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A B S T R A C T 

Recent data from the JWST suggest that there are realistic prospects for detecting the earliest generation of stars at redshift ∼20. 
These metal-poor, gaseous Population III (Pop III) stars are likely in the mass range 10 –10 

3 M � . We develop a framework for 
calculating the abundances of Pop III stars as well as the distribution of the most massive Pop III stars based on an application 

of extreme-value statistics. Our calculations use the star formation rate density from a recent simulation to calibrate the star 
formation efficiency from which the Pop III stellar abundances are derived. Our extreme-value modelling suggests that the most 
massive Pop III stars at redshifts 10 < z < 20 are likely to be � 10 

3 –10 

4 M � . Such extreme Pop III stars were sufficiently 

numerous to be the seeds of supermassive black holes at high redshifts and possibly source detectable gravitational waves. We 
conclude that the extreme-value formalism provides an ef fecti ve way to constrain the stellar initial mass function. 

Key words: stars: formation – stars: Population III – cosmology: dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

he hypothetical first generation of stars, so-called Population III
Pop III), have long been anticipated in the literature as massive,
hort-lived stars created in extremely metal-poor environments
Schwarzschild & Spitzer 1953 ; Bond 1981 ; Cayrel 1986 ; Carr
994 ). Due to the lack of direct observ ational e vidence, details of
he physical properties of Pop III are not precisely known. Many
tudies suggest that Pop III stars were formed within minihaloes of
ypical mass ∼ 10 6 M � between redshift z ∼ 20 and 30 and have a

ass range between 10 and 10 3 M � (Haiman, Thoul & Loeb 1996 ;
egmark et al. 1997 ; Abel, Bryan & Norman 2002 ; Bromm, Coppi &
arson 2002 ; Yoshida et al. 2003 ; O’Shea & Norman 2007 ; Susa,
ase ga wa & Tominaga 2014 ). 
Interest in Pop III stars has grown recently due to current and

pcoming experiments that could potentially detect Pop III stars.
hese include the JWST (Gardner et al. ( 2006 )), Euclid (Laureijs
t al. 2011 ; Marchetti, Serjeant & Vaccari 2017 ), and the Roman
pace Telescope ( RST ; Spergel et al. ( 2015 )). Confirmed observations
f Pop III stars would solidify our understanding of stellar formation
nd e volution. Ho we ver, the photometric signals from Pop III stars
re expected to be very faint and would be extremely difficult to
etect unless fortuitously enhanced by strong gravitational lensing
Zackrisson et al. 2012 ; Vikaeus et al. 2022 ). 

Pop III stars are believed to end their lives in one of three
hannels: asymptotic giant branch stars, supernovae or black holes,
epending on their masses. If the supernova progenitors have mass in
he range ∼ 140 –260 M �, they will ultimately form pair-instability
upernovae (PISNe) that are unique to Pop III star evolution (Moriya
 E-mail: teeraparbc@nu.ac.th 
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t al. 2019 ). If the Pop III progenitors are suf ficiently massi ve, their
ollapse will also emit highly energetic gamma-ray bursts and after-
low components (Bromm & Loeb 2006 ; Kinugawa, Harikane &
sano 2019 ). Another possibility is that massive Pop III stars evolve
ith accretion rates of 0 . 1 − 1 M � yr −1 until gravitational instability

riggers their collapse to black holes (Latif et al. 2013 ; Inayoshi,
mukai & Tasker 2014 ; Umeda et al. 2016 ; Becerra et al. 2018 ;
aemmerl ́e et al. 2018 ). 
Given the potential of Pop III stars to give rise to early massive

lack holes, Pop III stars may help us understand a longstanding
onundrum in astrophysics: the origin of quasars at very high redshift
 � 6 (Fan et al. 2001 ; Willott et al. 2010 ; Mortlock et al. 2011 ;
atsuoka et al. 2019 ; Onoue et al. 2019 ; Das et al. 2021 ). Such

igh-redshift quasars are associated with supermassive black holes
SMBHs) with M � 10 9 M � (Volonteri 2010 ; Inayoshi, Visbal &
aiman 2020 ), which in turn could be seeded by Pop III stars
ith mass M ∼ 10 3 –10 5 M � that formed at redshift z � 10. Such
assive Pop III stars (which we call extreme Pop III stars ) are

ertainly rare since most Pop III stars are expected to have mass
 � 10 2 M � and are difficult to grow into SMBHs via accretion pro-

esses and mergers (Haiman & Loeb 2001 ; Haiman 2004 ; Volonteri
010 ). 
Ho we ver there are many uncertainties in the formation channels

f Pop III stars, and they may cover a wide mass range (Klessen &
lo v er 2023 ). In rare cases, the most massive objects form by direct

ollapse and such extreme Pop III stars are subject to general relativis-
ic instabilities and can generate potentially detectable supernovae for
recursors in a mass range around 3 × 10 4 M � (Nagele et al. 2022 ).
ence in our ensuing discussion, rather than attack the uncertain
hysics of Pop III star formation, we will use a no v el statistical
pproach to study the rarity of the most massive Pop III stellar
bjects based on empirical constraints. 
© 2023 The Author(s) 
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To summarize the importance of studying extreme Pop III stars: 

(i) From an observational point of view, the first Pop III stars to be
irectly detected are likely to be amongst the most massive ones. The
isco v ery of such objects will help us understand structure formation
n the early universe and physics of the reionization epoch. 

(ii) Extreme Pop III stars can explain the origin of SMBHs at high
edshifts. If observed, follow-up observations will give us a better 
nderstanding of the environment and the conditions for SMBH 

ormation. 

In this work, we will demonstrate a formalism to calculate the 
ass distribution of the most massive Pop III stars based on extreme-

alue statistics. Our technique involves a novel calculation of star 
ormation rate density (hereafter SFRD) which we discuss further. 

There is no precise, universally agreed definition of Pop III stars.
o we ver, most literature defines Pop III stars based on criteria in
etallicity. For instance, Bond ( 1981 ) defines Pop III stars as having

Fe/H] < −3 while Komiya, Suda & Fujimoto ( 2015 ) found that the
etallicity of Pop III stars could span a wide range between −8 �

Fe/H] � −2 depending on the merging history of the host halos.
ther authors use Z < 10 −3 – 10 −5 Z �, where Z is the metal fraction

Bromm et al. 2001 ; Schneider et al. 2002 ; Jaacks et al. 2018 ). In
ur work, we shall define a generation of Pop III stars as a class of
ollapsed stellar objects with low metallicity forming when the host 
alo met the conditions described in Section 3 . 
The organization of this article is as follows; in Section 2 , we give

n introduction to the stellar initial mass function (IMF) which is
sed to calculate the abundance of Pop III stars. In Section 3 , we
evelop a theoretical formalism to calculate the SFRD of Pop III
tars, matching our calculations to a simulation result. In Section 4 ,
e give an introduction to extreme-value statistics and, in particular, 

he generalized extreme value approach. Our main results are given 
n Section 5 and further implications are discussed in Section 6 . 

 T H E  STELLAR  INITIAL  MASS  F U N C T I O N  

he stellar initial mass function (hereafter IMF) is an important 
ool in the modelling of stellar abundances. The IMF expresses the 
umber of stars (of a certain type at a fixed time) as a function of their
ass. The IMF was first empirically proposed by Salpeter ( 1955 ) in

he power-law form � ( M) ≡ d N/ d log M ∝ M 

−� , where N is the
umber of stars with mass between log M and log M + d log M . � is
alled the slope. The IMF � ( M ) describes the stellar mass distribution
fter their formation. In this work, we will study two IMFs for Pop
II stars. First, the log-normal IMF 

d N 

d log M 

∝ exp 

( 

−
(

log M − log M char √ 

2 σ

)2 
) 

, (1) 

here M char is the characteristic mass of Pop III stars, and σ is the
pread of the mass around M char . The log-normal IMF was introduced
n the pioneering work of Miller & Scalo ( 1979 ) who found the
orm to be a good fit to observation assuming simple models of star
irthrates. Our second IMF model is the Chabrier ( 2003 ) IMF 

d N 

d log M 

∝ M 

1 −α exp 

[ 

−
(

M char 

M 

)β
] 

, (2) 

ith parameters α, β, and M char . This IMF has an interesting
exibility in that it resembles the log-normal IMF for small M and
pproaches the power-law form M 

1 − α for large M (or when β = 

). An IMF comprising a log-normal body and a power-law tail is
xpected in a broad class of star-formation scenarios (Basu & Jones
004 ). We note that the extreme-value framework that we will present
s not limited to these IMFs. 

The normalization of the IMF is usually left unspecified in previous 
ork on stellar population. Some authors treat � as a probability
istribution (so that 

∫ 
d log M � = 1), and normalize the number

ount N instead. Alternatively, one can also normalize the IMF using
he total stellar mass, meaning that M 

total 
∗ = 

∫ ∞ 

0 d log M M � ( M ) .
oth normalization methods depend on the measurement of either 

he stellar number counts or the total stellar mass for all possible
asses of Pop III stars. Since direct observational constraints of 
op III stars are not yet feasible with current technologies, IMF
ormalization with these methods are unreliable at best. 
In this work, we propose another method of normalizing the IMF

sing SFRD for which we have data from simulations (Gessey- 
ones et al. 2022 ) (hereafter GJ22 ) which applied the star formation
odel from Magg et al. ( 2022 ). The normalized IMF is necessary for

alculating the distribution of the most massive Pop III stars using
xtreme-value statistics. We discuss the normalization method in the 
urther section. 

 P O P  I I I  SFRD  -  A  N E W  APPROACH  

e shall develop a methodology to calculate the SFRD of Pop III
tars based on the modelling of dark matter haloes (Press & Schechter
974 ) and their cooling temperatures and time-scales (Tegmark et al.
997 ). In our methodology, we propose that the total density of Pop
II stars at redshift z is given by 

*, III ( z) = f *, III 
	b 

	m 

∫ ∞ 

M crit ( z) 
d M M 

d n 

d M 

( M , z) , (3) 

here f ∗, III is the Pop III star formation efficiency parameter, d n /d M
s the halo mass function, and n ( M , z) is the number density of halo

ass M at redshift z. 	b and 	m 

are respectively the baryonic and
otal matter density parameters at the present epoch. 

M crit ( z) is the critical minimum cooling mass of the host halo,
iven by (Blanchard, Valls-Gabaud & Mamon 1992 ; Tegmark et al.
997 ): 

 crit ( z) = 1 . 0 × 10 6 M �

(
T crit 

10 3 K 

)3 / 2 (1 + z 

10 

)−3 / 2 

. (4) 

aloes with mass below M crit ( z) cannot efficiently dissipate their
inetic energy and become self-gravitating within a Hubble time. Our 
ssumption is that once M exceeds M crit , star formation will become
f fecti ve. The v alue T crit = 2200 K (from considering molecular
ydrogen cooling at redshift z ∼ 10) will be used (Hummel et al.
012 ; Magg et al. 2022 ). 
We further assume that f ∗, III is constant during the epoch where

he stellar formation is dominated by Pop III stars (the effect of
ime-dependent f ∗, III will be discussed further in Section 6 ). The
edshift dependence of ρ∗, III ( z) therefore only comes from M crit ( z)
nd d n /d M ( M , z). 

The halo mass function, d n /d M , is defined as the redshift-
ependent distribution of the number density of collapsed dark matter 
aloes per unit mass interval d M . It is convenient to express the mass
unction as 

d n 

d M 

= 

ρc 

M 

d ln σ−1 

d M 

f ( σ ) , (5) 

here ρc is the critical density and σ ( M , z) is the variance of the
inear mass density field of mass M at redshift z. The multiplicity
unction f ( σ ) (also known as the mass fraction (Jenkins et al. 2001 ))
s defined as the fraction of mass in collapsed haloes per unit interval
MNRAS 522, 3256–3262 (2023) 
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M

Figure 1. Comparison of the Pop III SFRD. We compare our Pop III SFRD 

(solid) to the simulation by ( GJ22 ) (dashed) and find the best-fitting Pop III 
star formation efficiency f ∗, III = 5.76 × 10 −4 . The fiducial cosmology is 
based on Planck 2018 Plik best-fitting parameters. 
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n ln σ−1 . The original Press–Schechter mass fraction, based on
pherical collapse, is 

 PS ( σ ) = 

√ 

2 

π

δc 

σ
exp 

[
− δ2 

c 

2 σ 2 

]
. (6) 

he Press–Schechter mass fraction tends to underpredict the number
f high-mass haloes and o v erpredict the number of low-mass haloes
n the present epoch. It is also notably inaccurate at high redshifts
Luki ́c et al. 2007 ). Here, we will use the Sheth–Tormen mass
unction based on ellipsoidal collapse (Sheth & Tormen 1999 ). Its
ass fraction is 

 ST ( σ ) = A 

√ 

2 a 

π

δc 

σ
exp 

(−aδ2 
c 

2 σ 2 

)[
1 + 

(
σ 2 

aδ2 
c 

)p ]
, (7) 

ith A = 0.3222, a = 0.707, δc = 1.686, and p = 0.3. This model
ives a good fit to halo abundances in numerical simulations o v er a
ide range of masses and redshifts (Luki ́c et al. 2007 ). Other mass

unctions have been discussed in the literature, including those by
enkins et al. ( 2001 ), Barkana & Loeb ( 2004 ), Warren et al. ( 2006 ),
eed et al. ( 2007 ), Crocce et al. ( 2010 ), and Bhattacharya et al.
 2011 ), with small deviations from the Sheth–Tormen mass function.

We make a simple observation that taking the time deri v ati ve of
∗, III (equation ( 3 )) gives the SFRD: 

˙∗, III ( z) = f ∗, III 
	b 

	m 

(∫ ∞ 

M crit ( z) 
d MM 

d ̇n 

d M 

− Ṁ crit M 

d n 

d M 

)
, (8) 

here a dot denotes time deri v ati ve. The first term on the right
nvolves the time deri v ati ve of the mass function in equation ( 5 ). The
econd term depends on the time deri v ati ve of the critical mass in
quation ( 4 ). 

Our fiducial cosmology is based on Planck 2018 Plik best-fitting
arameters (Planck Collaboration et al. 2020 ). We compare our
alculation with a semi-analytic simulation of GJ22 between z =
2 and 40 as shown in Fig. 1 . We obtain the best-fitting value f ∗, III 	
.76 × 10 −4 , which will be important in the extreme-value modelling
n the further section. 

It is useful to obtain a fitting function of the SFRD. A particular
emplate was suggested by Madau & Dickinson ( 2014 ) (hereafter

D14 ): 

ρ̇∗( z) 

M �yr −1 Mpc −3 = 

a(1 + z) b 

1 + [(1 + z) /c] d 
, (9) 
NRAS 522, 3256–3262 (2023) 
here a , b , c , and d are parameters in the fitting function. MD14
roposed this fitting function for Pop I and Pop II SFRD within z ∼
 – 8. We have also calculated the parameters for the fitting function
nd listed them in Table 1 for our best-fitting f ∗, III . The table also
ompares the values of the fitting parameters and the redshift range
f validity from previous authors alongside ours. These models are
lotted in Fig. 2 , alongside the observational data from Donnan et al.
 2023 ) (hereafter D23 ). 

The data are from the JWST and comprise the SFRD from all
tellar populations in four redshift bins with mean redshifts z = 8.0,
.0, 10.5, and 13.25. Since the JWST data include contributions from
op I and Pop II stars, it is not surprising that our estimate of the Pop
II SFRD is below the data in the first three bins where Pop I and
op II contributions to the SFRD are dominant. Ho we ver, our Pop
II SFRD agrees with the last bin at mean redshift z = 13.25, where
he SFRD contribution is dominated by Pop III stars. 

We can now use our SFRD calculation to normalize the IMF by
quating equation ( 8 ) to the total number of stellar mass per unit time
s determined by the stellar IMF � ( M ) 

˙∗, III = A ( z) 
∫ ∞ 

0 
d log M M � ( M ) , (10) 

here A ( z) is a redshift-dependent factor that normalizes the first
oment of the IMF per unit volume per unit time. 
Once A ( z) is obtained, the IMF is normalized, and we can write

own the number density of Pop III stars abo v e mass M at redshift z
denoted n ( > M , z)) as 

 ( > M, z) = A ( z) 
d t 

d z 

∫ ∞ 

M 

d log M 

′ � ( M 

′ ) . (11) 

e will use this expression to calculate the mass of extreme Pop III
tars. 

 EXTREME-VA LUE  STAT ISTICS  

ur tool for quantifying the abundances of the most massive
op III stars is extreme-value statistics. In particular, we will
ppeal to the generalized extreme-value (GEV) formalism - also
nown as the block maxima method. The quantity of interest is
he probability distribution of block maxima, where a block is a
opulation sample within a fixed volume. After dividing the data
nto N non-o v erlapping blocks, we collect the maximum value from
ach block. Under generic assumptions, the large- N limit (after
 certain scaling) is one of three types: the Gumbel, Fr ́echet, or
eib ull distrib ution. This result is the celebrated Fisher–Tippett–
nedenko theorem (analogous to the Central Limit theorem), which
lays a key role in many real-world applications of extreme-value
tatistics. For an introduction to the GEV approach in extreme-
alue statistics, see de Haan & Ferreira ( 2006 ), Gomes & Guillou
 2015 ). 

The GEV approach has previously been used to quantify the
bundances of the most massive galaxy clusters (Davis et al. 2011 ;
aizmann, Ettori & Moscardini 2012 ; Chongchitnan & Silk 2012 )

nd primordial black holes (Kuhnel & Schwarz 2021 ). We believe
his work is the first time the GEV formalism has been applied to
op III stars. 
Starting with the number density n ( > M , z) in equation ( 11 ), we

an calculate the number density of Pop III stars of mass exceeding
 in the entire redshift range z ∈ [ z 0 , z 1 ] as 

 ( > M) = 

∫ z 1 

z 0 

d z n ( > M, z) . (12) 

art/stad1196_f1.eps
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Table 1. Fitting parameters for for the SFRD using the functional form in equation ( 9 ). The values of the parameters a , b , c , and d for SFRD are listed alongside 
the redshift range and stellar types for which they are valid. 

Reference Redshift range Type Fitting parameters 
a b c d 

M � Mpc −3 yr −1 

This work 6 – 20 Pop III 250.16 −4.744 14.74 −5.60 
MD14 0 – 8 Pop I and II 0.015 2.7 2.9 5.6 
Liu & Bromm ( 2020 ) 4 – 24 Pop III 765.7 −5.92 12.83 −8.55 

Figure 2. A comparison of SFRD from various models (listed in Table 1 ) 
with observation from deep JWST ( D23 ) (dash-dotted). The model of Pop I + 

II from ( MD14 ) (dashed) and its extrapolation with correction factor (dotted) 
are also shown for comparison (see description in Section 6.1 ). 
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Now consider the probability that a region of volume V contains 
op III stars of mass not exceeding M . In other words, we are

nterested in the probability that no Pop III stars of mass > M are
ound in the volume V . In the large volume limit, this probability
an be described by the cumulative distribution function (cdf) of the 
oisson form (White 1979 ; Davis et al. 2011 ) 

 0 ( M) = exp ( −n ( > M) V ) . (13) 

By differentiating this cdf with respect to M , we obtain the pdf of
he maximum mass Pop III stars within volume V . 

In the limit that the Fisher–Tippett–Gnedenko theorem applies, 
e can equate the cdf in equation ( 13 ) with the GEV distribution 

 ( M) = 

{
exp 

(−(1 + γ y) −1 /γ
)

( γ �= 0) , 
exp ( −e −y ) ( γ = 0) , 

(14) 

here y = (log 10 M − α)/ β is the scaled logarithmic mass. The
arameter γ determines which of the three extremal types the 
lock maxima converges to. The Gumbel, Fr ́echet, and Weibull 
istributions correspond to γ = 0, γ > 0, and γ < 0, respectively. 
The parameter γ as well as the scaling constants α and β can 

e determined as follows. By Taylor expanding the cdf P 0 ( M ) and
he GEV G ( M ) around the peak M peak of the pdf to cubic order, we
quate terms and find that α, β, and γ are given in terms of the
edshift-averaged number density n ( > M ) as 

= n ( > M peak ) V − 1 β = 

(1 + γ ) 1 + γ

d n 

d M 

∣∣∣
M peak 

M peak V ln 10 

α = log 10 M peak − β

γ

(
(1 + γ ) −γ − 1 

)
. (15) 
These values allow us to characterize the extreme-value distribu- 
ion of Pop III stars. In particular, α corresponds roughly to the peak

ass log 10 M peak , and γ + 1 is the number count of stars with mass
bo v e M peak . These GEV parameters are important in the modelling
f extreme objects because they allow us to venture into domains of
mall probabilities which would have been numerically prohibitive 
o calculate otherwise. 

 EXTREME  P O P  I I I  STARS  

wo plots of the pdfs for the maximum-mass Pop III stars in the
edshift range z ∈ [10, 20] obtained via extreme-value modelling 
re shown in Figs 3 and 4 . In Fig. 3 we use the log-normal IMF
equation 1 ) with parameters M char = 1 M � and σ = 1, whilst Fig. 4
ses the Chabrier model (equation 2 ) with α = 5, β = 1, and M char =
 M �. In both models, we assume full-sky observation ( f sky = 1).
he four curves in each plot correspond to varying values of f ∗, III ,
ith the value 5.76 × 10 −4 being the best-fitting value obtained from

he SFRD methodology described in Section 3 . For these parameter
hoices, the pdfs peak at ∼ 10 3 − 10 4 M � for the best fit f ∗, III . The
ossibility of such large values of extreme-mass Pop III stars has
een hypothesized previously (Haemmerl ́e et al. 2018 ). 

Further, we found that the value of the GEV parameter γ (which
etermines the extremal type) are typically small ( | γ | � 0.05) with
he possibility of both positive and negative values. Essentially, the 
dfs are well described by the Gumbel distribution ( γ = 0). This is
imilar to the conclusion in Davis et al. ( 2011 ) who studied the GEV
t for massive clusters. This conclusion is also consistent with the

heoretical result that extreme values from the log-normal distribution 
ollow the Gumbel distribution in the limit that the Fisher–Tippett 
MNRAS 522, 3256–3262 (2023) 

art/stad1196_f2.eps
art/stad1196_f3.eps


3260 T. Chantavat, S. Chongchitnan and J. Silk 

M

Figure 4. Same as Fig. 3 but for the Chabrier IMF (equation 2 ) with α = 5, 
β = 1, and M char = 1 M �. 

Figure 5. Heat map showing M peak , the peak of the extreme-value PDF (in z 
∈ [10, 20]) as a function of the log-normal IMF (equation 1 ) with parameters 
σ 2 and M char , whilst fixing f ∗, III = 5.76 × 10 −4 . 
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Figure 6. Heat map showing M peak , the peak of the extreme-value PDF (in 
z ∈ [10, 20]) as a function of the Chabrier IMF (equation 2 ) with parameters 
α and M char , whilst fixing β = 1 and f ∗, III = 5.76 × 10 −4 . 
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heorem holds. See Embrechts, Kl ̈uppelberg & Mikosch ( 1997 ) for
etails. 
In addition, we note that in both models increasing f ∗, III by an

rder of magnitude shifts the pdfs towards higher extreme masses by
oughly a factor of 2. Overall the extreme-mass predictions are quite
obust against changes in f ∗, III . 

Ho we v er, the e xtreme-mass predictions are much more sensitive to
hanges in some of the parameters of the IMF (and indeed, the form
f the IMF itself). We argue that the extreme-value formalism can be
sed to constrain the model parameters by considering the prediction
f the extreme masses of Pop III stars. This is demonstrated in Figs 5
nd 6 in which we vary the IMF parameters and note the peak of the
xtreme-value pdf. 

In Fig. 5 , we vary M char against σ 2 in the log-normal model. In
 , we vary M char against α in the Chabrier model (fixing β = 1 -
he extreme peaks are insensitive to changes in β). In both contour
lots, we use the best fit value of f ∗, III = 5.76 × 10 −4 . We see that
 wide range of extreme Pop III masses � 10 3 –10 4 M � are possible.
ortions of such IMF parameter space can be ef fecti vely ruled out
ith future observations of massive Pop III stars. 
NRAS 522, 3256–3262 (2023) 
We observe that extreme masses of order ∼ 10 3 –10 4 M � arise
aturally out of the EVS formalism. Calculating the number density
 ( > M ) reveals that Pop III stars of mass � 10 3 M � can in fact
orm in significant abundances in a wide range of parameter space.
or instance, in the log-normal model with M char = 1 M �, taking σ
 0.7 yields n ( > 10 3 M �) exceeding 10 −9 Mpc −3 . This translates

o a number count of N � 10 3 objects in 10 < z < 20. Such an
bundance of massive Pop III stars is ideal for seeding massive black
oles at high redshifts, in addition to black holes of primordial origin
Chongchitnan, Chantavat & Zunder 2021 ). 

 C O N C L U S I O N  A N D  DI SCUSSI ON  

.1 Pop III SFRD 

e have presented a novel methodology for calculating the Pop
II SFRD and star formation efficiency f ∗, III (equation ( 8 )). We
ssumed that f ∗, III is constant which is a plausible assumption since
he metallicity of Pop III stars v aries slo wly. Jaacks et al. ( 2018 )
as shown that the mean metallicity Z rises smoothly from z 	
5 reaching Z crit = 10 −4 Z � at z 	 7, where Z crit is the transition
etallicity for the Pop III to Pop II stars. Thus, we would expect

 ∗, III to also increase slowly with time. To implement this, we could
dd an extra term involving ḟ ∗, III in equation ( 8 ), where ḟ ∗, III is small.
ven with a varying efficiency, we expect the effect on the SFRD to
e small. 
The assumptions made in our methodology are sufficient for a

ood fit to be achieved in comparison with the simulation from GJ22
n Fig. 1 and observational data from deep JWST ( D23 ) in Fig. 2 . 

We also gave a fitting function for our SFRD in equation ( 9 ), shown
n Fig. 2 along with those of previous authors, including MD14 and
iu & Bromm ( 2020 ). It is interesting to note that MD14 proposed

his fitting function for Pop I and Pop II stars, and therefore the
unction has a limited validity range z = 0 – 8. A direct extrapolation
f MD14 to higher redshifts o v erestimates the SFRD; ho we ver, as
nticipated by Shapley et al. ( 2023 ), the conversion factor between
 α luminosity and SFRD should be lower by a factor of ∼2.5. We

pply the correction factor of 2.5 to MD14 extrapolation and obtained
n impro v ed consistenc y with the JWST data. 
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We provide our fitting function for the Pop III SFRD in Table 1 .
t only matches our Pop III SFRD well within z = 6 – 20, beyond
hich the functional form fails to capture the rapid decrease in the
FRD at higher redshifts. Nevertheless, our fitting function should 
e useful for calculations involving the total SFRD. 
In comparison, D23 has also provided a simple fitting function for

heir data (in Fig. 2 ) with limited validity range as 

log 10 ρ̇∗ = ( −0 . 231 ± 0 . 037) × z − (0 . 43 ± 0 . 3) , (16) 

here ρ̇∗ is the SFRD in unit of M � Mpc −3 yr −1 . The validity range
f the fitting function in equation ( 16 ) is only from z ∼ 7 to 13.
e recommend using the fitting function in equation ( 16 ) within its

alidity range together with our fitting function at higher redshifts 
or the total SFRD (See Table 1 ). 

.2 Extreme Pop III stars 

e applied the SFRD methodology to the calculation of the prob-
bility distribution of the most massive Pop III stars expected in 
he redshift range 10 – 20. Adoption of a functional form of the
tellar IMF allowed the IMF to be normalized, and the number 
ensity of Pop III stars can then be calculated. The extreme-value 
df were then derived as shown in Figs 3 and 4 . We demonstrated
hat for a wide range of parameter values in the log-normal and
habrier IMF, extreme Pop III stars of mass ∼ 10 3 –10 4 M � arose
aturally, and even higher masses are achievable. We conclude that 
xtreme-value statistics can help effectively constrain the IMF of 
op III stars. In addition, Extreme Pop III stars are a viable channel
or producing high-redshift quasars and massive black-holes whose 
ra vitational-wa ve signals may be detectable by LIGO 

1 or the next
eneration of gravitational wave observatories such as the Einstein 
elescope 2 and LISA . 3 In short, our predicted extreme Pop III stars
re plausible candidates for seeding SMBH at high redshifts. They 
orm 10 3 –10 4 M � BH at early epochs, allow the required numbers
f e-folds of growth by Eddington-limited accretion, and are rare 
ut still sufficiently numerous to solve the seeding problem for high- 
edshift quasars. 
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