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Abstract
A crucial milestone in the field of quantum simulation and computation is to demonstrate that a
quantum device can perform a computation task that is classically intractable. A key question is to
identify setups that can achieve such goal within current technologies. In this work, we provide
formal evidence that sampling bit-strings from a periodic evolution of a unitary drawn from the
circular orthogonal ensemble (COE) cannot be efficiently simulated with classical computers. As
the statistical properties of COE coincide with a large class of driven analog quantum systems
thanks to the Floquet eigenstate thermalization hypothesis, our results indicate the possibility that
those driven systems could constitute practical candidates for a sampling quantum advantage. To
further support this, we give numerical examples of driven disordered Ising chains and 1D driven
Bose–Hubbard model.

1. Introduction

A quantum computational advantage is the ability of quantum devices to efficiently perform certain tasks
that cannot be efficiently done on a classical computer [1, 2]. Early proposals for realizing this include boson
sampling [3–5] and random quantum circuits [6–8]. In both cases, the computational hardness stems from
the inability of a classical computer to efficiently sample the output probabilities of a complex quantum
evolution. Experimental efforts towards achieving a sampling quantum advantage include optical networks
for boson sampling [9–16] and superconducting circuits for random circuits [17–19].

On the other hand, analog quantum simulators are controllable quantum platforms specifically built to
implement complex quantum many body models [20–23]. In these experiments, complex quantum
dynamics have been implemented which cannot be reproduced with existing classical numerics and have
shed light on important questions in quantum many-body physics [24]. However, rigorous proof of a
quantum advantage involving complexity theory in those analog systems is limited to specific models such as
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the 2D quantum Ising [25, 26] and the 2D cluster-state models [27]. A natural question to ask is: would it be
possible to make a complexity statement not only on a particular model but on an entire class of analog
quantum systems e.g. when they are in the same quantum phase ?

When generic isolated quantum many-body systems thermalize in the sense that any observables can be
obtained from the microcanonical ensemble, they share the same statistical properties with random matrix
ensembles [28, 29]. One then can expect to gain some insight about the complexity of the thermalized
quantum systems by analyzing an evolution of their respective random matrix ensembles.

In this work, we provide strong evidence that sampling from a periodic evolution generated by an
instance drawn from a circular orthogonal ensemble (COE) cannot be performed efficiently with a classical
computer. Our analysis is based on the absence of collapse of the polynomial hierarchy and a plausible
assumption of the worst- to average-case hardness of the sampling task. As indicated by the Floquet
eigenstate thermalization hypothesis (ETH), COE is an underlying random matrix ensemble for
periodically-driven quantum many-body systems in the thermalized phase [28, 29]. Hence, our findings
suggest the possibility that sampling from those thermalized driven quantum systems is also a classically
intractable task. We further support the link between COE and the thermalized driven quantum systems by
numerically examining specific examples of disordered quantum Ising chain driven by a global magnetic
field and the one-dimensional Bose–Hubbard (BH) model with modulated hoppings. As periodically driven
systems have been implemented experimentally with current available quantum hardware [17, 30–36], this
makes our work also a broad interest to the experimental community. Recently, sampling from a driven
thermalized BHmodel has been experimentally implemented with an ultra-cold atom platform up to 32 sites
and 20 atoms [37].

2. Framework

2.1. Driven analog quantum systems and Floquet ETH
Let us consider a generic periodically-driven quantum many-body system whose Hamiltonian is described
by Ĥ(t) = Ĥ0 + f(t)V̂. Here Ĥ0 is the undriven Hamiltonian, V̂ is the driving Hamiltonian such that[
Ĥ0, V̂

]
̸= 0, and f (t) is periodic with period T. We require that the time-averaged Hamiltonian

Ĥave =
1
T

´ T
0 Ĥ(t)dt describes an interacting many-body system [38].

Let Z = {|z⟩=⊗L
i |zi⟩} be a complete basis of many-body Fock states, where zi = {0,1,2, ..,Di − 1}

denotes the basis state of a local quantum system of dimension Di and where i ∈ [1,L]. In what follows, we
assume without loss of generality that Di = D for all i, resulting in a Hilbert space of dimension N= DL. The

state afterM driving periods is |ψM⟩= ÛF
M|z0⟩, where ÛF = T̂ exp

(
−i
´ T
0 Ĥ(t)dt

)
≡ exp

(
−iĤFT

)
and T̂ is

the time-ordering operator. We assume that the initial state |z0⟩ is a product state. The effective
time-independent Floquet Hamiltonian ĤF fully describes the dynamics probed at stroboscopic times
t= nT. The probability of measuring the Fock state |z⟩ is then pM(z) = |⟨z|ψM⟩|2 with

⟨z|ψM⟩=
∑

z1,...,zM−1∈Z

M−1∏
m=0

⟨zm+1|ÛF|zm⟩, (1)

where the sum is performed overM− 1 complete sets of basis states. More precisely, the set of basis states
{|zm⟩} is associated with the quantum evolution afterm driving cycles with z0 (zM = z) being the initial
(readout) configuration. The expression in equation (1) can be viewed as the Feynman’s path integral where
each trajectory is defined by a set of configurations {z0,z1, . . . ,zM}. If ÛF reaches a required level of
randomness, there are many random Feynman trajectories that are equally important, leading to the
hardness in calculating the output probability of equation (1).

The ETH states that generic isolated many-body quantum systems thermalize by their own dynamics
after a long enough time, regardless of their initial state. In that case, any generic observable is expected to
evolve toward the canonical ensemble with a finite temperature [28]. For driven quantum many-body
systems, it has been shown that not only thermalization still occurs, but that for low-frequency driving, the
associated temperature becomes infinite [29]. In this limit, the Floquet operator ÛF shares the statistical
properties of the COE. This is an ensemble of matrices whose elements are independent normal complex
random variables subjected to the orthogonality and the unitary constraints.

As directly analyzing a complexity of ÛF without further specifying structures of the systems is
challenging, in this work we attempt to gain some insight from studying COE dynamics. Particularly, ÛF in
equation (1) is replaced with ÛCOE where ÛCOE is a unitary randomly drawn from COE. Even though
valuable information can be obtained from the study of COE dynamics, there is a crucial difference between
ÛF and ÛCOE due to local structures of the physical systems. Hence, one has to be careful about the
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implication of these results for periodically driven systems in the thermalized phase (see section 4 for more
discussion).

2.2. Sampling quantum advantage
We first introduce a standard procedure used to prove a quantum advantage in quantum random
sampling [39]. To understand the computational task, we first define some essential terms used in the
complexity theory, namely approximating, sampling,multiplicative error and additive error. Let us imagine an
analog quantum device built to mimic the quantum dynamics that would lead to pM(z) = |⟨z|ψM⟩|2. In
practice, such device will encode an output probability q(z) that differs from pM(z) due to noise,
decoherence and imperfect controls. Both probabilities are said to be multiplicatively close if

|pM(z)− q(z)|⩽ αpM(z) (2)

where α⩾ 0. The task of approximating pM(z) up to multiplicative error is to calculate q(z) that satisfies the
above equation for a given z. However, such degree of precision is difficult to achieve experimentally as the
allowed error is proportional to pM(z) which can be much smaller than unity. A more feasible task is to
approximate pM(z) up to additive error, defined as∑

z∈Z
|pM(z)− q(z)|⩽ β, (3)

with β > 0. Note that the additive error involves summing over all possible output strings z ∈ Z , while the
multiplicative condition applies to each z individually.

The task of approximating pM(z) even with additive error is still unrealistic as it requires a number of
measurements that grows exponentially with the size of the system. What a quantum device can do is to
sample strings from q(z). Hence, we define the task of sampling from pM(z) up to additive error as generating
strings from q(z) while q(z) is additively close to pM(z). This task is our central focus to show a sampling
quantum advantage. We emphasize that it is different from ‘certifying quantum advantage’ [40] which
consists of certifying if equation (3) holds.

To show that the above sampling task cannot be done efficiently by a classical computer, we follow the
standard argument which proceeds as follows. Let us suppose that there is a classical machine C able to
sample from pM(z) up to additive error and that the distribution of pM(z) anti-concentrates, i.e.

Pr

(
pM(z)>

δ

N

)
⩾ γ, (4)

for some positive constants δ,γ > 0 for all z ∈ Z [41]. The Stockmeyer theorem states that, with the help of a
NP oracle, that machine C can also approximate pM(z) up to multiplicative error for some outcomes z [39,
42]. We emphasize that the sampling task is converted to the approximation task in this step. If the latter is
#P-hard, then the existence of that machine C would imply the collapse of the polynomial hierarchy to the
third level, which is strongly believed to be unlikely in computer science. Hence, assuming that the
polynomial hierarchy does not collapse to the third level, we reach the conclusion that a classical machine C
does not exist.

3. Sampling from COE dynamics is classically intractable

In this section, we analytically show that sampling up to additive error from a periodic evolution of an
instance drawn from COE is classically intractable. The two fundamental conditions of the proof, that is the
#P-hardness of approximating p̃M(z) up to multiplicative error and the anti-concentration of p̃M(z), are
formally stated in the two following theorems.

Theorem 1 (Worst-case hardness). Let Y be a set of output probabilities p̃M(z) = |⟨z|ÛM
COE|z0⟩|2 obtained

from all possible COE matrices {ÛCOE} and all possible output strings z ∈ Z . Approximating p̃M(z) in Y up to
multiplicative error is#P hard in the worst case.

Theorem 2 (Anti-concentration). The distribution of p̃M(z) in Y anti-concentrates with δ= 1 and γ = 1/e,
where e is the base of the natural logarithm.

In theorem 1, we introduced the key notion of worst-case hardness of the entire set of COE matrices {ÛCOE}.
This corresponds to the scenario where at least one instance p̃M(z), i.e. a single unitary Û ∈ {ÛCOE} and a
single configuration z ∈ Z , is hard to approximate with multiplicative error.
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More desirable is the average-case hardness where most instances are hard. Consequently, to ensure that
the hard instance in Y can be found within {ÛCOE} we further assume the following commonly used
conjecture which leads to the worst-to-average case reduction in Y .

Conjecture 1 (Average-case hardness). For any 1/2e fraction of Y , approximating p̃M(z) up to multiplicative
error with α= 1/4+ o(1) is as hard as the hardest instance. Here o(·) is the little-o notation.

In combination of theorems 1 and 2 and the conjecture finally allow us to state the main theorem.

Main Theorem. Assuming conjecture 1, the ability to classically sample from p̃M(z) up to an additive error
β = 1/8e for all unitary matrices in {ÛCOE} implies the collapse of the polynomial hierarchy to the third level.

In what follows, we address in detail the proofs of theorems 1 and 2 while the detailed application of the
standard Stockmeyer argument to prove the main theorem is provided in appendix A.

3.1. #P hardness of simulating COE dynamics
To prove theorem 1, we first notice that the COE is an ensemble of all orthogonal unitary matrices. This
includes the well-known instantaneous quantum polynomial (IQP) circuits ÛIQP = ĤẐĤ, where Ĥ consists
of Hadamard gates and Ẑ is an arbitrary (possibly non-local) diagonal gate on the computational basis, both
acting on all qubits [6]. The IQP circuits constitute one of the early proposals of quantum supremacy.
Multiplicative approximation of their output probabilities are known to be#P-hard in the worst case [43,
theorem 1.4]. Since ÛM

IQP = ĤẐMĤ still adopt the general form of the IQP circuits, we conclude that there
exists at least one instance in Y that is#P-hard for multiplicative approximation.

To see how the hardness could emerge for a typical instance in Y (conjecture 1), one can in principle map
the path integral in equation (1) to the partition function of a classical Ising model with random complex
fields. The latter is widely conjectured to be #P-hard on average for multiplicative approximation [25, 44]. In
this context, the key is to note that a COE unitary evolution can be written as ÛCOE = ÛT

CUEÛCUE, where
ÛCUE is a random matrix drawn from the circular unitary ensemble (CUE), i.e. the ensemble of
Haar-random matrices [45]. Furthermore, ÛCUE can be decomposed into a set of universal quantum gates
which can be mapped onto a complex Ising model. This mapping procedure has already been described in
[7] to support the conjecture of the worst-to-average case in the context of random quantum circuits. A
detailed and intuitive description of this protocol is presented in appendix B. Importantly, appendix B shows
that, despite the time-reversal symmetry from COE dynamics, approximating the partition function of such
mapped Ising model is still #P-hard.

3.2. Anti-concentration of COE dynamics
To prove the second and necessary ingredient of the proof, i.e. theorem 2, we write

⟨z|ÛM
COE|z0⟩=

N−1∑
ϵ=0

dϵ(z)e
iϕM,ϵ , (5)

where dϵ(z) = ⟨z|Eϵ⟩⟨Eϵ|z0⟩, ϕM,ϵ =MEϵTmod 2π, |Eϵ⟩ is an eigenstate of ĤF with eigenenergy Eϵ. For COE
operators, dϵ(z) are real [45] and their distribution, denoted as Pr(d), is given by the Bessel function of the
second kind (see figure 1(a) and appendix C for a detailed derivation). Consequently, the values of dϵ(z) for
different ϵ and z do not concentrate on a particular value.

Now let us consider the statistics of the phases {ϕM,ϵ}. We define the level spacing as
rϵ =min(δϵ+1, δϵ)/max(δϵ+1, δϵ) with δϵ = ϕϵ+1 −ϕϵ > 0. For a single driving cycleM= 1, the phases
{ϕ1,ϵ} for COE are known to exhibit phase repulsion, i.e. the phases are correlated [29]. The COE
distribution PrCOE(rϵ) is depicted in figure 1(b), where PrCOE(0) = 0 explicitly indicates the phase repulsion.
For multiple driving cyclesM≫ 2π/EϵT, the correlations are erased due to energy folding, i.e. the effect of
the modulo 2π. This results in the Poisson (POI) distribution of the level spacing, PrPOI(rϵ) = 2/(1+ r2ϵ),
with the peak at r= 0, see figure 1(b).

The Bessel function distribution of dϵ(z) and the POI distribution of ϕM,ϵ ensure that the output
distribution Pr(p) is not concentrated. Specially, Pr(p) follows the so-called Porter-Thomas distribution

PrPT(p) = Ne−Np , (6)

for N≫ 1. The presence of the Porter-Thomas distribution suggests that the system uniformly explores the
Hilbert space [17, 25]. In [46], it has been shown that the quantum system that follows the Porter-Thomas
distribution also thermalizes to infinite temperature. As the temperature associated with driven thermalized
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Figure 1. (a) The eigenstate distribution dϵ(z) for the Ising and the BH models. The blue line is the Bessel function of the second
kind predicted by COE. (b) The statistics of level spacings obtained from the Ising and the BH chain atM= 1,25. The blue
dashed and the solid lines are the POI and the COE distributions, respectively. Ising and BH parameters: L= 10 (with half-filling
for the BH model),W= 1J,F= 2.5J,ω = 8J, and 500 disorder realizations.

phase is infinite, this highlights the importance of the drive in the protocol. In addition, the Porter-Thomas
distribution also appears from the quantum random circuits and can be seen as one of the key signatures of
the sampling quantum advantage [7, 17, 25]. Above all, the most important role played by the
Porter-Thomas distribution in the sampling quantum advantage is that it satisfies the anti-concentration
condition. This is since PrPT

(
p> 1

N

)
=
´∞
Np=1 d(Np)e

−Np = 1/e, indicating that most of possible outcomes
(e.g. bit-strings) have non-zero probabilities of being measured [7].

To see the emergence of the Porter-Thomas distribution in the COE dynamics, we write
⟨z|ψM⟩= az+ ibz, where az =

∑
ϵ dϵ(z)cosϕM,ϵ and bz =

∑
ϵ dϵ(z) sinϕM,ϵ. Due to the Poisson distribution

in the long time limit, the phases {ϕM,ϵ} can be thought of as independent variables randomly and
uniformly distributed in the range [0,2π). Using the product distribution formula and the central limit
theorem, one can show that the distributions of az and bz are normal distributions with zero mean and
variance 1/2N. Since p̃M(z) = a2z + b2z , the Porter-Thomas distribution of p̃M(z) can be derived using the fact
that the square sum of two Gaussian variables follows the χ-squared distribution with second degree of
freedom [47]. A detailed derivation is presented in appendix C.

4. Implications of COE hardness for driven thermalized systems

Here we discuss implication of our results obtained in the previous section for the periodically driven
quantum many-body systems when they thermalize. As the driven thermalized quantum systems and COE
are closely related through the Floquet ETH, the absence of efficient classical algorithms to classically sample
form COE dynamics suggests the possibility that the same result also holds for the generic thermalized driven
quantum systems. Physically, this is due to the external periodic drive boosting the level of randomness
[48, 49]. A more detailed analysis of ĤF using Magnus expansion shows that the presence of low-frequency
driving allows to generate effective infinite-range multi-body interactions [29, 50]. Therefore lifting most of
the constraints imposed by the limited local few-body interactions generally encountered in physical systems.
This is in contrast to the case of generic undriven thermalized systems. In that context, accurate descriptions
of the systems using random matrix theory is in general only possible over small energy windows far from
the energy-spectrum edges. If one analyses the entire energy spectrum, the local structure typically
encountered in static Hamiltonians emerges and randommatrix theory fails to capture it. This is not the case
for driven thermalized systems which accurately applies to the entire ÛF spectrum. Furthermore, under the
condition that COE and the driven thermalized systems share the same statistical distributions as indicated
by the Floquet ETH, the anti-concentration result (Theorem 2) is readily applicable to the driven
thermalized quantum systems.

Nevertheless, we emphasize here that one should not interpret our results as a formal proof of a sampling
quantum advantage in the generic driven thermalized quantum systems, but rather as an indication to
support the statement. This is due to the fact that, albeit sharing the same statistics, the Floquet unitary is
unlikely to be a typical COE instance. Lastly, our discussion here only applies to the periodically driven
systems when they already thermalize. There are other phases and regimes such as a many-body localized
phase [51] and a prethermalized regime [52] which we do not consider here. Though, we note that the
sampling complexity of the generic MBL phase has been proven to be classically efficient [46].
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Figure 2. The l1-norm distance between the output distribution from different quantum systems and the Porter-Thomas
distribution at different cyclesM. The results from the Ising chain and the BH chain are labeled as circles and squares, respectively.
Ising and BH parameters: L= 10 (with half-filling for the BH model),W= 1J,F= 2.5J,ω = 8J, and 500 disorder realizations.
The inset shows the plot of l1-norm distance in the long time limit (M= 50) as a function of L.

4.1. Example of driven thermalized many-body systems
We give two specific examples of driven systems that display statistical properties consistent with the COE
and are able to reach the Porter-Thomas distribution with a polynomial number of cycles, hence partially
support our suggestion of a sampling quantum advantage. For both cases, the modulation is
f(t) = 1

2 (1− cos(ωt)), where ω = 2π/T and initial states are randomized product states.
(i) 1D Ising chain: We consider an Ising chain described by the Hamiltonian

ĤISING
0 =

∑L−1
l=0 µlẐl + J

∑L−2
l=0 ẐlẐl+1, where µl ∈ {0,W} is a local disorder,W is the disorder strength, Ẑl is

the Pauli spin operator acting on site l, and J is the interaction strength. The drive is a global magnetic field
V̂ISING = F

∑L−1
l=0 X̂l, where F is the driving amplitude. Similar models have been implemented in various

quantum platforms, including trapped ions [33] and superconducting circuits [34].
(ii) 1D BH model: We consider the BH model described by the Hamiltonian ĤBH

0 =
∑L−1

l=0

(µlâ
†
l âl +

U
2 â

†
l â

†
l âlâl), where âl (â

†
l ) is a bosonic annihilation (creation) operator at site l, U is the on-site

interaction, and µl is the local disorder as defined above. The drive modulates the hopping amplitudes
V̂BH =−F

∑L−2
l=0 (â

†
l âl+1 +H.c.). Similar models have been implemented in superconducting circuits [17]

and cold atoms [30, 32, 35].
The distribution of dϵ(z) from both models are depicted in figure 1(a), showing an agreement with the

Bessel function as predicted by COE. The level statistics atM= 1 andM= 25 are depicted in figure 1(b),
showing an agreement with the COE and the POI distribution, respectively. The driving frequency and the
disorder strength are tuned to ensure the observation of the thermalized phase and prevent many-body
localization [29, 46].

Figure 2 shows the l1-norm distance between Pr(p) and the Porter-Thomas distribution at differentm for
the Ising and the BH models. The l1-norm distance measures the difference between two distributions and
only becomes zero only when they are identical. It can be seen that, in all cases, the system reaches the
Porter-Thomas distribution after multiple driving cycles. The l1-norm distance in the long-time limit is
decaying towards zero as the size of the system increases. Therefore, the anti-concentration condition is
satisfied. In addition, the drive induces the effectively infinite long-range interactions in the Floquet
Hamiltonian. Consequently, we expect the driven thermalized quantum systems to achieve the
Porter-Thomas distribution in the faster time scale compared to the quantum random circuits with the same
topology. This aspect has been studied numerically in [46].

In absence of the drive, a similar analysis can be performed for the infinite-time unitary evolution
corresponding to generic instances of the undriven thermalized phase in both models. In this case, dϵ(z) does
not follow the Bessel function of the second kind and the output distribution never reaches the
Porter-Thomas distribution (see appendix D for numerical simulation of the undriven Ising model). This is
consequence of the energy conservation and the structure imposed by the local interactions, highlighting the
key role played by the drive. We note here that the choice of l1-norm in figure 2 as the distinguishability
measure between two distribution is due to its key role in the proof of the sampling quantum advantage.
However, other distinguishability measures can also be used in this numeric. Particularly, KL−divergence has
been used to measure the difference from the Porter-Thomas distribution in [17, 46, 53].

Lastly, we note that the proposal to sample from a driven thermalized quantum system has been
implemented in practice with the ultra-cold atom platform [37]. In this experiment, sampling one sample
from driven thermalized BH model requires around 500 seconds. In comparison, estimated time of around

6



Quantum Sci. Technol. 8 (2023) 025019 J Tangpanitanon et al

104 seconds and classical memory of around 600 TB are required to generate one sample on Frontier
supercomputer using exact digonalization.

5. Conclusion and outlook

Analog quantum simulators realizing quantum many-body systems have generated quantum dynamics
beyond the reach of existing classical numerical methods for some time. However, such dynamics has not
been theoretically proven to be hard to compute by a classical computer. We have taken the first step into
proving that in the particular case of driven many-body systems, when they thermalize, sampling from their
output distribution cannot be efficiently performed on a classical computer. Using complexity theory
arguments, we provide strong analytical evidence of the computational hardness of sampling from the COE
dynamics. As a consequence, the same complexity result might be expected for the driven thermalized
quantum systems thanks to their closed link with COE. We further argue that this possibility is much more
likely to happen in the driven case compared to the undriven one as more randomness added into the
systems due to the external drive. We provide numerical results showing that COE statistics and reaching the
Porter-Thomas distribution with polynomially many cycles can be obtained from driven quantum Ising and
BH models for realistic parameters.

All together, our results pave the way to realize a sampling quantum advantage of analog quantum
simulators with currently available platforms, including trapped ions and cold atoms [33, 36]. In the future,
the next important step is to analyze complexity of a specific model in driven thermalization, such as driven
Ising spin chains, and demonstrate a sampling quantum advantage directly from the physical system. In
addition, it would be interesting to see at what extent one can probe the complexity of physical systems from
their respective matrix ensembles. For example, whether this approach can be extended to other classes of
quantum many-body systems such as those with gauge fields or frustrated systems.
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Appendix A. Proof of the main theorem

In this section, we provide a detailed proof of the main theorem of the main text, which reads:

Main Theorem. Assuming conjecture 1, the ability to classically sample from p̃M(z) up to an additive error
β = 1/8e for all unitary matrices in {ÛCOE} implies the collapse of the polynomial hierarchy to the third level.

The proof relies on the theorems 1 and 2 and conjecture 1 presented in the main text.

Theorem 1. Let Y be a set of output probabilities p̃M(z) = |⟨z|ÛM
COE|z0⟩|2 obtained from all possible COE

matrices {ÛCOE} and all possible output strings z ∈ Z . Approximating p̃M(z) in Y up to multiplicative error is
#P hard in the worst case.

Theorem 2. The distribution of p̃M(z) in Y anticoncentrates with δ= 1 and γ = 1/e, where e is the base of the
natural logarithm.

Conjecture 1 (Average-case hardness). For any 1/(2e) fraction of Y approximating p̃M(z) up to multiplicative
error with α= 1/4+ o(1), where o(·) is little-o notation [54], is as hard as the hardest instance.

Let us begin by considering a classical probabilistic computer with an NP oracle, also called a BPPNP

machine. This is a theoretical object that can solve problems in the third level of the polynomial hierarchy.
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The Stockmeyer theorem states that a BPPNP machine with an access to a classical sampler C, as defined in
the main text, can efficiently output an approximation q̃(z) of q(z) such that

|q(z)− q̃(z)|⩽ q(z)

poly(L)
. (A1)

We emphasize that the BPPNP machine grants us the ability to perform the approximating task, in
contrast to the machine C that can only sample strings from a given distribution. To see how the BPPNP

machine can output a multiplicative approximation of p̃M(z) for most of z ∈ Z , let us consider

|p̃M(z)− q̃(z)|⩽ |p̃M(z)− q(z)|+ |q(z)− q̃(z)|

⩽ |p̃M(z)− q(z)|+ q(z)

poly(L)

⩽ |p̃M(z)− q(z)|+ |p̃M(z)− q(z)|+ p̃M(z)

poly(L)

=
p̃M(z)

poly(L)
+ |p̃M(z)− q(z)|

(
1+

1

poly(L)

)
. (A2)

The first and the third lines are obtained using the triangular inequality. To get multiplicative
approximation of p̃M(z) using q̃(z), we need the term |p̃M(z)− q(z)| to be small. Given the additive error
defined in equation (3) in the main text, this is indeed the case for a large portion of {z} ∈ Z . Since the left
hand side of equation (3) in the main text involves summing over an exponentially large number of terms
but the total error is bounded by a constant β, most of the terms in the sum must be exponentially small.
This statement can be made precise using Markov’s inequality.

Fact 1 (Markov’s inequality). If X is a non-negative random variable and a> 0, then the probability that X is
at least a is

Pr(X⩾ a)⩽ E(X)
a

, (A3)

where E(X) is the expectation value of X.

By setting X= |p̃M(z)− q(z)|, we get

Pr
z
(|p̃M(z)− q(z)|⩾ a)⩽ Ez(|p̃M(z)− q(z)|)

a
. (A4)

Here, the distribution and the expectation value are computed over z ∈ Z . Note that
Ez(|p̃M(z)− q(z)|)⩽ β/N is given by the additive error defined in equation (3) in the main text. By setting
a= β/Nζ for some small ζ > 0, we get

Pr
z

(
|p̃M(z)− q(z)|⩾ β

Nζ

)
⩽ ζ (A5)

or equivalently

Pr
z

(
|p̃M(z)− q(z)|< β

Nζ

)
> 1− ζ. (A6)

By substituting |p̃M(z)− q(z)| from equation (A2), we get

Pr
z

(
|p̃M(z)− q̃(z)|< p̃M(z)

poly(L)
+

β

Nζ

(
1+

1

poly(L)

))
> 1− ζ. (A7)

Theorem 2 in the main text (the anti-concentration condition) imply that {p̃M(z)} follows the
Porter-Thomas distribution, specially that 1/N< p̃M(z) for at least 1/e fraction of the unitary matrices in
{ÛCOE}. Hence, we can rewrite equation (A7) as

Pr
Y

{
|p̃M(z)− q̃(z)|< p̃M(z)

[
1

poly(L)
+
β

ζ

(
1+

1

poly(L)

)]}
> 1/e− ζ. (A8)

Here, the distribution is over all z ∈ Z and all unitary matrices in {ÛCOE}. To understand the right hand
side of the equation, let P∩Q be the intersection between the set P of probabilities that anticoncentrate and
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the set Q of probabilities that satisfy the Markov’s inequality. Since Pr(P∩Q) = Pr(P)+Pr(Q)−
Pr(P∪Q)⩾ Pr(P)+Pr(Q)− 1, Pr(P) = 1/e and Pr(Q) = 1− ζ , it follows that Pr(P∩Q) is no less than
1/e+ 1− ζ − 1= 1/e− ζ .

Following [7, 44], we further set β = 1/(8e) and ζ = 1/(2e), so that

Pr
ÛCOE,z

{
|p̃M(z)− q̃(z)|<

(
1

4
+ o(1)

)
p̃M(z)

}
>

1

2e
, (A9)

giving an approximation up to multiplicative error 1/4+ o(1) for at least 1/(2e) instances of the COE
matrices {ÛCOE}. If according to the conjecture 1 in the main text, multiplicatively estimating 1/(2e)
fraction of the output probabilities from {ÛCOE} is #P-hard, then the Polynomial Hierarchy collapses. This
concludes the proof of the main theorem in the main text.

Appendix B. Mapping of approximating output distribution of COE dynamics onto
estimating partition function of complex Ising models

In this section, we provide evidence to support the conjecture 1 in the main text, showing how hardness
instances could appear on average. To do this, we map the task of approximating an output distributions of
COE dynamics onto calculating the partition function of a classical Ising model which is widely believed to
be #P-hard on average for multiplicative approximation [25, 44]. The section is divided into two parts. In the
first part, we explain the overall concept and physical intuition of this procedure. In the second part,
mathematical details are provided.

B.1. Physical perspective of the mapping procedure
The mapping protocol consists of two intermediate procedures. First, we map the COE unitary evolution on
universal random quantum circuits and, second, we derive a complex Ising model from those circuits
following [7].

Let us begin by expressing a unitary evolution of COE as ÛCOE = ÛT
CUEÛCUE where ÛCUE is a random

unitary drawn from the CUE i.e. Haar ensemble [45]. We then further decompose ÛCUE into a set of
universal quantum gates [7]. Following [7], we choose random quantum circuits consisting of n+ 1 layers of
gates and log2N qubits, as shown in figure 3(a). The first layer consists of Hadamard gates applied to all
qubits. The following layers consist of randomly chosen single-qubit gates from the set {

√
X,

√
Y,T} and

two-qubit controlled-Z (CZ) gates. Here,
√
X (

√
Y) represents a π/2 rotation around the X (Y) axis of the

Bloch sphere and T̂ is a non-Clifford gate representing a diagonal matrix {1,eiπ/4}. Such circuits have been
shown to be approximately t-design [55] for an arbitrary large t when n→∞, which implies the CUE
evolution [56]. The operator ÛT

CUE can be implemented by reversing the order of the gates in ÛCUE and

replacing
√
Y with

√
Y
T
. We emphasize that decomposing the COE evolution into the random circuits is only

done theoretically with an aim to show the average case hardness. In the real experiments, this COE
dynamics is realized by the driven many-body systems.

The mathematical procedure for the mapping from random quantum circuits to classical complex Ising
models is discussed in details in the next part. Specifically, pM(z) from the circuit (ÛT

CUEÛCUE)
M, as depicted

in figure 3(a), can be calculated from the partition function,

⟨z|ÛM
COE|z0⟩=

∑
s∈S

A(s)exp

 iπ
4

∑
i

hisi +
∑
⟨i,j⟩

Jijsisj

 . (B1)

Here, A(s) is the degeneracy number associated with a classical spin configuration s in the lattice S ,
si =±1, hi represents a on-site field on site i and J ij represents the coupling between the classical spins on site
i and j. Since the output probability can also be interpreted as the path integral in equation (B1) in the main
text, the intuition behind the mapping is that the sum over all possible paths is translated into the sum over
all possible classical spin configurations, where the phase accumulated in each path is given by the energy of
the complex Ising lattice S . To gain intuitive understanding of this standard mapping, we provide a
diagrammatic approach to visualize the lattice S and extract the field parameters {hi}, {Jij}. To begin with,
we use the random circuit in figure 3(b) as a demonstration. The mathematical descriptions behind each
steps are discussed in the next part.

• STEP I—For each qubit, draw a circle between every consecutive non-diagonal gates, see figure 3(c). Each
circle or ‘node’ represents one classical spin.
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Figure 3.Mapping COE dynamics to the partition function of complex Ising lattices: (a) An example of a random circuit that
generates COE dynamics and its conversion to the Ising model. (b) An example of a simple random quantum circuit, illustrating
the mapping to the classical Ising model. STEP I to STEP III in the diagrammatic procedure are shown in (b)–(d), respectively.
(e) Lookup table for the contribution of each gate to the local fields hi, hj and the interaction J ij in the Ising lattice.

• STEP II—For each qubit, draw a horizontal line between every consecutive nodes i,j, see figure 3(d). These
lines or ‘edges’ represent interaction J ij between two neighboring spins in the same row. In addition, draw
a line between every two nodes that are connected by CZ gates. These lines represent the interaction J ij
between spins in different rows.

• STEP III—Labeling each nodes and edges with the corresponding gates, see figure 3(e).
• STEP IV—Use the lookup table in figure 3(f) to specify hi and J ij introduced by each gate. For example, the√

Y gate that acts between nodes i and j adds−1 to J ij,−1 to hi and+1 to hj. We use the convention that the
leftmost index represents the leftmost node. Also, the two T-gates that are enclosed by the node i will add
0.5+ 0.5=+1 to the local field hi.

• STEP V—Finally, spins at the leftmost side of the lattice are fixed at +1, corresponding to the initial state
|0⟩. Similarly, spins at the rightmost side of the lattice are fixed according to the readout state |z⟩.

Following the above recipe in the next part, we provide the exact form of the partition function of the
Ising model for the COE dynamics in equation (B19), showing that the field parameters {hi} and {Jij} are
quasi-random numbers with no apparent structure. Specifically, neither the phase π

∑
i hisi/4 nor the phase

π
∑

⟨i,j⟩ Jijsisj/4 is restricted to the values 0,π/2,π,3π/2 (mod 2π) for each spin configurations s. Without
such stringent restrictions, approximating the partition function up to multiplicative error is known to be
#P-hard in the worst case [43, theorem 1.9]. This motivates a widely used conjecture in quantum supremacy
proposals that such task is also hard on average [25, 44].

We emphasize here the major differences between random quantum circuits as proposed in [7] and our
systems. Firstly, our systems are analog with no physical quantum gates involved. The decomposition to
quantum gates is only done mathematically. Secondly, our system has discrete time-reversal symmetry, while
such symmetry is absent in random quantum circuits. Consequently, the COE in our system is achieved from
the Floquet operator ÛF, while the CUE in random quantum circuits are achieved from the entire unitary
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evolution. In addition, ÛF
M in our system does not have the t-design property due to the COE [57,

pp.117-119]. However, as shown above, the hardness arguments for the random quantum circuits can be
naturally applied to our case. Therefore, same as the random quantum circuits, approximating the partition
function of the mapped Ising model from COE dynamic is also classically intractable in the worst case.

B.2. Mathematical details of the mapping procedure
In this section, we prove equation (B1) by providing justifications of the diagrammatic recipes to map the
evolution ÛCUE on a Ising spin model with complex fields. Again, the quantum gates of interest consist of

both diagonal gates {T,CZ} and non-diagonal gates {
√
X,

√
Y,
√
Y
T
,H}. For simplicity, we start with one-

and two- qubit examples before generalizing to the COE dynamics. The mathematical procedure here is
adapted from [7].

B.2.1. One-qubit example

Let us consider a one-qubit circuit and N + 1 gates randomly chosen from the set {
√
X,

√
Y,
√
Y
T
,T}. The

zeroth gate is fixed to be a Hadamard gate. The output probability is p(z) = |⟨z|Û|0⟩|2, where Û=
∏N

n=0 Û
(n)

is the total unitary matrix, Û(n) is the nth gate and z ∈ {0,1} is the readout bit. Below, we outline the
mathematical steps underlying the diagrammatic approach followed by detailed explanations for each step:

p(z) =

∣∣∣∣∣⟨z|
N∏

n=0

Û(n)|0⟩

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

z∈{0,1}N

N∏
n=0

⟨zn|Û(n)|zn−1⟩

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

z∈{0,1}N

N∏
n=0

A(zn,zn−1)exp

[
iπ

4
Φ(zn,zn−1)

]∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

z∈{0,1}N+2

A(z)exp

[
iπ

4

N∑
n=0

Φ(zn,zn−1)

]∣∣∣∣∣∣
2

. (B2)

In the second line, we insert an identity În =
∑

zn∈{0,1} |zn⟩⟨zn| between Û(n+1) and Û(n) for every
n ∈ {0, ..,N− 1}. As a result, this line can be interpreted as the Feynman’s path integral where each
individual path or ‘world-line’ is characterized by a sequence of basis variables z= (z−1,z0, . . . ,zN). The
initial and the end points for every path are |z−1⟩= |0⟩ and |zN⟩= |z⟩, respectively. In the third line, we
decompose ⟨zn|Û(n)|zn−1⟩ into the amplitude A(zn,zn−1) and phase Φ(zn,zn−1). In the fourth line, we
introduce A(z) =

∏N
n=0A(zn,zn−1). The equation now takes the form of the partition of a classical Ising

model with complex energies. Here, z can be interpreted as a classical spin configuration, A(z) as the
degeneracy number and iπ4Φ(zn,zn−1) as a complex energy associated with spin-spin interaction.

Further simplifications are possible by noticing that, the diagonal gates in the circuits allow the reduction
of the number of classical spins. Specifically, if a T gate is applied to |zn−1⟩, it follows that zn = zn−1. Hence,
the variables zn−1 and zn can be represented by a single classical spin state. The two variables zn−1,zn become
independent only when a non-diagonal gate is applied. Therefore, we can group all variables {zn} between
two non-diagonal gates as one classical spin. This procedure leads to the directives presented as the STEP I of
the procedure in the previous section. Formally, for Nspin + 1 non-diagonal gates in the circuit (including the
first Hadamard gate) z can be characterized by a classical spin configuration s= (s−1, s0, . . . , sk, . . . , sNspin)
where sk = 1− 2zk ∈ {±1} is a spin representing the basis variable immediately after the kth non-diagonal
gate, i.e.

p(z) =

∣∣∣∣∣∣
∑

s∈{±1}Nspin+1

A(s)exp

 iπ
4

Nspin∑
k=0

Φ(sk, sk−1)

∣∣∣∣∣∣
2

(B3)

=
∣∣ZIsing

∣∣2 . (B4)

Lastly, we need to specify A(s) and Φ(sk, sk−1) in term of the local fields hk−1, hk, the interaction Jk−1,k,
and spin configurations sk−1, sk. This is done by first considering the gates in their matrix form, i.
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√
X=

1√
2

(
e

iπ
2 1

1 e
iπ
2

)
=

1√
2

[
e

iπ
4 (1+sksk−1)

]
sk,sk−1

, (B5)

√
Y=

1√
2

(
1 −1
1 1

)
=

1√
2

[
e

iπ
4 (1−sk−1)(1+sk)

]
sk,sk−1

, (B6)

√
Y
T
=

1√
2

(
1 1
−1 1

)
=

1√
2

[
e

iπ
4 (1+sk−1)(1−sk)

]
sk,sk−1

, (B7)

H=
1√
2

(
1 1
1 −1

)
=

1√
2

[
e

iπ
4 (1−sk−1)(1−sk)

]
sk,sk−1

, (B8)

T=

(
1 0

0 e
iπ
4

)
= Diag

[
e

iπ
4 (

1−sk
2 )
]
sk

(B9)

Notice that all non-diagonal gates contribute to the same amplitude A(sk, sk−1) = 1/
√
2, leading to

A(s) = 2−(Nspin+1)/2. Hence, we can extract the contribution of each gate to Φ(sk, sk−1) as

Φ√
X(sk, sk−1) = 1+ sk−1sk, (B10)

Φ√
Y(sk, sk−1) = (1− sk−1)(1+ sk) (B11)

= 1− sk−1 + sk − sk−1sk, (B12)

Φ√
Y
T(sk, sk−1) = (1+ sk−1)(1− sk) (B13)

= 1+ sk−1 − sk − sk−1sk, (B14)

ΦT(sk) =
1− sk
2

. (B15)

The under-script indicates which gate is contributing to the phase. The corresponding hi, hj and J ij are
depicted in the lookup table in figure 3(f), where i= k− 1 and j= k. The global phase that does not depend
on s is ignored as it does not contribute to p(z).

B.2.2. Two-qubit example
Now we consider a two-qubit random circuits to demonstrate the action of the CZ gates. We introduce a new
index l ∈ {1,2} to label each qubit, which is placed on a given horizontal line (row). Since the CZ gate is
diagonal, its presence does not alter the number of spins in each row. However, the gate introduces
interaction between spins in different rows. This can be seen from its explicit form, i.e.

CZ=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

= Diag
[
e

iπ
4 (1−s1,k)(1−s2,k ′ )

]
s1,k,s2,k ′

, (B16)

where s1,k (s2,k ′) is the state of the kth (k ′ th) spin at the first (second) row. It follows that

ΦCZ
s1,k,s2,k ′

= (1− s1,k)(1− s2,k ′) (B17)

= 1− s1,k − s2,k ′ + s1,ks2,k ′ . (B18)
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The corresponding hi, hj, and J ij are depicted in figure 3(f) where i= (1,k) and j= (2,k ′). We have now
derived all necessary ingredients to map a random quantum circuit to a classical Ising model.

B.2.3. Full COE dynamics
Since the COE dynamics can be expressed in terms of a quasi-random quantum circuit, we can
straightforwardly apply the above procedure to find the corresponding Ising model. The complexity here
solely arises from the number of indices required to specify the positions of all the gates in the circuit. To deal
with this, we introduce the following indices

– an index l ∈ {1, . . . ,L} to indicate which qubit / row.
– an indexm ∈ {1, . . . ,M} to indicate which period.
– an index µ ∈ {A,B} to indicate which part of the period. A and B refer to the ÛCUE part and the ÛT

CUE part,
respectively

– an index k ∈ {0,1, . . . ,Nspin(l)} to indicate the spin position for a given m and µ. Here, Nspin(l) is the total
number of spins at the lth row. Note that due to the symmetric structure of ÛCUE and ÛT

CUE, we run the index
k backward for the transpose part, i.e. k= 0 refers to the last layer.

– an index νl,k so that νl,k = 1 if the kth non-diagonal gate acting on the qubit l is
√
X otherwise νl,k = 0.

With these indices, the partition function of the circuit, as shown in figure 3(a), can be written as

⟨z|ψ⟩= 2−
G
2

∑
s∈S

exp

[
iπ

4
E(s)

]
, (B19)

with

E(s) = E(z)+
M∑

m=1

B∑
µ=A

L∑
l=1

Nspin(l)∑
k=0

hlks
µ,m
l,k

+
M∑

m=1

B∑
µ=A

L∑
l=1

Nspin(l)∑
k=1

(2νl,k − 1)sµ,ml,k−1s
µ,m
l,k

+
M∑

m=1

B∑
µ=A

L∑
l=1

l−1∑
l ′=1

Nspin(l)∑
k=1

Nspin(l
′)∑

k ′=1

ζ
(l ′,k ′)
(l,k) sµ,ml,k sµ,ml ′,k ′ , (B20)

and

hlk = νl,k+1 − νl,k −
1

2
NT(l,k)−NCZ(l,k), (B21)

E(z) =−sB,M0,l − szl + sB,M0,l szl . (B22)

Here G is the total number of non-diagonal gates in the circuit. ζ(l
′,k ′)

(l,k) represents the total number of CZ

gates which introduces the interaction between spins sµ,ml,k and sµ,ml ′,k ′ . NCZ(l,k) (NT(l,k)) is the total number
of CZ (T) gates which introduces local fields on the spin sµ,ml,k . E(z) is the contribution from the last
Hadamard layer which depends on the readout bit-string z. {szl} are the spins corresponding to z and their
configuration is fixed. In addition, there are also two extra boundary conditions (i) between part A and B
and (ii) between the two adjacent periodsm andm+ 1, i.e. sA,ml,Nspin(l)

= sB,ml,Nspin(l)
and sA,m+1

l,0 = sB,ml,0 .

Appendix C. Derivation of Porter-Thomas distribution from COE dynamics.

In this section, we provide additional mathematical details involved in the proof of theorem 2. More precisely,
we show that the distribution of the output probability of COE dynamics, Pr(p), follows the Porter-Thomas
distribution PrPT(p) = Ne−Np. First, let us consider the output probability p̃M(z) = |⟨z|ψM⟩|2 with
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⟨z|ψM⟩= ⟨z|UM
COE|0⟩

= ⟨z|

[
N−1∑
ϵ=0

eiMEϵ T|Eϵ⟩⟨Eϵ|

]
|0⟩

=
N−1∑
ϵ=0

dϵ(z)e
iϕM,ϵ

=

[
N−1∑
ϵ=0

dϵ(z)cosϕM,ϵ

]
+ i

[
N−1∑
ϵ=0

dϵ(z) sinϕM,ϵ

]
= az+ ibz, (C1)

where N is the dimension of the Hilbert space, dϵ(z) = ⟨z|Eϵ⟩⟨Eϵ|0⟩, ϕm,ϵ =MEϵTmod 2π, az = Re [⟨z|ψM⟩]
and bz = Im [⟨z|ψM⟩].

Lemma 1. The distribution of dϵ(z) over ∀ϵ ∈ {0, . . . ,N− 1} or ∀z ∈ {0,1}L is the Bessel function of the second
kind.

Lemma 2. The distribution of az and bz over ∀z ∈ {0,1}L is the normal distribution with zero mean and
variance equal to 1/2N.

To prove lemma 1, we first write dϵ(z) = cz,ϵc0,ϵ, where cz,ϵ = ⟨z|Eϵ⟩ and c0,ϵ = ⟨0|Eϵ⟩. For the COE
dynamics, the coefficients cz,ϵ and c0,ϵ are real numbers whose distribution is [45]

Pr(c) =

√
2N

π
exp

[
−Nc2

2

]
. (C2)

As discussed in the main text, the phase ϕM,ϵ becomes random asM≫ 2π/EϵT. The random sign (±1)
from cz,ϵ can therefore be absorbed into the phase without changing its statistics. The distribution of dϵ(z)
can be obtained using the product distribution formula

Pr(d) =

ˆ ∞

0
Pr(c)Pr

(
d

c

)
· 1
c
· dc

=
2N

π

ˆ ∞

0
exp

(
−Nc2

2

)
exp

(
−Nd2

2c2

)
dc

=
2N

π
K0(Nd), (C3)

where K0 is the modified Bessel function of the second kind.
To prove lemma 2, we first note that the distribution of cosϕm,ϵ and sinϕm,ϵ with ϕM,ϵ being uniformly

distributed in the range [0,2π) are

Pr(cosϕ) =
1

π
√
1− cos2ϕ

, (C4)

Pr(sinϕ) =
1

π
√
1− sin2ϕ

. (C5)

We then calculate the distribution of κϵ ≡ dϵ(z)cosϕM,ϵ using the product distribution formula, i.e.

Pr(κ) =

ˆ 1

−1

1

π
√
1− cos2ϕ

· 2N
π

K0

(
Nκ

d

)
· 1

cosϕ
dcosϕ=

N

π2
K2
0

(
N|κ|
2

)
. (C6)
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The mean and the variance of κϵ can be calculated as

⟨κ⟩=
ˆ ∞

−∞
dcosϕ · N

π2
·K2

0

(
N|κ|
2

)
· dκ= 0 (C7)

Var(κ) =

ˆ ∞

−∞
(dcosϕ)2 · N

π2
·K2

0

(
N|κ|
2

)
· dκ=

1

2N2
. (C8)

Since az is a sum of independent and identically distributed random variables, i.e. az =
∑N−1

ϵ=1 κϵ, we can
apply the central limit theorem for large N. Hence, the distribution of az is normal with the mean zero and
variance Var(a) = N ·Var(κ) = 1/2N. The same applies for the distribution of bz.

Theorem 2 can be proven using the fact that the sum of the square of Gaussian variables follows the
χ-squared distribution with second degree of freedom Prχ2,k=2(p)∼ exp{−p/2σ2} [47]. By specifying the
variance obtained in Lemma 2 and normalization, the distribution of pM(z) = a2z + b2z over ∀z ∈ {0,1}L is
the Porter-Thomas distribution. Since the Porter Thomas distribution anti-concentrates i.e.
PrPT

(
p> 1

N

)
=
´∞
Np=1 d(Np)e

−Np = 1/e , we complete the proof of the theorem 2.

Appendix D. Undriven thermalized many-body systems

In this section, we analyze the long-time unitary evolution for undriven systems in the thermalized phase.
The results presented here highlight the key role played by the drive in generating the randomness required
for the above quantum supremacy proof. In particular, we show that for typical undriven physical systems
with local constraints (e.g. finite-range interactions) and conserved energy, the output distribution never
coincides with the PT distribution.

We emphasize that this is a consequence of the inability of random matrix theory to accurately describe
the full spectral range of undriven thermalized many-body systems. Indeed, it has been shown that for
undriven many-body systems which thermalizes (to a finite temperature), the statistics of the Hamiltonian
resembles the statistics of the Gaussian orthogonal ensemble (GOE) [28]. However, it is implicit that an
accurate match only applies over a small energy window (usually far from the edges of the spectrum). If one
zooms in this small energy window, the Hamiltonian looks random, but if one consider the full spectrum,
the local structure of the Hamiltonian appears and the random matrix theory fails at capturing it.

To see this, we numerically simulate the undriven Ising Hamiltonian, Ĥ0 =
∑L−1

l=0 µlẐl + J
∑L−2

l=0 ẐlẐl+1+
F
2

∑L−1
l=0 X̂l, where µl ∈ {0,W} is a local disorder,W is the disorder strength, F is the static global magnetic

field along x and J is the interaction strength. This Hamiltonian is in fact the average Hamiltonian of the
driven Ising Hamiltonian used in the main text. In comparison, we also simulate the quantum evolution
under an ensemble {ĤCOE} of synthetic Hamiltonians that are uniformly drawn from the GOE (i.e. without
any local constraints).

Figure 4(a) shows the level-spacing statistics of {Ĥ0} (obtained over 500 disorder realizations),
{ĤCOE} (obtained over 500 random instances) and their corresponding long-time unitary operators

Û= limt→∞ e−itĤ. We see that the level statistic of the physical Hamiltonian (and its long-time evolution) is
indistinguishable from the GOE. However, the discrepancy between the physical and synthetic (GOE)
realizations becomes apparent when looking at the eigenstate statistics as shown in figure 4(b). While the
distribution of dϵ(z) (see equation (5) of the main text) from the GOE is in a good agreement with the Bessel
function of the second kind, the physical system fails to meet the theoretical prediction. This is in contrast to
the driven case as presented in the main text. More importantly in the context of this work, a key difference
between the physical Hamiltonian and the random matrix theory prediction can be seen by comparing the
distribution of the output states after some time evolution. In figure 4(c), we show that the Porter-Thomas
distribution is never achieved with the physical systems while it is for the synthetic realizations as well as for
the driven case studied in the main text. These results underline the gap between physical Hamiltonians and
true random matrices and more importantly, they highlights the important role of the drive in bridging that
gap.
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Figure 4. Undriven thermalized Ising models versus the GOE: (a) Level-spacing statistic of an ensemble {Ĥ} and their
corresponding long-time evolution operator Û obtained from the physical Ising system (circle) and the GOE (square). The blue
dashed and the orange solid lines are theoretical predictions for the POI and the GOE distributions, respectively. (b) The
eigenstate distribution dϵ(z) (see equation (5) of the main text) with the GOE prediction (solid line). (c) The l1−norm distance
between the output distribution and the PT distribution as a function of time. The driven case studied in the main text is
presented for comparison. The parameters used are: L= 9,W= 1.5J,F= 2.5J,ω = 8J (for the driven case) and 500
disorder/instances realizations.
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