation, but only a special set of Lagrangians does. This structure would provide 
the space of possible Lagrangians. Consequently, in multi-time quantum systems, the propagator 
possessed the path independent feature on the space of time variables is the one that comes with 
a special set of Lagrangians satisfying the closure relation. This structure gives us an on top fea-
ture of the classical variational principle in the sense that this special set of Lagrangians plays a 
role of critical point resulting path independent propagator on the space of independent variables 
coined as the quantum variation [41].
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Theorem 2.2. Let {L1, L2, ..., LN } be a set of Lagrangians satisfying the Lagrangian closure 
relation and L =∑N

j=1 Ljdtj be the Lagrangian 1-form, where

Lj = Lj

(
q,

{
∂q
∂tj

; j = 1,2, . . . ,N

}
; t
)

.

On the space of independent variables (time variables), the multi-time propagator for any � ∈ B, 
where B is a family of paths connecting between t′ and t′′, gives equally contribution leading to˛

DC=∂S [q(t)]e i
h̄

¸
C=∂S L = I , (2.41)

where S is an arbitrary surface bounded by a contractible loop C on the space of time variables, 
and therefore the multi-time quantum system is integrable.

Proof. According to the equations (2.38)-(2.40), the propagator along path � on space of time 
variables in the semi-classical limit reads

K�(q(t′′), t′′;q(t′), t′) = Q�e
i
h̄
S�[qc(t)] [1 +O(h̄)] , (2.42)

Q� = det

(
i

2πh̄

∂2S�[qc(t)]
∂q(t′′)∂q(t′)

) 1
2

, (2.43)

and, for the path �′ with the same end points, the propagator reads

K�′(q(t′′), t′′;q(t′), t′) = Q�′e
i
h̄
S�′ [qc(t)] [1 +O(h̄)] , (2.44)

Q�′ = det

(
i

2πh̄

∂2S�′ [qc(t)]
∂q(t′′)∂q(t′)

) 1
2

. (2.45)

The closure relation for the classical Lagrangian 1-form Lc provides

S�[qc(t)] − S�′ [qc(t)] =
⎛
⎝ˆ

�

−
ˆ

�′

⎞
⎠Lc =

˛

C=∂S

Lc

=
¨

S

N∑
k≥l

N∑
l=1

(
∂Ll

∂tk
− ∂Lk

∂tl

)
dtk ∧ dtl = 0 , (2.46)

which is nothing but the path independent feature on independent variables space, see Fig. 1. 
Here S is an arbitrary surface bounded by a contractible loop C on the space of time variables. 
Therefore, Q� = Q�′ and consequently we have

K�(q(t′′), t′′;q(t′), t′) = K�′(q(t′′), t′′;q(t′), t′) , (2.47)

where the O(h̄) is ignored since there is extremely tiny contribution to the propagator in the 
semi-classical limit.

For a contractible loop C = ∂S on space of time variable, the propagator can be captured as

KC=∂S = lim
(t′−t̃)→0

∞̂

−∞
dN q′′

∞̂

−∞
dN q′ det

((
i

2πh̄

)2 ∂2S�[qc(t)]
∂q(t′′)∂q(t′)

∂2(−S�′ [qc(t)])
∂q(t′′)∂q(t̃)

) 1
2

e

i
h̄

(´ t′′
t′,� −´ t′′

t̃,�′
)

Lc
. (2.48)

Then we write
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Sc[q′,q′′] =:
t′′ˆ

t′
Lc , (2.49)

Sc[q̃,q′′] =:
t′′ˆ

t̃

Lc . (2.50)

Dropping out the subscripts � and �′ because of path independent feature, we obtain9

lim
(t′−t̃)→0

⎛
⎜⎝

t′′ˆ

t′
−

t′′ˆ

t̃

⎞
⎟⎠Lc = lim

(t′−t̃)→0

N∑
i=1

Sc[q′,q′′] − Sc[q̃,q′′]
q̃i − q ′

i

(q̃i − q ′
i ) = −∂Sc

∂q̃
· (q̃ − q′) .

(2.51)

Substituting (2.51) into (2.48), the propagator (2.48) becomes

KC=∂S =
(

1

2π

)N
∞̂

−∞
dNq ′

∞̂

−∞
dN

(
1

h̄

∂Sc

∂q̃

)
e
− i

h̄
∂Sc
∂q̃ ·(q̃−q′) =

∞̂

−∞
dNq ′δN(q̃ − q ′) = I . �

(2.52)

We shall point out a final feature of the multi-time propagator. From equation (2.6), it is not 
difficult to see that we could have a set of equations

ih̄
∂

∂tj
K(q(t′′), t′′;q(t′), t′) = ĤjK(q(t′′), t′′;q(t′), t′) ,

where j = 1,2, ...,N and t′′ > t′ . (2.53)

Again, the quantity ∂tj − (1/ih̄)Ĥj , where j = 1, 2, ..., N , can be treated as the covariant deriva-
tive and the system of equations (2.53) is overdetermined. Thus, a common nontrivial solution 
K(q(t′′), t′′; q(t′), t′) exists simultaneously if

∂

∂tk

∂

∂tj
K(q(t′′), t′′;q(t′), t′) = ∂

∂tj

∂

∂tk
K(q(t′′), t′′;q(t′), t′) (2.54)

holds. This compatibility (2.54) gives again directly to the zero-curvature condition of the Hamil-
tonian operators (2.4).

3. Concluding discussion

In Schrödinger picture, one can promote the set of Hamiltonians in the classical integrable 
systems to be a set of Hamiltonian operators and the set of Schrödinger equations are obtained. 
This set of Schrödinger equations is overdetermined and therefore a common non-trivial solu-
tion, wave function, exists if the Hamiltonian operators must satisfy the zero-curvature condition. 
The multi-time unitary operator can be expressed in terms of the Wilson line and possesses the 

9 Here, Sc[q′, q′′] is no longer a functional since the classical path qc has been substituted. Thus, Sc[q′, q′′] will be 
simply treated as a function depending on the initial positions.
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path-independent feature. This means that, for the loop evolution, the unitary map in terms of 
the Wilson loop is identity. At this point, we may state that, for integrable quantum systems, 
the Hamiltonian operators must follow the zero-curvature condition, but the inverse is not nec-
essary true, see [30]. In Feynman picture, the continuous multi-time propagator is derived. The 
interesting point is that this multi-time propagator comes with a new feature on sum over all 
possible paths. One needs to take into account not only all possible paths on the space of depen-
dent variables, but also on the space of independent variables (time variables). Of course, this 
idea is not new and it was first introduced by Nijhoff [42] in 2013.10 We point at this stage that 
what we come up for the formula of the continuous multi-time propagator in the 1-form case 
is not the same with Nijhoff’s proposal. However, they do share the exactly the same interpre-
tation. Another point is that, as we mention earlier on taking all possible path both dependent 
and independent variables, the propagator contains also non-classical paths which do not satisfy 
the closure relation. Then this new beauty beast must be tamed. Therefore, the semi-classical 
approximation is applied to the continuous multi-time propagator. The propagator is then written 
in terms of the classical action together with the fluctuation (prefactor). With this new form of 
the continuous multi-time propagator (approximated one), the integrability criterion can be con-
structed. A major intriguing feature in this context is that there exists a space of Lagrangians. All 
Lagrangians produce the same equations of motion, but only a special set of Lagrangians satisfies 
the closure relation. With this special set of Lagrangians, the continuous multi-time propagator 
is extremum yielding path-independent feature on the space of independent variables. This new 
feature is known as the quantum variation [41]. The last point that we would like to mention 
is that our set up on deriving the continuous multi-time propagator is not only restricted to the 
quadratic Lagrangian cases. However, the result from King and Nijhoff [41] for the quadratic 
Lagrangians, namely harmonic oscillators, provides a solid verification of our formulation as the 
special case, see appendix F. Therefore, further concrete examples are needed for non-quadratic 
Lagrangians.
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Appendix A. The exponential maps for N -parameter group

In this appendix, the full derivation of (2.8) will be presented. For simplicity, we will first 
consider the 2 time variables: t = (t, τ). The composite map Û2 ◦ Û1 could be written as:

Û2 ◦ Û1 = Te
´

dτ Ĥ2(t)Te
´

dtĤ1(t)

=
{

T

[
I +

∞∑
m=1

1

m!
( n∏

j=1

ˆ
dτj

)( n∏
i=1

Ĥ2(ti )
)]}

×
{

T

[
I +

∞∑
n=1

1

n!
( n∏

j=1

ˆ
dtj

)( n∏
i=1

Ĥ1(ti )
)]}

. (A.1)

The first two terms in (A.1) would giveˆ
dτ1Ĥ2(t1) +

ˆ
dt1Ĥ1(t1) =

ˆ

�

dt1 · Ĥ(t1) , (A.2)

where Ĥ(t1) = (Ĥ1(t1), Ĥ2(t1)). The next terms in the expansion will be

1

2!

(ˆ
dτ1

ˆ
dτ2T

[
Ĥ2(t1)Ĥ2(t2)

]+ ˆ
dτ2

ˆ
dt1
[
Ĥ2(t2)Ĥ1(t1)

]

+
ˆ

dτ1

ˆ
dt2
[
Ĥ2(t1)Ĥ1(t2)

]+ ˆ
dt1

ˆ
dt2T

[
Ĥ1(t1)Ĥ1(t2)

])
. (A.3)

Since the time variables of the second and third terms of the equation (A.3) have been ordered, 
we can insert the time-ordering operator into both of them. Using the fact that [Ĥ1, Ĥ2] = 0, the 
equation (A.3) would become

1

2!T
(ˆ

dτ1

ˆ
dτ2
[
Ĥ2(t1)Ĥ2(t2)

]+ ˆ
dτ2

ˆ
dt1
[
Ĥ2(t2)Ĥ1(t1)

]

+
ˆ

dτ1

ˆ
dt2
[
Ĥ2(t1)Ĥ1(t2)

]+ ˆ
dt1

ˆ
dt2
[
Ĥ1(t1)Ĥ1(t2)

])

= 1

2!T
(ˆ

dτ1

ˆ
dτ2
[
Ĥ2(t1)Ĥ2(t2)

]+ ˆ
dt1

ˆ
dτ2
[
Ĥ1(t1)Ĥ2(t2)

]

+
ˆ

dτ1

ˆ
dt2
[
Ĥ2(t1)Ĥ1(t2)

]+ ˆ
dt1

ˆ
dt2
[
Ĥ1(t1)Ĥ1(t2)

])

= 1

2!T
{(ˆ

dτ1Ĥ2(t1) +
ˆ

dt1Ĥ1(t1)
)(ˆ

dτ2Ĥ2(t2) +
ˆ

dt2Ĥ1(t2)
)}
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Fig. 8. The loop evolution on the space of a single time variable.

= 1

2!T
{ˆ

�

dt1 · Ĥ(t1)

ˆ

�

dt2 · Ĥ(t2)

}
. (A.4)

For further terms in the expansion of (A.1), we apply the same trick. Finally, we obtain

Û2 ◦ Û1 = T

[
I +

∞∑
m=1

1

m!
( n∏

j=1

ˆ

�

dtj · Ĥ(tj )
)]

= Te
´
� dt·Ĥ(t) . (A.5)

Appendix B. The definition of the time-ordering operator for a loop evolution

Basically, in the case of a single time, a time-ordering operator is given by

T
[
Ĥ(t1)Ĥ(t2)

]
= (t1 − t2)Ĥ(t1)Ĥ(t2) + (t2 − t1)Ĥ(t2)Ĥ(t1) , (B.1)

where (t1 − t2) is a Heaviside step function. The mathematical object that we are interested in 
this situation is the unitary operator. For the forward evolution and the backward evolution given 
in Fig. 8, the unitary operators are given by

Û� =Te
− i

h̄

´ t ′′
t ′ Ĥ(t)dt = Te

− i
h̄

´
� Ĥ(t)dt

, (B.2)

Û�′ =Te
− i

h̄

´ t ′
t ′′ Ĥ(t)dt = Te

− i
h̄

´
�′ Ĥ(t)dt = Te

i
h̄

´ t ′′
t ′ Ĥ(t)dt

, (B.3)

respectively.
Since the unitary operator possesses a property Û�Û�′ = I, therefore, what we have now is

Û�Û�′ =
(

Te
− i

h̄

´ t ′′
t ′ Ĥ(t)dt

)(
Te

i
h̄

´ t ′′
t ′ Ĥ(t)dt

)

=
⎛
⎜⎝I − i

h̄

t ′′ˆ

t ′
Ĥ(t)dt + 1

2!
(

− i

h̄

)2 t ′′ˆ

t ′
dt1

t ′′ˆ

t ′
dt2T

[
Ĥ(t1)Ĥ(t2)

]
+ ...

⎞
⎟⎠

×
⎛
⎜⎝I + i

h̄

t ′′ˆ

t ′
Ĥ(t)dt + 1

2!
(

i

h̄

)2 t ′′ˆ

t ′
dt1

t ′′ˆ

t ′
dt2T

[
Ĥ(t1)Ĥ(t2)

]
+ ...

⎞
⎟⎠

= I − i

h̄

⎛
⎜⎝

t ′′ˆ

t ′
dt −

t ′′ˆ

t ′
dt

⎞
⎟⎠ Ĥ(t)

+ 1

2!
(

− i

h̄

)2

⎛
⎜⎝

t ′′ˆ
′

dt1 −
t ′′ˆ
′

dt1

⎞
⎟⎠
⎛
⎜⎝

t ′′ˆ
′

dt2 −
t ′′ˆ
′

dt2

⎞
⎟⎠T

[
Ĥ(t1)Ĥ(t2)

]
+ ...
t t t t
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Fig. 9. The loop evolution of system for 2-time structure.

= T

(
e
− i

h̄

´ t ′′
t ′ Ĥ(t)dt+ i

h̄

´ t ′′
t ′ Ĥ(t)dt

)
= I . (B.4)

This suggests that the time-ordering operators in (B.2) and (B.3) have the same structure.
Next, we extend the idea to the case of the multi-time situation. For simplicity, we shall 

consider the case of the 2-dimensional time space: t = (t, τ). For the paths � and �′ in Fig. 9a, 
the unitary multi-time evolution operators can be presented as follows:

Û� =Te
− i

h̄

´
� Ĥt (t)dt+Ĥτ (t)dτ

, (B.5)

Û�′ =Te
− i

h̄

´
�′ Ĥt (t)dt+Ĥτ (t)dτ

. (B.6)

Here, we introduce a new variable s such that t(s) = (t (s), τ(s)), where 0 ≤ s ≤ 1, see Fig. 9b. 
Then the unitary multi-time evolution operators in (B.5) and (B.6) become

Û� =Te
− i

h̄

´ 1
0 Ĥ(s)ds = Te

− i
h̄

´
� Ĥ(s)ds

, (B.7)

Û�′ =Te
− i

h̄

´ 0
1 Ĥ(s)ds = Te

− i
h̄

´
�′ Ĥ(s)ds

, (B.8)

where Ĥ(s) = Ĥt (t)dt + Ĥτ (t)dτ . With this a single parameterised variable s, one can apply the 
same process as in (B.4) and this suggests that the nature of the time-ordering operator in the 
case of the multi-time and the single time is effectively identical to explain the loop evolution. 
Therefore, Û�Û�′ = I gives us a commutativity of the multi-time evolution or the integrability 
condition. The idea can be directly extended into the case of N time variables with this parame-
terised method.

Appendix C. Eliminating the redundant path of K(3)

In equation (2.24), the order the summation is crucial to avoid the redundant path. To see this, 
we first consider a point m1 = 0. The variable n1 will not contribute because of collapsing of the 
integration as follows

K(3) =
N−1∑
n1=1

(n1,0)ˆ
D[q(t1,0)]

∞̂
dNq(n1,0)
(0,0) −∞
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Fig. 10. The example of repeated paths between cases of m1 = 0 with m2 ∈ [1,N − 1] and m1 = m2 �= 0.

×
(n1,0)ˆ

(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,0)

(N ,0)ˆ

(n1,0)

D[q(t1,0)]

×
∞̂

−∞
dNq(N ,0)

(N ,N )ˆ

(N ,0)

D[q(N , t2)]e i
h̄

´ s′′
s′ L

=〈q(N ,N )| Û(N ,N ;N ,0)Û(N ,0;n1,0)Û(n1,0;n1,0)Û(n1,0;0,0) |q(0,0)〉
=〈q(N ,N )| Û(N ,N ;N ,0)Û(N ,0;0,0) |q(0,0)〉

=
(N ,0)ˆ

(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(N ,0)

(N ,N )ˆ

(N ,0)

D[q(N , t2)]e i
h̄

´ s′′
s′ L

, (C.1)

which is the propagator in the equation (2.19). Hence, the variable n1 in the first line of equation 
(C.1) is arbitrary. On the other hand, if the summation over n1 is considered first, there are 
redundant paths for every n1 at m1 = 0.

Appendix D. Eliminating the redundant path of K(5)

For m1 = 0 and m2 = m1 of K(5), we obtain the repeated paths such as the Fig. 10.
In Fig. 10a, n1 is in the range [1, n2] and therefore n2 ≥ 2. We obtain

K(5)
a =

N−1∑
n2=2

N∑
m2=1

(n2,0)ˆ

(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n2,0)

(n2,m2)ˆ

(n2,0)

D[q(n2, t2)]
∞̂

−∞
dNq(n2,m2)

×
(N ,m2)ˆ

(n2,m2)

D[q(t1,m2)]
∞̂

−∞
dNq(N ,m2)

(N ,N )ˆ

(N ,m2)

D[q(N , t2)]e i
h̄

´ s′′
s′ L

. (D.1)

In Fig. 10b, the path between points (n2, m1) and (n2, m2) is collapsed as a point at (n2, m2). 
And, if n1 ≥ 2, it will give exactly the same path with Fig. 10a. Therefore, the propagator is
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K
(5)
b =

N−1∑
n1=2

N∑
m1=1

(n1,0)ˆ

(0,0)

D[q(t1,0)]
∞̂

−∞
dNq(n1,0)

(n1,m1)ˆ

(n1,0)

D[q(n1, t2)]
∞̂

−∞
dNq(n1,m1)

×
(N ,m1)ˆ

(n1,m1)

D[q(t1,m1)]
∞̂

−∞
dNq(N ,m1)

(N ,N )ˆ

(N ,m1)

D[q(N , t2)]e i
h̄

´ s′′
s′ L

. (D.2)

To avoid this problem, we have to set n1 = 1 then the propagator (D.2) would vanish since it out 
of the case.

For K(7), we would fix n1 = 1, n2 = 2 and n3 = [3, N − 1] to avoid the redundant path. And, 
for K(9), we would fix n1 = 1, n2 = 2, n3 = 3 and n4 = [4, N − 1] to settle the problem. Finally, 
for K(All), every single ni will be fixed, where i = 1, 2, . . . , N − 1 to eliminate the redundancy, 
then the sum over ni will disappear, resulting in the propagator (2.27).

Appendix E. The explicit form of Q� in the equation (2.39)

Recalling the equation (2.39)

Q�(q′′,q′, t′′, t′) =
y(t′′)=0ˆ

y(t′)=0

D�[y(t)]e
i

2h̄

∑N
j=1

´
� duj

´
� dvj

(
y(u)

δ2Sj,�[qc(t)]
δq(u)δq(v)

y(v)

)
,

we then treat

y(u)
δ2Sj,�[qc(t)]
δq(u)δq(v)

y(v) =: y(u)
(

− δ(u − v)Ôj

)
y(v) . (E.1)

We write y(t) =∑n anyn,�(t), where an now represent fluctuation and yn,� are eigenbases as-
sociated with the path � satisfyingˆ

�

dtiyn,�(t)ym,�(t)
∣∣
fix tj �=i

= δnm , (E.2)

and the boundary conditions

yn,�(t′′) = yn,�(t′) = 0 . (E.3)

The equation (2.39) becomes

Q�(q′′,q′, t′′, t′) =
ˆ

D[an]e− i
2h̄

∑N
j=1

(∑
n(λj )n,�|an|2)

, (E.4)

where (λj )n,� are eigenvalues associated with the eigenbases yn,� for the operator Ôj . Inserting 
the equation (E.2) into (E.4), we obtain

Q�(q′′,q′, t′′, t′) =
ˆ

D[an]e− i
2h̄

∑N
j=1

(∑
n(λj )n,�|an|2)

=
ˆ

D[an]e− i
2h̄

∑N
j=1

(∑
n

∑
m(λj )n,�anamδmn

)

=
ˆ

D[an]e− i
2h̄

∑N
j=1

(´
� dtl

(∑
m amym,�(t)

)(∑
n(λj )n,�anyn,�(t)

)∣∣
fix tj �=i

)
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=
ˆ

D[an]e− i
2h̄

∑N
j=1

(´
� dtl

(∑
m amym,�(t)

)
Ôj

(∑
n anyn,�(t)

)∣∣
fix tj �=i

)

=
ˆ

D�[y(t)]e− i
2h̄

´
� dtly(t)

(∑N
j=1 Ôj

)
y(t)

=
ˆ

D�[y(t)]e i
2h̄

´
� dul

´
� dvl

(
y(u) δ2

δq(u)δq(v)

(∑N
j=1 Sj,�[qc(t)]

)
y(v)

)

=
ˆ

D�[y(t)]e
i

2h̄

´
� dul

´
� dvl

(
y(u)

δ2S�[qc(t)]
δq(u)δq(v)

y(v)

)
(E.5)

which is identical with the single-time case, see (2.16). Therefore, we obtain

Q�(q′′,q′, t′′, t′) = det

(
i

2πh̄

∂2S�[qc(t)]
∂q(t′′)∂q(t′)

) 1
2

. (E.6)

We note that the existence of bases yn,�(t), satisfying the equation (E.2), is nontrivial. However, 
an explicit example is illustrated in appendix F.

Appendix F. The path-independent feature of the propagator for the two harmonic 
oscillators

Here we will show that, with a special set of quadratic Lagrangians satisfying the closure 
relation, the multi-time propagator possesses the path independent feature on the space of inde-
pendent variables. We first write the set of Lagrangians {L1, L2}, giving the equations of motion 
in (2.11) and (2.12) and satisfying the Lagrangian closure relation, as

L1 = 1

2

(
∂q
∂t1

)2

− ω2
1q2

2
, (F.1)

L2 = 1

2

(
∂q
∂t2

)2

− ω2
2q2

2
, (F.2)

where ω1,2 are constants and q(t1, t2) = (q1(t1, t2) q2(t1, t2)).
Then, in order to verify path independent feature, we consider the exponent term in (2.39)

i

2h̄

2∑
j=1

ˆ

�

duj

ˆ

�

dvj

(
y(u)

δ2Sj,�[qc(t)]
δq(u)δq(v)

y(v)

)

= i

2h̄

⎛
⎝ˆ

�

dt1

[(
∂y
∂t1

)2

− ω2
1y2

]
+ dt2

[(
∂y
∂t2

)2

− ω2
2y2

]⎞⎠ . (F.3)

In Fig. 11a, the multi-time propagator reads

KA (q(T1, T2), (T1, T2);q(0,0), (0,0)) = QAe
i
h̄
SA[qc] , (F.4)

where

QA =
y(T1,T2)=0ˆ

DA[y(t1, t2)]e
i

2h̄

(´ (T1,0)

(0,0)
dt1

[(
∂y
∂t1

)2−ω2
1y2
]
+´ (T1,T2)

(T1,0)
dt2

[(
∂y
∂t2

)2−ω2
2y2
])

. (F.5)
y(0,0)=0
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Fig. 11. The first three simple paths.

The whole exponent term of the equation (F.5) can be written as

(T1,0)ˆ

(0,0)

dt1

[(
∂y
∂t1

)2

− ω2
1y2

]
+

(T1,T2)ˆ

(T1,0)

dt2

[(
∂y
∂t2

)2

− ω2
2y2

]

=
(T1,0)ˆ

(0,0)

dt1y

[
−
(

∂

∂t1

)2

− ω2
1

]
y + y(T1,0)

∂y(T1,0)

∂t1

+
(T1,T2)ˆ

(T1,0)

dt2y

[
−
(

∂

∂t2

)2

− ω2
2

]
y − y(T1,0)

∂y(T1,0)

∂t2
. (F.6)

For this particular path, the fluctuation y can be expressed in the form

y(t1, t2) =
∑
n

anyn,A(t1, t2)

=
∑
n

an

(√
2

T1
sin

(
nπ

T1
t1

)
cos

(
nπ

T2
t2

)
+
√

2

T2
sin

(
nπ

T2
t2

)
cos

(
nπ

T1
t1

))
,

(F.7)

where 0 ≤ t1,2 ≤ T1,2 and it is not difficult to show that the orthonormality condition holds

(T1,0)ˆ

(0,0)

dt1yn,Aym,A =
(T1,T2)ˆ

(T1,0)

dt2yn,Aym,A = δnm . (F.8)

Therefore, the equation (F.5) becomes

QA =
ˆ

D[an]e
i

2h̄

∑
n|an|2

(
−ω2

1−ω2
2+
(

nπ
T1

)2+
(

nπ
T2

)2
)

. (F.9)

Next, we will repeat the same process with the path in Fig. 11b and we find that

QB =
y(T1,T2)=0ˆ

DB [y(t1, t2)]e
i

2h̄

(´ (0,T2)

(0,0)
dt2

[(
∂y
∂t2

)2−ω2
2y2
]
+´ (T1,T2)

(0,T2)
dt1

[(
∂y
∂t1

)2−ω2
1y2
])

. (F.10)
y(0,0)=0
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Fortunately, the eigenbases in the equation (F.7) are still applicable. Thus, the equation (F.10)
can be simply reduced to

QB =
ˆ

D[an]e
i

2h̄

∑
n|an|2

(
−ω2

1−ω2
2+
(

nπ
T1

)2+
(

nπ
T2

)2
)

. (F.11)

For the path in Fig. 11c, the Q-factor for multi-time propagator is

QC =
y(T1,T2)=0ˆ

y(0,0)=0

DC [y(t1, t2)]e
i

2h̄

(´ (τ,0)
(0,0)

dt1

[(
∂y
∂t1

)2
−ω2

1y2
]
+´ (τ,T2)

(τ,0)
dt2

[(
∂y
∂t2

)2
−ω2

2y2
]
+´ (T1,T2)

(τ,T2)
dt1

[(
∂y
∂t1

)2
−ω2

1y2
])

.

(F.12)

The fluctuation y must be expressed in a new set of eigenbases as

y(t1, t2) =
∑
n

anyn,C(t1, t2)

=
⎧⎨
⎩
∑

n an

√
2
T1

sin
(

nπ
T1

t1

)
cos
(

nπ
T2

t2

)
; (t1 ≤ τ at t2 = 0) ∪ (t1 ≥ τ at t2 = T2)∑

n an

√
2
T1

cos
(

nπ
τ

t1
)

sin
(

nπ
T2

t2

)
; (t2 ∈ [0, T2] at t1 = τ)

.

(F.13)

We finally obtain the equation (F.12) in the form

QC =
ˆ

D[an]e
i

2h̄

∑
n|an|2

(
−ω2

1−ω2
2+
(

nπ
T1

)2+
(

nπ
T2

)2
)

. (F.14)

Here we notice that QA = QB = QC and therefore

K (q(T1, T2), (T1, T2);q(0,0), (0,0)) = QAe
i
h̄
SA[qc] = QBe

i
h̄
SB [qc] = QCe

i
h̄
SC [qc] ,

(F.15)

which is nothing but the path independent feature of the multi-time propagator in case of 
quadratic Lagrangian 1-forms.
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