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Abstract
We reanalyze the problemof a 1DDirac single particle collidingwith the electrostatic potential step of
heightV0 with a positive incoming energy that tends to the limit point of the so-calledKlein energy
zone, i.e. E→V0−mc2, for a givenV0. In such a case, the particle is actually collidingwith an
impenetrable barrier. In fact,V0→ E+mc2, for a given relativistic energy E(<V0), is themaximum
value that the height of the step can reach and that ensures the perfect impenetrability of the barrier.
Nevertheless, we note that, unlike the nonrelativistic case, the entire eigensolution does not completely
vanish, either at the barrier or in the region under the step, but its upper component does satisfy the
Dirichlet boundary condition at the barrier.More importantly, by calculating themean value of the
force exerted by the impenetrable wall on the particle in this eigenstate and taking its nonrelativistic
limit, we recover the required result.We use two different approaches to obtain the latter two results.
In one of these approaches, the corresponding force on the particle is a type of boundary quantum
force. Throughout the article, various issues related to theKlein energy zone, the transmitted solutions
to this problem, and impenetrable barriers related to boundary conditions are also discussed. In
particular, if the negative-energy transmitted solution is used, the lower component of the scattering
solution satisfies theDirichlet boundary condition at the barrier, but themean value of the external
forcewhenV0→ E+mc2 does not seem to be compatible with the existence of the impenetrable
barrier.

1. Introduction

Let us consider the problemof a (massive) 1DDirac particle in the potential (energy) step of heightV0:

( ) ( ) ˆ ( )f = Qx V x 1, 10

where Îx ,Θ(x) is theHeaviside step function (Θ(x< 0)= 0 andΘ(x> 0)= 1), and 1̂ is the 2× 2 identity
matrix. If the particle approaching the step potential from the left has positivemomentum, ÿk> 0, and positive
energyE(>mc2) such thatE− V0< 0, ormore specifically,E− V0<−mc2 (⇒V0> E+mc2, for a given
energy, but also,V0> 2mc2 becauseE>mc2), we say that the particle has energy in the so-calledKlein energy
zone. This is because Klein tunneling occurs in that range of energies (the latter physical phenomenon tells us
that, among other things, high-energyDirac particles can, in principle, pass an infinitely high barrier).
Incidentally, this is what is currently calledKlein’s paradox [1–4]. In this paper, we are interested in the case in
which the energy of the particle is just the limit point of this energy zone, i.e.E− V0→−mc2 (⇒V0→ E+mc2,
for a given positive energy). In such circumstances, the incident particle is actually collidingwith an impenetrable
barrier. This impenetrable barrier is themain subject of ourwork.Wewant to obtain the boundary condition
that the 1DDiracwavefunctionmust fulfill at the point where this impenetrable barrier is found (in this case, at
x= 0). In nonrelativistic theory, the impenetrable barrier limit, i.e. the infinite-potential limit, leads to the
Dirichlet boundary condition for the Schrödinger wavefunction. In theDirac theory, and for high-energy
particles, the latter limit does not lead to an impenetrability boundary condition for theDirac wavefunction
because the particle can penetrate through a very high potential barrier.We alsowant to know the average force
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exerted by this impenetrable barrier on the 1DDirac particle and to check its nonrelativistic limit. In our study of
the problem, the situationwhere the reflection probability (or the reflection coefficient) is greater than one does
not happen, andwe consider the 1DDirac theory as a one-particle theory with external fields.

We present themost important results corresponding to theKlein energy zone in the remainder of this
section.Here, we also calculate the average force acting on the particle at x= 0. Then, in section 2, we impose on
these results the limit that leads to results that are valid at the boundary of theKlein energy zone.Here, we also
obtain themean value of the force exerted by the hardwall and its nonrelativistic value using two different
approaches. Additionally, we include in this section a discussion of impenetrable barriers related to boundary
conditions. Afinal discussion of all these results is given in section 3. In thefinal part of this section, we also
present results corresponding to two limiting cases that could arise within theKlein energy zone. Finally, some
results that complement and clarify what has been stated throughout the article are exhibited in appendices A
andB. Specifically, in appendix A, we present a discussion about the transmitted solutions that can be used in
our approach to the problem. Then, we take one of these solutions and repeat the program followed in the
Introduction tofinally apply the impenetrable barrier limitV0→ E+mc2 to these results. In appendix B,we
present a specific discussion about the transmitted solutions that have commonly been used in the literature
when dealingwith the issue of Klein’s paradox. In particular, we clearly establish the relation between our
positive-energy transmitted solution and the sometimes included transmitted solution of negative energy. At the
end of the appendix, we treat very briefly the problemof the 1DDirac particle incident on the step potential, but
we use the negative-energy transmitted solution.

The scattering eigensolution of the 1DDiracHamiltonian operator Ĥ , i.e. the solution of the time-
independent 1DDirac equation,

ˆ ( ) ˆ ˆ ( ) ( ) ( )⎛
⎝

⎞
⎠

y a b f y y= - + + =H x c
x

c x E xi
d

d
m , 22

in theDirac representation, that is, ˆ ˆa s= x and ˆ ˆb s= z (ŝx and ŝz are two of the Paulimatrices), and
[ ]y j c= T (the symbol T denotes the transpose of amatrix) can bewritten in a single expression as follows:

( ) ( ( ) ( )) ( ) ( ) ( ) ( )y y y y= + Q - + Qx x x x x x , 3i r t

where the incoming and reflected plane-wave solutions are given by

( ) ( )⎡
⎣

⎤
⎦

y =x a0 1 e , 4kx
i

i

( ) ( )⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

y =
+
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- -x
a b
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and the transmitted solution is written (in a seemingly counterintuitive way) as follows:

( ) ( )¯ ¯⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

y =
- -

º
-

- -x
a

a b b b
0

2 1 e t 1 e . 6kx kx
t

i i

Naturally, the time-dependent scatteringwavefunction corresponding to the solutionψ(x) is given by
( ) ( ) ( )yY = -x t x, e . 7Eti

The real quantities a and b are given by

  ¯
( )=

+
> =

- +
<a

c k

E c
b

c k

E V cm
0,

m
0, 8

2
0

2

where

 ( ) ¯ ( ) ( ) ( )= - > = - - >c k E c c k E V cm 0, m 0. 92 2 2
0

2 2 2

Particularly,E− V0+mc2 andE− V0−mc2 are negative when E− V0<−mc2. Additionally, it should be
noted that the solution given in equation (6) is essentially obtained by replacing E→ E− V0 in the solution given
by equation (5) (also k̄ is obtained from k bymaking this replacement). Furthermore, note that a and b can be
written as follows:

( )=
-
+

= -
- -
- +

a
E c

E c
b

E V c

E V c

m

m
,

m

m
. 10

2

2
0

2

0
2

Weare also introducing in equations (5) and (6)the quantities r and t that some authors call coefficient for
reflection (to the left) and transmission (to the right). The solutionψ(x) in equation (3) is a continuous function
at x= 0, i.e.

( ) ( ) ( ) ( ( ) ( ) ( )) ( )y y y y y y- = + º  - + - = +0 0 0 0 0 0 11i r t

2
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(we use the notation  ( ) º x xlim 0 , with x= 0). Thus,  ( ) ( ) ( ) ∣ ( )∣ ∣ ( )∣†y y j c= = +x x x x x2 2, the
probability density, and *( ) ( ) ˆ ( ) ( ( ) ( ))†y s y j c= =j x c x x c x x2 Rex , the probability current density, are also
continuous functions at x= 0 (the symbol † represents the adjoint of amatrix and the symbol * denotes the
complex conjugate, as usual), i.e.

  ( ) ( ) ( ) ( )
( )

( )- = + = + =
+

-
a b

a b
0 0 0

4 1
12t

2 2

2

and

( ) ( ) ( )
( )

( )- = + = + = -
-

>j j j
c a b

a b
0 0 0

8
0. 13t

2

2

Obviously, ñt(x) and jt(x) are calculated for the transmitted solutionψt(x), and the result in equation (13) is what
onewould expect for a transmittedwave traveling to the right in the region x> 0. Additionally, the evaluation of
ñt(x) and jt(x) at x= 0made in equations (12) and (13) is not necessary because the solutions we are using are just
plane-wave solutions, i.e. ñt and jt, and the other probability and current densities (ñi, ji, etc.) are constant
quantities (obviously, this is not the case whenwe have awave packet).

The reflection and transmission coefficients, or the reflection and transmission probabilities, are given by

∣ ∣
∣ ∣
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Note that the latter two quantities verifyR+ T= 1, i.e. (∣ ∣ )+ =b ar t 12 2 , as is to be required by the
conservation of the probability; equivalently but alsomore intuitively, ∣ ∣ ∣ ∣ ∣ ∣+ =j j jr t i . Thus, a 1DDirac
particle with (positive) energies in theKlein energy zone can propagate on both sides of the step potential, but the
original Klein paradox [5], i.e. the situationwhereR is greater than one, does not occur [4, 6–9]. In particular,
when the infinite-potential limit is taken, i.e.V0→∞ , we have that b→− 1, and the reflection and
transmission coefficients go to (( ) ( )) - +R a a1 1 2 and ( ) +T a a4 1 2. Thus, the transmission
coefficient does not vanish evenwhen the height of the barrier is infinitely high. This specific tunneling (i.e. the
case whenV0→∞ ) ismore noticeable when the particle has a high energy. In fact, when E?mc2, we have that
a→ 1, and thereforeT→ 1. Certainly, it is not necessary for the potential jump to go to infinity for Klein
tunneling to exist. Additionally, note that the eigenvalues of themomentumoperator ˆ ˆ= - xp i 1 d d
corresponding to the transmitted eigensolution are negative, that is, ˆ ¯y y= - kp ;t t however, the transmitted
velocityfield is positive, namely,


 ¯

( )⎜ ⎟
⎛
⎝

⎞
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º = -
+

= -
-

= -
-

>v
j c b
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The latter result confirms the use of a transmitted solution such as that given in equation (6).
Themean value of the external classical force operator

ˆ ( ) ( ) ˆ ( )f d= - = -f
x

x V x
d

d
1 170

(δ(x)= dΘ(x)/dx is theDirac delta function), or the average force acting on the particle by thewall of potential at
x= 0, in the scattering stateψ, is given by

 ˆ ˆ ( ) ( ) ( ) ( ) ( )†òy y d y yá ñ = á ñ = - = - = - +y
-¥

+¥
f f V dx x x x V V, 0 00 0 0 t

( )
( )

( )=-
+

-
V

a b

a b

4 1
. 180

2 2

2

That is, the result is dependent onV0, as expected (b is also a function ofV0).

2. The limit point of theKlein energy zone

Whenwe take the precise limitV0→ E+mc2, for a given energy, we reach the limit point of the Klein energy
zone.More accurately, here,V0 reaches the valueE+mc2 ‘from the right’, i.e.V0→ (E+mc2)+ . Thus, from

3
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equation (10), we obtain the result b→−∞ , and therefore,R→ 1 andT→ 0 (see equations (14) and (15)).
Consistently, the transmitted velocityfield verifies that vt→ 0 (see equation (16)). Additionally, k̄ tends to zero
in this limit (see the second of the relations in equation (9)) and the solution of theDirac equation in equation (3)
takes the form

( ) ( )
( )

( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

y = Q - + Qx
kx

a kx
x

a
x

2isin

2 cos
0

2
. 19

Now, note that the entire wavefunction is not zero in the region x� 0, only its upper componentj, i.e. only the
so-called large component of the 1DDiracwavefunction in theDirac representation.Nevertheless, the particle
does not penetrate into that region because the transmitted probability current density vanishes there (i.e.
jt(x� 0)= 0), i.e. because the probability current density is zero at x= 0 (i.e. j(0− )= j(0+ )≡ j(0)= 0), i.e.
because the origin is an impenetrable barrier (see the result in equation (13)). The result in equation (19) confirms
that, in general, the entireDiracwavefunction does not disappear at a pointwhere an impenetrable barrier exists
[10]; in fact, ñ is not zero at x= 0, and thebarrier is still impenetrable (note that as the energy of the particle
increases, the quantity amoves away fromzero and approaches one); however, thewavefunctionmust satisfy some
other impenetrability boundary condition. In effect, in this case,wehave thatψ(0− )=ψ(0+ )≡ψ(0)≠ 0, but
the large component satisfies theDirichlet boundary condition at x= 0, i.e.

( ) ( ) ( ) ( )j j j- = + º =0 0 0 0 20

(see equation (19)), and the lower component ofψ, i.e.χ, remains continuous there. Thus, when the origin
becomes an impenetrable barrier (i.e. after the limitV0→ E+mc2 has been taken), the respective boundary
condition emerges naturally. Certainly, the limitV0→ E+mc2 can be considered the impenetrable barrier limit
in 1DDirac theory, and the boundary condition in equation (20) as the natural impenetrability boundary
conditionwhen theDirac representation is used (at least for positive energies E). Instead, in Schrödinger
nonrelativistic theory, the respective impenetrable barrier limit (i.e.V0→∞ ) leads to theDirichlet boundary
condition for the (one-component)wavefunction.

Incidentally, for positive energies, the energy eigensolutions of the time-independent 1DDirac equation in
the (momentum-dependent) Foldy-Wouthuysen representation [11, 12] (in the free case and in the case of a
static external field) essentially have the form [ ]y y= 0FW 1

T, whereψ1 andj only differ by a constant factor
(i.e. by a factor depending on the energy eigenvalue) [13–15]. Thus, the boundary condition in equation (20)
would take the formψFW(0− )= ψFW(0+ )≡ ψFW(0)= 0, i.e. the entire Foldy-Wouthuysen eigensolution
would verify theDirichlet boundary condition at x= 0. The latter boundary condition imposed onψFW appears
to be acceptable; in fact, the (free-particle) 1DFoldy-WouthuysenHamiltonian operator, for example, unlike
the (free) 1DDiracHamiltonian operator, depends on ( ˆ ) ( )+c cp m2 2 2 (although this quantity is under a square
root) [13–15].

When the height of the potentialV0 reaches the valueE+mc2, for a given relativistic energy that is always
less thanV0, the potential reaches themaximumvalue that it can reach and that ensures the impenetrability of
the barrier. In fact, as we explained before, ifV0> E+mc2, for a given relativistic energy (and thenE< V0) but
alsoV0→∞ , thenwe have thatR≠ 1. In effect, in this situation, only if the energies are lowor nonrelativistic,
i.e.E≅mc2, wouldwe have thatR→ 1 (see the comment related to the limitV0→∞ in the paragraph following
equation (15)) [9]. Finally, whenV0 is less thanE+mc2 and still greater thanE, i.e. E< V0< E+mc2, the
reflection is still a total reflection, i.e.R= 1 [3, 16, 17]. The lattermeans that when the potential reaches the value
E+mc2 ‘from the left’, i.e.V0→ (E+mc2)− , we also have thatR→ 1. In addition, as we know,when
V0→ (E+mc2)+ ,R→ 1. Thus, the limit whenV0→ E+mc2 effectively leads to total reflection, andwe can be
sure of our conclusions by taking the limitV0→ E+mc2 on results that are only valid in theKlein energy zone.

Actually, the boundary condition in equation (20) is just one of the physically (andmathematically) suitable
boundary conditions that one could impose on the 1DDirac wavefunction at a point such as x= 0 (where a kind
of hardwall exists). In fact, there are an infinite number of impenetrability boundary conditions at our disposal,
and for each of them, theHamiltonian operator that describes a 1DDirac particlemoving on the real linewith an
impenetrable obstacle at the origin is self-adjoint (and consequently, the respective probability current density
vanishes there). In the end, in all these cases, the particle could be in just one of the two half-spaces. In this
regard, the subfamily of boundary conditions that ensures impenetrability at the origin is given by the two
relations in equation (B6) in [18]. This (two-real-parameter) subfamily is obtained from themost general (four-
real-parameter) family of boundary conditions given in equation (B1) in [18] by setting θ= 0 (See [19], although
the discussion of this topic wasmade for the similar problemof a 1DDirac particlemoving in the interval [0, L].
However, by substituting 0→ 0+ and L→ 0− in the boundary conditions of this reference, the corresponding
boundary conditions for the case inwhich the particlemoves along the real linewith an obstacle at the origin can
be obtained). In particular, the boundary condition in equation (20) is obtained from equation (B6) in [18] by
imposingμ= τ= π/2, 3π/2, and it certainly defines a relativistic point interaction at the point x= 0. Clearly,
theDirichlet boundary condition imposed on the entire (two-component)Dirac wavefunction at x= 0 is not

4
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included in equation (B6) of [18], i.e. the corresponding (first-order)DiracHamiltonian operator with this
boundary condition is not self-adjoint.

Additionally, in the impenetrable barrier limitV0→ E+mc2, themean value of the force exerted by thewall
on the particle in equation (18) takes the form

ˆ ( ) ( ) ( )á ñ = - + = - -yf E c a E cm 4 4 m . 212 2 2

To bemore precise, the latter result should bewritten as ˆ ( )∣ ∣á ñ = - -yf E c A4 m 2 2, whereA is a complex-value
(normalization) constant thatmultiplies the right-hand side of the scattering solution in equation (3). Thus, the
average force on a 1DDirac particle that is in a stationary state and hits an impenetrable wall at x= 0 is
proportional to the relativistic kinetic energy of the particle.

The result in equation (21) can be obtained in an alternative way. In effect, due to the presence of an
impenetrable barrier at x= 0, the problem can be reduced to that of a (free) 1DDirac particle that can only be on
the half-line x ä (−∞ , 0]. In this case, the force on the particle due to thewall at x= 0 is a type of boundary
quantum force. In effect, the time derivative of themean value of themomentumoperator for a 1DDirac
particle on the half-line is given by

ˆ [ ˆ ]∣ ( )† †sá ñ = - Y Y + Y YY -¥
t

c
d

d
p i m , 22t z

2 0

wherewe use the notation [ ]∣ ( ) ( )º - -¥-¥g g t g t0, ,0 , andΨ has the form given in equation (7)withψ
given in equation (19), alsoΨt≡∂Ψ/∂t (see equation (39) in [4]). If the functionΨ is a nonstationary state that
goes to zero at x=−∞, the right-hand side of equation (22)would simply be the function enclosed in square
brackets in equation (22) evaluated at x= 0. That quantity can bewritten as themean value of a boundary
quantum force due to the impenetrable barrier at x= 0, namely,

ˆ ( ) ( ) ( ) ˆ ( ) ( )† † sá ñ = - Y Y + Y YYf t t c t ti 0, 0, m 0, 0, . 23t zB
2

Certainly, because in our case the stateΨ is a stationary state, equation (22)would lead us to the relation
0= 0− 0. Indeed, using the solution given in equation (19), it can be demonstrated that the function enclosed in
square brackets in equation (22)has the same value at x= 0 and x=−∞. In fact, the result that isfinally
obtained from equation (23) is given by

ˆ ( ) ( ) ( )á ñ = - + = - -Yf a E c E c4 m 4 m , 24B
2 2 2

which is precisely the result given in equation (21).
In the nonrelativistic limit, we have that E→ E(NR)+mc2≅mc2 (E(NR) is the nonrelativistic kinetic energy),

andwe obtain in this approximation the following result:

( )
( )

 @a
E

c2m
0 25

NR

2

(see thefirst of the relations in equation (10)). Likewise, the solution of theDirac equation in equation (19)
approaches

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

y y = Q - + Qx x k x x x
0

2i sin
0

0
0

26
NR NR

( ( ) ( )=k E2mNR NR ), which is an expected result. Certainly, in this approximation, andwhen the energies
are positive, the upper component of theDirac wavefunction is essentially the Schrödinger wavefunction, and
the lower component is practically zero, i.e. the Schrödinger eigensolution satisfies
ψ(NR)(0− )= ψ(NR)(0+ )≡ ψ(NR)(0)= 0. Additionally, in the nonrelativistic limit, themean value of the
operator f̂ in equation (21) takes the form

ˆ ( )( )á ñ  -yf E4 . 27NR

The latter is precisely the result obtained from the 1D Schrödinger theory by taking the limitV0→∞ on the
mean value of f̂ calculated in the respective Schrödinger scattering eigenstate. To check this, see equation (10) in
[20]. Additionally, because the particle is actually restricted to the semispace x� 0, we can also use the result
given in equation (32) in [20] (with the operator ô used there being equal to themomentumoperator for a 1D
nonrelativistic particle on the half-line ˆ = - xp i d d ), togetherwith equations (36) and (37), also in [20],
namely,

* *
ˆ [( ) ( ) ]∣ ( )( ) ( ) ( ) ( )( )á ñ = - Y Y - Y YY -¥

t

d

d
p

2m
, 28x x xx

2
NR NR NR NR 0

NR

where ( ) ( ) ( )( ) ( ) ( )yY = -x t x E t, exp iNR NR NR , ( ) ( )Y º ¶Y ¶xx
NR NR , and ( ) ( )Y º ¶ Y ¶xxx

NR 2 NR 2. Again, if the
functionΨ(NR) is a nonstationary state that tends to zero at x=−∞, the right-hand side of equation (28)would
simply be the function enclosed in square brackets in equation (28) evaluated at x= 0. That quantity is themean
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value of a boundary quantum force due to the hardwall at x= 0, namely,

ˆ ∣ ( )∣ ( )( )( )á ñ = - YYf t
2m

0, 29xB

2
NR 2NR

(note thatΨ(NR) and ( )Yxx
NR also vanish at x= 0). Obviously, because the stateΨ(NR) is a stationary state,

equation (28)would lead us to the relation 0= 0− 0.Using the solution given in equation (26), it can be
demonstrated that the function enclosed in square brackets in equation (28) has the same value at x= 0 and
x=−∞. In that regard, the result that is obtained from equation (29) is given by

ˆ ( )( )( )á ñ = -Yf E4 , 30B
NRNR

which is the result given in equation (27), as expected.

3. Final discussion

In the 1D Schrödinger theory, the impenetrable barrier limit, that is, the infinite-potential limit, leads to the
Dirichlet boundary condition for the respective (one-component)wavefunction (i.e. the latter satisfies this
boundary condition at the barrier). On the other hand, in the 1DDirac theory, and for particles with high
energies, the infinite-potential limit does not lead to an impenetrability boundary condition for the respective
(two-component)wavefunction (because the particle can perfectly penetrate into the potential stepwhen the
step goes to infinity).Most likely because of this, when onemodels an impenetrable barrier in theDirac theory
(let us call it aDirac impenetrable barrier), themost commonhas always been just to select and then impose
some impenetrability boundary condition on theDirac wavefunction, but theDirichlet boundary condition
imposed on the entire (two-component)wavefunction at the point where the barrier is located is not acceptable.
For example, in the problemof the 1DDirac particle confined to a finite interval of the real line (a 1Dbox),
different physically (andmathematically) suitable boundary conditions have been used (see, for example, Refs.
[10, 21–24]). Again, theDirichlet boundary condition imposed on the entire wavefunction at the ends of the box
is not acceptable [10].

The results we have obtained confirm that the limitV0→ E+mc2, for a given energy, can be considered the
impenetrable barrier limit in 1DDirac theory, i.e. by taking it in the problemof the particle incident on a step
potential, the probability current density, calculated for the scattering eigensolution of the problem, disappears
at the barrier.More importantly, in this limit, the impenetrability boundary condition for this positive-energy
solution arises naturally, namely, only its upper or large component (in theDirac representation) satisfies the
Dirichlet boundary condition at the barrier. Certainly, we obtain the latter result before taking the nonrelativistic
limit of the eigensolution. Furthermore, we calculated themean value of the force exerted by the impenetrable
barrier on the particle and showed that it tends to the required result when its nonrelativistic limit is calculated.
The required result is none other than the result that is obtainedwhen the infinite-potential limit is taken on the
mean value of the force operator calculated in the Schrödinger eigenstate [20]. Aswe have seen, the latter two
results can also be obtained by reducing the problem to that of a particle that has always lived on the half-line
xä (−∞ , 0]. In this case, the corresponding force on the particle at x= 0 is a type of boundary quantum force.

To summarize, we have obtained the boundary condition that theDirac wavefunctionmust fulfill at a point
where there is an impenetrable barrier only taking a limit on the potential, i.e.V0→ E+mc2, for a given
(positive) energy (in nonrelativistic theory, the impenetrability boundary condition is obtained bymaking
V0→∞ ). Likewise, in theDirac impenetrable barrier limit, we obtained themean value of the force operator
(calculated in the positive-energy scattering state of the problem), and by taking its nonrelativistic limit, we
recovered the result obtained by calculating this quantity in the 1DSchrödinger theory. In fact, we used two
different approaches to obtain the latter two results. Incidentally, these simple and specific results, obtained
within the framework of a 1D relativistic quantum theory for a single particle in an external field, do not seem to
have been considered before. Thus, we believe that our papermay be attractive to those interested in the
fundamental and technical aspects of relativistic quantummechanics.

In fact, the problem treated here, that is, that of aDirac particle incident on a potential step, has been
consistently attractive because of theKlein paradox. This paradox has been discussed inmany textbooks and
articles on relativistic quantummechanics, and its interpretation is very varied. One of the problems is that a
treatmentmade purely within the single-particle interpretation of theDirac wavefunction often leads to
paradoxical situations.We recently learned of [25], inwhichKlein’s paradoxwas studied. Becausewe use an
apparently counterintuitive transmitted solution (equation (6)), our results do not agree exactly with those
obtained therein. Actually, the transmitted solution used in [25] is the charge conjugate of our positive-energy
transmitted solution (see appendix B) and describes the state of the particle (not its antiparticle state)with
negative energy in the sign-shifted potential (within the single-particle 1DDirac theory). Thus, for example, in
the casewhereV0= 2E (andwe are still within theKlein energy zone), we obtained the result b=− 1/a, and
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therefore, (( ) ( ))= - +R a a1 12 2 2 and ( )= +T a a4 12 2 2, and vt= c2ÿk/E (also, we have that ¯ =k k).
Thus, only when E?mc2 one has that a→ 1, and therefore,R→ 0 andT→ 1, i.e. only when the particle has a
high energy, there is a total transmission in this respect (see the paragraph that follows equation (2.12) in [25]
and compare the results). Incidentally, when themass of the particle disappears, i.e.mc2= 0 (and thenwe have
thatE− V0<−mc2= 0), we obtained the results a= 1 and b=− 1 (see equation (10)), and again, we have that
R= 0 andT= 1, and vt= c (see equations(14)–(16), as expected (see thefirst paragraph of subsection 3.3. in
[25]). Instead of using a transmitted solution of negative energy, we used one of positive energy, which in the
Klein energy zonewould represent a particle traveling to the right in the region x> 0, i.e. the transmitted velocity
field and probability current density are positive (see, for example, Refs. [6, 7]). On the other hand, we have
noticed that if the negative-energy transmitted solution is used, the lower or small component of the scattering
solution (in theDirac representation) satisfies theDirichlet boundary condition at the barrier; however, the
average value of the external force operator in theDirac impenetrable barrier limit does not seem to be
compatible with the fact that all incident particlesmust be reflected by the barrier (see appendix B). In any case,
themain goal of our paper has been to analyze the issue of the impenetrable barrier that arises at the limit point
of the Klein energy range, i.e. whenV0→ E+mc2, for a given positive energy. Aswe have seen, this
impenetrable barrier, which can also be characterized bymeans of a boundary condition, is only one ofmany
impenetrable barriers that can exist in relativistic quantummechanics; in fact, it is only one ofmany point
interactions that can describe an impenetrable barrier at a point.
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AppendixA

The transmitted solution given in equation (6) satisfies the equation  ˆ ( ) ( )y y=H x E x0 0t t , as expected. In
the procedure to obtain this solution, one obtains the lower component ofψt from its upper component. If one
decides to obtain the upper component from the lower component, one obtains the following transmitted
solution:

( ) ( )¯⎡
⎣

⎤
⎦

z = ¢ - ¢ -x b e0 t
1

, A1kx
t

i

where

 ¯
( )¢ =

- -
= -

- +
- -

= <b
c k

E V c

E V c

E V c bm

m

m

1
0, A2

0
2

0
2

0
2

also, k̄ is given in equation (9) and ( )¢ = - ¢a abt 2 1 (certainly, ¢t is obtained after imposing the continuity of the
corresponding scattering solution at x= 0). Obviously, this solution also satisfies  ˆ ( ) ( )z z=H x E x0 0t t .

Note that because in theKlein energy zone one has thatE− V0<−mc2 (i.e.E− V0< 0), the transmitted
solution can also be explicitly written in terms of ∣ ∣-E V0 , namely,

( ) ( )¯⎡
⎣

⎤
⎦

z =  +  -x b e0 t
1

, A3kx
t

i

where

 ¯

∣ ∣
∣ ∣
∣ ∣

( ) =
- +

=
- -
- +

= - ¢ >b
c k

E V c

E V c

E V c
b

m

m

m
0, A4

0
2

0
2

0
2

and the coefficient for transmission t″ can be obtained from ¢t making the replacement ¢  - b b . The
transmitted solution given in equation (A3) is validwhen E− V0<−mc2 and is not a negative-energy solution
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(it is just that E− V0< 0); in fact, it satisfies ˆ z z=H Et t. Again, we take the solution that has the exponential
functionwith a negative exponent (but we obtain the correct sign for the transmittedwave). The result in
equation (A3) can also be essentially obtained bymeans of the charge-conjugation operation, namely,

*  ( ) ( ¯ ) ˆ ( ¯ )z = - = -x f k x S f k x0 ; 0 ; 0 ,t t
C

C t

where

( ¯ )
∣ ∣

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ´ -
+

-f k x c k

E c
e; 0 const

1

m

kx
t

2

i

with the following replacements on the right-hand side, namely, ¯k k andE→ E− V0, and ˆ ŝ=S xC (up to a
phase factor) [16].

Indeed, we can use the transmitted solution given in equation (A3) to solve the problem.Naturally, the
incoming and reflected plane-wave solutions are simply given by

 ( ) ( ) ( )⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

z z= =  -
-x a e x a e0 1 , 0 r 1 , A5kx kx

i
i

r
i

which have the same form as equations (4) and (5), with a and k given in equations (8) and (9). Again, the
solution ζ(x) of the problem can bewritten as the solutionψ(x) in equation (3), and after imposing the continuity
of ζ(x) at x= 0, i.e. ζi(0− )+ ζr(0− )= ζt(0+ ), we obtain the following results:

( ) =
 -
 +

 =
+ 

ab

ab

a

ab
r

1

1
, t

2

1
. A6

Additionally, the reflection and transmission coefficients are given by

∣ ∣
∣ ∣

( ) ∣ ∣
∣ ∣ ( )

( ) ( )⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 = =
 -
 +

=   = =


+ 
=


+ 

=


R
J

j

ab

ab
T

J

j

ab

ab

b

a

a

ab

b

a

1

1
r ,

4

1

2

1
t . A7r

i

2
2 t

i
2

2
2

These two quantities verifyR″+ T″= 1, and ji= Ji, i.e. the incoming probability current density calculated for
the incident solutionψi is equal to that calculated for ζi. Because ¢b is equal to 1/b, and b″ is equal to−b, we have
that b″=− 1/b; thus, from the latter relation,R″ andT″ can be obtained fromR andT, and vice versa (in this
case, r″ can also be obtained from r, but t″ cannot be obtained from t, and vice versa, as expected). The
corresponding expressions for the probability density and probability current density evaluated at x= 0 can also
be obtained bymaking the replacement b→− 1/b″ in equations (12) and (13).We obtain the following results:

( ) ( ) ( ) ( ( ) )
( )

( )r r r- = + = + =
+ 

+ 
a b

ab
0 0 0

4 1

1
A8t

2 2

2

and

( ) ( ) ( )
( )

( )- = + = + =


+ 
>J J J

c a b

ab
0 0 0

8

1
0. A9t

2

2

Similarly, the transmitted velocity field is given by


( ( ) )

¯

∣ ∣
( )⎜ ⎟

⎛
⎝

⎞
⎠r

º =


+ 
=

-
= -

-
>V

J c b

b

c k

E V
c

c

E V

2

1
1

m
0, A10t

t

t
2

2

0

2

0

2

and themean value of the external classical force operator in the scattering state ζ is given by

ˆ ( ) ( ( ) )
( )

( )rá ñ = - + = -
+ 

+ 
zf V V

a b

ab
0

4 1

1
. A110 t 0

2 2

2

Certainly, when the infinite-potential limit is taken, i.e.V0→∞ , and therefore b″→+ 1,R″ andT″ go to
the same results obtained before, i.e. (( ) ( ))  - +R a a1 1 2 and ( )  +T a a4 1 2. Likewise, whenwe
take the impenetrable barrier limitV0→ E+mc2, and therefore b″→ 0 and ¯ k 0, we again obtainR″→ 1,
T″→ 0 andVt→ 0, and ˆ ( ) ( )á ñ = - + = - -zf E c a E cm 4 4 m2 2 2 . Certainly, the solution of the problem takes
the formgiven in equation (19), namely,

( ) ( )
( )

( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

z
z
z

= = Q - + Qx
kx

a kx
x

a
x

2i sin

2 cos
0

2
. A121

2

Again, we have that ζ(0− )= ζ(0+ )≡ ζ(0)≠ 0, and the upper or large component of ζ satisfies theDirichlet
boundary condition at x= 0, i.e. ζ1(0− )= ζ1(0+ )≡ ζ1(0)= 0, and the lower or small component ζ2 is
continuous there. Certainly, from these results, we obtain the same nonrelativistic results as before.
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Appendix B

Naturally, in the region below the potential step x� 0, one always has two transmitted solutions that are
associatedwith oppositemomenta. As discussed in section 1, one of these solutions is precisely the solution
given in equation (6), namely,

 ¯ ( )¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y = -
- +

-c k

E V c

const

1

m

e , B1kx
t

0
2

i

that does not lead to the original Klein paradox, and the other solution is

 ¯ ( )¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y =
- +

c k

E V c

const

1

m

e . B2kx
t

0
2

i

The latter is the traditional solution inwhichKlein’s paradox arises. For example, see the comment following
equation (4) in [2] (although there, the solutions are four-component spinors). This is also the solution used in
[25] to introduce the original Klein paradox. See equation (2.5) in that reference (and correct the typo q→ p).

On the other hand, another pair of transmitted solutions consists of the solution given in equation (A3),
namely,

 ¯

∣ ∣ ( )¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y = - + -
c k

E V cconst m
1

e , B3kx
t 0

2 i

that does not lead to the original Klein paradox (see appendix A), and the solution given by

 ¯

∣ ∣ ( )¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y =
-

- +
c k

E V cconst m
1

e . B4kx
t 0

2 i

As demonstrated in [2], the latter solution also leads to the original Klein paradox, as expected (see the results
given in equations (2), (3) and (4) of that reference). In [2], it is alsomentioned that the solution given in equation
(A3) (or equation (B3)) is the solution generally considered valid in the region x� 0. According to the authors of
this reference, this solution should be discarded because it does not represent an antiparticle entering from the
right (this conclusionwould arise as a consequence of the physical interpretation of the results obtained by the
authors using the transmitted solution in equation (B4)). Alternatively, our treatment of the problem leads to a
situation inwhich the original Klein paradox does not arise, andwe accomplish this without abandoning the 1D
Dirac theory as a single-particle theory. Incidentally, in a rather old reference, it was alreadymentioned that a
transmitted solution similar to the onewe use in the present paper (equation (B1)) can avoid the original Klein
paradox, but only in the case of fermions, i.e. in the case of 3DDirac particles [26] (see the paragraph that follows
equation (8) and the appendix in that reference). Additionally, a complete and plausible discussion of theKlein
paradoxwithin the framework of the 3DDirac theory for a single particle can be found in twowell-known books
on relativistic quantummechanics [6, 7]. In this regard, our results also indicate that the solution given in
equation (B3) (or the solution given in equation (B1)) cannot be discarded because it leads to an impenetrable
barrier whose nonrelativistic limit is the typical barrier of nonrelativistic theory (provided that the energies are
positive).

The approach followed in [25] also leads to a situation inwhich the original paradox disappears. The author
of that reference uses the following transmitted solution (andwewill also name itψII):

 ¯
( )¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y y= ´
-

- + º
c k

E V cconst m
1

e B5kx
t 0

2 i
II

(see equation (2.9) in [25]). This solution satisfies the following relation: ˆ ( ) ( )f y y= -H V E2 ;II 0 II thus, it is
not an eigenfunction of theHamiltonian given in equation (2) (here, wewrite Ĥ as a function of the potential
given in equation (1)). Actually, the solution in equation (B5) satisfies ˆ ( )f y y- = -H E ;II II therefore,ψII is a
negative-energy transmitted solution. Certainly, in the nonrelativistic limit, the upper component ofψII tends to
zero; on the other hand, in the transmitted solutionwe used in section 1 (equation (B1)), it is the lower
component that tends to zero in this approximation. These are expected results becauseψII is a negative-energy
solution, whileψt given in equation (B1) (or equation (6)) is a positive-energy solution.

Indeed, the transmitted solutionψII given in equation (B5) is none other than the charge-conjugate
wavefunction of the solutionψt given in equation (B1). In fact,
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* 


ˆ ˆ ¯
¯

( )¯ ¯⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

y y y sµ = = -
- +

=
-

- +
+ +S c k

E V c

c k

E V c

1

m

e m
1

e . B6x
kx kx

II t
C

C t

0
2

i
0

2 i

Thus,ψIImust be an eigenfunction of ˆ ( )f-H with eigenvalue−E. On the one hand, in a single-particle theory,
we know that, ifψt describes a 1DDirac particle’s state with positive energy in the potential (energy)f, then yt

C

describes a 1DDirac particle’s state (not a 1DDirac antiparticle’s state)with negative energy in the potential
(energy)−f. Certainly, if theDirac hole theory is invoked to obtain a physical picture of the negative-energy
transmitted solution, then onewould be abandoning 1DDirac’s theory as a single-particle theory.On the other
hand, ifψt represents themotion of a 1DDirac particle with a given charge in an external potential, yt

C

represents themotion of a 1DDirac particle of opposite charge in the same external potential [27]. In this case,ψt

and yt
C clearly describe two different particles, as expected. The transmitted solution given in equation (B6)

would admit either of the two interpretations presented above.
It is clear that our results cannot agree exactly with those of [25]. The reason for this discrepancy is that the

transmitted solutions are not the same in the twoworks. Aswe have seen, whenwe reach the limit point of the
Klein energy zone, i.e.V0→ E+mc2, the potential step becomes an impenetrable barrier, andwe obtain a
solution describing a 1DDirac particle that is restricted to the region x< 0. Then, a relativistic boundary
condition naturally arises, and one has a precise value for themean value of the force on theDirac particle at
x= 0. Taking the nonrelativistic limit of these results yields the expected results.

What happens if the solution given in [25] (equation (B5)) is used?We can answer this question here in a
succinctmanner. Naturally, the incoming and reflected plane-wave solutions have the same form as
equations (4) and (5)with a and k given in equations (10) and (9)The negative-energy transmitted solution in
equation (B6) can bewritten as follows:

( )¯⎡
⎣

⎤
⎦

y = ´ - +bconst
1

e , B7kx
II

i

where b and k̄ are given in equations (10) and (9)Assuming that the scattering solutions in the region x< 0 and
in the region x> 0 can be joined at x= 0, the following result is obtained:

( ) ( ) ( ) ( )¯
⎜ ⎟⎡

⎣
⎤
⎦

⎛
⎝

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

⎞
⎠

⎡
⎣

⎤
⎦

y
j
c= = +

+
- - Q - +

-
- Q-x a

ab

ab a x
a

ab
b x1 e

1

1
1 e

2

1 1
e . B8kx kx kxi i i

Additionally, the reflection and transmission coefficients are given by

∣ ∣
( )

( )⎛
⎝

⎞
⎠

=
+
-

=
-

= -R
ab

ab
T

a b

ab
R

1

1
,

4

1
1 , B9

2

2

where−ab is preciselyβ, which is given in equation (2.11) of [25]. Note that whenV0→ E+mc2 (for a given
energy), i.e. when the limit point of theKlein energy zone is reached, the results b→−∞ , ¯ k 0,R→ 1 and
T→ 0 are obtained. Likewise, the solution given in equation (B8) takes the form

( ) ( )
( )

( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

y = Q - + Qx
kx

a kx
x x

2 cos

2i sin
2
0

. B10

Again, we have thatψ(0− )= ψ(0+ )≡ ψ(0)≠ 0, but the lower or small component ofψ (see equation (25))
satisfies theDirichlet boundary condition at x= 0, i.e.

( ) ( ) ( ) ( )c c c- = + º =0 0 0 0, B11

and the upper or large component ofψ, i.e.j, remains continuous there. Certainly, this boundary condition also
defines a relativistic point interaction at x= 0. This boundary condition can be obtained from equation (B6) in
[18] by imposingμ= π/2 and τ= 3π/2, orμ= 3π/2 and τ= π/2. In the nonrelativistic limit, the solution
given by equation (B10) takes the form

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

y y = Q - + Qx x k x x x
0

2 cos
0

2
0

B12
NR NR

( ( ) ( )=k E2mNR NR ). Additionally, using the sifting property of theDirac delta in its symbolic form and the
fact thatΘx(x)= δ(x), one obtains the following result: ( ) ( ) ( ) ( )( ) ( ) ( )y = - Q - + Qx k k x x x2 sin 0x

NR NR NR . Thus,
in the nonrelativistic limit, the boundary condition given in equation (B11) leads to theNeumann boundary
condition, i.e. the Schrödinger wavefunction satisfies ( ) ( ) ( )( ) ( ) ( )y y y- = + º =0 0 0 0x x x

NR NR NR [10, 19].
Certainly, the solutionψ(NR)(x) is not obtained by taking the infinite-potential limit (or the impenetrable barrier
limit) in the 1DSchrödinger theory. Certainly, theNeumann boundary condition is not obtained in that limit
either. Thus far, everything looks acceptable; however, if one calculates themean value of the external classical
force operator, in the stateψ given in equation (B8), one obtains the following result:
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ˆ ( ) ( )
( )

( )á ñ = - = -
+

-
yf V V

a b

ab
0

4 1

1
. B130 t 0

2 2

2

In theDirac impenetrable barrier limitV0→ E+mc2 (and therefore b→−∞ ), the result is as follows:

ˆ ( ) ( )á ñ = - +yf E c4 m . B142

Once the potential has reached the limit point of the Klein energy zone, the point x= 0 becomes an impenetrable
barrier, and the 1DDirac particle can only be on the half-line x< 0 (in fact, it is as if the particle has always been
in that region); thus, we can resort to the procedure we followed in section II. SubstitutingΨ from equation (7)
(withψ given in equation (B10)) into equation (23), we obtain themean value of the (relativistic) boundary
quantum force due to the impenetrable barrier at x= 0, namely,

ˆ ( ) ( ) ( ) ˆ ( ) ( ) ( )† † sá ñ = - Y Y + Y Y = - + = - -Yf t t c t t E c E ci 0, 0, m 0, 0, 4 4m 4 m . B15t zB
2 2 2

Similarly, the average value of the (nonrelativistic) boundary quantum force due to the hard barrier at the origin
can be obtained from equation (28) (with ( )( ) ( ) ( )yY = - E texp iNR NR NR ), fromwhich the following result is
obtained:

*
ˆ ( ) ( ) ( ) ( )( ) ( ) ( )( )á ñ = + Y Y = -Yf E
2m

0 0 4 . B16xxB

2
NR NR NRNR

Clearly, the result given in equation (B14) is not consistent with the result in equation (B15), i.e. it is not
compatible with the fact that forV0→ E+mc2, all 1DDirac particles are reflected. In contrast, the
nonrelativistic limit of the expression given in equation (B15) coincides with the result given in equation (B16).
Presumably, some explanation of the result given in equation (B14) can be obtained by discarding the framework
of theDirac theory of a single particle andmoving to the following scenario. This turns out to bemost
appropriate when the potentials are of the order ofmc2. Specifically, it will always be attractive to consider
particles in the region x> 0 as antiparticles (because in that regionE− V< 0), and these antiparticles would
have energy−E above the potential (energy)−V0. At themoment, we do not have a plausible explanation for the
result in question. It is probably appropriate to leave that discussion for further research.
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