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A B S T R A C T

We consider a 1D Klein–Fock–Gordon particle in a finite interval, or box. We construct for the first time the
most general set of pseudo self-adjoint boundary conditions for the Hamiltonian operator that is present in the
first order in time 1D Klein–Fock–Gordon wave equation, or the 1D Feshbach–Villars wave equation. We show
that this set depends on four real parameters and can be written in terms of the one-component wavefunction
for the second order in time 1D Klein–Fock–Gordon wave equation and its spatial derivative, both evaluated
at the endpoints of the box. Certainly, we write the general set of pseudo self-adjoint boundary conditions
also in terms of the two-component wavefunction for the 1D Feshbach–Villars wave equation and its spatial
derivative, evaluated at the ends of the box; however, the set actually depends on these two column vectors
each multiplied by the singular matrix that is present in the kinetic energy term of the Hamiltonian. As a
consequence, we found that the two-component wavefunction for the 1D Feshbach–Villars equation and its
spatial derivative do not necessarily satisfy the same boundary condition that these quantities satisfy when
multiplied by the singular matrix. In any case, given a particular boundary condition for the one-component
wavefunction of the standard 1D Klein–Fock–Gordon equation and using the pair of relations that arise from
the very definition of the two-component wavefunction for the 1D Feshbach–Villars equation, the respective
boundary condition for the latter wavefunction and its derivative can be obtained. Our results can be extended
to the problem of a 1D Klein–Fock–Gordon particle moving on a real line with a point interaction (or a hole)
at one point.
1. Introduction

As is well known, the three-dimensional (3D) Klein–Fock–Gordon
(KFG) wave equation in its standard form plays an important role in
relativistic quantum mechanics [1–5]. As an example, when potentials
fail to create particle–antiparticle pairs, the 3D KFG wave equation can
be used to describe spin-zero particles, for example, the pion, a com-
posite particle, and the Higgs boson, an apparently elementary particle.
Clearly, this equation is one of the most widely used in relativistic
quantum mechanics. Naturally, the search for exact solutions to this
equation in specific and representative potentials has always been of
interest, mainly because these solutions can be useful for modeling
real physical processes. In the study of exactly solvable problems, var-
ious methods have been introduced and developed. Examples include
supersymmetric quantum mechanics (SUSY QM) and/or the factoriza-
tion method [6–10] and the Nikiforov–Uvarov (UV) method [8,9,11],
among others [12–15]. It is worth mentioning that in recent years,
new computational schemes or methods have been applied to obtain
solutions of nonlinear partial differential equations that are related in
some way to the KFG equation. See, for example, Refs. [16–18] and
references therein.

E-mail address: salvatored@nu.ac.th.

In reviewing the literature on KFG theory, it is immediately ap-
parent that the 3D KFG wave equation in Hamiltonian form, i.e., the
so-called 3D Feshbach–Villars (FV) wave equation [19], has not re-
ceived the same attention as the standard 3D KFG equation. Certainly,
both equations are equivalent, and connecting their corresponding
solutions seems to be straightforward. However, the 3D FV partial
differential equation is first order in time and second order in space,
that is, it includes a second-order Hamiltonian operator in the spatial
derivative (for a nice discussion of the procedure used by Feshbach and
Villars to obtain a linear equation in the time derivative, see Ref. [20].
For a brief and concise historical discussion of similar work, but prior
to that of Feshbach and Villars, see again Ref. [20], specifically, the
commentary written in its reference number 3, page 191).

Similarly, the one-dimensional (1D) FV wave equation has also not
received sufficient attention when considering problems within the KFG
theory in (1+1) dimensions. Certainly, the 1D KFG equation in its
standard form is much more popular. In this regard, there is an issue
within the 1D KFG theory that has received practically no attention and
that we can raise with the following questions: What are the boundary
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conditions that the 1D FV equation can support? Can general families of
boundary conditions be written for this equation? Specifically, what are
the appropriate boundary conditions for this equation in the problem
of a 1D KFG particle inside an interval? For example, some unexpected
boundary conditions for the solutions of the 1D FV wave equation in
simple physical situations were presented in Refs. [21–23]. In general,
the boundary conditions for the solutions of the second-order KFG
equation in 3D and 1D appear to be similar to those supported by the
corresponding Schrödinger wavefunction (see, for example, Refs. [21,
23–25]), but we do not have at our disposal a wave equation that
could have boundary conditions similar to those of the 1D FV equation
(the presence of a singular matrix in the kinetic energy term of the
Hamiltonian has much to do with this). In general, the physically
acceptable boundary conditions for a wave equation that is written in
Hamiltonian form must ensure that the respective Hamiltonian operator
retains its essential attribute, namely, that of being self-adjoint (if that
is the case). In the case of the 1D FV equation, it is known that its
Hamiltonian is a formally pseudo-Hermitian operator (or a formally
pseudo self-adjoint operator) [2,4], and, in principle, we could find
families of general boundary conditions that agree with the property
of being a pseudo self-adjoint operator, i.e., not just formally. In fact,
here, we show that indeed a general four-parameter family of boundary
conditions can be found for the solutions of the 1D FV equation and
that it is consistent with the latter property. Incidentally, to do this
is essentially to specify the domain of the Hamiltonian and that of its
generalized adjoint (as is done in the case of Hamiltonians that are self-
adjoint in the standard way), but, in addition, these two domains must
be equal, i.e., they must always contain the same boundary condition
(once the four parameters are fixed).

The article is organized as follows. In Section 2, we begin by intro-
ducing the KFG equations in their standard and Hamiltonian versions
and the relations linking their solutions. In addition, we introduce
the pseudo inner product for the two-component solutions of the 1D
FV equation and briefly discuss its relation to other distinctive in-
ner products of quantum mechanics. In particular, we note that this
pseudo inner product can also be considered the scalar product for
the one-component solutions of the KFG equation in its standard form.
Moreover, as might be expected, this pseudo inner product does not
possess the property of positive definiteness but can be independent
of time. Thus, the corresponding pseudo norm can be a constant, and
because this implies that the probability current density takes the same
value at each end of the box, the Hamiltonian for this problem can
be a pseudo-Hermitian operator. In fact, the Hamiltonian is formally
pseudo-Hermitian, and we find in this section a general four-parameter
set of boundary conditions that ensures that it is indeed a pseudo-
Hermitian operator. We write this set in terms of the one-component
wavefunction for the 1D KFG wave equation and its spatial derivative,
both evaluated at the ends of the interval. Here, we also consider the
nonrelativistic approximation of the general set of boundary conditions,
and the results support the idea that this set is indeed the most general.
In Section 3, we finally write the general set of boundary conditions
in terms of the two-component column vector for the 1D FV wave
equation and its spatial derivative, evaluated at the ends of the interval.
To be precise, the set must be written in terms of the latter two column
vectors each multiplied by the singular matrix that is present in the
kinetic energy term of the Hamiltonian (remember that a singular
matrix does not have an inverse). In Appendix A, we check that the
time derivative of the pseudo inner product of two solutions of the
1D FV equation in a nonzero electric potential, but expressed in terms
of the respective solutions of the standard KFG equation in the same
potential, is proportional to a term evaluated at the ends of the box
that also does not depend on the potential, i.e., it is a boundary
term. In Appendix B, we show that the Hamiltonian operator for a
1D KFG particle in a box is in fact a pseudo self-adjoint operator;
that is, the general matrix boundary condition, i.e., the general set of
2

boundary conditions, ensures that the domains of the Hamiltonian and ⟨
its generalized adjoint are equal. From the results shown in this section,
it follows that the boundary term that arose in Appendix A always
vanishes (certainly, for any boundary condition included in the general
family of boundary conditions); consequently, the value of the pseudo
inner product in this problem is conserved. Finally, concluding remarks
are presented in Section 4.

2. Boundary conditions for the 1D KFG particle in a box I

Let us begin by writing the 1D KFG wave equation in Hamiltonian
form,

iℏ 𝜕
𝜕𝑡
𝛹 = ĥ𝛹, (1)

where

h = − ℏ2

2m
(

𝜏3 + i𝜏2
) 𝜕2

𝜕𝑥2
+ m𝑐2𝜏3 + 𝑉 (𝑥)1̂2, (2)

s, let us say, the KFG Hamiltonian differential operator. Here, 𝜏3 = �̂�𝑧
and 𝜏2 = �̂�𝑦 are Pauli matrices and 𝑉 (𝑥) ∈ R is the external electric
potential (1̂2 is the 2 × 2 identity matrix). The (matrix) operator ĥ
acts on (complex) two-component column state vectors of the form
𝛹 = 𝛹 (𝑥, 𝑡) =

[

𝜓1(𝑥, 𝑡) 𝜓2(𝑥, 𝑡)
]T (the symbol T represents the transpose

of a matrix). Eq. (1) with ĥ given in Eq. (2) is the 1D FV wave
equation [2–4,19].

The 1D KFG wave equation in its standard form, or the second order
in time KFG equation in one spatial dimension [1,5] is given by
[

iℏ 𝜕
𝜕𝑡

− 𝑉 (𝑥)
]2
𝜓 =

[

−ℏ2𝑐2 𝜕
2

𝜕𝑥2
+ (m𝑐2)2

]

𝜓, (3)

where 𝜓 = 𝜓(𝑥, 𝑡) is a (complex) one-component state vector or
one-component wavefunction.

The relation between 𝜓 and 𝛹 can be defined as follows:

𝛹 =
[

𝜓1
𝜓2

]

= 1
2

⎡

⎢

⎢

⎣

𝜓 + i𝜏
(

𝜕
𝜕𝑡 −

𝑉
iℏ

)

𝜓

𝜓 − i𝜏
(

𝜕
𝜕𝑡 −

𝑉
iℏ

)

𝜓

⎤

⎥

⎥

⎦

, (4)

where 𝜏 ≡ ℏ∕m𝑐2. The Compton wavelength is precisely 𝜆C ≡ 𝑐𝜏; thus,
is the time taken for a ray of light to travel the distance 𝜆C. The

xpression given in Eq. (3) is fully equivalent to Eq. (1) (with ĥ given in
q. (2)) [2,3]. Note that, from Eq. (4), the solution 𝜓 of Eq. (3) depends
nly on the components of the column vector 𝛹 , namely,

= 𝜓1 + 𝜓2. (5)

dditionally,

iℏ 𝜕
𝜕𝑡
𝜓 − 𝑉 𝜓

) 1
m𝑐2

= 𝜓1 − 𝜓2. (6)

Certainly, all the results we have presented so far are well known.
Let us now consider a 1D KFG particle moving in the interval 𝑥 ∈
= [𝑎, 𝑏], i.e., in a box. The corresponding Hamiltonian operator given

n Eq. (2) acts on two-component column state vectors of the form
=

[

𝜓1 𝜓2
]T and 𝛷 =

[

𝜙1 𝜙2
]T, and the scalar product for these

wo state vectors must be defined as

⟨𝛹,𝛷⟩⟩ ≡ ∫𝛺
d𝑥𝛹 †𝜏3𝛷 (7)

the symbol † denotes the usual Hermitian conjugate, or the usual
ormal adjoint, of a matrix and an operator) [2–4,19]. Additionally,
he square of the corresponding norm (or rather, pseudo norm) is
‖𝛹‖‖2 ≡ ⟨⟨𝛹,𝛹⟩⟩ = ∫𝛺 d𝑥 𝜚, where 𝜚 = 𝜚(𝑥, 𝑡) = 𝛹 †𝜏3𝛹 = |𝜓1|

2 − |𝜓2|
2

s the 1D KFG probability density. Certainly, 𝜚 is not positive definite
nd calling it probability density is not absolutely correct (although it
an be interpreted as a charge density) [2–4,19]. Note that the integral
n (7) can also be identified with the usual scalar product in Dirac’s
heory in (1+1) dimensions, namely, ⟨𝛹,𝛷⟩D ≡ ∫𝛺 d𝑥𝛹 †𝛷, which is an
nner product on the Hilbert space of two-component square-integrable
avefunctions, 2(𝛺)⊕ 2(𝛺); therefore,
⟨𝛹,𝛷⟩⟩ ≡ ⟨𝛹, 𝜏3𝛷⟩D, (8)
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and ⟨𝛹,𝛷⟩D = ⟨⟨𝛹, 𝜏3𝛷⟩⟩. Because ⟨⟨𝛹,𝛹⟩⟩ can be a negative quantity,
the scalar product in Eq. (7) is an indefinite (or improper) inner
product, or a pseudo inner product, on an infinite-dimensional complex
vector space. In general, such a vector space itself is not necessarily a
Hilbert space.

Similarly, writing 𝛹 and 𝛷 in the integrand in (7) in terms of
their respective components, that is, using the relations that arise from
Eq. (4) and other analogous relations for 𝛷 (which are obtained from
Eq. (4) by making the replacements 𝛹 → 𝛷, 𝜓1 → 𝜙1, 𝜓2 → 𝜙2 and
𝜓 → 𝜙), we obtain

⟨⟨𝛹,𝛷⟩⟩ = iℏ
2m𝑐2 ∫𝛺

d𝑥
(

𝜓∗𝜙𝑡 − 𝜓∗
𝑡 𝜙 − 2𝑉

iℏ
𝜓∗𝜙

)

(9)

(where the asterisk ∗ denotes the complex conjugate, and 𝜓𝑡 ≡ 𝜕𝜓∕𝜕𝑡,
etc.), or also,

⟨⟨𝛹,𝛷⟩⟩ = iℏ
2m𝑐2

(

⟨𝜓, 𝜙𝑡⟩S − ⟨𝜓𝑡, 𝜙⟩S −
2
iℏ

⟨𝜓, 𝑉 𝜙⟩S
)

≡ ⟨𝜓, 𝜙⟩KFG, (10)

where ⟨𝜓, 𝜙⟩KFG can be considered the scalar product for the one-
component solutions of the 1D KFG equation in Eq. (3) (see Ap-
pendix A). Note that ⟨ , ⟩S denotes the usual scalar product in
the Schrödinger theory in one spatial dimension, namely, ⟨𝜓, 𝜙⟩S ≡
∫𝛺 d𝑥𝜓∗𝜙, which is an inner product on the Hilbert space of one-
component square-integrable wavefunctions, 2(𝛺). Certainly, 𝜓 and
𝑡, and 𝜙, 𝑉 𝜙, and 𝜙𝑡, must belong to 2(𝛺) to ensure that ⟨𝜓, 𝜙⟩KFG
xists [26].

It can be noted that there is an isomorphism between the vectorial
pace of the solutions 𝜓 of the standard 1D KFG equation for the
orresponding 1D particle, namely,
(

𝜕𝑡 −
𝑉
iℏ

)2
+ d̂

]

𝜓 = 0 (11)

(Eq. (3)), where d̂ ≡ −𝑐2𝜕𝑥𝑥 + 𝜏−2 (𝜕𝑡 ≡ 𝜕∕𝜕𝑡 and 𝜕𝑥𝑥 ≡ 𝜕2∕𝜕𝑥2, etc.) and
he vectorial space of the initial state vectors of the 1D KFG equation
n Hamiltonian form for this 1D particle, namely, Eq. (1) with ĥ given

in Eq. (2) [27]. In effect, a possible initial state vector, for example, at
𝑡 = 0, would have the form

𝛹 (0) =
[

𝜓1(0)
𝜓2(0)

]

= 1
2

⎡

⎢

⎢

⎣

𝜓(0) + i𝜏
(

𝜓𝑡(0) −
𝑉
iℏ𝜓(0)

)

𝜓(0) − i𝜏
(

𝜓𝑡(0) −
𝑉
iℏ𝜓(0)

)

⎤

⎥

⎥

⎦

, (12)

that arises immediately from the relation given in Eq. (4). Thus, giving
an initial state vector as 𝛹 (0) is equivalent to providing the initial
data for the solution vector 𝜓 , namely, 𝜓(0) and 𝜓𝑡(0). Incidentally,
operators d̂, which can act on the one-component state vectors 𝜓 , and
, which can act on the two-component state vectors 𝛹 , are related as

follows:

h = +ℏ
2
𝜏
(

𝜏3 + i𝜏2
)

d̂ + ℏ
2
𝜏−1

(

𝜏3 − i𝜏2
)

+ 𝑉 (𝑥)1̂2. (13)

Although the scalar product in Eqs. (7) and (10) does not possess
he property of positive definiteness (i.e., ⟨⟨𝛹,𝛹⟩⟩ < 0), it is a time-
ndependent scalar product. Indeed, using Eq. (3) for 𝜓 and 𝜓∗, and for

and 𝜙∗, it can be demonstrated that the following relation is verified:

d
d𝑡
⟨⟨𝛹,𝛷⟩⟩ = − iℏ

2m
[

𝜓∗
𝑥 𝜙 − 𝜓∗𝜙𝑥

]

|

|

|

𝑏

𝑎
= d

d𝑡
⟨𝜓, 𝜙⟩KFG, (14)

where [ 𝑔 ]|𝑏𝑎 ≡ 𝑔(𝑏, 𝑡) − 𝑔(𝑎, 𝑡), and 𝜓𝑥 ≡ 𝜕𝜓∕𝜕𝑥, etc. This result is also
valid when the external potential 𝑉 is different from zero inside the box
(see Appendix A). The term evaluated at the endpoints of the interval
𝛺 must vanish due to the boundary condition satisfied by 𝜓 and 𝜙, or

and 𝛷 (see Appendix B). Additionally, if we make 𝜓 = 𝜙, or 𝛹 = 𝛷,
in Eq. (14), we obtain the result
d
d𝑡
⟨⟨𝛹,𝛹⟩⟩ = − [ 𝑗 ]|𝑏𝑎 =

d
d𝑡
⟨𝜓,𝜓⟩KFG, (15)

here 𝑗 = 𝑗(𝑥, 𝑡) = (iℏ∕2m)(𝜓∗
𝑥 𝜓 − 𝜓∗𝜓𝑥) would be the probability
3

urrent density, although we know that this quantity, as well as 𝜚,
annot be interpreted as probability quantities [2,3]. The disappearance
f the boundary term in Eq. (15) implies that the pseudo norm remains
onstant, and because 𝑗(𝑎, 𝑡) = 𝑗(𝑏, 𝑡), we have that ĥ must be a pseudo-

Hermitian operator. In the case that 𝛺 = R, the scalar product ⟨⟨𝛹,𝛷⟩⟩
is a time-independent constant whenever 𝛹 and 𝛷 are two normalizable
solutions, i.e., solutions that have their pseudo norm finite. The square
of the pseudo norm of these functions could be negative, but their
magnitude cannot be infinite if the boundary term in Eq. (14) is
expected to be zero.

Next, we use the pseudo inner product given in Eq. (7), which is
defined over an indefinite inner product space [20]. For a collection
of basic properties of this scalar product (but also of general results
on Hamiltonians of the type given in Eq. (2)), see Ref. [27]. Using
integration by parts twice, it can be demonstrated that the Hamiltonian
differential operator ĥ in Eq. (2) satisfies the following relation:

⟨⟨𝛹, ĥ𝛷⟩⟩ = ⟨⟨ĥadj𝛹,𝛷⟩⟩ + 𝑓 [𝛹,𝛷], (16)

where the boundary term 𝑓 [𝛹,𝛷] is given by

𝑓 [𝛹,𝛷] ≡ ℏ2

2m
[

𝛹 †
𝑥 𝜏3 (𝜏3 + i𝜏2)𝛷 − 𝛹 † 𝜏3 (𝜏3 + i𝜏2)𝛷𝑥

]

|

|

|

𝑏

𝑎
. (17)

This quantity can also be written in a way that will be especially
important, namely,

𝑓 [𝛹,𝛷]

≡ ℏ2

2m
1
2

[

(

(𝜏3 + i𝜏2)𝛹𝑥
)† (𝜏3 + i𝜏2)𝛷 −

(

(𝜏3 + i𝜏2)𝛹
)† (𝜏3 + i𝜏2)𝛷𝑥

]

|

|

|

|

𝑏

𝑎
.

(18)

The latter somewhat unexpected expression is true because the singular
matrix 𝜏3+i𝜏2 obeys the following relation: (𝜏3+i𝜏2)†(𝜏3+i𝜏2) = 2𝜏3 (𝜏3+
i𝜏2); however, (𝜏3+i𝜏2)2 = 0̂. The differential operator ĥadj in Eq. (16) is
the generalized Hermitian conjugate, or the formal generalized adjoint
of ĥ, namely,

hadj = �̂�−1 ĥ† �̂� = 𝜏3 ĥ† 𝜏3 (19)

(�̂� = 𝜏3 = �̂�−1 is sometimes called the metric operator; in this case, �̂� is
a bounded operator and satisfies �̂�3 = �̂�) and therefore (just formally,
i.e., by using only the scalar product definition given in Eq. (7)),

⟨⟨𝛹, ĥ𝛷⟩⟩ = ⟨⟨ĥadj𝛹,𝛷⟩⟩. (20)

The latter is essentially the relation that defines the generalized adjoint
differential operator ĥadj on an indefinite inner product space. Clearly,
the latter definition requires that 𝑓 [𝛹,𝛷] in Eq. (16) vanishes.

The Hamiltonian operator in Eq. (2) also formally satisfies the
following relation:

h = ĥadj, (21)

that is, ĥ is formally pseudo-Hermitian (or formally generalized Her-
mitian), or formally pseudo self-adjoint (or formally generalized self-
adjoint). However, if the boundary conditions imposed on 𝛹 and 𝛷 at
the endpoints of the interval 𝛺 lead to the cancellation of the boundary
term in Eq. (16), then the differential operator ĥ is indeed pseudo-
Hermitian (or generalized Hermitian), and as shown in Appendix B,
it is also pseudo self-adjoint (or generalized self-adjoint), i.e.,

⟨⟨𝛹, ĥ𝛷⟩⟩ = ⟨⟨ĥ𝛹,𝛷⟩⟩. (22)

Precisely, we want to obtain a general set of boundary conditions for
the pseudo-Hermitian Hamiltonian differential operator. Thus, if we
impose 𝛹 = 𝛷 in the latter relation and in Eq. (16) (with the result
in Eq. (21)), we obtain the following condition:

𝑓 [𝛹,𝛹 ] = ℏ
i
[ 𝑗 ]|𝑏𝑎 = 0 ( ⇒ 𝑗(𝑏, 𝑡) = 𝑗(𝑎, 𝑡) ) , (23)

where 𝑗 = 𝑗(𝑥, 𝑡) is given by

𝑗 = iℏ 1 [

(

(𝜏 + i𝜏 )𝛹
)† (𝜏 + i𝜏 )𝛹 −

(

(𝜏 + i𝜏 )𝛹
)† (𝜏 + i𝜏 )𝛹

]

(24)

2m 2 3 2 𝑥 3 2 3 2 3 2 𝑥
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(see Eq. (18)). But also because 𝜏3 (𝜏3+i𝜏2) = 1̂2+�̂�𝑥 (the latter if we use
he expression given by Eq. (17)), and the result in Eq. (5), we obtain

= iℏ
2m

(

𝜓∗
𝑥 𝜓 − 𝜓∗𝜓𝑥

)

, (25)

s expected (see the comment made just after Eq. (15)). Certainly,
ll the generalized Hermitian boundary conditions must lead to the
quality of 𝑗 at the endpoints of the interval 𝛺. Furthermore, we also
btain the result ⟨⟨𝛹, ĥ𝛹⟩⟩ = ⟨⟨ĥ𝛹,𝛹⟩⟩ = ⟨⟨𝛹, ĥ𝛹⟩⟩∗ (the superscript
denotes the complex conjugate); therefore, ⟨⟨𝛹, ĥ𝛹⟩⟩ ≡ ⟨⟨ĥ⟩⟩𝛹 ∈ R,

.e., the generalized mean value of the Hamiltonian operator is real
alued. Other typical properties of operators that are Hermitian in the
sual sense hold here as well; for example, the eigenvalues are real (see,
or example, Refs. [2,4]).

Substituting 𝑗 from Eq. (25) into Eq. (23), we obtain the result (we
mit the variable 𝑡 in the expressions that follow)
2m
ℏ2
𝑓 [𝛹,𝛹 ] =

[

𝜓 𝜆𝜓∗
𝑥 − 𝜓∗𝜆𝜓𝑥

]

|

|

|

𝑏

𝑎

=
[

𝜓(𝑏) 𝜆𝜓∗
𝑥 (𝑏) − 𝜓

∗(𝑏) 𝜆𝜓𝑥(𝑏)
]

−
[

𝜓(𝑎) 𝜆𝜓∗
𝑥 (𝑎) − 𝜓

∗(𝑎) 𝜆𝜓𝑥(𝑎)
]

= 0,
(26)

where 𝜆 ∈ R is a parameter required for dimensional reasons. It is very
convenient to rewrite the latter two terms using the following identity:

𝑧1𝑧
∗
2 − 𝑧

∗
1𝑧2 =

i
2
[

(𝑧1 + i𝑧2)(𝑧1 + i𝑧2)∗ − (𝑧1 − i𝑧2)(𝑧1 − i𝑧2)∗
]

= i
2

(

|

|

𝑧1 + i𝑧2||
2 − |

|

𝑧1 − i𝑧2||
2
)

, (27)

where 𝑧1 and 𝑧2 are complex numbers. Then, the following result is
obtained:

𝜆 2m
ℏ2
𝑓 [𝛹,𝛹 ] = i

2

(

|

|

𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)||
2 − |

|

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)||
2
)

− i
2

(

|

|

𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)||
2 − |

|

𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)||
2
)

= i
2

(

|

|

𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)||
2 + |

|

𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)||
2
)

− i
2

(

|

|

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)||
2 + |

|

𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)||
2
)

= 0, (28)

that is,

𝜆 2m
ℏ2
𝑓 [𝛹,𝛹 ] = i

2

[

𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)

]† [ 𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)

]

− i
2

[

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]† [ 𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]

= 0. (29)

Let us now consider the following general matrix boundary condi-
tion:
[

𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)

]

= M̂
[

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]

, (30)

where M̂ is an arbitrary complex matrix. By substituting Eq. (30) into
Eq. (29), we obtain

i
2

[

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]†
(

M̂†M̂ − 1̂2
)

[

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]

= 0;

therefore, M̂ is a unitary matrix (the justification for this result is
given in the comment that follows Eq. (A.14)). Thus, a general set of
generalized Hermitian boundary conditions for the 1D KFG particle in
a box can be written as follows:
[

𝜓(𝑏) − i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) + i𝜆𝜓𝑥(𝑎)

]

= Û(2×2)

[

𝜓(𝑏) + i𝜆𝜓𝑥(𝑏)
𝜓(𝑎) − i𝜆𝜓𝑥(𝑎)

]

, (31)

where Û(2×2) = M̂−1 is also unitary. This family of boundary condi-
tions is similar to the one corresponding to the problem of the 1D
Schrödinger particle enclosed in a box; for example, see Eq. (28) in
Ref. [28]. In relation to this, we can also take the nonrelativistic
approximation of the general boundary condition given in Eq. (31).
For that purpose, it is convenient to first write the KFG wavefunction
4

𝜓 = 𝜓(𝑥, 𝑡) as follows: 𝜓 = 𝜓S exp(−im𝑐2𝑡∕ℏ), where 𝜓S = 𝜓S(𝑥, 𝑡)
is the Schrödinger wavefunction. Because in this approximation we
have that |

|

iℏ(𝜓S)𝑡 || ≪ m𝑐2 |
|

𝜓S
|

|

, we can write 𝜓𝑡 = (−im𝑐2𝑡∕ℏ)𝜓 , and
herefore 𝜓1 =

(

1 − 𝑉
2m𝑐2

)

𝜓 and 𝜓2 = 𝑉
2m𝑐2 𝜓 (see Eq. (4)). Thus,

for weak external potentials and to the lowest order in 𝑣∕𝑐 (and for
positive energy solutions), 𝜓1 ≈ 𝜓 satisfies the Schrödinger equation in
the potential 𝑉 + m𝑐2 (the latter m𝑐2 can be eliminated by using the
expression 𝜓1 ≈ 𝜓 = 𝜓S exp(−im𝑐2𝑡∕ℏ)) but also (𝜓1)𝑥 ≈ 𝜓𝑥 (see, for
example, Refs. [2,19,23]). It is then clear that, in the problem of the
particle in a box, the one-component KFG wavefunction satisfies the
same boundary conditions as the one-component Schrödinger wave-
function. Incidentally, a similar result to Eq. (31) had already been
obtained by taking the nonrelativistic limit of the most general family
of boundary conditions for the 1D Dirac particle enclosed in a box [29].
Additionally, in the analogous problem of a 1D Schrödinger particle in
the presence of a point interaction at the point 𝑥 = 0 (or a hole at the
origin), the most general family of boundary conditions is similar to
that given in Eq. (31) [30]. Indeed, all these results substantiate that
the set of boundary conditions dependent on the four real parameters
given in Eq. (31) is also the most general for a 1D KFG particle in
the interval [𝑎, 𝑏]. Moreover, by making the replacements 𝑎 → 0+ and
𝑏 → 0− in Eq. (31), we obtain the respective most general set of
boundary conditions for the case in which the 1D KFG particle moves
along the real line with a hole at the origin. Some examples of boundary
conditions for this system can be seen in Refs. [21,23] and will be
briefly discussed in Section 3.

For all the boundary conditions that are part of the general set of
boundary conditions in Eq. (31), ĥ is a pseudo-Hermitian operator, but
it is also a pseudo self-adjoint operator (see Appendix B). Certainly,
the result in Eq. (31) is given in terms of the wavefunction 𝜓 , but
if the relation in Eq. (5) is used, it can also be written in terms of
the components of 𝛹 =

[

𝜓1 𝜓2
]T, i.e., in terms of 𝜓1 + 𝜓2, and its

spatial derivative (𝜓1)𝑥 + (𝜓2)𝑥, evaluated at the edges 𝑥 = 𝑎 and 𝑥 = 𝑏.
Actually, the general family of boundary conditions given in Eq. (31)
must be written in terms of (𝜏3 + i𝜏2)𝛹 and (𝜏3 + i𝜏2)𝛹𝑥 evaluated at
the ends of the box. We work on this in the next section. We give
below some examples of boundary conditions that are contained in
Eq. (31): 𝜓(𝑎) = 𝜓(𝑏) = 0 (Û(2×2) = −1̂2), i.e., 𝜓 can satisfy the Dirichlet
boundary condition; 𝜓𝑥(𝑎) = 𝜓𝑥(𝑏) = 0 (Û(2×2) = +1̂2), i.e., 𝜓 can
satisfy the Neumann boundary condition; 𝜓(𝑎) = 𝜓(𝑏) and 𝜓𝑥(𝑎) = 𝜓𝑥(𝑏)
(Û(2×2) = +�̂�𝑥), 𝜓 can satisfy the periodic boundary condition; 𝜓(𝑎) =
−𝜓(𝑏) and 𝜓𝑥(𝑎) = −𝜓𝑥(𝑏) (Û(2×2) = −�̂�𝑥), 𝜓 can satisfy the antiperiodic
boundary condition; 𝜓(𝑎) = 𝜓𝑥(𝑏) = 0 (Û(2×2) = �̂�𝑧), i.e., 𝜓 can satisfy
a mixed boundary condition; 𝜓𝑥(𝑎) = 𝜓(𝑏) = 0 (Û(2×2) = −�̂�𝑧), i.e., 𝜓
can satisfy another mixed boundary condition; 𝜓(𝑎) − 𝜆𝜓𝑥(𝑎) = 0 and
(𝑏) + 𝜆𝜓𝑥(𝑏) = 0 (Û(2×2) = i1̂2), 𝜓 can satisfy a kind of Robin boundary
ondition. In fact, the latter boundary condition would be the KFG
ersion of the boundary condition commonly used in the so-called (one-
imensional) MIT bag model for hadronic structures (see, for example,
ef. [29]). All these boundary conditions are typical of wave equations

hat are of the second order in the spatial derivative.
Of all the boundary conditions included in the four-parameter fam-

ly of boundary conditions, only those arising from a diagonal unitary
atrix describe a particle in an impenetrable box. This is because, for

hese boundary conditions, the probability current density satisfies the
elation 𝑗(𝑏) = 𝑗(𝑎) = 0 for all 𝑡. Thus, the most general family of
onfining boundary conditions for a 1D KFG particle in a box only has
wo (real) parameters. The latter result is due to the similarity between
he general set of boundary conditions given in Eq. (31) and the general
ets of boundary conditions for the 1D Dirac and Schrödinger particles,
nd because we already know that the confining boundary conditions
ome from a matrix Û that is diagonal [29].
(2×2)
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3. Boundary conditions for the 1D KFG particle in a box II

Here, we obtain the most general set of pseudo self-adjoint bound-
ary conditions for the Hamiltonian operator in the 1D FV equation,
that is, we write the latter set in terms of 𝛹 and 𝛹𝑥 evaluated at the
ndpoints of the box. More specifically, in terms of (𝜏3 + i𝜏2)𝛹 and
𝜏3 + i𝜏2)𝛹𝑥. Indeed, following a procedure similar to that used above
o obtain Eq. (26), namely, substituting 𝑗 from Eq. (24) into Eq. (23),
e obtain
2m
ℏ2
𝑓 [𝛹,𝛹 ] = 1

2

[

(

(𝜏3 + i𝜏2)𝜆𝛹𝑥
)† (𝜏3 + i𝜏2)𝛹

−
(

(𝜏3 + i𝜏2)𝛹
)† (𝜏3 + i𝜏2)𝜆𝛹𝑥

]

|

|

|

|

𝑏

𝑎

= 1
2

[

(

(𝜏3 + i𝜏2)𝜆𝛹𝑥(𝑏)
)† (𝜏3 + i𝜏2)𝛹 (𝑏)

−
(

(𝜏3 + i𝜏2)𝛹 (𝑏)
)† (𝜏3 + i𝜏2)𝜆𝛹𝑥(𝑏)

]

− 1
2

[

(

(𝜏3 + i𝜏2)𝜆𝛹𝑥(𝑎)
)† (𝜏3 + i𝜏2)𝛹 (𝑎)

−
(

(𝜏3 + i𝜏2)𝛹 (𝑎)
)† (𝜏3 + i𝜏2)𝜆𝛹𝑥(𝑎)

]

= 0, (32)

where again, we insert the real parameter 𝜆 for dimensional reasons.
Now, we use the following matrix identity twice:

Ẑ†
2 Ẑ1 − Ẑ†

1 Ẑ2 =
i
2
[

(Ẑ1 + iẐ2)†(Ẑ1 + iẐ2) − (Ẑ1 − iẐ2)†(Ẑ1 − iẐ2)
]

. (33)

Then, we obtain the following result:

𝜆 2m
ℏ2
𝑓 [𝛹,𝛹 ] = 1

2
i
2

[

(

(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)
)† (𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)

−
(

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
)† (𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)

]

− 1
2
i
2

[

(

(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)
)† (𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

−
(

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)
)† (𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)

]

= 0, (34)

that is,

𝜆 2m
ℏ2
𝑓 [𝛹,𝛹 ]

= 1
2
i
2

[

(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)

]† [ (𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)

]

− 1
2
i
2

[

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]† [ (𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]

= 0.

(35)

Now, we propose writing a general matrix boundary condition as
follows:
[

(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)

]

= Â
[

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]

, (36)

where Â is an arbitrary 4 × 4 complex matrix. By substituting Eq. (36)
into Eq. (35), we obtain

1
2
i
2

[

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]†
(

Â†Â − 1̂4
)

[

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]

= 0,

then Â is a unitary matrix (1̂4 is the 4 × 4 identity matrix). Note that
the components of the column vectors in Eq. (36) are themselves 2 × 1
olumn matrices and are given by

𝜏3 + i𝜏2)(𝛹 ± i𝜆𝛹𝑥)(𝑥) =
[

(𝜓 ± i𝜆𝜓𝑥)(𝑥)
−(𝜓 ± i𝜆𝜓𝑥)(𝑥)

]

, 𝑥 = 𝑎, 𝑏. (37)

hus, the general boundary condition in Eq. (36) can be written as
ollows:

(𝜓 + i𝜆𝜓𝑥)(𝑏)
−(𝜓 + i𝜆𝜓𝑥)(𝑏)
(𝜓 − i𝜆𝜓𝑥)(𝑎)

⎤

⎥

⎥

⎥

⎥

= Â

⎡

⎢

⎢

⎢

⎢

(𝜓 − i𝜆𝜓𝑥)(𝑏)
−(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)

⎤

⎥

⎥

⎥

⎥

. (38)
5

−(𝜓 − i𝜆𝜓𝑥)(𝑎) ⎦ ⎣

−(𝜓 + i𝜆𝜓𝑥)(𝑎) ⎦
On the other hand, this relation can also be written as follows:

⎡

⎢

⎢

⎢

⎢

⎣

(𝜓 + i𝜆𝜓𝑥)(𝑏)
(𝜓 − i𝜆𝜓𝑥)(𝑎)
(𝜓 + i𝜆𝜓𝑥)(𝑏)
(𝜓 − i𝜆𝜓𝑥)(𝑎)

⎤

⎥

⎥

⎥

⎥

⎦

= ŜÂŜ†

⎡

⎢

⎢

⎢

⎢

⎣

(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)
(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)

⎤

⎥

⎥

⎥

⎥

⎦

, (39)

where Ŝ is given by

Ŝ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

= 1
2

(

�̂�𝑧 ⊗ 1̂2 + i�̂�𝑦 ⊗ �̂�𝑥 + i�̂�𝑥 ⊗ �̂�𝑦 + 1̂2 ⊗ �̂�𝑧
)

, (40)

here ⊗ denotes the Zehfuss–Kronecker product of matrices, or the
atrix direct product

̂ ⊗ Ĝ ≡
⎡

⎢

⎢

⎣

F11Ĝ ⋯ F1𝑛Ĝ
⋮ ⋱ ⋮

F𝑚1Ĝ ⋯ F𝑚𝑛Ĝ

⎤

⎥

⎥

⎦

, (41)

which is bilinear and associative and satisfies, among other properties,
the mixed-product property: (F̂⊗Ĝ)(Ĵ⊗K̂) = (F̂Ĵ⊗ĜK̂) (see, for example,
Ref. [31]). The matrix Ŝ is unitary, and therefore, ŜÂŜ† is also a unitary
matrix. Now, notice that the left-hand side of the relation in Eq. (39)
is given by (see Eq. (30))

⎡

⎢

⎢

⎢

⎢

⎣

[

(𝜓 + i𝜆𝜓𝑥)(𝑏)
(𝜓 − i𝜆𝜓𝑥)(𝑎)

]

[

(𝜓 + i𝜆𝜓𝑥)(𝑏)
(𝜓 − i𝜆𝜓𝑥)(𝑎)

]

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

M̂
[

(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)

]

M̂
[

(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)

]

⎤

⎥

⎥

⎥

⎥

⎦

=
[

M̂ 0̂
0̂ M̂

]

⎡

⎢

⎢

⎢

⎢

⎣

(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)
(𝜓 − i𝜆𝜓𝑥)(𝑏)
(𝜓 + i𝜆𝜓𝑥)(𝑎)

⎤

⎥

⎥

⎥

⎥

⎦

, (42)

and substituting the latter relation into Eq. (39), we obtain

ŜÂŜ† =
[

M̂ 0̂
0̂ M̂

]

= 1̂2 ⊗ M̂ (43)

(because M̂ is a unitary matrix, the block diagonal matrix in Eq. (43) is
also unitary). Then, from Eq. (43), we can write the matrix Â as follows:

Â = Ŝ†
[

M̂ 0̂
0̂ M̂

]

Ŝ = Ŝ†(1̂2 ⊗ M̂) Ŝ. (44)

Thus, the most general family of pseudo self-adjoint boundary condi-
tions for the 1D KFG particle in a box, that is, for the Hamiltonian
operator in the 1D FV wave equation, can be written as follows (see
Eq. (36)):
[

(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑎)

]

= Û(4×4)

[

(𝜏3 + i𝜏2)(𝛹 + i𝜆𝛹𝑥)(𝑏)
(𝜏3 + i𝜏2)(𝛹 − i𝜆𝛹𝑥)(𝑎)

]

, (45)

where

Û(4×4) = Â−1 = Â† = Ŝ†
[

M̂† 0̂
0̂ M̂†

]

Ŝ = Ŝ†
[

M̂−1 0̂
0̂ M̂−1

]

Ŝ

= Ŝ†
[

Û(2×2) 0̂
0̂ Û(2×2)

]

Ŝ = Ŝ†(1̂2 ⊗ Û(2×2))Ŝ (46)

(to reach this result, we use Eq. (44) and the fact that Û(2×2) = M̂−1, the
latter two results and only some properties of the matrix direct product
could also be used). Note that the general matrix boundary condition
in Eq. (45) could also be written as follows:

(1̂2 ⊗ (𝜏3 + i𝜏2))
[

(𝛹 − i𝜆𝛹𝑥)(𝑏)
]

(𝛹 + i𝜆𝛹𝑥)(𝑎)
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= Û(4×4)(1̂2 ⊗ (𝜏3 + i𝜏2))
[

(𝛹 + i𝜆𝛹𝑥)(𝑏)
(𝛹 − i𝜆𝛹𝑥)(𝑎)

]

; (47)

however, the matrix 1̂2 ⊗ (𝜏3 + i𝜏2) does not have an inverse and the
column vector on the left side of this relation cannot be cleared. Thus,
the expression given in Eq. (47) is an elegant way to write the general
boundary condition, but it is not functional and could lead to errors.

The boundary conditions that were presented just before the last
paragraph of Section 2 can be extracted from Eq. (45) if the matrix
Û(2×2) is known. In effect, the Dirichlet boundary condition is (𝜏3 +
i𝜏2)𝛹 (𝑎) = (𝜏3 + i𝜏2)𝛹 (𝑏) = 0 (Û(4×4) = −1̂4 = −1̂2 ⊗ 1̂2); the Neumann
boundary condition is (𝜏3 + i𝜏2)𝛹𝑥(𝑎) = (𝜏3 + i𝜏2)𝛹𝑥(𝑏) = 0 (Û(4×4) =
+1̂4 = +1̂2 ⊗ 1̂2); the periodic boundary condition is (𝜏3 + i𝜏2)𝛹 (𝑎) =
(𝜏3 + i𝜏2)𝛹 (𝑏) and (𝜏3 + i𝜏2)𝛹𝑥(𝑎) = (𝜏3 + i𝜏2)𝛹𝑥(𝑏) (Û(4×4) = �̂�𝑥 ⊗ 1̂2); the
antiperiodic boundary condition is (𝜏3 + i𝜏2)𝛹 (𝑎) = −(𝜏3 + i𝜏2)𝛹 (𝑏) and
(𝜏3 + i𝜏2)𝛹𝑥(𝑎) = −(𝜏3 + i𝜏2)𝛹𝑥(𝑏) (Û(4×4) = −�̂�𝑥 ⊗ 1̂2); a mixed boundary
condition is (𝜏3+i𝜏2)𝛹 (𝑎) = (𝜏3+i𝜏2)𝛹𝑥(𝑏) = 0 (Û(4×4) = �̂�𝑧⊗ 1̂2); another
mixed boundary condition is (𝜏3+i𝜏2)𝛹𝑥(𝑎) = (𝜏3+i𝜏2)𝛹 (𝑏) = 0 (Û(4×4) =
−�̂�𝑧 ⊗ 1̂2); a kind of Robin boundary condition (and a kind of MIT bag
boundary condition for a 1D KFG particle) is (𝜏3+i𝜏2)(𝛹 (𝑎)−𝜆𝛹𝑥(𝑎)) = 0
and (𝜏3 + i𝜏2)(𝛹 (𝑏) + 𝜆𝛹𝑥(𝑏)) = 0 (Û(4×4) = i1̂4 = i1̂2⊗ 1̂2). Then, to write
all these boundary conditions in terms of 𝜓(𝑎) and 𝜓(𝑏), and 𝜓𝑥(𝑎) and
𝜓𝑥(𝑏), we must use the fact that 𝛹 =

[

𝜓1 𝜓2
]T and 𝜓 = 𝜓1+𝜓2 (Eq. (5)).

If we wish to obtain explicit relations between the components of 𝛹
and 𝛹𝑥 at 𝑥 = 𝑎 and 𝛹 and 𝛹𝑥 at 𝑥 = 𝑏, we must use the relations
given in Eqs. (5) and (6). Additionally, it can be shown that when
the matrix Û(2×2) is diagonal, then the matrix Û(4×4) is also diagonal;
consequently, diagonal matrices Û(4×4) in Eq. (45) lead to confining
boundary conditions (see the last paragraph of Section 2).

In general, the boundary conditions imposed on (𝜏3 + i𝜏2)𝛹 and
(𝜏3 + i𝜏2)𝛹𝑥 at the endpoints of the box do not imply that 𝛹 and 𝛹𝑥
must also satisfy them. For example, let us consider the problem of
the 1D KFG particle in the step potential (𝑉 (𝑥) = 𝑉0 𝛩(𝑥), where 𝛩(𝑥)
is the Heaviside step function). This problem was also considered in
Refs. [21,23]. The step potential is a (soft) point interaction in the
neighborhood of the origin, that is, between the points 𝑥 = 𝑎 → 0+
and 𝑥 = 𝑏 → 0−, and the boundary condition is the periodic boundary
condition, which in this case becomes the continuity condition of (𝜏3 +
i𝜏2)𝛹 and (𝜏3 + i𝜏2)𝛹𝑥 at 𝑥 = 0, i.e., (𝜏3 + i𝜏2)𝛹 (0−) = (𝜏3 + i𝜏2)𝛹 (0+) and
(𝜏3 + i𝜏2)𝛹𝑥(0−) = (𝜏3 + i𝜏2)𝛹𝑥(0+). As we know, from this condition, it
is obtained that 𝜓(0−) = 𝜓(0+) and 𝜓𝑥(0−) = 𝜓𝑥(0+). If the relations
𝜓1 + 𝜓2 = 𝜓 (Eq. (5)) and 𝜓1 − 𝜓2 = (𝐸 − 𝑉 )𝜓∕m𝑐2 (Eq. (6)) are used
(in the latter, we also assumed that 𝜓 is an energy eigenstate), one can
find relations between {𝛹 (0+), 𝛹𝑥(0+)} and {𝛹 (0−), 𝛹𝑥(0−)}. We find
that the relation given in Eq. (30) in Ref. [21] is none other than the
boundary condition (𝜏3 + i𝜏2)𝛹 (0−) = (𝜏3 + i𝜏2)𝛹 (0+), with Eqs. (5) and
(6) evaluated at 𝑥 = 0±. Likewise, the relation given in Eq. (31) of the
same reference is none other than (𝜏3 + i𝜏2)𝛹𝑥(0−) = (𝜏3 + i𝜏2)𝛹𝑥(0+),
with the spatial derivatives of Eqs. (5) and (6) also evaluated at 𝑥 = 0±.
Finally, adding the latter two boundary conditions, we obtain Eq. (32)
of Ref. [21]. Clearly, if the height of the step potential is not zero, then
𝛹 (0+) is different from 𝛹 (0−), and 𝛹𝑥(0+) is different from 𝛹𝑥(0−).
Similarly, in Ref. [23], it was explicitly proven that 𝛹 (0+) ≠ 𝛹 (0−)
and 𝛹𝑥(0+) ≠ 𝛹𝑥(0−) (see Eqs. (19) and (20) in that reference), but
it was also shown that the boundary condition should be written in
the form (𝜏3 + i𝜏2)𝛹 (0−) = (𝜏3 + i𝜏2)𝛹 (0+) and (𝜏3 + i𝜏2)𝛹𝑥(0−) =
(𝜏3 + i𝜏2)𝛹𝑥(0+). Incidentally, in the same reference, it was shown that
the latter boundary condition can be obtained by integrating the 1D FV
equation from 𝑥 = 0− to 𝑥 = 0+.

On the other hand, in the problem of the 1D KFG particle inside
the box 𝛺 = [𝑎, 𝑏], and subjected to the potential 𝑉 , with the Dirichlet
boundary condition, (𝜏3 + i𝜏2)𝛹 (𝑎) = (𝜏3 + i𝜏2)𝛹 (𝑏) = 0, we know
that 𝜓 also satisfies this condition, namely, 𝜓(𝑎) = 𝜓(𝑏) = 0. The
latter boundary condition together with Eqs. (5) and (6) lead us to
the boundary condition 𝛹 (𝑎) = 𝛹 (𝑏) = 0. Indeed, in addition to
6

𝜓1(𝑎) + 𝜓2(𝑎) = 𝜓1(𝑏) + 𝜓2(𝑏) = 0, 𝜓1(𝑎) − 𝜓2(𝑎) = 𝜓1(𝑏) − 𝜓2(𝑏) = 0
(because 𝜓𝑡(𝑎, 𝑡) = 𝜓𝑡(𝑏, 𝑡) = 0 also holds). Finally, 𝛹 also satisfies
the Dirichlet boundary condition at the edges of the box (the latter
boundary condition was precisely the one used in Ref. [22]).

In short, let us suppose that the one-component wavefunction 𝜓 can
vanish at a point on the real line, for example, at 𝑥 = 0 (also 𝑉 (0+)
and 𝑉 (0−) must be finite numbers there). The latter is the Dirichlet
boundary condition, namely, 𝜓(0−) = 𝜓(0+) = 0 ≡ 𝜓(0). Certainly, this
result is obtained from the disappearance of (𝜏3 + i𝜏2)𝛹 at that same
point, i.e., from the fact that the Hamiltonian operator with the latter
boundary condition is a pseudo self-adjoint operator; then, the latter
condition implies that the entire two-component wavefunction 𝛹 has
to disappear at that point (use Eqs. (5) and (6)). In other words, the 1D
FV wave equation is a second-order equation in the spatial derivative
that accepts the vanishing of the entire two-component wavefunction
at a point. On the other hand, let us now suppose that 𝜓𝑥 can vanish at
a point on the real line, for example, at 𝑥 = 0, but 𝜓 is nonzero there
(also 𝑉𝑥(0+) and 𝑉𝑥(0−) must be finite numbers there). The latter is the
Neumann boundary condition, namely, 𝜓𝑥(0−) = 𝜓𝑥(0+) = 0 ≡ 𝜓𝑥(0).
Indeed, we also have that (𝜏3+i𝜏2)𝛹𝑥 vanishes at that same point. Then,
it can be shown that (𝜓1)𝑥 and (𝜓2)𝑥 do not have to vanish at the point
in question, and therefore, 𝛹𝑥 is not zero there either (use Eqs. (5) and
(6)).

4. Concluding remarks

The KFG Hamiltonian operator, or the Hamiltonian that is present
in the first order in time 1D KFG wave equation, i.e., the 1D FV
wave equation, is formally pseudo-Hermitian. This is a well-known fact,
and its verification does not require knowledge of the domain of the
Hamiltonian or its adjoint. We have shown that this operator is also a
pseudo-Hermitian operator, but in addition, it is a pseudo self-adjoint
operator when it describes a 1D KFG particle in a finite interval. Con-
sequently, we constructed the most general set of boundary conditions
for this operator, which is characterized by four real parameters and is
consistent with the last two properties. All these results can be extended
to the problem of a 1D KFG particle moving on a real line with a
penetrable or an impenetrable obstacle at one point, i.e., with a point
interaction (or a hole) there. For instance, assuming the point is 𝑥 = 0,
it suffices to make the replacements 𝑥 = 𝑎→ 0+ and 𝑥 = 𝑏→ 0− in the
general set of boundary conditions for the particle in the interval [𝑎, 𝑏].

As we have shown, the general set of boundary conditions can be
written in terms of the one-component wavefunction for the second
order in time 1D KFG wave equation, that is, 𝜓 , and its derivative 𝜓𝑥,
both evaluated at the ends of the box. Certainly, we showed that the
general set can also be written in terms of the two-component column
vectors for the 1D FV wave equation, that is, (𝜏3+i𝜏2)𝛹 and (𝜏3+i𝜏2)𝛹𝑥,
evaluated at the ends of the box. We only used algebraic arguments and
simple concepts that are within the general theory of linear operators
on a space with indefinite inner product to build these sets of boundary
conditions.

From the results presented in Section 3, we also found that 𝛹
and 𝛹𝑥 do not necessarily satisfy the same boundary condition that
(𝜏3 + i𝜏2)𝛹 and (𝜏3 + i𝜏2)𝛹𝑥 satisfy. In any case, given a particular
boundary condition that 𝜓 and 𝜓𝑥 satisfy at the ends of the box and
using the relations that arise between the components of the column
vector 𝛹 , that is, 𝜓1 and 𝜓2, and quantities 𝜓 , 𝜓𝑡, and the potential 𝑉
(see Eqs. (5) and (6)), the respective boundary condition on 𝛹 and 𝛹𝑥
can be obtained.

We think that our article will be of interest to those interested in
the fundamental and technical aspects of relativistic wave equations.
Furthermore, to the best of our knowledge, the main results of our
article, i.e., those related to general pseudo self-adjoint sets of boundary
conditions in the 1D KFG theory, do not appear to have been considered

before.
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Appendix A

The 1D KFG wave equation given in Eq. (3) can also be written as
follows:
[

−ℏ2 𝜕
2

𝜕𝑡2
− i2ℏ𝑉 (𝑥) 𝜕

𝜕𝑡
+ (𝑉 (𝑥))2

]

𝜓 =
[

−ℏ2𝑐2 𝜕
2

𝜕𝑥2
+ (m𝑐2)2

]

𝜓, (A.1)

nd therefore,

𝑡𝑡 = 𝑐2𝜓𝑥𝑥 −
(

m𝑐2
ℏ

)2
𝜓 + 2𝑉

iℏ
𝜓𝑡 +

𝑉 2

ℏ2
𝜓. (A.2)

The scalar product for the two-component column state vectors 𝛹 =
[

𝜓1 𝜓2
]T and 𝛷 =

[

𝜙1 𝜙2
]T, where 𝜓1 + 𝜓2 = 𝜓 and 𝜙1 + 𝜙2 = 𝜙, is

given by

⟨⟨𝛹,𝛷⟩⟩ ≡ ∫𝛺
d𝑥𝛹 †𝜏3𝛷

= iℏ
2m𝑐2 ∫𝛺

d𝑥
[

𝜓∗
( 𝜕
𝜕𝑡

− 𝑉
iℏ

)

𝜙 −
(( 𝜕

𝜕𝑡
− 𝑉

iℏ

)

𝜓
)∗
𝜙
]

= iℏ
2m𝑐2 ∫𝛺

d𝑥
(

𝜓∗𝜙𝑡 − 𝜓∗
𝑡 𝜙 − 2𝑉

iℏ
𝜓∗𝜙

)

≡ ⟨𝜓, 𝜙⟩KFG. (A.3)

The latter quantity is preserved in time; in fact, taking its time
derivative and using the result in Eq. (A.2), and a similar relation for
𝜙 (𝜓 and 𝜙 are solutions of the 1D KFG wave equation in its standard
form), one obtains the same relation given in Eq. (14), namely,
d
d𝑡
⟨⟨𝛹,𝛷⟩⟩ = d

d𝑡
⟨𝜓, 𝜙⟩KFG = − iℏ

2m
[

𝜓∗
𝑥 𝜙 − 𝜓∗𝜙𝑥

]

|

|

|

𝑏

𝑎
. (A.4)

s follows from the results obtained in Appendix B, if 𝜓 and 𝜙 both
atisfy any boundary condition included in the most general set of
oundary conditions, the boundary term in Eq. (A.4) always vanishes.

ppendix B

The goal of this section is to show that if the functions belonging
o the domain of ĥ (considered a densely defined operator) obey any
f the boundary conditions included in Eq. (31), then the functions of
he domain of ĥadj must obey the same boundary condition. This means
hat for the general family of boundary conditions given in Eq. (31), the
perator ĥ = ĥadj is pseudo self-adjoint. Our results are obtained using
imple arguments that are part of the general theory of linear operators
n an indefinite inner product space (see, for example, Refs. [32,33]).

Let us return to the result given in Eq. (16), namely,

⟨𝛯, ĥ𝛷⟩⟩ = ⟨⟨ĥadj𝛯,𝛷⟩⟩ + 𝑓 [𝛯,𝛷], (A.5)

here 𝑓 [𝛯,𝛷] is given by (see Eq. (18))

[𝛯,𝛷]

≡ ℏ2

2m
1
2

[

(

(𝜏3 + i𝜏2)𝛯𝑥
)† (𝜏3 + i𝜏2)𝛷 −

(

(𝜏3 + i𝜏2)𝛯
)† (𝜏3 + i𝜏2)𝛷𝑥

]

|

|

|

|

𝑏

𝑎
.

(A.6)
7

ere, ĥ can act on column vectors 𝛷 =
[

𝜙1 𝜙2
]T ∈ (ĥ), where (ĥ)

s the domain of ĥ, a set of column vectors on which we allow the
ifferential operator ĥ to act ((ĥ) is a linear subset of the indefinite
nner product space), which fundamentally includes boundary condi-
ions, and ĥadj can act on column vectors 𝛯 =

[

𝜉1 𝜉2
]T ∈ (ĥadj) (in

eneral, (ĥadj) may not coincide with (ĥ)). By virtue of the result
iven in Eq. (5), the respective solutions of Eq. (3) are the following:

1 + 𝜙2 = 𝜙 𝖺𝗇𝖽 𝜉1 + 𝜉2 = 𝜉. (A.7)

he boundary term in Eq. (A.6) can be written in terms of 𝜙 and 𝜉,
amely,

[𝛯,𝛷] = ℏ2

2m
[

𝜉∗𝑥 𝜙 − 𝜉∗𝜙𝑥
]

|

|

|

𝑏

𝑎
. (A.8)

First, let us suppose that every column vector 𝛷 ∈ (ĥ) satisfies
the boundary conditions (𝜏3 + i𝜏2)𝛷(𝑎) = (𝜏3 + i𝜏2)𝛷(𝑏) = 0 and
(𝜏3 + i𝜏2)𝛷𝑥(𝑎) = (𝜏3 + i𝜏2)𝛷𝑥(𝑏) = 0, or, equivalently, 𝜙(𝑎) = 𝜙(𝑏) = 0
and 𝜙𝑥(𝑎) = 𝜙𝑥(𝑏) = 0 (remember the first relation in Eq. (A.7)). In this
case, the boundary term in Eq. (A.5) vanishes, and we have the result

⟨⟨𝛯, ĥ𝛷⟩⟩ = ⟨⟨ĥadj𝛯,𝛷⟩⟩. (A.9)

The latter relation is precisely the one that defines the generalized
adjoint differential operator. It is clear that its verification did not
require the imposition of any boundary condition on the vectors 𝛯 ∈
(ĥadj). Thus, until now, we have that (ĥ) ≠ (ĥadj) (in fact, we have
that (ĥ) ⊂ (ĥadj), i.e., (ĥ) is a restriction of (ĥadj)).

If the operator ĥ is to be a pseudo self-adjoint differential operator,
he relation given in Eq. (21), namely, ĥ = ĥadj, must be verified, and
herefore, (ĥ) = (ĥadj). To achieve this, we must allow every vector
∈ (ĥ) to satisfy more general boundary conditions, that is, we must

elax the domain of ĥ. Let us suppose that we have a set of boundary
onditions to be imposed on a vector 𝛷 ∈ (ĥ); if the cancellation of
he boundary term 𝑓 [𝛯,𝛷] by these boundary conditions only depends
n imposing the same boundary conditions on the vector 𝛯 ∈ (ĥadj),
hen ĥ will be a pseudo self-adjoint differential operator.

First, from Eq. (A.8), we write the boundary term in Eq. (A.5) as
ollows:
2m
ℏ2
𝑓 [𝛯,𝛷] =

[

𝜙𝜆𝜉∗𝑥 − 𝜉
∗𝜆𝜙𝑥

]

|

|

|

𝑏

𝑎

=
[

𝜙(𝑏) 𝜆𝜉∗𝑥(𝑏) − 𝜉
∗(𝑏) 𝜆𝜙𝑥(𝑏)

]

−
[

𝜙(𝑎) 𝜆𝜉∗𝑥(𝑎) − 𝜉
∗(𝑎) 𝜆𝜙𝑥(𝑎)

]

= 0.
(A.10)

It is fairly convenient to rewrite the latter two terms using the
following identity:

𝑧1𝑧
∗
2 − 𝑧

∗
3𝑧4 =

i
2
[

(𝑧1 + i𝑧4)(𝑧3 + i𝑧2)∗ − (𝑧1 − i𝑧4)(𝑧3 − i𝑧2)∗
]

, (A.11)

here 𝑧1, 𝑧2, 𝑧3 and 𝑧4 are complex numbers. The latter relation
s the generalization of that given in Eq. (27). In fact, making the
eplacements 𝑧3 → 𝑧1 and 𝑧4 → 𝑧2 in Eq. (A.11), the relation given
n Eq. (27) is obtained. Then, the following result is derived:

2m
ℏ2
𝑓 [𝛯,𝛷] = i

2

[

(

𝜙(𝑏) + i𝜆𝜙𝑥(𝑏)
) (

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
)∗

−
(

𝜙(𝑏) − i𝜆𝜙𝑥(𝑏)
) (

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
)∗
]

− i
2

[

(

𝜙(𝑎) + i𝜆𝜙𝑥(𝑎)
) (

𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)
)∗

−
(

𝜙(𝑎) − i𝜆𝜙𝑥(𝑎)
) (

𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)
)∗
]

= i
2

[

(

𝜙(𝑏) + i𝜆𝜙𝑥(𝑏)
) (

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
)∗

+
(

𝜙(𝑎) − i𝜆𝜙𝑥(𝑎)
) (

𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)
)∗
]

− i
2

[

(

𝜙(𝑏) − i𝜆𝜙𝑥(𝑏)
) (

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
)∗

+
(

𝜙(𝑎) + i𝜆𝜙𝑥(𝑎)
) (

𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)
)∗
]

= 0,
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̂

this means that

𝜆 2m
ℏ2
𝑓 [𝛯,𝛷] = i

2

[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]† [ 𝜙(𝑏) + i𝜆𝜙𝑥(𝑏)
𝜙(𝑎) − i𝜆𝜙𝑥(𝑎)

]

− i
2

[

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)

]† [ 𝜙(𝑏) − i𝜆𝜙𝑥(𝑏)
𝜙(𝑎) + i𝜆𝜙𝑥(𝑎)

]

= 0. (A.12)

Let us now consider a more general set of boundary conditions to
be imposed on a vector 𝛷 ∈ (ĥ) (i.e., more general than the boundary
conditions that we presented after Eq. (A.8)), namely,
[

𝜙(𝑏) + i𝜆𝜙𝑥(𝑏)
𝜙(𝑎) − i𝜆𝜙𝑥(𝑎)

]

= N̂
[

𝜙(𝑏) − i𝜆𝜙𝑥(𝑏)
𝜙(𝑎) + i𝜆𝜙𝑥(𝑎)

]

, (A.13)

where N̂ in an arbitrary complex matrix. By substituting the latter
relation in Eq. (A.12), we obtain the following result:

𝜆 2m
ℏ2
𝑓 [𝛯,𝛷]

= i
2

{(

[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]†

N̂

−
[

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)

]†)[

𝜙(𝑏) − i𝜆𝜙𝑥(𝑏)
𝜙(𝑎) + i𝜆𝜙𝑥(𝑎)

]

}

= 0,

and therefore,
[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]†

N̂ =
[

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)

]†

(A.14)

(This result is because, at this point, we cannot impose any bound-
ary conditions that would completely annul the column vectors in
Eq. (A.13), for example). Every vector 𝛯 ∈ (ĥadj) should satisfy the
same boundary conditions that 𝛷 ∈ (ĥ) satisfies, i.e., the boundary
conditions in Eq. (A.13), namely,
[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]

= N̂
[

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)

]

. (A.15)

Taking the Hermitian conjugate of the matrix relation in Eq. (A.14) and
substituting this result into Eq. (A.15), we obtain
[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]

= N̂N̂†
[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]

;

therefore, N̂ is a unitary matrix. Thus, the most general family of pseudo
self-adjoint, or generalized self-adjoint boundary conditions, for the 1D
KFG particle in a box can be written in the form given by Eq. (31),
namely,
[

𝜉(𝑏) − i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) + i𝜆𝜉𝑥(𝑎)

]

= Û
[

𝜉(𝑏) + i𝜆𝜉𝑥(𝑏)
𝜉(𝑎) − i𝜆𝜉𝑥(𝑎)

]

, (A.16)

where Û = N̂−1. The fact that the boundary condition for 𝛷 ∈ (ĥ)
(for example, given in terms of 𝜙) is the same boundary condition for
𝛯 ∈ (ĥadj) (given in terms of 𝜉) ensures that (ĥ) = (ĥadj); therefore,
h, which was already a pseudo-Hermitian operator, is also a pseudo
self-adjoint operator. Additionally, the boundary term given in Eq. (14),
or in Eq. (A.4), vanishes, and therefore, the pseudo inner product is
conserved.
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