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Abstract We study cuscuton inflation for the models where
the potential of the cuscuton takes quadratic and exponential
forms. We find that for the quadratic potential, a scalar spec-
tral index ns is not affected by cuscuton at the leading order
in the slow-roll inflation models. However, a tensor-to-scalar
ratio r can be suppressed. For the exponential potential of
cuscuton, we find the condition for which the inflation has a
graceful exit. Under this condition, the observational predic-
tions in this model differ by a few percent from those found in
standard inflation. We also examine the particle production
due to parametric resonances in both models. We find that in
Minkowski space the stage of parametric resonances can be
described by the Mathieu equation. For the case where the
cuscuton has quadratic potential, the amplitude of the driv-
ing force in the Mathieu equation has a similar form as that
in standard inflation. Nevertheless, in the case of exponen-
tial potential, the amplitude of the driving force decreases
faster than that in the standard case. However, parametric
resonances in our models can be sufficiently broad possible
for the exponential growth of the number of particles. We
briefly discuss the case in which the expansion of space is
taken into account.

1 Introduction

A successful scenario for solving shortcomings of the hot
Big Bang model and providing a mechanism for creating the
primordial density perturbation is based on the accelerated
expansion of the early universe driven by a scalar field known
as inflaton. This scenario is the cosmic inflation [1–4]. Notice
that the pioneer work [1], where the first full and internally
self-consistent inflationary model with the graceful exit from
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inflation to the final radiation dominated state was developed
in the R + R2 modified gravity, remains viable by now. In
principle, the cosmic inflation can be achieved by introducing
an additional degree of freedom, e.g., inflaton, in the universe.
Hence, the cosmic inflation can also be realized in modified
theories of gravity such as the scalar-tensor theories of gravity
or f (R) gravity [1] due to the existence of a scalar degree of
freedom for gravity in these theories, (see also review articles,
e.g., [5,6]).

Usually, the modification of the theories of gravity can
be done by adding extra degrees of freedom to gravitational
interaction in the General relativity (GR) [7]. However, there
are many attempts to construct a class of minimally modi-
fied theories of gravity in which the degrees of freedom for
gravity are two tensorial modes similar to GR [8–12]. This
class of theories could be constructed by breaking the tem-
poral diffeomorphism invariance of GR. Cosmology in these
theories has been investigated in [13–15]. A possible form of
minimally modified theories of gravity is the cuscuton the-
ory [16,17] which is constructed by adding a minimally cou-
pled scalar field to GR. To keep the total degrees of freedom
unchanged, the scalar field namely the cuscuton field has to
be a non-dynamical field in the unitary gauge. However, the
existence of the cuscuton field alters the constraint equation
of GR and the dispersion relation of the field coupled to the
cuscuton.

Influences of cuscuton on Cosmic Microwave Back-
ground (CMB) have been studied in [17]. Bouncing cosmol-
ogy has been investigated in [18–20]. In [21], it has been
shown that power-law solutions of inflation become viable
in cuscuton gravity. A solution describing an accelerating
universe with a stable extra dimension in cuscuton gravity
has been studied in [22]. Observable predictions in Gener-
alized cuscuton models of inflation have been analyzed in
[23]. In this work, we revisit the model proposed in [23] and
estimate observational predictions of the cuscuton inflation
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with two particular forms of the cuscuton potential. We also
study preheating effects in the cuscuton inflation.

Regarding existing literature, the preheating mechanism
was examined in [24–26]. The properties of resonance of
models with non-minimally coupled scalar field χ were car-
ried out in [27]. The inclusion of a non-minimal coupling
ξ Rχ2 term with a sizeable range of parameter ξ produced a
sufficient resonance. Higher-curvature inflation models with
(R + αn Rn) allowing to study a parametric preheating of a
scalar field coupled non-minimally to a spacetime curvature
were also investigated [28]. In [29], the authors studied pre-
heating effects in the extended Starobinsky model [1] with
an additional scalar field which interacts directly with the
inflaton field via a four-leg interaction term. Interestingly,
regarding multi-field inflation, a preheating mechanism in
asymmetric α-attractors has been discussed in [30], see also
[31] for preheating after multifield inflation; while Palatini
formalism of gravitational dark matter production during pre-
heating stage was carried out in [32]. The study of preheating
in the Palatini formalism with a quadratic inflaton potential
with a α R2 term has been discussed in [33].

In Sect. 2, we present our formalism of cuscuton inflation
by considering two types of the cuscuton potentials. In Sect.
3, we constrain the model parameters using observational
data. We also investigate the preheating effect in the cuscu-
ton inflation in Sect. 4. Here we demonstrate if parametric
resonances in our models are sufficiently broad possible for
the exponential growth of the number of particles and discuss
the case in which the expansion of space is considered. We
conclude our findings in Sect. 5.

2 Cuscuton inflation

We study the cuscuton inflation described by the action

S =
∫

d4x
√−g

×
(m2

pl

2
R + μ2

√−∂μϕ∂μϕ − V (ϕ) − 1

2
∂μφ∂μφ −U (φ)

)
,

(1)

where mpl = 1/
√

8πG is the reduced Planck mass, μ is a
constant with dimension of mass, V and U are the potentials
of the cuscuton field ϕ and inflaton field φ.

The cuscuton can be a non-dynamical field and conse-
quently a theory of gravity has two degrees of freedom at
non-linear level if the cuscuton is homogenous [34]. Never-
theless, if the cuscuton can have inhomogeneous part, there
will be instantaneous modes which enhance the degrees of
freedom of gravity [23]. Hence, in the following considera-
tion, the cuscuton is supposed to be a homogeneous field.

The spacetime of the background universe is described
by the spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric,

ds2 = −dt2 + a2(t)δi j dx
i dx j , (2)

where a(t) is the cosmic scale factor. The homogeneity and
isotropy of the background universe require that the field φ

depend only on time, so that the equations of motion are [21]

3m2
plH

2 = V +U + 1

2
φ̇2 , (3)

sign(ϕ̇) 3μ2H + Vϕ = 0 , (4)

φ̈ + 3H φ̇ +Uφ = 0 , (5)

where H = ȧ/a is the Hubble parameter. During inflation,
the inflaton slowly evolves so that Eqs. (5) and (3) become

dφ

dN
� Uφ

3H2 , and 3m2
plH

2 � V +U , (6)

where N ≡ ln(ae/a) is the number of e-folding measured
from the end of inflation at scale factor a = ae. The first
equation in Eq. (6) can be integrated as

N∗ =
∫ φ∗

φe

3H2(φ)

Uφ

dφ , (7)

where subscripts e and ∗ denote evaluation at the end of infla-
tion and at the time when the perturbation modes relevant
to CMB anisotropy cross outside the Hubble horizon. The
Hubble parameter in Eq. (7) can be expressed in terms of the
inflaton field if the form of the cuscuton potential V is spec-
ified. According to the analysis in [16], the cuscuton field
affects dynamics of the background universe by modifying
the Friedmann equation. It follows from Eq. (3) that this
modification depends on the form of the potential V of the
cuscuton. We are interested in the quadratic and exponential
forms of the cuscuton potential, because the cuscuton has a
scaling solution when its potential takes the quadratic form,
while for the exponential potential, the modified Friedmann
equation takes the form as in the Dvali-Gabadadze-Poratti
(DGP) brane-world model [17]. In the following considera-
tion, we choose the inflaton potential in the form

U (φ) = 1

2
m2

φφ2 , (8)

where the inflaton mass mφ is constant.
The scalar spectral index ns and the tensor-to-scalar ratio

r in the cuscuton inflation are [23]

ns − 1 = −2ε − β , and r = 16α , (9)
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where

ε = − Ḣ

H2 , α = φ̇2

2m2
plH

2
, β = α̇

αH
. (10)

Note that the prediction from standard inflationary model is
r = 16ε rather than that in Eq. (9).

3 Observational constraints

3.1 Quadratic potential

We first choose the quadratic potential for the cuscuton in the
form

V (ϕ) = 1

2
m2ϕ2(t) , (11)

where the mass m is constant. Substituting Eq. (11) into
Eq. (4), we get

9μ4H2 = m4ϕ2 . (12)

Inserting Eq. (12) into Eq. (3), the friedmann equation
becomes
(

3m2
pl − 9

2
�

)
H2 = U + 1

2
φ̇2 , (13)

where � ≡ μ4/m2. To estimate observable quantities, we
compute a slow-roll parameter ε by differentiating Eq. (13)
with respect to time and applying the slow-roll approximation
as

ε �
(
m2

pl − 3

2
�

) U 2
φ

2U 2 , (14)

where the slow-roll approximation U � φ̇2 is used. The
number of e-folding can be computed from Eq. (6) as

N∗ =
∫ φ∗

φe

1

m2
pl − 3�/2

U

Uφ

dφ

= 1

2
(
m2

pl − 3�/2
)

⎡
⎣ U 2

U 2
φ

∣∣∣∣∣
φ∗

φe

+
∫ φ∗

φe

U 3

U 3
φ

Uφφ

U
dφ

⎤
⎦

∼ 1

2
(
m2

pl − 3�/2
) U 2

U 2
φ

− Ñ , (15)

where Ñ is a constant and only the dominant term is keeped in
the last line. Here, we use the approximation U/(mplUφ) ∼
O(1/

√
ε) and m2

plUφφ/U ∼ O(ε) as well as ε � 1. Insert-
ing Eq. (15) into Eq. (14), we get

ε∗ ∼ 1

4(N∗ + Ñ )
. (16)

We see that for slow-roll inflation the slow-roll parameter
ε is not influenced by cuscuton at the leading order if the
cuscuton potential takes the quadratic form. From Eq. (10),
the parameter α can be estimated as

α∗ = φ̇2

2m2
plH

2

∣∣∣∣∣∗
= 1

2

(
dφ∗
dN∗

)2

� 1

2

×
(
m2

pl − 3

2
�

)2 U 2
φ

U 2 ∼
(
m2

pl − 3

2
�

)
1

4
(
N∗ + Ñ

) ,

(17)

and hence the parameter β is

β∗ = − 1

α∗
dα∗
dN∗

∼ 1

N∗ + Ñ
. (18)

It follows from the above estimations and Eq. (9) that ns is
not affected by the cuscuton at the leading order, while r can
be suppressed.

We now consider the specific form of the inflaton poten-
tial. Inserting Eqs. (13) and (8) into Eq. (7), the number of
e-folding can be computed as

N∗ =
∫ φ∗

φe

1

2
(
m2

pl − 3�/2
)φdφ , (19)

Applying the slow-roll approximation to Eq. (13) and differ-
entiating the result with respect to time, we get

ε = 2

(
m2

pl − 3

2
�

)
1

φ2 . (20)

At the end of inflation, ε = 1 so that the above equation
yields

φ2
e = 2

(
m2

pl − 3

2
�

)
. (21)

This equation shows that φe is suppressed in cuscuton infla-
tion compared with the standard one. Substituting this result
into Eq. (19), Eq. (19) gives relation between the inflaton
field and the number of e-folding as

φ2∗ = 4

(
m2

pl − 3

2
�

) (
N∗ + 1

2

)
. (22)

Hence, Eq. (20) gives

ε∗ = 1

2N∗ + 1
. (23)
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The parameter α is computed by diffferentiating Eq. (22)
with respect to N∗ as

α∗ = 1

2m2
pl

(
dφ∗
dN∗

)2

= 1 − 3�/(2m2
pl)

2N∗ + 1
. (24)

From the above expression for α∗, we obtain

β∗ = 2

2N∗ + 1
. (25)

Hence, the scalar spectral index and the tensor-to-scalar ratio
at the horizon crossing are

ns − 1 = − 4

2N∗ + 1
, and r = 16 − 24�/m2

pl

2N∗ + 1
, (26)

The observational bound on these parameters from Planck
[35] are

ns ∼ 0.96 , r < 0.1 . (27)

Setting ns in Eq. (26) according to the above observational
value, and plugging the obtained N∗ in the expression of r ,
we get r < 0.1 if �/m2

pl > 0.25. To avoid negative r , we

require �/m2
pl < 2/3.

After the end of inflation, the inflaton oscillates around
the minimum of its potential. The oscillating solution can
be estimated by using variable φ = a−3/2Y , so that Eq. (5)
becomes

Ÿ +
(
m2

φ − 9

4
H2 − 3

2
Ḣ

)
Y = 0 . (28)

According to the approximations m2
φ � H2 and m2

φ � |Ḣ |
after inflation, Eq. (28) is satisfied by the solution in the form

Y = A sin(mφ t) , (29)

where A is a constant. Hence, the solution of φ is

φ = A

a3/2 sin(mφ t) . (30)

It is worth mentioning here that a massive minimally cou-
pled scalar field behaves like dust-like matter after inflation
(mt � 1), so that a(t) ∝ t2/3 after averaging over time inter-
val much larger than m−1, was derived analytically in [36].
Averaging over several oscillations of the inflaton, see also
Ref. [37], the energy and pressure densities associated to the
solution (30) are given by

Pφ ≈
〈

1

2
φ̇2 − 1

2
m2

φφ2
〉

≈ 0, (31)

where we suppose mφ > H after inflation. This implies
that the averaged energy density of the inflaton behaves like
matter, and therefore Eq. (13) gives a ∝ t2/3. As a result,
Eq. (30) becomes

φ(t) ≈ φe

mφ t
sin(mφ t) ≡ (t) sin(mφ t), (32)

where the amplitude A of the oscillation is computed by
matching φ(t → 0) = φe and φe in this case is given by
Eq. (21). It follows from Eqs. (21) and (26) that the amplitude
of inflaton oscillation decreases if r decreases.

3.2 The exponential potential

We now consider the exponential potential in the form

V (ϕ) = V0e
−κϕ , (33)

where V0 and κ are constant with dimension of mass4 and
mas−1. For the exponential potential, Eq. (4) yields

sign(ϕ̇)3μ2H = κV . (34)

According to Eqs. (33) and (34), if we deman that the Hubble
parameter is positive, the field ϕ has to increase with time for
a positive κ and has to decrease with time for a negative κ .
Hence, we can drop sign(ϕ̇) and suppose that κ > 0 in the
following calculations. The relation in Eq. (34) can be used
to eliminate V from Eq. (3), so that the friedmann equation
becomes

3

(
m2

plH
2 − μ2

κ
H

)
= U + 1

2
φ̇2 . (35)

Hence, the Hubble parameter is given by

H = � ±
√

�2 + 1

3m2
pl

(
U + 1

2
φ̇2

)
, (36)

where � ≡ μ2/(2κm2
pl). In the following calculations we

choose the solution with plus sign to avoid the negative H .
From Eq. (36), we have

3H2 = 6�2 + ρφ

m2
pl

+ 2�

√
9�2 + 3

m2
pl

ρφ , (37)

where ρφ ≡ φ̇2/2 + U is the energy density of the inflaton.
To investigate situation in which the inflationary universe
can be realized, we compute the slow-roll parameter ε by
differentiating Eq. (36) with respect to time:

ε =
√

3

2mplH

φ̇2√
3m2

pl�
2 + ρφ

. (38)
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The slow-roll parameter ε can be less than unity correspond-
ing to inflationary phase and can be larger than one corre-
sponding to epoch after inflation, i.e., the model has graceful
exit, if the energy density of inflaton ρφ is larger than m2

pl�
2.

In this situation, the inflationary phase can be realized if the
inflaton field slowly evolves. Supposing that the energy den-
sity of inflaton is significantly larger than m2

pl�
2, Eq. (37)

can be approximated as

3H2 � 2
√

3

mpl

√
ρφ� + ρφ

m2
pl

. (39)

Applying the slow-roll approximation to Eq. (39), we can
write

3H2 � √
6m̄φφ� + m̄2

φ

2
φ2 , (40)

where m̄φ = mφ/mpl and we have used the inflaton potential
from Eq. (8). Differentiating Eq. (40) with respect to time,
the slow-roll parameter is obtained under our assumption as

ε = 2m2
pl

φ

√
6m̄φ� + m̄2

φφ(
2
√

6� + m̄φφ
)2 . (41)

Setting ε = 1, the inflaton field at the end of inflation can be
computed from the relation

φe

(
2
√

6� + m̄φφe

)2 = 2m2
pl

(√
6m̄φ� + m̄2

φφe

)
. (42)

If we suppose that φ ∼ O(mpl), the approximation ρφ �
m2

pl�
2 is equivalent tomφ � �. Further assuming that m̄φ <

1, the approximation becomes mpl � �. The solutions for
Eq. (42) under this approximation are

φe = √
2mpl − 3

√
3/2

m̄φ

�, φe = −√
2mpl − 3

√
3/2

m̄φ

�,

φe = −
√

6

m̄φ

�. (43)

We are interested in the first solution. The above approxi-
mated φe differs by less than a few percent from that numer-
ically computedfrom Eq. (38) under the slow-roll approxi-
mation if �/mφ ≤ 0.05. Supstituting Eq. (40) into Eq. (7),
the number of e-folding for this case can be computed as

N∗ =
∫ φ∗

φe

1

mφmpl

(√
6� + m̄φ

2
φ

)
dφ . (44)

The above equation yields

φ∗ = 2

m̄φ

(
−√

6� ±
√

6�2 + m2
φ

(
N∗ + Ñ

))
, (45)

where

Ñ ≡ 4m̄2
φm

2
pl + 4

√
3m̄φmpl� − 45�2

8m2
φ

. (46)

We will consider the solution with the plus sign in the fol-
lowing analysis. Substituting Eq. (45) into Eq. (41), we get

ε∗

=
m2

φ

4

(
−√

6�+
√

6�2+m2
φ

(
N∗+Ñ

))√
6�2+m2

φ

(
N∗+Ñ

)

+
m2

φ

4
(

6�2 + m2
φ

(
N∗ + Ñ

)) . (47)

The parameter α can be computed by differentiating Eq. (45)
with respect to N∗ as

α∗ = m2
φ

12�2 + 2m2
φ

(
N∗ + Ñ

) . (48)

This expression of α∗ yields

β∗ = m2
φ

6�2 + m2
φ

(
N∗ + Ñ

) . (49)

Hence, the predictions for this model are

ns − 1 = − m2
φ

2

(
−√

6� +
√

6�2 + m2
φ

(
N∗ + Ñ

)) √
6�2 + m2

φ

(
N∗ + Ñ

)

− 3m2
φ

2
(

6�2 + m2
φ

(
N∗ + Ñ

)) � − 4

2N∗ + 1
+ 2

√
3

�

mφ

2 − √
2N∗ + 1

(2N∗ + 1)2 , (50)

r = 16
m2

φ

12�2 + 2m2
φ

(
N∗ + Ñ

) � 16

2N∗ + 1
− 16

√
3�

mφ (2N∗ + 1)2 . (51)
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We estimate how much the observational quantities in this
model of cuscuton inflation differ from those in standard
inflation by computing the factions:

ns − n(s)
s

n(s)
s − 1

∼ −
√

3

2
√

2

�

mφ

√
N∗

< −0.01, (52)

r − r (s)

r (s)
∼ −

√
3�

2mφN∗
< −0.01, (53)

where superscript (s) denotes quantities from standard infla-
tion, i.e., � = 0. The upper bound �/mφ < 0.05 is used in
the estimation of Eqs. (52) and (53) to ensure that the above
approximations have error up to a few percent.

After inflation, the inflaton field starts to oscillate around
local minimum of its potential. To estimate the evolution of
the scale factor, we have to average Eq. (39) over several
oscillations of the inflaton

3〈H2〉 � 2
√

3

mpl
〈√ρφ〉� + 〈ρφ〉

m2
pl

. (54)

According to Eq. (5), the oscillation of inflaton depends on
the form of its potential while the Hubble parameter plays a
role of the dampping term. Hence, the averaged evolution of
inflaton for this case is the same as that in the previous section
such that averaged energy density of inflaton behaves like
matter. According to Eq. (30), we suppose that the damped
oscillation of the inflaton can be described by
φ(t) = φ0(t) sin(mφ t) , (55)

so that the energy density of inflaton is

ρφ=1

2
φ̇2

0 sin2(mφ t)+φ̇0mφφ0 sin(mφ t) cos(mφ t)+1

2
m2

φφ2
0 .

(56)

Since φ0(t) is a function of a scale factor, one can suppose
that φ̇0/φ0 ∼ O(H). Using mφ > H during preheating, we
can approximate

√
ρφ ≈

√
1

2
φ̇(t)0 sin(mφ t) cos(mφ t) +

√
1

2
mφφ0(t). (57)

Averaging Eq. (57) over several oscillations of the inflaton,
we get 〈√ρ

φ
〉 ≈ √

1/2mφφ0(t) and consequently Eq. (54)
yields

3H2 ≈ √
6m̄φ�φ0(t) + 1

2
m̄2

φφ2
0(t) . (58)

Setting φ0(t) = A/a(3/2), the above equation can be inte-
grated as

4

√√
6m̄φ�Aa3/2 + m̄2

φ A
2/2

3
√

2m̄φ�A
≈ t + C . (59)

The integration constant C is chosen such that the above
equation reduces to a ∝ t2/3 when � → 0, so that we get
C = 2/(3�) and therefore

a3/2 ≈ 3
√

6m̄φ�A

16
t2 +

√
3m̄φ A

2
√

2
t

≈
√

3m̄φ A

2
√

2
t

(
1 + 3�

4
t

)
. (60)

Inserting this result into Eq. (30), we get

φ ≈ B

(
1 + 3�

4
t

)−1 2
√

2√
3m̄φ t

sin(mφ t) , (61)

where B is a constant. Matching φ(mφ t → 0) → φe, we get

φ ≈ φe

(
1 + 3�

4
t

)−1 sin(mφ t)

mφ t
≡ ̄(t) sin(mφ t) , (62)

where φe is given by Eq. (43). After the end of inflation, the
averaged energy density of the inflaton evolves as ρφ ∝ a−3.
Hence, the energy density of the inflaton can drop below
m2

pl�
2. Consequently, the universe could start an inflationary

phase again as followed from Eq. (38). This implies that �

has to be suppressed as the universe evolves which could be
achieved if μ or κ depend on time, otherwise � has to be
small such that it has no effect during inflationary phase.

4 Preheating

In this section, we study parametric resonances of models
when an inflaton field φ coupled to another scalar field χ

with the interaction term g2φ2χ2, so that the action for our
model is

S =
∫

d4x
√−g

(m2
pl

2
R + μ2

√−∂μϕ∂μϕ − V (ϕ)

−1

2
∂μφ∂μφ −U (φ)

−1

2
∂μχ∂μχ − W (χ) − 1

2
g2φ2χ2

)
, (63)

where W (χ) is the potential of the field χ and g is the cou-
pling constant. In this case scenario, we will choose the poten-
tial W (χ) of the form:

W (χ) = 1

2
m2

χχ2, (64)

where the massmχ is constant. Models with different form of
W (χ) may also receive physical interest, e.g., Refs. [38,39]
for a non-minimally coupled scenario of the form ∼ ξ Rχ2.
The time evolution of the quantum fluctuations of the field χ

123
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is ruled by the classical equation of motion, a.k.a., the Klein-
Gordan equation in an expanding flat FLRW universe. From
Eq. (63), it is rather straightforward to derive the equation of
motion for the field χ to obtain

χ̈ + 3H χ̇ − 1

a2 ∇2χ +
[
m2

χ + g2φ2
]
χ = 0, (65)

where an effective χ mass m2
eff. = m2

χ + g2φ2. We then
expand the scalar fields χ in terms of the Heisenberg repre-
sentation to yield

χ(t, x) ∼
∫ (

akχk(t)e
−ik·x + a†

kχ
∗
k (t)eik·x) d3k, (66)

where ak and a†
k are annihilation and creation operators. We

can show that χk obeys the following equation of motion:

χ̈k + 3H χ̇k +
[ k2

a2 + m2
χ + g2φ2

]
χk = 0. (67)

Performing Fourier transformation to this equation and
rescaling the field using Yk = a3/2χk , we have

Ÿk + ω2
kYk = 0, (68)

where a time dependent frequency of Yk is given by

ω2
k = k2

a2 + m2
χ + g2φ2. (69)

As is expected, Eq. (68) describes an oscillator with a peri-
odically changing frequency ω2

k = k2

a2 + m2
χ + g2φ2. The

physical momentum p coincides with k for Minkowski space
such that k = √

k2. The periodicity of Eq. (68) may drive
the parametric resonance for modes with certain values of
k. We suppose that the effective mass of the field χ van-
ishes mχ = 0 and neglect for a moment the expansion of the
universe, taking a = 1 in Eq. (67).

Let us consider for the first scenario the quadratic cus-
cuton potential examined in Sect. 3.1. The simplest way to
describe this important effect is to make a change of vari-
ables mφ t ≡ z. This simplifies Eq. (68) to the well-known
Mathieu equation governed by

d2Yk
dz2 + (Ak − 2q cos(2z)) Yk = 0. (70)

The frequency terms are

Ak = k2

m2
φ

+ 2q, q = g22(t)

4m2
φ

. (71)

An important feature of the solution of Mathieu equa-
tion is the existence of an exponential instability Yk ∝
exp(μk z). This instability corresponds to an exponential
growth of occupation number of quantum fluctuation nk(t) ∝
exp(2μk z) [38,39]. The modes Yk with momentum corre-
sponding to the center of the resonance at k ∼ mφ grow as

eqz/2 which in this work equals eqz/2 ∼ eg
22t/8mφ . Then the

number of χ -particles grows as e2μk z ∼ eqz ∼ eg
22t/4mφ

[38,39]. From Eq. (32), we have q = g2φ2
e /4t2 m4

φ , so
that q can be very large if mφ � mpl. In this regime, the
resonance occurs for a broad range of values of k. There-
fore, the parameter μk can be also large in which the reso-
nance occurs for modes with k2/m2

φ = A−2q. Specifically,
the broad resonance occurs above the line A = 2q on the
stability/instability chart for the Mathieu equation. We rec-
ommend the readers to follow the work done by [38,39].
for detailed analysis on the stability/instability chart for the
Mathieu equation [40].

In the second case in which the cuscuton potential takes
the exponential form discussed in Sect. 3.2, we can also have
an equation which describes an oscillator with a periodi-
cally changing frequency ω2(t) = k2 + g2̄2 sin2(mφ t).

One can have a Mathieu equation with Ak = k2

m2
φ

+ 2q,

where q = g2̄2

4m2
φ

. Similar to the case of the quadratic

potential, a broad parametric resonance for the field χ in
Minkowski space for q � 1 in this scenario can be obtained
ifmφ � mpl. However, q decreases faster than the case of the
quadratic potential due to a factor f ≡ (1 + 3�t/4)−1. For
a rough estimation, H ∼ 1/t so that 3�t/4 ∼ 3�/(4 H) ∼
(3/4)(�/mφ)(mφ/H) which can be in order of unity. This
suggests that a factor f can significantly alter the decreasing
rate of q. To investigate how does the factor f influence the
broad parametric resonance, we compute q for two cases of
potentials. For the quadratic potential, we have

q = g2m2
pl

2m4
φ t

2

(
1 − 3

2

�

m2
pl

)2

, (72)

while for the exponential potential, we have

q = g2m2
pl

2m4
φ t

2
(

1 − 3�t
4

)2

(
1 + 3

√
3�

2mφ

)2

. (73)

If we suppose that the broad resonance stops at q � 1, the
broad resonance stops at

ts q ∼ gmpl√
2m2

φ

, ts e ∼ 2

3�

(
−1 + √

1 + 3�ts q
)

= 2 ts q
3�ts q

(
−1 + √

1 + 3�ts q
)

, (74)

for the quadratic (ts q ) and exponential (ts e) potentials,
respectively. For the exponential potential, when 3�ts q < 1,
we can expand

√
1 + 3�ts q ∼ 1 + 3�ts q/2 to simply find

that ts e ∼ ts q . When 3�ts q ∼ 1, we get ts e ∼ 0.8ts q . How-
ever, in case of 3�ts q > 1, we instead find that ts e < ts q . The
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later case implies that the broad resonance in the exponential
potential stops earlier than that of the quadratic one.

Nevertheless, a sufficient broad parametric resonance
could be achieved if q is initially large. Consider the case
where the expansion of space is taken into account. Let’s take
only the first model and we see that the equation of motion
for the scalar matter fields, Eq. (68), can still be written in
the form of a simple harmonic oscillator with a time vary-
ing frequency. Using the the same technique of performing
Fourier transformation and taking Yk(t) = a(t)3/2χk(t), we
have

Ÿk + ω2(k, t) Yk = 0, (75)

where a time dependent frequency of Yk(t) in this case is
given by

ω2(k, t) = k2

a2 + m2
χ + g2φ2 − 9

4
H2 − 3

2
Ḣ . (76)

It is clear that the above equation is not the Hill’s equation
anymore. To quantify the evolution of particular comoving
modes, the effects of the space expansion on particle pro-
duction can be traced by considering the flow lines to the
Floquet chart [41]. Note that in the matter-dominated back-
ground withU (φ) = m2

φφ2/2, and  ∝ a−3/2, k ∝ a−1 and

3 H2 = −2Ḣ , the last two terms cancel. A given comoving
mode k flows along ∼ k3/2

phys ≡ (k/a)3/2 curve in kphys−

plane, see for example [41].
The parameter q = g22/4m2

φ depends on time via

 ∝ a−3/2. Additionally, we can check in which a resonance
band in our process develops. Following [39], the number of
the band in the theory of the Mathieu equation is given by
n = √

A. In our case, reheating occurs for A ∼ 2q, i.e.

n ∼ √
2q ∼

√
g22/2m2

φ . Suppose we have an inflationary

theory with mφ ∼ 10−6mpl, and let us take as an example
g ∼ 10−2. Then after the first oscillation of the field, we

have (t) ∼ 0.2mpl

√(
1 − 3

2
�

m2
pl

)
∼ 0.2mpl for � � mpl,

which corresponds to q ∼ 106. This gives the band number
n ∼ 1414.

5 Conclusions

In this work, we investigate observational predictions and
preheating in cuscuton inflation. For the case where the
potential of the cuscuton takes the quadratic form, the scalar
spectral index is the same as for the standard inflationary
model at the leading order if the slow-roll approximation is
applied. Under the slow-roll approximation, the tensor-to-
scalar ratio can be reduced such that its value agrees with
the Planck data for any form of inflaton potential. If the cus-
cuton potential has exponential form, the energy density of

the inflaton is required to be larger than the energy scale
m2

pl�
2 to have a graceful exit. According to this condition,

the scalar spectral index and tensor-to-scalar ratio from this
model deviate by a few percent compared with those from
standard inflation. The existence of the constant energy scale
� leads to the problem when the energy density of the infla-
ton drops below this energy scale after inflation because the
universe could accelerate again. This problem could be alle-
viated if � can vary with time or its value is small such that
it has no effect during inflation but could drive cosmic accel-
eration at late time.

We have also examined the particle production due to para-
metric resonances in both models. We demonstrate that in
Minkowski space the stage of parametric resonances can be
described by the Mathieu equation. For the case of quadratic
potential, the amplitude of the driving force in the Mathieu
equation has a similar form as that in the standard inflationary
framework. Nevertheless, in the case of exponential poten-
tial, the amplitude of the driving force decreases faster than
in the standard case. We find that the parametric resonances
in our models can be sufficiently broad possible for the expo-
nential growth of the number of particles. We also discuss the
case in which the expansion of space is considered.
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