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Abstract
In this work, we present a new scheme to study the tachyon dark energy model using

dynamical systems analysis by considering parametrization of the equation of state(EoS)
of the dark energy. Both the canonical and phantom field dynamics are investigated. In
our method, we do not require any explicit form of the tachyon potential. Instead of the
potential, we start with an approximate form of the EoS of the tachyon field. This EoS
is phenomenologically motivated and contains some dimensionless parameters. Using our
method we can construct the dynamical system which gives rise to the time evolution of
the universe. We have considered two different parametrizations of the EoS and studied the
phase space dynamics in detail. Our analysis shows Taylor series parametrization of the
EoS has serious cosmological limitations. We have also provided an example of how this
method can be applied to coupled Tachyon models with a specific form of interaction. Our
proposal is generic in nature and can be applied to other scalar field dark energy models.

1 Introduction
The phenomenon of accelerated expansion of the universe [1, 2, 3, 4, 5] is still an unsolved
mystery, even after two decades of its discovery. It is generally believed that there exists some
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mysterious component with negative pressure that is behind this accelerated expansion and it
happens to be the dominant(70%) component of the universe. The cosmological constant (Λ)
[6] with the constant equation of state (EoS) (wλ = −1) is the simplest and most successful
model of the accelerated expansion of the universe. Because of it’s success the ΛCDM model in
which the cosmological constant Λ is considered as the candidate of the dark energy is given the
status of the standard model of dark cosmology, CDM stands for cold dark matter. Although the
ΛCDM model is very successful in fitting the observed data, it seems that our universe is very
highly fine-tuned to cause the cosmological constant to start dominating at a very specific time so
that the universe can evolve into the present universe. This is one of the conceptual problems that
the cosmological constant faces and is named as the cosmic coincidence problem. To explain
the origin of the cosmological constant, another discrepancy arises between the theoretically
predicted value of it and the observed value, which is of the order of hundreds of magnitude.
Recently with the increment of our ability to constrain, the cosmological parameters with higher
precision the ΛCDM model also face challenges coming from the cosmological observations.
The most important challenge at this moment is the Hubble(H0) tension. The early universe
observations like the CMB Planck collaboration [7], BAO [8, 9], BBN [10] and DES [11, 12, 13]
which consider the cosmological constant as the component of the dark energy estimated a value
of the Hubble parameter to be H0 ∼ (67.0− 68.5) km/s/Mpc, which is lower than the observed
valueH0 = (74.03±1.42)km/s/Mpc, obtained by observing the local universe using the distance
ladder method from SH0ES [14] and H0LiCOW [15] collaborations. The current discrepancy
between these two types of data sets is of the order of 6σ. These difficulties with cosmological
constants indicate clearly that there may be new physics involved in the late-time evolution of the
universe and consequently an alternative to the cosmological constant should be investigated. In
fact, there are recent claims that solving the H0 tension issue does indeed require new late time
physics [16, 17, 18, 19].

Dynamical dark energy models in which the EoS of it varies with time have been proposed as
alternatives to the cosmological constant. A wide variety of such dynamical dark energy models
are abundant in the literature, a few of them are quintessence, k-essence, phantom, chaplygin gas,
tachyon models, holographic DE models and so on [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. But
there is no consensus on a particular model as each model has its benefits and drawbacks.

The Quintessence scalar field model is the most popular and well-studied dark energy model
after the ΛCDM model. Recent observations have constrained the EoS of the dark energy to be
less than minus one. This fact has challenged the quintessence model as with a canonical scalar
field an EoS lower than minus one cannot be achieved. There has been increasing interest in
scalar field dark energy with non-canonical kinetic term as for these models the EoS can have
values below minus one. The simplest one is the phantom scalar field which has negative kinetic
energy. In most general form these models are known as k-essence models [30] and tachyon[31]
is a special case of it with Dirac–Born–Infeld (DBI) type of action [32]. The concept of the
tachyon field is inspired by string theory where it arises naturally as a decay mode of the D-
branes [33, 26, 34]. Later it has been applied to cosmology and has been extensively investigated
as a candidate for dark energy [35, 36, 37, 38, 39]. Recently it has been also reported that
distinguishing the tachyon dynamics from quintessence scalar field is difficult [40, 41].

In this work we have considered the dark sector of the universe consists of the tachyon scalar
field and a perfect barotropic fluid where the tachyonic sector is solely responsible for producing
late time acceleration of the universe. Mathematically the dark energy sector is described by
the Dirac-Born-Infeld (DBI) action. To make our analysis more general we have considered
both the canonical tachyon field and the phantom tachyon scalar field by introducing a switch
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parameter ε in the action. According to common practice some particular form of the tachyon
potential is considered to study the dynamics of the tachyon field. One of the difficulties with the
conventional approach is related to the arbitrariness of the choice of the potential. A wide variety
of potentials can give rise to the same dynamics[42, 43] and as a result it is hard to distinguish
the from the potential from observational results. In this work we have followed a different
approach. Instead of choosing any specific tachyon potential we have chosen some approximate
forms of the EoS of the tachyon field. These equations are time dependent and parametrized
phenomenologically. As we know the primary dark energy component must have an equation of
state with a value near−1 from observational inputs, we have assumed some workable forms of
the EoS which in one case is a Taylor series like expansion of the EoS around the present time.
In another case we have assumed an EoS of the tachyon field which closely resembles the EoS
of dark energy when the Hubble parameter becomes approximately constant. In this paper we
have worked with these two kinds of EoS for the tachyon field. Using these approximate forms
of the EoS we have successfully generated the dynamics of the late time universe. Although
the exact form of the potential of the scalar field is not necessary in our case, using our method
one can approximately predict the form of the scalar field potential. The method presented here
can be applied to models in which the tachyon field is coupled to matter. However, it cannot be
readily applied to the general form of coupling considered in [44]. Nonetheless, a very similar
interaction form, Q = Qρbφ̇H , can be analyzed using this method. The method which we have
used is a very general one and can be used in other models of dynamical dark energy.

The paper is presented as follows: in Section 2, we discuss about the mathematical setup
of the tachyon model and the construction of the autonomous system. Section 3 deals with
dynamical systems analysis of the tachyon model with two different parametrizations of the EoS.
This study includes both the quintessence and phantom field. Here we also discuss about some
subtleties with our analysis. We extend our approach to a coupled tachyon model and studied
the dynamics in Section 4. In section 5 we summarized and conclude our method and findings.

2 Dynamics of the Tachyon Field
Let us consider a homogeneous and isotropic universe described by the Friedmann-Lemaitre-
Robertson-Walker(FLRW) metric

ds2 = −dt2 + a2(t) dx2 ,

where a(t) is the scale-factor specifying the expansion of the universe. The dark energy sector is
constituted by the tachyon field described by the Dirac-Born-Infeld (DBI) type of action which
is given by:

S = −
∫
V (φ)

√
1 + ε∂µφ∂µφ

√
−gd4x, (1)

where the parameter ε = ±1. The plus sign is for the canonical tachyon field with positive
kinetic energy and the minus sign is for the phantom type tachyon field which has negative
kinetic energy. The total action of the system consists of the Einstein-Hilbert action for gravity
and the action describing the behavior of a relativistic perfect fluid. In a homogeneous, isotropic
and spatially flat universe, evolution equations for the various dynamical variables can be written
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as:

H2 =
κ2

3

ρb +
V√

1− εφ̇2

 , (2a)

Ḣ = −κ
2

2

(γb − 1)ρb +
εφ̇2V√
1− εφ̇2

 , (2b)

φ̈+ 3Hφ̇(1− εφ̇2) + ε
V ′

V
(1− εφ̇2) = 0, (2c)

where H = ȧ
a

is the Hubble parameter and γ is the equation of state parameter of the back-
ground field and Pb = (γb − 1)ρb. In the above equations κ2 ≡ 8πG, where G is the universal
gravitational constant. The dot represents a derivative with respect to cosmological time t. For
pressure less dust γb = 1 and for radiation γb = 4/3. Since we are interested in the late time
dynamics of the universe from now onward we will consider the matter and tachyon field as the
major components of the universe and neglect the contribution from radiation. Henceforth in
this paper, we will always assume γb = 1. The pressure (Pφ) and density (ρφ) of the scalar field
are given by

Pφ = −V (φ)

√
1− εφ̇2, ρφ =

V (φ)√
1− εφ̇2

. (3)

We will now cast the above equations as a set of constrained autonomous equations and then
find out the nature of the critical points using dynamical systems analysis.

In order to do so, we consider the following set of transformations:

x = φ̇, y =
κ
√
V (φ)√
3H

, λ = − V,φ

κV
3
2

, Γ = V
V,φφ
V 2
,φ

, σ2 =
κ2ρb
3H2

. (4)

One must note that in the present case the scalar field has inverse mass dimension and the po-
tential has dimension of mass raised to the fourth power. The subscript on a variable following
a comma, as V,φ represent derivative of V with respect to φ. Two subscripts after the comma
imply two derivatives. These variables were first introduced in [45] and later they were used in
[40, 46]. The constrained equation from the Friedman equation, Eq.(2a), can be expressed in
terms of dynamical variables as

1 = σ2 +
y2

√
1− εx2

. (5)

Using Eqs.(2b) and (2c), the dynamical equations can be written as follows

x′ = −(1− εx2)(3x−
√

3ελy), (6a)
y′ =

y

2

[
−
√

3λxy − 3
√

1− εx2 y2 + 3
]
, (6b)

λ′ = −
√

3 λ2xy(Γ− 3

2
). (6c)

In the above equations the prime represents derivatives with respect to N ≡ ln(a). The cos-
mological parameters of the scalar field like density parameter of the scalar field Ωφ, equation
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of state parameter wφ and deceleration parameter q, the effective sound speed c2
s = Pφ,X/ρφ,X

[47], where X = −(1/2)gµν∂µφ∂νφ, can be written in terms of these new variables as:

Ωφ =
y2

√
1− εx2

, (7)

γφ ≡ 1 +
Pφ
ρφ

= εφ̇2 = εx2, (8)

q ≡ −1− Ḣ

H2
= −

(
1− 3

2
γb

)
− 3

2
y2 γb − εx2

√
1− εx2

, (9)

ωtot ≡ −2Ḣ + 3H2

3H2
= γb − 1− y2 γb − εx2

√
1− εx2

, (10)

c2
s = 1− εx2 . (11)

The EoS of the scalar field is; γφ = 1 + ωφ, where ωφ = Pφ/ρφ. One can see from the set of
autonomous equations in Eq.(6) that it is not closed unless one gives the information about the
function Γ or the form of the potential V (φ). Generally these equations can be closed in two
different ways. One can consider a particular form of the potential and find out the corresponding
Γ from its definition or one can consider a particular form of Γ and integrate back to get the
corresponding class of potentials. This is the conventional approach used to solve such a set of
autonomous equations. The difficulty arising from such a scheme is related to the fact that most
of the time it becomes very difficult to guess the form of the potential or Γ which will give rise to
physically relevant behavior of the universe. One can use various forms of potential and predict
the evolution of the late universe in various cases.

In the present paper we will not proceed in the conventional line. We will use a more phe-
nomenological method to solve the autonomous system. In our present work we start with some
particular parametrization for the scalar field EoS (ωφ). Using our prior knowledge from the
recent cosmological observations[7], we expect the equation of state (EoS) for the dark sector
will be around −1 or some preassigned value ω0 (close to −1). By considering a parametriza-
tion of the ωφ one will be able to find an expression of λ in terms of x and y, using the first two
equations in the set of autonomous equations given in Eq.(6). For internal consistency we will
use the form of λ as obtained in the third autonomous equation and solve it. This solution will
produce a form of the unspecified Γ as a function of x and y. In our approach all our ignorance
about the functional form of the potential will be reflected in the functional form of Γ. As a
result of this procedure the dimension of the phase space of our system will reduce from 3D to
2D as the variable λ becomes redundant.

3 Parametrization of equation of state of Dark energy
In the following section we discuss about the phase space dynamics of the tachyon scalar
field model. We will consider two kinds of parametrization for ωφ, the choice of these two
parametrizations have different phenomenological motivations and can give rise to interesting
cosmological dynamics.
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3.1 First Parametrization
In the first parametrization, the EoS of the scalar field is considered as:

ωφ(N) = −1 + ω1N, (12)

where ω1 is a constant and can be constraint from observations. As mentioned earlier, here
N = log(a). The above mentioned parametrization has been inspired from Ref.[48] where a
more general form of it was considered: ωφ(a) = ω0 − ω′ log(a). There ω′ is the derivative1 of
ωφ with respect to the scale-factor a, i.e., ω′ = dω

da
|a=1. The constraints on ω0 and ω′ came from

SNIa+BAO+H(z) data and the constrained values were given as−1.09 ≤ ω0 ≤ −0.66 and
−1.21 ≤ ω′ ≤ 0.25. The constraint on matter density was reported as 0.26 ≤ ΩM ≤ 0.32. In
our case we have taken ω0 = −1 and ω1 = −ω′. Using Eq.(8) we can now write γφ as:

γφ = 1 + ωφ = ω1N = εx2 . (13a)

Taking a derivative of Eq.(13), with respect toN , and equating the value of x′ to the x′ expression
in Eq.(6a) we can derive another constraint equation as follows:

−2εx(1− εx2)(3x−
√

3ελy) = ω1 . (14)

This constraint equation can be solved for λ

λ =
ω1

1−x2ε + 6x2ε

2
√

3xy
. (15)

To make the system of autonomous equations consistent the λ′ equation in Eq.(6c) should also
be satisfied by the derivative of λ given in Eq.(15) with respect toN . From the above mentioned
consistency condition it is possible to express Γ = f(x, y). To find the expression of Γ one
can see appendix A. As result of this procedure the dynamical system now has essentially two
independent variables, x and y. The phase space has reduced from 3D to 2D.

One can now write down the effective autonomous equations in 2D. The new 2D autonomous
system is given by:

x′ =
ω1

2εx
, (16a)

y′ =
1

2
y

[
−3y2

√
1− εx2 + 3(1− εx2)− ω1

2 (1− εx2)

]
. (16b)

One can notice that the system is symmetric under x 7→ −x and y 7→ −y. One must note that
by definition y ≥ 0 and consequently the symmetry y 7→ −y is practically superficial although
that transformation is a symmetry here. Next we study the phase space behavior of the canonical
and phantom tachyon field for the current parametrization.

3.1.1 Canonical tachyon (ε = +1)

We first present the dynamical system analysis for the case of a canonical tachyon field, where
ε = 1. For this case, the phase space is compact because of the constraint in Eq.(5). As a result
we have:

0 ≤ x ≤ 1, 0 ≤ y ≤ (1− x2)1/4 . (17)
1Here the prime does not specify a derivative with respect to N .
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We have confined our attention to the first quadrant in the x − y plane due to the symmetry
x 7→ −x, y 7→ −y. Here y is always a positive semidefinite variable. It is interesting to note
that the phase space is bounded by the curve

y = (1− x2)1/4, (18)

which is the locus of the points in the phase space that corresponds to an entirely scalar field
dominated cosmology, except for the point (x, y) = (1, 0). This is because σ = 0 at all the
points on this curve except for (x, y) = (1, 0), as can be checked from the Eq.(5). On the other
hand, the line y = 0 is the locus of the points in the phase space that corresponds to an entirely
matter dominated cosmology, except for the point (x, y) = (1, 0). This is because σ = 1 at all
the points on this curve except for (x, y) = (1, 0).

We face a problem when we want to find the fixed points of the system. The autonomous
system given in Eq.(16) diverges at x = 0, 1 and it seems like the only possible fixed point is
at (x → ∞, y = 0), which is outside the range specified in Eq.(17). But this conclusion would
be wrong because for an autonomous system of equations to qualify as a dynamical system, it
needs to be at least first order differentiable [49, 50], which is clearly violated by the system (16)
at x = 0, 1. Therefore one should not naively use the system in Eq.(16) to find the fixed points.
This makes the analysis of the phase space behavior of the above mentioned system difficult.

In reference [51] it has been suggested that a redefinition of the time coordinate can alter the
form of the autonomous system of equations to make it differentiable, while keeping the phase
space behavior intact. In the altered form the critical points of the system may appear inside the
constrained phase space. Any redefinition of time alters the way the scale-factor evolves. In our
analysis we are not directly working with cosmic time, we are working with N = log(a). A
redefinition of time will produce a new N̄ . We define N̄ as:

dN → dN̄ =
dN

x(1− x2)
. (19)

Sticking to the first quadrant (x ≥ 0, y ≥ 0) we see that (dN̄/dN) > 0, implying that N̄
is always an increasing function of N and thus our time redefinition is workable. Henceforth
we will work with N̄ and all the primes over x and y must be understood as derivatives of the
respective variables with respect to N̄ .

After the redefinition of the time variable, the dynamical system reduces to the following
form

x′ =
ω1

2
(1− x2) , (20a)

y′ =
1

2
xy
[
−3y2(1− x2)3/2 + 3(1− x2)2 − ω1

2

]
. (20b)

We emphasize that, the time redefinition in Eq.(19), and consequently the regularized dynam-
ical system in Eq.(20), is valid only in the first quadrant. In a forthcoming subsection we will
explicitly show the method using which one may construct the dynamics in the second quadrant
if one knows the dynamics in the first quadrant. Here we analyze the system in the first quadrant.
There is only one fixed point (x, y) = (1, 0). Since this fixed point lies at the intersection of the
curve specified in Eq.(18) and the line y = 0, we cannot definitively determine the cosmology
corresponding to this fixed point.
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Points (x, y) Eigenvalues Stability Cosmology
P1 (1, 0)

{
−ω1,−ω1

4

}
Stable for ω1 > 0

Unstable for ω1 < 0
a(t) ∼ t2/3

Table 1: The nature of one of the critical points for the first parametrization corresponding to
ε = +1. The cosmological evolution corresponding to the fixed point can be derived from the
expression of the deceleration parameter in Eq.(9).

The nature of the critical point is tabulated in Tab.1. This critical point is stable (unstable) for
ω1 > 0 (ω1 < 0) and non-hyperbolic for the special case of ω1 = 0, i.e. cosmological constant.
The cosmology corresponding to this critical point is dominated by the kinetic part of the scalar
field and near it the scale-factor is evolving as a(t) ∼ t2/3.

P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

(a) The phase space plot for ε = +1, ω1 = 0.3.

P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

(b) The phase space plot for ε = +1, ω1 = −0.3 .

Figure 1: The compact phase space for canonical tachyon with the parametrization given in
Eq.(12). The phase space is compactified by the constraint Eq.(5). At the present epoch N = 0,
x = 0 (see Eq.(13)). The green region represents an accelerated phase with −1 ≤ ωtot < −1/3
(obtained using Eq.(10)). The condition for the absence of gradient instability, namely 0 ≤ c2

s ≤
1 is satisfied on the entire phase space.

The nature of the phase space plots around the point x = 1, y = 0 is shown in Fig.1a and
Fig.1b. The plots clearly show the stability issue related to this fixed point. Corresponding to
this redefined autonomous system we see that Γ becomes −1 for this critical point which shows
that at the late time phase Γ becomes constant.

3.1.2 Phantom tachyon (ε = −1)

Here we present the results related to the phantom tachyon. For this case, ε = −1 and as
a consequence one can see from Eq.(5) that the phase space is not compact. We first try to
compactify the phase space as in that case only we can exhaustively show phase space dynamics.
In the following we compactify the phase space using the following prescription:

X =
x√

1 + x2
, Y =

y√
1 + y2

. (21)

In terms of X, Y the Friedmann constraint in Eq.(5) becomes

1 = σ2 +
√

1−X2
Y 2

1− Y 2
. (22)
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The phase space in the (X, Y ) coordinates is compact, because, from the constraint equation
Eq.(22),

0 ≤ X ≤ 1, 0 ≤ Y ≤ 1

(1 +
√

1−X2)1/2
, (23)

where, again, we have confined our attention to the first quadrant because of the symmetry x 7→
−x, y 7→ −y. Similar to the previous case the phase space is bounded by the curve

Y =
1

(1 +
√

1−X2)1/2
, (24)

which is the locus of the points in the phase space that corresponds to an entirely scalar field
dominated cosmology, except for the point (X, Y ) = (1, 1). This is because σ = 0 at all the
points on this curve except for (X, Y ) = (1, 1), as can be checked from the Eq.(22). On the other
hand, the lines X = 1 and Y = 0 are the locus of the points in the phase space that corresponds
to an entirely matter dominated cosmology, except for the point (X, Y ) = (1, 1). This is because
σ = 1 at all the points on this line except for (X, Y ) = (1, 1).

The effective 2D autonomous dynamical system is described by the following equations:

X ′ = − ω1

2X
(1−X2)2 , (25a)

Y ′ =
1

2
Y

[
− 3Y 2

√
1−X2

+
3(1− Y 2)

1−X2
− ω1

2
(1−X2)(1− Y 2)

]
. (25b)

Here the primes designate differentiation with respect toN = log(a). From the above equations,
it is seen that even after the compactification of the phase space the system diverges atX = 0, 1.
To tackle this problem we have adopted a similar strategy as adopted in the previous case. We
redefine the time coordinate such that

dN → dN̄ =
dN

X(1−X2)
. (26)

Using N̄ we can express the dynamical system in a new form as:

X ′ = −ω1

2
(1−X2)3 , (27a)

Y ′ =
1

2
XY

[
−3Y 2

√
1−X2 + 3(1− Y 2)− ω1

2
(1−X2)2(1− Y 2)

]
, (27b)

where the derivatives (primes) are now with respect to N̄ . We emphasize that the time redefi-
nition in Eq.(26), and consequently the regularized dynamical system in Eq.(27), is valid only
in the first quadrant. In the next subsection we will explicitly show the method using which one
may construct the dynamics in the second quadrant if one knows the dynamics in the first quad-
rant. Here we present the dynamics of the system only in the first quadrant. There are two fixed
points (X, Y ) = (1, 0), (1, 1) in the first quadrant. From the constraint in Eq.(22) it is clear that
at the fixed point (1, 0), σ = 1, i.e. the universe near this fixed point is in a matter dominated
phase. The fixed point (1, 1) lies at the intersection of the curve specified in Eq.(24) and the line
X = 1. Consequently the cosmology corresponding to this fixed point cannot be determined
definitively.
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Points (X, Y ) Eigenvalues Stability Cosmology
P1 (1, 0) (0, 3/2) Unstable for ω1 > 0

Saddle for ω1 < 0
Matter dominated

P2 (1, 1) (0,−3) Saddle for ω1 > 0
Stable for ω1 < 0

Indeterminate

Table 2: The nature of critical point for first parametrization corresponds to ε = −1.

The nature of the fixed points are tabulated in Tab.2. Note that the fixed points in this case
are non-hyperbolic so that their stability cannot be inferred from a Jacobian analysis. Instead,
their stability can be inferred investigating the nature of the various invariant submanifolds of the
system. The mathematical analysis is presented in appendix B. The phase space plots showing
the nature of dynamical evolution around the fixed points are shown in Fig.2a and Fig.2b. The
two plots correspond to two values of ω1, in one case ω1 > 0 and in the other case ω1 < 0.

P1

P2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

(a) The phase space plot for ε = −1, ω1 = −0.5.

P1

P2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

(b) The phase space plot for ε = −1, ω1 = 0.5 .

Figure 2: The compact phase space for phantom tachyon with the parametrization given in
Eq.(12). The phase space is compactified by the constraint Eq.(22). At the present epochN = 0,
x = 0. The green region represents an accelerated phase with −1 ≤ ωtot < −1/3. The red
region represents the phantom phase with ωtol < −1.

3.1.3 Phase dynamics in the second quadrant

In the above discussion we have focused our attention only to the first quadrant x > 0, y >
0, because the system in Eq.(16) possesses the symmetry x 7→ −x and y 7→ −y. The time
redefinitions in Eqs.(19),(26) and the regularized dynamical systems in Eqs.(20),(27) are valid in
the first quadrant only. Consequently the Figs.1a,1b,2a,2b all shows the phase space dynamics in
the first quadrant. As we argued before, the symmetry y 7→ −y is practically superficial because
by definition y ≥ 0. One may, however, ask what would be the phase space dynamics in the
second quadrant x < 0, y > 0. All possible cosmological scenarios with φ̇ < 0 constitutes
the second quadrant. If we focus our attention to the second quadrant, the time redefinitions in
Eqs.(19),(26) should be modified as:

dN → dN̄ =
dN

−x(1− x2)
(28)
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and
dN → dN̄ =

dN

−X(1−X2)
. (29)

respectively. This is because one needs to respect the condition (dN̄/dN) > 0 to preserve the
arrow of time. The regularized dynamical systems in Eqs.(20),(27) would then be modified only
by an overall minus sign in front. Consequently the phase space dynamics in the second quadrant
will just be a reflection of that in the first quadrant against the line x = 0 or X = 0.

In fact, this can be also argued as follows. The dynamical system in Eq.(16) is of the form

ux = fx(x, y) , uy = fy(x, y) . (30)

where ux,y are the Cartesian components of the “phase flow” at each point (x, y). The functions
fx,y(x, y) are such that fx(−x, y) = −fx(x, y) and fy(−x, y) = fy(x, y). As one goes from first
to second coordinate, the x-component of the flow velocity is inverted whereas the y-component
remains intact. As a result of these observations we see the phase space dynamics in the first
quadrant is given by Figs.1a or 1b for the canonical tachyon and Figs.2a or 2b for the phantom
tachyon. The phase space dynamics in the second quadrant will be a reflection of these plots
against x = 0.

We also notice that the first and second quadrant is completely disjoint. There is no direct
way to “glue” the phase portraits of the first quadrant with corresponding portraits in the second
quadrant. This is related to the time redefinitions we have used and consequently the regularized
dynamical systems are valid in only either the first quadrant or the second quadrant. The physical
interpretation of this fact is that the time derivative of the field, φ̇, cannot change sign at any point
during the cosmic evolution. One can also interpret this in another way. Note that the nature of
the fixed points remains the same irrespective of whether one considers the first quadrant or the
second quadrant. As a result one may conclude that the actual sign of φ̇ does not really matter
as the cosmological dynamics is concerned. Whether it is positive or negative, the cosmological
dynamics remains the same.

3.1.4 Analytical solution for the asymptotic behavior

For the particular parametrization that we have considered here it is possible to analytically con-
firm the results that we have found from the phase space analysis. The parametrization essentially
fixes the solution for x(N) from Eq.(13)

εx2(N) = ω1N. (31)

The equation for y(N) is then

dy(N)

dN
=

1

2
y

[
−3y2

√
1− ω1N + 3(1− ω1N)− ω1

2(1− ω1N)

]
. (32)

Let us now find out the asymptotic behavior for canonical and phantom tachyon.

• For canonical tachyon (ε = 1), and x2(N) = ω1N : For ω1 > 0, the solution is well-
defined in the future up to a finite e-folding N = Nmax = 1/ω1 but undefined in the past.
For ω1 < 0, the solution is well-defined in the past up to a finite e-folding N = Nmin =
1/ω1 but undefined in the future. The finite value Nmax,min comes from demanding 1 −
ω1N > 0, which is required for dy(N)

dN
to be real. We emphasize that, a finite value for the
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e-folding N corresponds to a finite value of the scale factor a(t), but does not necessarily
correspond to a finite value of the cosmological time t. As N → Nmax,min, x→ 1 and

dy(N)

dN
∼ y

4
(
N − 1

ω1

) . (33)

Integrating the above we get,
y(N) ∼

∣∣∣∣N − 1

ω1

∣∣∣∣. (34)

Therefore y(N) → 0 as N → Nmax,min. This is consistent with the results obtained in
the subsection 3.1.1 as the fixed point P1, which is a future attractor for ω1 > 0 and a past
attractor for ω1 < 0, has the coordinates (x, y) = (1, 0).

• For a phantom tachyon (ε = −1), and x2(N) = −ω1N : For ω1 > 0, the solution is well-
defined in the past but undefined in the future. For ω1 < 0, the solution is well-defined in
the future but undefined in the past. As N → ±∞, x→∞ (X → 1) and

dy(N)

dN
∼ −3

2
yω1N. (35)

Integrating the above we get,
y(N) ∼ e−

3
4
ω1N2

. (36)

Therefore y(N) → 0 (Y → 0) as N → −∞ for ω1 > 0 and y(N) → ∞ (Y → 1) as
N → ∞ for ω1 < 0. This is consistent with the results obtained in the subsection 3.1.2
as the fixed point P1 ≡ (X, Y ) = (1, 0) is a past attractor for ω1 > 0 and P2 ≡ (X, Y ) =
(1, 1) is a future attractor for ω1 < 0.

3.1.5 Some comments about Taylor series approximation

The parametrization that we have worked with in this section, namely the one given by Eq.(12),
is the first order Taylor series approximation of ωφ(N) around the present epoch N = 0. The
coefficients of the Taylor expansion can be constrained via observations. As a first approximation
we have assumed that the first order Taylor series approximation of ωφ(N) remains valid for the
entire domain of consideration. One can take into account higher order terms in the Taylor series
to get a better approximation for ωφ(N). Nonetheless, our analysis with the first order Taylor
series approximation suffices to establish the generic methodology to work with Taylor series
parametrizations. For example, consider the parametrization containing the second order Taylor
series approximation

ωφ = −1 + ω1N + ω2N
2 , (37)

which gives
εx2 = ω1N + ω2N

2 . (38)

For the first order Taylor series parametrization in Eq.(12) we have taken the derivative of Eq.(13)
once with respect to N and then used the dynamical equation of x from Eq.(6) to arrive at the
constraint in Eq.(14). For the second order Taylor series parametrization given in Eq.(37) we
need to take the derivative of Eq.(13) twice with respect to N and use the dynamical equations
in Eq.(6) in place of x′, y′, λ′ to arrive at a similar constraint equation. In general, if one takes
the n-th order Taylor series approximation as the parametrization for ωφ(N), one needs to take
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derivatives with respect toN , n times, and use the dynamical equations in Eq.(6) at each step to
replace of x′, y′, λ′.

Although the Taylor series parametrization has a straightforward motivation, there is a se-
rious drawback with this parametrization as long as tachyonic dark energy is concerned. As
we have seen with the first order Taylor series parametrization in subsection 3.1.4, the solution
x(N) is undefined either in past (N < 0) or future (N > 0). This is not an unique result valid
only for the first order parametrization. Even for higher order Taylor series parametrizations, the
solution will always be undefined either in past or future. As a consequence of this the Taylor
series parametrizations of any order can be used to describe the cosmological dynamics either
from the matter dominated epoch in the past up to the present epoch or from the present epoch up
to some future asymptotic time, but not an entire dynamics starting from the matter dominated
epoch in the past through the present day to a future asymptotic. One can infer that Taylor series
parametrizations are not really compatible with tachyonic dark energy models.

3.2 Second Parametrization
The issues with the Taylor series parametrizations that we have pointed out in subsection 3.1.5
motivates us to try other parametrizations for the equations of state of tachyonic dark energy.
Here we consider the parametrization studied in [52, 53]. This is a completely different way of
parametrizing a time dependent EoS of the scalar field. The parametrization is given as:

ωφ = ω0 + ω1(tḢ/H) . (39)

In this parametrization ω0 and ω1 are dimensionless constant parameters. In this parametriza-
tion ωφ → ω0 in a pure dark energy dominated phase, where Ḣ ∼ 0. The factor t/H is in-
cluded before Ḣ to make ω1 dimensionless. This parametrization can be associated with the
field equations via the equation of state, ωφ = −1 + εx2. The last equation can also be written
as 1 + ω0 + ω1(tḢ/H) = εx2. Taking the derivative of this equation with respect to t and then
converting the derivatives in terms of N , for the case where ω = 0, one gets a relation as:

x′ =
1

2ε− (εx2 − 1− ω0)(2/x2 + ε/(1− εx2))

[
3

2

εxy2

√
1− εx2

(−ω1+εx2−1−ω0)−
√

3λy(εx2−1−ω0)

]
.

(40)
Equating this expression of x to the value of x′ in Eq.(6) one can find out a constraint for the the
variable λ as:

λ =

3xy2ε(x2ε−ω0−ω1−1)
2
√

1−x2ε
[
2ε−

(
ε

1−x2ε
+ 2
x2

)
(x2ε−ω0−1)

] − 3x (x2ε− 1)

√
3y(x2ε−ω0−1)

2ε−
(

ε
1−x2ε

+ 2
x2

)
(x2ε−ω0−1)

−
√

3yε (x2ε− 1)
. (41)

In this dynamical system λ is related to the derivative of the potentials. In our approach we are
not working with the exact form of the scalar field potential, we are using an extra condition
consistently which reduces the phase space dimension by one. If we take the derivative of this
λ in Eq. (41) with respect to N and equate the resultant expression with the one appearing in
Eq. (6c), we will get the form of Γ in terms of x and y. One can find the evolution of Γ in terms
of x and y. In this way, Eq. (41) provides another constraint on the system which reduces the
phase space dimension from 3D to 2D.
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Critical points for ε = +1.
Points x y Eigenvalues (E1 & E2)
P0 0 0 (0, 3/2)
P1,2 ∓

√
1 + ω0 0 −3(1 + ω0),−3ω0/2

P3,4 −
√

1 + ω0 − ω1 ∓(−ω0 + ω1)1/4

−3

2(1 + ω0)
(1 + ω0 − ω1)2,

3(ω0 − ω1).
P5,6

√
1 + ω0 − ω1 ∓(−ω0 + ω1)1/4 same as above

P7,8 0 ∓1 (−3, 0)

Table 3: The critical points in the second parametrization.

3.2.1 Canonical tachyon (ε = +1)

For the normal tachyon field, the expression of λ from Eq. (41) becomes:

λ = −
√

3
(
−4
√

1− x2x(ω0 + 1) + x5
(
2
√

1− x2 − y2
)

+ x3
(
2
√

1− x2(ω0 + 1) + y2(ω0 + ω1 + 1)
))

4 (1− x2)3/2 y(ω0 + 1)
.

(42)
Here we can see that λ becomes singular at x = ±1, y = 0 and ω0 = −1. Differentiating λ with
respect to N , gives:

λ′ =
1

4 (1− x2)5/2 y2(ω0 + 1)

√
3

[
2x
(
1− x2

)3/2 (
x4 + x2(ω0 + 1)− 2(ω0 + 1)

)
y′

+ x3
(
x2 − 1

)
y2y′

(
−x2 + ω0 + ω1 + 1

)
− x2y3x′

(
2x4 − 5x2 + 3(ω0 + ω1 + 1)

)
+

2
√

1− x2y
(
3x6 + x4(ω0 − 4)− x2(ω0 + 1) + 2(ω0 + 1)

)
x′
]
. (43)

Equating the above equation with Eq. (6c) produces the expression of Γ. The expression of Γ is
presented in appendix C.

Using the above techniques the phase space dimension reduces by one and the autonomous
equations of the effective system can be expressed as:

x′ = −
3x3

[
x2
(
2
√

1− x2 − y2
)
− 2
√

1− x2(ω0 + 1) + y2(ω0 + ω1 + 1)
]

4
√

1− x2(ω0 + 1)
, (44a)

y′ =
1

2
y

[
− 3
√

1− x2y2 +
1

4 (1− x2)3/2 (ω0 + 1)
3x

(
− 4
√

1− x2x(ω0 + 1) +

x5
(

2
√

1− x2 − y2
)

+ x3
(

2
√

1− x2(ω0 + 1) + y2(ω0 + ω1 + 1)
))]

. (44b)

Although y is by definition only defined in the positive branch, i.e., it is always positive in our
case (with zero minimum), we see that the above set of equations have the symmetry x 7→ −x
and y 7→ −y. This symmetry is reflected in the table of fixed points. We tabulate all the fixed
points of the system although physically only the positive values of y are significant. We have
found the fixed points of the above set of autonomous equations and these critical points are
tabulated in Tab.3. In the present case, there are eight critical points which are dependent on
the values of ω0 and ω1. To find the stability of each point, we linearize the autonomous system
around the fixed point and find the Jacobian matrix. The eigenvalues of the Jacobian matrix
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are E1 and E2. Based on the sign of the real coefficients of the eigenvalues the stability of the
system is determined. The eigenvalues of the system have been tabulated in Tab.3. A fixed point
is stable (unstable) if all the eigenvalues have real negative(positive) parts. For alternate signs of
the real parts of eigenvalues, the point becomes a saddle point. If any eigenvalue becomes zero
for a fixed point, then the system’s stability will no longer be determined by linearization. In the
last case, one can employ either the center manifold theorem or find it numerically by solving
the differential equation. In order to understand the nature of the points the total EoS, ωtot, and
sound speed, c2

s, of the system have been shown in Tab.4.

Points (x, y) ωtot c2
s Γ λ Stability

P0 (0, 0) 0 1 ∞ ∞ Unstable

P1,2 (∓0.32, 0) 0 −ω0
1

2ω0 + 2
+ 1 ∞ Saddle

P3,4 (−0.39,∓0.96) ω0 −ω1 −ω0 + ω1 3/2 ±
√

3
√
ω0−ω1+1

4
√
ω1 − ω0

Stable

P5,6 (0.39,∓0.96) ω0 −ω1 −ω0 + ω1 3/2 ∓
√

3
√
ω0−ω1+1

4
√
ω1 − ω0

Stable

P7,8 (0,±1) −1 1 ∞ 0 Stable

Table 4: The critical points and its nature for ε = 1, corresponding to ω0 = −0.9 and ω1 =
−0.05.

Out of the eight critical points, two critical points are onlyω0 dependent and these are denoted
by P1,2. These critical points exists for ω0 ≥ −1. The eigenvalues for these points show that they
are saddle points for −1 < ω0 < 0 and stable points for ω0 > 0. These points share ωtot = 0,
signifies the matter phase of the universe. From the sound speed limit 0 ≤ c2

s ≤ 1, we infer that
ω0 must take negative values.

There is a set of critical points, consisting of points P7,8, where the points are constants. For
this set, one of the eigenvalues becomes zero, for each element, and hence the stability of the
points cannot be determined in a conventional way. To find the stability of these critical points,
we used the numerical technique and found that the points are stable. The EoS and sound speed
around these points are −1 and 1 respectively.

The rest of the critical points from P3 to P6 are ω0 and ω1 dependent. In order to have real
critical points (ω0−ω1) ≥ −1. For stable fixed points one requires ω0 < ω1. In order to produce
the accelerating solution we require ωtot < −1/3 and from the sound speed condition we find
that ωtot = −c2

s. From this we observe that as ωtot approaches −1, sound speed becomes 1.
Hence we may infer that by taking negative values of ω0 and ω1 one may obtain the desired
late time dynamics of the universe. Hence for further analysis we have chosen ω0 = −0.9 and
ω1 = −0.05.
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Figure 3: The phase space plot for ε = 1, ω0 = −0.9 and ω1 = −0.05. The phase space is
constrained from Eq. (2a). In the green region −1 ≤ ωtot < −1/3.

The phase portrait of the system has been shown in Fig.3. There are two separate regions
in the phase plot. The green regions represent the accelerated expansion phase of the universe
whereas the white region represents decelerated expansion phase of the universe. One can clearly
see all the solutions for the considered values of ω0 = −0.9 and ω1 = −0.05 specifying decel-
erated expansion phase are on the y = 0 line. This implies deep in the matter-dominated era
the potential of the scalar field was close to zero and after that the potential becomes nontrivial,
giving rise to the dynamics of the scalar field. The phase space is symmetric around both the
x and y axes. We have only plotted the physically significant region. The sound speed limit
remains between 0 to 1 in the entire region. The trajectories are attracted towards P4, P6, P8. All
these points are scalar field dominated fixed points. From Tab.4 these fixed points are stable in
nature and act as late time attractors.

We have plotted the system variables such as ωtot, c
2
s,Ωφ, σ

2,Γ and λ in Fig.4 with respect to
N by solving the autonomous equations for x′ and y′. In the early epoch of the universe, the EoS
of the system starts from 0 when the fluid energy density parameter σ2 dominates over the scalar
field energy density parameter. At this epoch, the sound speed is nearly 1, and both λ and Γ are
significantly large. As the universe evolves, the EoS decreases towards the negative value, and at
some point where the tachyon field energy density has increased significantly, the EoS becomes
saturated to −0.85. In the last phase the parameters λ saturates at < 1.3 whereas Γ saturates at
0.4. The system’s late time EoS can go very close to −1 depending on the choice of ω0 and ω1.
This signifies that the non-phantom tachyon field can describe the late time acceleration with
significant sound speed.
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Figure 4: The evolution plot for ε = 1, ω0 = −0.9 and ω1 = −0.05.

Although in our formalism one does not need the exact form of the potential, as the form of
the EoS of the scalar field modifies the autonomous equations and produces the desired dynamics
of the system, one may approximately find out the form of the potential using the phase space
dynamics. Here we present an approximate scheme using which the form of V (φ) can be found
out. The method discussed here is a general one and can be applied to most of the cases discussed
in this paper. As because the functional form of the potential is not required in our case we have
not calculated the potential in all other cases. If one is really interested to know the approximate
form of the potential then the method discussed below can always be used. To find out the
functional form of the potential we will use the definition λ = − V,φ

κV 3/2
. In the present case λ

is a function of x and y as given in Eq. (41). From the autonomous equation, we have found the
evolution of x and y in terms ofN = log a. We can express V (φ) in terms of dynamical variable
as,

κ

∫
λdφ = −

∫
dV

V 3/2
,

which yields [
κ/2

∫
λ
x

H
d(log a)

]−2

= V (φ) . (45)
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Figure 5: The exact potential and its approximations for ε = 1, ω0 = −0.9 and ω1 = −0.05.

In the above equation H can be expressed in terms of the phase space variables x and y2. We
can then numerically integrate and find the form of the potential of the system, expressed as
a function of N . In Fig.5 we have found the potential V (φ), which is evolving with log a, by
assuming κ = 1. The exact form of the potential obtained from this process is shown in green
color. We see that at the early epoch the potential of the tachyon field is relatively very high and as
the system evolves the potential saturates at a lower value. The potential becomes considerably
low at the late time phase of the universe. One can approximately find the functional form of
the potential. Here we present two possible forms. It is seen that V (φ) = 60/φ2 nicely fits the
actual green curve3. This kind of a potential often arises in k-essence models. There is another
possible form of the potential given by V (φ) = 107 × e−2.2φ. This form of the potential also
closely matches with the exact value of V (φ) in the late phase of the universe whereas in the
very early phase this approximation does not work. This form of potential is generally used in
quitessence models. These two forms of the approximate potential show that our analysis can
predict a functional form of V (φ) if required. Henceforth we will not calculate the functional
form of V (φ) as this form is not required to predict the dynamics of our system.

3.2.2 Phantom tachyon (ε = −1)

After the normal tachyons we will now deal with the phantom tachyons. From the first Friedmann
equation in Eq. (5) it becomes apparently clear that phase space is not constrained as:

0 ≤ y2 ≤
√

1 + x2 . (46)

Since−∞ < x <∞ we have 0 < y <∞. As a result of this we will first like to compactify the
phase space. To compactify the phase space we introduce two variables (X, Y ) [54] defined as:

X =
x√

1 + x2 + y2
, Y =

y√
1 + x2 + y2

. (47)

2In this regard one must note that one can also use the the definition of Γ(N) to determine the functional form
of the potential as we know the numerical values of Γ for all relevant values of N . In this case one will have to
solve a second order differential equation for V (φ) for each N as the expression of Γ contains V,φφ. This shows
that one can in principle determine the approximate functional form of the potential in multiple ways.

3One can easily find out how this potential evolves withN as we know how V (φ) depends on φ and φ = φ(N).
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Critical points in terms of compact variables
Points X Y ωtot c2

s Γ λ
P0 0 0 0 1 ∞ ∞
P1,2 ∓

√
ω0+1√
ω0

0 0 −ω0
3+2ω0

2(1+ω0)
∞

P3,4 −
√√

ω1−ω0+ω0−ω1√
ω0−ω1

∓
√

(ω0−1)
√
ω1−ω0−2ω0+ω1√

−(ω0−ω1+1)(
√
ω1−ω0+ω0)

ω0 − ω1 −ω0 + ω1 3/2 see Fig.6

P5,6

√√
ω1−ω0+ω0−ω1√
ω0−ω1

∓
√

(ω0−1)
√
ω1−ω0−2ω0+ω1√

−(ω0−ω1+1)(
√
ω1−ω0+ω0)

ω0 − ω1 −ω0 + ω1 3/2 see Fig.6

P7,8 0 ±1/
√

2 −1 1 ∞ 0

Table 5: The critical points and corresponding physical parameters for ε = −1.

Using these variables one can observe that our phase space is constrained as we get

0 ≤ Y 2 ≤ 1−X2

2−X2
, (48)

where −1 ≤ X ≤ 1. One can now express Eq. (40), Eq. (6b) and Eq. (41) in terms of the new
variables X and Y . The expression of λ and Λ for the present case are given in appendix C.2.
In this case, we have nine critical points of the system which are tabulated in Tab.5. In order to
have real critical points and positive sound speed ω0 must be negative and less than ω1, hence
we shall analyze the system for ω0 = −3, ω1 = 1/2.
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Figure 6: The values of λ corresponds to the fixed points P3 to P6 is ω0 and ω1 dependent.
Here λ is negative if both (X, Y ) have the same sign and positive for the alternate sign (keeping
|X|, |Y | the same) while the magnitude of λ remains the same in both cases.

We have shown all the critical points of the system in the present case, these critical points
include both positive and negative values of Y . Although only the critical points with positive
values of Y matters. We have shown the full set of critical points to specify the symmetry of the
problem. The value of λ for the critical points P3 to P6 can be found from the plot in Fig.6. The
plot shows a contour where in the white region there exists no real, finite value of λ. The colour
codes give the range of λ values which one may expect if one chooses appropriate (ω0, ω1) pairs.

In Tab.6 we have represented the critical points for ω0 = −3 and ω1 = 1/2 for ε = −1. The
table shows the values of various parameters of the model for the specific values of ω0, ω1, ε.
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One can see that in this present case one can have superluminal sound propagation. This effect
is particular to this model and one cannot modify this result. In the present case asωtot = −c2

s we
will always have c2

s > 1 for the phantom case ωtot < −1. Lately, it is known that various kinds
of k-essence theories can in principle have superluminal sound propagation. This propagation
happens only in the medium with a specific configuration of scalar fields and not in vacuum. In
a certain way, Lorentz invariance is not lost because of the particular medium produced by the
scalar field.

Points (X, Y ) ωtot c2
s Stability

P0 (0, 0) 0 1 Unstable
P1,2 (∓

√
2/3, 0) 0 3 Unstable

P3,4 (−0.68,∓0.59) −7/2 7/2 Saddle
P5,6 (0.68,∓0.59) −7/2 7/2 Saddle
P7,8 (0,∓1/

√
2) −1 1 Stable

Table 6: Critical points for ω0 = −3, ω1 = 1/2.
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Figure 7: The phase space plot for ε = −1, ω0 = −3 and ω1 = 1/2. The phase space is
constrained, in the green region we have −1 ≤ ωtot < −1/3 and in the red region ωtot < −1.

In the phase space Fig.7 we have plotted X vs Y . The phase space is constrained and there
exist three separate regions. In this case, P1,2 are the non-accelerating points having an equation
of state zero. All the vector fields originating from these points are attracted towards P4, P6, P8.
Although the system near these points show phantom nature, none of them are stable fixed points
exceptP8. In this system only the pointP8 is a stable attractor point and all the nearby trajectories
are attracted towards it and hence it is a global attractor.

The physical nature of the system can be explained by plotting the dynamical variables
against N as shown in Fig.8. We found numerically that at the late time P8 is the stable point
and the system evolves towards it. The evolution starts from the distant past with an EoS close
to zero. This phase resembles the dark matter dominated regime. In this era the fluid energy
density dominates phantom tachyon energy density. Sound speed corresponding to this era is
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greater than one. As the system evolves the fluid energy density starts decreasing and the tachyon
energy density starts to dominate. As a result of this the EoS of the system saturates at −1 and
sound speed becomes 1. We have also plotted the functions related to the potential: λ and Γ.
In the early epoch λ decreases exponentially while Γ had a controlled behavior. As the system
evolves both Γ and λ starts increasing. In the transition from dark matter to dark energy phase
Γ saturates to a value 1 and λ goes to zero.

ωtot
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Figure 8: The Evolution plot for ε = −1, ω0 = −3 and ω1 = 1/2.

4 Interacting Tachyon with pressureless fluid
In this section, we extend our analysis to the interacting dark sector scenario i.e. where the
tachyon field is coupled with the pressureless matter. Dynamical system analysis of tachyonic
field coupled to matter is usually a complicated exercise. We consider a simple interaction of
the form

Q = Qρbφ̇H, (49)

where Q is a dimensionless constant. 4 In our case, the coupled conservation equations become

ρ̇b + 3Hρb = Q = Qρbφ̇H, (50a)
ρ̇φ + 3H(Pφ + ρφ) = −Q = −Qρbφ̇H. (50b)

The coupling term modifies the field equation (2c) as,

φ̈+ 3H(1− εφ̇2)φ̇+
εV,φ
V

(1− εφ̇2) = −εQHρb
V

(
1− εφ̇2

)3/2

(51)

From the above equation and using the dimensionless variables in Eq. (4), the dynamical equa-
tion for x can be written as

x′ = −εQσ
2

y2
(1− ε x2)3/2 + ελ

√
3y(1− ε x2)− 3x(1− ε x2), (52)

4This form of coupling is very much similar to [55], where a coupling term QρdeH was shown to reasonably
lower the tension between Plank CMB data and DES measurements.
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Or, using the constraint equation (5),

x′ = −εQ
(

(1− εx2)3/2

y2
− (1− εx2)

)
+ ελ
√

3y(1− ε x2)− 3x(1− ε x2). (53)

The dynamical equations of y and λ remains the same.
Note that, in general, a coupling term is expected to give rise to an additional dimensionality

in the phase space, requiring us to define an additional dynamical variable. In fact, a generic
coupling term may not even allow us to close the system to write it in an autonomous form.
Our specific choice of the coupling term in Eq.(49), however, does not require us to define an
additional dynamical variable. The dimensionality of the phase space remains the same.

We now proceed to investigate the compatibility of our equation of state parametrizations
with the choice of this coupling. We note that the issue with the Taylor series parametrizations
that we outlined in section 3.1.5 is independent of whether there is dark sector coupling or not;
this is an inherent issue with the parametrization itself while trying to recast it as a constraint over
the phase space. Therefore in what follows, we will concentrate only on the second parametriza-
tion introduced in section 3.2. Since our goal here is not an extensive analysis of the tachyonic
model but to showcase the applicability of the framework we developed, we will concentrate
only on the canonical tachyon case (ε = +1).

4.1 Interacting canonical tachyon with the 2nd parametrization
Proceeding in the same way one can express λ as,

λ(x, y) =

2Q
(
y2 −

√
1− εx2

)
(x4 + (ω0 + 1)(x2ε− 2))

4
√

3y3(ω0 + 1)(1− x2ε)

+
3xy2

(
x2ε
(
2(ω0 + 1)

√
1− x2ε+ y2(ω0 + ω1 + 1)

)
− 4(ω0 + 1)

√
1− x2ε+ x4

(
2
√

1− x2ε− y2
))

4
√

3εy3(ω0 + 1)(1− x2ε)
. (54)

The above expression of λ(x, y) has a pole of order three at y → 0. After inserting this in x′
or y′, one finds that both the equations still have a pole of order two at y → 0. This can be
regularized by redefining the time variable as

dN 7→ y2 dN. (55)

With this time redefinition the new autonomous equation for the canonical tachyon field ε = +1
can be written as

x′ =

[
3

2

xy4

√
1− x2

(−ω1 + x2 − 1− ω0)−
√

3 λ(x, y) y3(x2 − 1− ω0)

]
2− (x2 − 1− ω0)(2/x2 + 1/(1− x2))

, (56a)

y′ =
y

2

[
−
√

3λ(x, y) x y3 − 3
√

1− x2 y4 + 3y2
]
, (56b)

which is now completely regular at y → 0 because of the existence of the λ(x, y)y3 term in both
the equations. The 2D autonomous system presents two invariant submanifolds x = 0 and y = 0
(noting that λ(0, y) = 0). Finding the critical points of this system in all generality is challenging
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since the interaction term greatly complicates the system, as clear from the expression of λ(x, y)
in Eq.(54). The generic critical point structure of the system will depend on three parameters
(ω0, ω1, Q). Changes to these variables can have far-reaching effects on the dynamics.

Nonetheless, we find that there exist critical points P0, P1, P2 corresponding to decelerated
matter dominated phases of expansion (ωtot = 0) and fixed points P7,8 corresponding to accel-
erated De-Sitter phases of expansion (ωtot = −1); see Tab.7. These are the same points that
appeared in Tab.3 i.e. for the noninteracting canonical tachyon case. Therefore the introduc-
tion of an interaction term, at least in the form of Eq.(3), does not affect these critical points.
The interaction term destroys the other critical points from the non-interacting scenario, while
introducing possible others.

As stated, there can be many other critical points depending on the parameter values
(ω0, ω1, Q) and it is hard to investigate the critical point structure in all generality. However,
what our framework does allow us is to find the value of the unspecified model parameter Q in
terms of the model parameters (ω0, ω1), whose value we can get from the observations, for a
particular cosmological solution to exist. We explain the procedure below. Let us try to look for
critical points (x∗, y∗) whose coordinates satisfy the relation

y2
∗
√

1− x2
∗ = −h, (57)

h being a constant. Such fixed points lie on the curve y2
√

1− x2 + h = 0 in the x-y plane, which
is the locus of all the points in the phase space whose cosmology is specified by an equation
of state parameter ωtot = h. Next, we adopt the following strategy. We utilize the condition
(57) to replace the combination y2

√
1− x2 whenever it arises in Eqs.(56a) and (56b). This

reduces the complexity of the expressions significantly. Next, we solve algebraically for the
critical points from these simplified equations. We will find the coordinates of the critical points
in terms of (h, ω0, ω1, Q). However, for consistency, we must substitute these coordinates
back in Eq. (57). This gives us a condition on the model parameters (ω0, ω1, Q).5 Only when
the model parameters satisfy this particular consistency condition, a critical point satisfying the
condition (57) can exist. In our framework, we use the numerical values of (ω0, ω1) obtained
from the observations, whereas Q is still unspecified. Therefore, with this approach, given a
pair of values for (ω0, ω1) one can determine the value of Q such that there exists a critical
point whose cosmology is specified by ωtot = h. In particular, it is worthwhile to check that,
for a given (ω0, ω1), for what values of Q can our interaction term in Eq.(49) allow for the
existence of other possible matter-dominated phases (h = 0) and other possible accelerated
phases (−1 ≤ h < −1/3).

Following the above strategy we find another critical point P3 (see Tab.[7]). We remind the
reader that this critical point P3 is not the same P3 that appeared in Tab.3. The consistency
condition between the model parameters for the existence critical point P3 is obtained by putting
its coordinates back in Eq. (57), and it can be expressed as

(2+h)

(
9h2

Q2

)2

+[(1 + ω0 + ω1)h− 2(1 + h)(2 + ω0)]

(
9h2

Q2

)
+2(1+h)(1+ω0) = 0. (58)

Within the observationally allowed range of model parameters, 1 +ω0 > 0. Also, let us confine
ourselves to the case when the critical point P3 is not phantom i.e. h > −1. Then, two real

5An alternative way to get this condition is to replace y2∗ by− h√
1−x2

∗
and solve the equation x′|x∗= 0 to obtain

x∗ = x∗(ω0, ω1, Q), and then put x∗ = x∗(ω0, ω1, Q), y2∗ = − h√
1− x2

∗
in the equation y′|(x∗,y∗)= 0.
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Critical points for ε = +1.
Points x y ωtot

P0 0 0 0
P1,2 ∓

√
1 + ω0 0 0

P3 −3h
Q

[
2Q
3

(
1+h
−h

) ( 9h2−Q2(ω0+1)
9h2−Q2(ω0+ω1+1)

)]1/4

h

P7,8 0 ∓1 0

Table 7: 2nd parametrization critical points.

Critical points for ε = +1.
Points x y Ωφ σ2 ωtot c2

s Stability
P0 0 0 0 1 0 1 Unstable
P2 0.32 0 0 1 0 0.90 Stable
P3 0.45 0.95 1 0 −0.80 0.80 Stable
P4 0.32 0.68 0.71 0.52 −0.43 0.89 Saddle
P8 0 1 1 0 −1 1 Saddle

Table 8: The critical points for ω0 = −0.9, ω1 = −0.1, Q = 4, ε = +1 corresponds to the
second parametrization.

positive roots for 9h2/Q2 exist when the following condition is met

(1 + ω0 + ω1)h− 2(1 + h)(2 + ω0) ≤ −
√

8(1 + h)(2 + h)(1 + ω0). (59)

Henceforth we focus on the case Q > 0; one can follow similar steps for Q < 0. Provided that
the condition (59) is satisfied, for any given ω0 and ω1, one gets two possible values ofQ so that
the critical point P3 can exist:

Q∓ =
3

2
√

(h+ 1)(ω0 + 1)

[ (
h3(ω0 − ω1 + 3) + 2h2(ω0 + 2)

)
∓ (60)√

h4 (h2ω2
1 − 2hω1((h+ 2)ω0 + 3h+ 4) + (h(ω0 − 1) + 2ω0)2)

]1/2

Based on Q−, Q+, one actually gets two different versions of P3, which we denote by P3−, P3+

respectively.
In Fig.[9], we show using color pallets the range of values of the interaction parameters

Q−, Q+, against the model parameters ω0 and ω1 such that the critical point P3 may represent
accelerated expansion phases with ωtot = h = (−0.8,−0.9). We emphasize that the condition
(59), which is the condition for having real values of Q∓, by itself is only a necessary, but not
sufficient condition for critical points P3∓ to exist. One needs to put the values of Q∓ from
Eq.(60) back in the coordinates of P3 in Table.7 and demand that the y-coordinate is real. This
gives a further constraint on the allowed values of the model parameters (ω0, ω1) for critical
pointsP3∓ to exist, which we show in Fig.[10]. This is the region in the parameter space (ω0, ω1)
such that it is possible for the interaction model of Eq.(49) to support, for some value of the
interaction parameter Q, the existence of critical points P3− or P3+ with ωtot = h.

The above strategy, of course, does not allow us to find the entire set of critical points. Given
the numerical values of the model parameters (ω0, ω1, Q), we can find the critical points nu-
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merically. As an example, in Tab.[8] we list the physically viable (i.e. allowed by the Fried-
mann constraint) critical points numerically obtained for the parameter choice ω0 = −0.9, ω1 =
−0.1, Q = 4. The corresponding phase space is depicted in Fig.[11], in which the green region
shows an accelerating phase and the sound speed is positive and subluminal in the entire region.
The pointsP0, P2 both represent matter-dominated cosmological epochs. However,P2 is a stable
point, so it cannot really represent the actual matter-dominated epoch that our universe has gone
through. On the other hand, P0 is a unstable and therefore it can represent a cosmologically rel-
evant matter-dominated epoch. The three points P3, P4, P8 represent accelerated cosmological
epochs, with P8 being a de-Sitter phase. The saddle fixed point P4 is a perfectly viable candidate
to characterize the present accelerated epoch of the universe, since the fractional field density is
≈ 0.71 and the fractional fluid density is ≈ 0.29. Fig.[11] shows the existence of heteroclinic
trajectories connecting the matter-dominated unstable phase P0 to the stable accelerated phase
P3 through the present intermediate phase P4, representing a possible viable course of evolution
for our universe. The stable point P3, which is an accelerated phase dominated completely by
the tachyonic field (Ωφ = 1), represents the future asymptotic of the cosmological evolution.
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(a) The constraint on Q− for h = −0.9
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(c) The constraint on Q+ for h = −0.9
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Figure 9: The color pallets show the range of values of the interaction parametersQ−, Q+ against
the model parameters ω0 and ω1 such that the critical point P3 may represent accelerated expan-
sion phases with ωtot = h = (−0.8,−0.9). The entire shaded region is the region specified by
the constraint (59).
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(b) The existence of point P3+ for h = −0.9,−0.8.

Figure 10: The range in the parameter space ω0 − ω1 such that the critical points P3−, P3+ can
exist.
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Figure 11: The phase space of the coupled system for ω0 = −0.9, ω1 = −0.1, Q = 4, ε = +1,
corresponds to the 2nd parametrization.

We investigated the dynamics of the coupled system depicted in Fig.[12] for some initial
conditions. In the early phase, the fluid density outweighs the field density. The total Eos is
close to zero, which may mimic the matter phase. In the minimally coupled field-fluid system,
the total Eos remains zero at this phase; however, in coupled system, the field density does not
dilute to zero. Consequently, the Eos is not zero. In this phase, Γ, sound speed c2

s and λ have
non-zero values. As the field density grows, Γ demonstrates a rising trend before saturation at
some finite value in the late time. Throughout this phase transition, λ has a declining trend and
becomes saturated. In the late-time phase, the field density dominates over the fluid density. As
a result, the total Eos of the system approaches −0.8. The sound speed remains close to 1.
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Figure 12: The evolution of the coupled system for ω0 = −0.9, ω1 = −0.1, Q = 4, ε = +1,
corresponds to the 2nd parametrization.

5 Conclusion
In this paper we have studied the dynamics of tachyon dark energy models for both the canonical
and phantom scalar field. Tachyon dark energy models were studied for more than decades
but here we have studied it from a completely new perspective. In all of the previous studies
the tachyon potential was assumed to be some function of the tachyon field or the potential
parameter Γ was assumed to have some preassigned value. Once these information was known,
the dynamics and EoS of the evolving system was calculated. In the present paper we have not
assumed any prior form of the tachyon potential, rather we have considered parametrization of
the EoS of the scalar field. Our work is motivated by various approximate forms of the EoS of
the tachyon field.

It is seen that once we introduce an approximate EoS for the tachyon field the autonomous
equations guiding the system changes its form. One of the dynamical variables of the system,
namely λ, becomes redundant, as we do not require to explicitly solve for λ to predict the dy-
namics of the system. Consideration of the parametrization of EoS of scalar field reduces the
phase space dimension of the system by one and ultimately a 3D system reduces to a 2D one.
This dimensional reduction of the system on the other hand gives a functional form of Γ which in
general can include a large class of potentials. We studied important dynamical characteristics of
the evolving system using our prescription together with the evolution of the important cosmo-
logical parameters. The method applied is self-consistent and consequently we can smoothly use
the phenomenologically motivated approximate EoS of the tachyon field. Our method is fairly
general and we expect that this method can be applied in other dynamic dark energy models.

To show the effectiveness of our proposal we have used two kinds of parametrization to write
the EoS of the tachyon field. The first parametrization is more like a Taylor series expansion of
the EoS around the present time. In this Taylor series we only retain the first two terms and use
it to solve the dynamical system. In solving the autonomous equations, in some of the cases, we
had to redefine time and use compactified variables to figure out the critical points of the system.
The cosmological dynamics of corresponding to this parametrization shows certain limitations.
It is seen that one of the phase space variables, x(N), is either defined only in the future or
it is defined only in the past. This property, of the Taylor series parametrization, is a serious
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limitation of this particular form of the approximate EoS.
To obtain a viable cosmology we have used another form of parametrization of the EoS of

the tachyon field. In the second parametrization the EoS of the tachyon field is expressed as
a sum of a constant term and a time dependent part. The EoS closely resembles dark energy
EoS when the Hubble parameter tends to be a constant. We have presented the solutions in a
detailed manner showing the dynamical evolution of various cosmological variables. In the case
of phantom tachyons it is seen that the sound speed in the scalar field sector persistently remains
superluminal. We have also verified that superluminal sound propagation in this cases cannot
be avoided. This kind of behavior arises in some k-essence models of dark energy. In principle
this superluminal speed does not break Lorentz invariance as this speed is only appropriately
observed in a particular tachyonic background.

Although a particular form of the potential of the tachyon field was not assumed apriori
or nor have we assumed any particular functional form of Γ to start with, we have described an
approximate method using which one can figure out the form of the tachyon potential V (φ). The
method is approximate as because the the form of the potential may not match the exact potential
form at all cosmological phases. In the example we have shown two approximate forms of the
potential which matches with the desired exact potential in the late phase of cosmic evolution.
In principle one can use more accurate techniques to find out the functional form of the potential
but as the potential does not play any primary role in our analysis we have not attempted to do
so.

The applicability of our approach is not confined to non-interacting scenarios only. We have
shown it explicitly by considering a simple example of tachyon and dark matter interaction.
In general, the interaction terms call for the introduction of an additional dynamical variable,
increasing the dimensionality of the phase space. However, for the specific model we considered
here (49), namely Q = Qρbφ̇H , we did not have to introduce an additional dynamical variable.
The dimensionality of the phase space remains the same. Given the numerical values of the
model parameters (ω0, ω1), our framework allows us to determine the interaction parameter Q
so that the interacting model given by Eq.(49) can support the existence of specific cosmological
epochs. For given numerical values of the parameters (ω0, ω1, Q), one can analyze the dynamics
of the phase space without explicitly specifying the potential of the tachyon field. In principle,
our framework can also be extended to incorporate more complicated interacting models.

In summary, we have presented a new perspective to the dynamical system analysis of
tachyon dark energy model. Our approach is generic and can be applied to other scalar field
dark energy models.
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Appendix

A Calculation of Γ for the first parametrization
Taking the derivative of above equation with respect to the N and using Eq. (6c), we will get Γ
in terms of x and y as

Γ =
1

ε (−6x5ε2 + 6x3ε+ xω1)2

[
36x10ε5−18x8ε4

(
y2
√

1− x2ε+ 3
)

+18x6ε3
(

2y2
√

1− x2ε− ω1

)
− x2ω1ε

(
3y2
√

1− x2ε+ 2ω1 + 3
)

+ 3x4ε2
(
y2(ω1 − 6)

√
1− x2ε+ 7ω1 + 6

)
+ ω2

1

]
(61)

For the phantom case after the compactification the Γ can be expressed as,

Γ =
1

(Y 2 − 1) (X5ω1 − 2X3(ω1 + 3) +Xω1)2

[
−18X4

√
1−X2Y 2+18X4

(
3X2 − 1

) (
Y 2 − 1

)
+ 3X2

√
1−X2Y 2ω1 − 6X4

√
1−X2Y 2ω1 + 3X6

√
1−X2Y 2ω1 − 3

(
5X2 + 1

)
(
X −X3

)2 (
Y 2 − 1

)
ω1 −

(
X2 − 1

)4 (
X2 + 1

) (
Y 2 − 1

)
ω2

1

]
(62)

From here we found that Γ = 1 at critical points (X, Y ) = (1, 0) and becomes infinite for the
other critical point.

B Stability of the fixed points for the case of phantom
tachyons in the first parametrization

The fixed points listed in Tab.2 are non-hyperbolic. Therefore their stability cannot be deter-
mined via the usual Jacobian analysis. In these situations one can resort to a more formal center
manifold analysis but we notice that there is a way around here. The trick is to look for invariant
submanifolds of the system described by Eq.(27). From Eq.(27) we can directly observe that
X = 1 and Y = 0 are invariant submanifolds of the system, because

X ′|X=1= 0, Y ′|Y=0= 0. (63)

There is another invariant submanifold of the system which is not so clearly identified from
Eq.(27), namely σ = 0. To see that this is indeed an invariant submanifold one can start from
the definition of σ in Eq.(4) and take it’s derivative with respect to N = ln(a). Using the time
redefinition in Eq.(26) and the definition of the compact dynamical variables in Eq.(21) and after
some straightforward calculations we arrive at:

σ′ = −3

2
σXY 2

√
1−X2

1− Y 2
, (64)

where ′ is to be understood as d
dN̄

. Clearly σ = 0 is an invariant submanifold as

σ′|σ=0= 0. (65)
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In fact one could have already guessed the existence of this invariant submanifold from the
physical argument that, if the universe starts as a vacuum it remains so. There is no mechanism
in classical gravity by which matter can be produced out of vacuum.

At the vicinity of X = 1, X ′ > 0 (X ′ < 0) for ω1 < 0 (ω1 > 0). Correspondingly
the invariant submanifold X = 1 is attracting nearby phase flows towards it for ω1 < 0 and
repelling nearby phase flows away from it for ω1 > 0. At the vicinity of Y = 0 we have, to the
leading order:

Y ′ ≈ 1

2
XY

(
3− ω1

2
(1−X2)2

)
. (66)

In particular, at the vicinity of the fixed point P1 ≡ (X, Y ) = (1, 0), Y ′ ≈ 3
2
XY , which is

always positive in the first quadrant. Therefore in the vicinity of P1 the invariant submanifold
Y = 0 is always repelling nearby flows away from it. At the vicinity of σ = 0, the flow is always
towards σ = 0, since the coefficient of σ on the right hand side of Eq.(64) is always negative in
the first quadrant. Therefore the curve given by Eq.(24), which represents σ2 = 0, i.e. vacuum
cosmologies, is attracting nearby flows.

The fixed point P1 lies at the intersection of the invariant submanifolds X = 1 and Y = 0.
Therefore this fixed point is a saddle for ω1 < 0 and a repeller for ω1 > 0. The fixed point P2 lies
at the intersection of the invariant submanifolds X = 1 and σ = 0. Therefore this fixed point is
an attractor for ω1 < 0 and a saddle for ω1 > 0.

C Calculation of Γ for the second parametrization
In this appendix we present the expressions of Γ for the various values of ε in the second
parametrization of the EoS for the scalar field.

C.1 Analysis of λ and Γ for normal Tachyon (ε = 1 ) case.
The expression of Γ in this case is:

Γ =
1(

−4
√

1− x2x(ω0 + 1) + x5
(
2
√

1− x2 − y2
)

+ x3
(
2
√

1− x2(ω0 + 1) + y2(ω0 + ω1 + 1)
))2×

− 16x12 + 4x10
(
−4
√

1− x2y2 + y4 + 9
)
− 8(ω0 + 1)2

(√
1− x2y2 − 1

)
+

2x2(ω0 + 1)
(√

1− x2y2(13ω0 + 3ω1 + 13) + y4(−(ω0 + ω1 + 1))− 6(ω0 + 1)
)

+

x8
(

4
√

1− x2y2(3ω0 + 3ω1 + 8) + y4(−(4ω0 + 6ω1 + 9))− 4(ω0 + 6)
)
−

x4

(
2
√

1− x2y2(ω0 + 1)(13ω0 + 5ω1 + 14) + y4
(
−
(
ω2

0 − 2ω0(ω1 − 2)− 3ω2
1 − 2ω1 + 3

))
+ 4ω0(ω0 + 1)

)
+

2x6
(√

1− x2y2
(
6ω2

0 + ω0(4ω1 + 3)− 4ω1 − 3
)

+ y4
(
ω0(ω1 + 2) + ω2

1 + 5ω1 + 2
)

+ 4(ω0 + 1)2
)
.

(67)

Therefore Γ solely depends on the dynamical variables x and y. We have seen that λ diverges at
ω0 → −1 and x→ ±1, while Γ becomes finite. Hence Γ = −1 for x→ ±1. The expression of

30



Γ when ω0 → −1 is:

Γ =
1(

x3
(
2
√

1− x2 − y2
)

+ xy2ω1

)2 ×
[
−16x8 + 4x6

(
−4
√

1− x2y2 + y4 + 9
)

− 3y4ω2
1 + 2x2y2ω1

(
y2(ω1 + 4)− 8

√
1− x2

)
+ x4

(
4
√

1− x2y2(3ω1 + 5) + y4(−(6ω1 + 5))− 20
)]

. (68)

C.2 Expression of λ and Γ for the phantom tachyon field
In the transformed variable λ can be written as:

λ =
1

4Y (ω0 + 1)
(

Y 2−1
X2+Y 2−1

)3/2
(X2 + Y 2 − 1)2

√
3X

[
X4

(
Y 2

X2 + Y 2 − 1
+ 2

√
Y 2 − 1

X2 + Y 2 − 1

)

− 4(ω0 + 1)

√
Y 2 − 1

X2 + Y 2 − 1

(
X2 + Y 2 − 1

)2

−X2
(
−X2 − Y 2 + 1

)(
2(ω0 + 1)

√
Y 2 − 1

X2 + Y 2 − 1
− Y 2(ω0 + ω1 + 1)

X2 + Y 2 − 1

)]
. (69)
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One can write Γ as:

Γ =

[(X2 + Y 2 − 1
)5

8(ω0 + 1)2

−Y 2
(

Y 2−1
X2+Y 2−1

)3/2

Y 2 − 1
− 1



+
16X12

(X2 + Y 2 − 1)6 −

4X10

Y 2

 4(Y 2−1)√
Y 2−1

X2+Y 2−1

+Y 2


(X2+Y 2−1)2

+ 9


(X2 + Y 2 − 1)5

−
2X2(ω0 + 1)

(
−
Y 2
(

Y 2−1

X2+Y 2−1

)3/2
(13ω0+3ω1+13)

Y 2−1
− Y 4(ω0+ω1+1)

(X2+Y 2−1)2
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)
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+
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)3/2
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+ 4(ω0 + 6)

)
(X2 + Y 2 − 1)4

+

X4

(
−

2Y 2(ω0+1)
(

Y 2−1

X2+Y 2−1

)3/2
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]
×

[(
X5

(
− Y 2

X2 + Y 2 − 1
− 2

√
Y 2 − 1

X2 + Y 2 − 1

)
+ 4X(ω0 + 1)

√
Y 2 − 1

X2 + Y 2 − 1

(
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+
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(
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. (70)
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