
NARESUAN UNIVERSITY

THE INSTITUTE FOR FUNDAMENTAL STUDY

TAH POE SEMINAR SERIES LIV (54) N°5

Characterizing 1D Klein-Fock-Gordon-Majorana
particles

Salvatore De Vincenzo a), b)

The Institute for Fundamental Study (IF),

Naresuan University, Phitsanulok 65000, Thailand

�

1:30 � 2:30 p.m. Friday, 20 October 2023

a) ORCID

b) My IF personal webpage

https://orcid.org/0000-0002-5009-053X
https://bit.ly/3DM8jJE


Characterizing 1D Klein-Fock-Gordon-Majorana particles

Abstract

Theoretically, in (1+1) dimensions, one can have Klein-Fock-
Gordon-Majorana (KFGM) particles. More precisely, these
are one-dimensional (1D) Klein-Fock-Gordon (KFG) and Ma-
jorana particles at the same time. In principle, the wave
equations considered to describe such �rst quantized particles
are the standard 1D KFG equation and/or the 1D Feshbach-
Villars (FV) equation, each with a real Lorentz scalar potential
and some kind of Majorana condition. In this talk, we analyze
entirely and systematically the latter assumption; additionally,
we introduce speci�c equations and boundary conditions to
characterize these particles. In fact, we write �rst order in
time equations that do not have a Hamiltonian form. We
may refer to these equations as the �rst-order 1D Majorana
equations for the 1D KFGM particle. Moreover, each of them
leads to �let us say� a (complex) second order in time 1D
Majorana equation. In closing, we brie�y discuss the nonrela-
tivistic limit of one of the �rst-order 1D Majorana equations.



-

Ettore Majorana in his twenties (*)

�On Saturday March 26, 1938, the director of the Institute of Physics at the
University of Naples in Italy, Antonio Carrelli, received a mysterious telegram.
It had been sent the previous day from the Sicilian capital Palermo, some 300
km across the Tyrrhenian Sea, and read:

"Don't worry. A letter will follow. Majorana."

�By Sunday the promised letter had reached Carrelli. In it Majorana wrote
that he had abandoned his suicidal intentions and would return to Naples, but
it revealed no hint of where the illustrious physicist might be. The picture
was quickly becoming clear: Majorana had disappeared.

(*) Born: 05/08/1906. Died: Missing since 25/03/1938.



�Worried by these circumstances, Carrelli called his friend Enrico Fermi in
Rome, who immediately realized the seriousness of the situation. Fermi was
working in his laboratory with the young physicist Giuseppe Cocconi at the
time.

�Fermi told Cocconi: "You see, in the world there are various categories of
scientists: there are people of a secondary or tertiary standing, who do their
best but do not go very far. There are also those of high standing, who
come to discoveries of great importance, fundamental for the development
of science [Fermi considered himself to be in this category.]. But then there
are geniuses like (Galileo) Galilei and Newton. Well, Ettore was one of them.
Majorana had what no-one else in the world had" (**)

(**)
S. Esposito, The Physics of Ettore Majorana �Phenomenological, The-
oretical, and Mathematical� (Cambridge University Press, Cambridge,
2015).



Characterizing 1D Klein-Fock-Gordon-Majorana particles

Introduction

In (3+1) dimensions, there is the possibility that a spin-0 particle
is its own antiparticle. A typical example of this could be the
neutral pion (or neutral pi meson) π0 (although it is not exactly
an elementary particle).

We may refer to these particles as three-dimensional (3D) Klein-
Fock-Gordon-Majorana (KFGM) particles.

Recall that, in general, a Majorana particle is its own antiparticle,
i.e., it is a strictly neutral particle, and the wavefunction that char-
acterizes it is invariant under the respective charge-conjugation
operation (within a phase factor).

Among the known spin-1
2 particles, only neutrinos could be of a

Majorana nature, i.e., only neutrinos could be Majorana fermions.

Similarly, because photons (spin-1) and gravitons (spin-2) are also
strictly neutral particles, we may say that they are also of a Ma-
jorana nature.



The wave equation intended to describe a strictly neutral 3D KFG
spin-0 particle, i.e., a 3D KFGM spin-0 particle, is the 3D Klein-
Fock-Gordon (KFG) equation in its standard form (*) with a real-
valued Lorentz scalar interaction, but in addition, together with
some kind of Majorana condition.

(*)
O. Klein, �Quantentheorie und fünfdimensionale Relativitätstheorie,�
Zeitschrift für Physik 37, 895-906 (1926).

V. Fock, �Zur Schrödingerschen Wellenmechanik,� Zeitschrift für Physik 38,
242-50 (1926).

W. Gordon, �Der Comptone�ekt nach der Schrödingerschen Theorie,�
Zeitschrift für Physik 40, 117-33 (1926).

Likewise, the 3D Feshbach-Villars (FV) equation (**) (or the 3D
KFG equation in Hamiltonian form) with the scalar potential and
the respective Majorana condition may also be used.

(**)
H. Feshbach and F. Villars, �Elementary relativistic wave mechanics of spin 0
and spin 1/2 particles,� Rev. Mod. Phys. 30, 24-45 (1958).



This way of characterizing a 3D KFGM particle can also be used
to describe a one-dimensional (1D) KFGM particle (the latter is
a KFGM particle living in 1+1 dimensions). In this case, we may
also use the standard 1D KFG equation and/or the 1D FV equa-
tion, both with a real-valued scalar potential together with their
respective Majorana condition.

Remark: A neutral 3D KFG particle may not be equal to its an-
tiparticle, for example, a neutral K0 meson (or neutral kaon) is

di�erent from its antiparticle K
0
; in this case, these two particles

carry di�erent internal attributes (di�erent hypercharges) and can
be described by �classical� complex �elds or complex solutions of
the standard 3D KFG equation (The complex �eld ψ is associated

with K0 and the complex conjugate �eld ψ∗ is associated with K
0
).

Remark: If a neutral 3D KFG particle is equal to its antiparticle,
then there are no internal attributes that distinguish them; con-
sequently, they must be described by �classical� real �elds or real
solutions of the standard 3D KFG equation (The same real �eld
ψ = ψ∗ is associated with the particle and its antiparticle).



Remark: There is no place for a conserved current four-vector for
a strictly neutral 3D KFG particle. In e�ect, the usual densities

% = %(r, t) =
i~

2mc2
(ψ∗ ∂tψ − ψ ∂tψ∗)

and

j = j(r, t) = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗)

cease to exist, i.e., for real solutions of the standard 3D KFG
equation we obtain just the trivial solutions

% = 0 and j = 0.

Additionally, the continuity equation (∂t% +∇ · j = 0) is automati-
cally satis�ed, but one cannot obtain anything else from this (for
example, one cannot obtain the nontrivial result

�
Ω dx % = const).

Remark: The latter conclusion seems to be a general property of
other strictly neutral bosonic particles, for example, it occurs also
for photons (spin-1). In fact, the gauge dependent electromagnetic
�eld Aµ is a real vector �eld and it has zero current density. In
this case, the energy �ux represented by the Poynting vector is
the physical quantity of interest.



A current problem

�The exact composition of dark matter is an open problem that
is not exclusive to astrophysics and cosmology but also involves
particle physics. A candidate for dark matter particles are axions.
Dark matter should be cold and collisionless; thus, axions should
have nonrelativistic momenta.

�Hence, a nonrelativistic approach is appropriate to describe ax-
ions. Consequently, the problem of taking the nonrelativistic limit
of a relativistic (massive) real scalar �eld arises (such a �eld cou-
pled to gravity would play the role of dark matter).

�As an example, what is the nonrelativistic limit of the standard
3D KFG equation when its solutions are real? In fact, the solutions
of the 3D Schrödinger equation are complex, i.e., the Schrödinger
�eld is always complex. Then, how can one take the nonrelativistic
limit of the relativistic KFG real scalar �eld?

�Actually, because the Schrödinger equation is a complex equa-
tion, it would not be surprising that it cannot be derived from the
real KFG equation. We will see what our results can say about
this.



Intermezzo

In 1937, Majorana posed the question of whether a 3D spin-1
2

particle could be its own antiparticle (*). Majorana noted that if
the gamma matrices present in the free Dirac equation

ÔDΨ ≡
(

iγ̂µ∂µ −
mc

~
1̂4

)
Ψ = 0

were forced to satisfy the condition (iγ̂µ)∗ = iγ̂µ (1̂4 is the 4 × 4
identity matrix), then the Dirac equation could have real-valued
solutions.

Remark: The latter result remains valid when a real Lorentz scalar
potential is added to the free Dirac equation.

Majorana found for the �rst time a set of matrices that satisfy the
condition (iγ̂µ)∗ = iγ̂µ. Any set of matrices satisfying it de�nes a
Majorana representation.

(*)
E. Majorana, �Teoria simmetrica dell'elettrone e del positrone,� Il Nuovo Ci-
mento 14, 171-84 (1937).



The particle described by the real-valued solution of the 3D Dirac
equation is (usually) called the (3D) Majorana particle, which
would be a massive fermion that is its own antiparticle; i.e., a
strictly neutral fermion.

Remark: To date, no elementary particle with a spin of 1
2 has been

identi�ed as a Majorana particle.

Thus, in the Majorana representation, the equation that describes
the Majorana fermion is the Dirac equation together with the
reality condition of the wave function, namely,

Ψ = Ψ∗.

Precisely, in the Majorana representation, Ψ∗ is the charge-
conjugate wave function of Ψ, i.e.,

Ψ∗ = Ψc ;

therefore, the reality condition expresses the invariance of Ψ under
the charge-conjugation operation, i.e.,

Ψ = Ψc.

The latter relation is what de�nes a Majorana fermion in any
representation and is called the Majorana condition.
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Preliminaries

The 1D KFG wave equation in its standard form is given by

ÔKFGψ ≡
[
(Ê− V )2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ψ = 0,

ψ = ψ(x, t) is a one-component wavefunction, Ê = i~ ∂/∂t is the
energy operator, p̂ = −i~ ∂/∂x is the momentum operator, V = V (x)
is the electric potential (energy), and S = S(x, t) ∈ R is a real-valued
Lorentz scalar potential (energy).

Thus,

ÔKFGψ ≡
[
−~2 ∂

2

∂t2
− 2V i~

∂

∂t
+ V 2 + ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
ψ = 0.

The operator ÔKFG is real when (a) V is pure imaginary, (b) or
zero. In this case, the solutions ψ of ÔKFGψ = 0 can be chosen
to be real, but clearly they do not need to be real. The operator
ÔKFG is complex when V is real. In this case, the solutions ψ are
necessarily complex.



Let us introduce functions ϕ and χ such that

ϕ + χ = ψ and ϕ− χ =
1

mc2
(Ê− V )ψ.

Using the latter relations and the standard 1D KFG wave equation
one obtains

Êϕ =

(
p̂2

2m
+ S

)
(ϕ + χ) + (mc2 + V )ϕ,

Êχ = −
(

p̂2

2m
+ S

)
(ϕ + χ)− (mc2 − V )χ.

The latter system can be written in matrix form, namely,

Ê 1̂2Ψ = ĥΨ,

where

ĥ =
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2)

is the Hamiltonian operator, Ψ = Ψ(x, t) = [ϕ χ ]T = [ϕ(x, t) χ(x, t) ]T

is the two-component wavefunction (the symbol T represents the
transpose of a matrix), τ̂3 = σ̂z and τ̂2 = σ̂y are Pauli matrices, and
1̂2 is the 2× 2 identity matrix.



The latter is precisely the 1D FV wave equation with an electric
potential and a scalar potential, namely,

Ê 1̂2Ψ =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2)

]
Ψ.

The connection between ψ and Ψ is given by

Ψ =

[
ϕ
χ

]
=

1

2

[
ψ + 1

mc2
(Ê− V )ψ

ψ − 1
mc2

(Ê− V )ψ

]
.

Note that even if ψ is a real function, Ψ will be inexorably complex.

Remark: If one has a wave equation of the form L̂Φ ≡ (Ê− Ĥ)Φ = 0,
the operator L̂ is real if iĤ = (iĤ)∗, i.e., if iĤ is a real operator.
Thus, the time-dependent 1D FV wave equation cannot have real
solutions.

The charge conjugate of Ψ,

Ψc ≡ τ̂1Ψ∗

(τ̂1 = σ̂x is a Pauli matrix) satis�es the following equation:

Ê 1̂2Ψc = ĥcΨc =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + Vc 1̂2 + Sc (τ̂3 + iτ̂2)

]
Ψc.



Taking the complex conjugate of Ê 1̂2Ψ = ĥΨ and using the the
results Ê∗ = −Ê and (p̂2)∗ = p̂2, and the facts that (τ̂3+iτ̂2)∗ = (τ̂3+iτ̂2),
(τ̂3)∗ = τ̂3 , and τ̂1τ̂3 = −τ̂3τ̂1, τ̂1τ̂2 = −τ̂2τ̂1 (⇒ (τ̂3 + iτ̂2)τ̂1 = −τ̂1(τ̂3 + iτ̂2)),
and τ̂ 2

1 = 1̂2, and �nally, using the de�nition of Ψc, we obtain

Ê 1̂2Ψc = ĥcΨc =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 − V ∗ 1̂2 + S (τ̂3 + iτ̂2)

]
Ψc,

therefore
Vc = −V ∗ , Sc = S.

Remark: If we had considered placing a complex scalar potential
in the Hamiltonian ĥ, then the Hamiltonian ĥc would be the one
given above but with the replacement S → S∗, and therefore, the
corresponding relation would be Sc = S∗.

Remark: If one makes V ∈ R and S = 0, then one has that

Ê 1̂2Ψ = ĥ(V )Ψ and Ê 1̂2Ψc = ĥc(V )Ψc = ĥ(−V )Ψc,

i.e., Ψ describes a 1D KFG particle with one sign of charge, and
Ψc describes the 1D KFG particle with the opposite sign of charge
(i.e., its antiparticle).



Let us explore the possibility that a 1D KFG particle is its own
antiparticle; therefore, it must be an electrically and strictly neu-
tral particle. The condition that de�nes a particle of this type is
customarily given by

Ψ = Ψc.
We refer to this relation as the standard Majorana condition.

Remark: The latter Majorana condition imposes the following re-
lation between the components of Ψ:

ϕ = ϕc = χ∗ (⇔ χ = χc = ϕ∗),

i.e., ϕ and χ are not independent.

Comparing Ê 1̂2Ψ = ĥΨ and Ê 1̂2Ψc = ĥcΨc (where Ψc = Ψ and Vc =
−V ∗), one obtains

V = −V ∗,
i.e., the complex potential V must be pure imaginary, but if V is
real-valued, then V must be zero.

Remark: If we had decided to consider a complex potential S,
then, in addition to V = −V ∗, we would obtain S = S∗, i.e., the
Majorana condition imposes that S be a real scalar potential.



Thus, the 1D FV wave equation describing a 1D KFG particle that
is also a 1D Majorana particle, can be written as follows:

Ê 1̂2Ψ = ĥΨ =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2)

]
Ψ,

where, if V ∈ C, then it must be imaginary; and if V ∈ R, then
it must be zero. Likewise, the Lorentz scalar potential S must
be real. Additionally, the wavefunction Ψ must have the form
Ψ = [χ∗ χ ]T or Ψ = [ϕ ϕ∗ ]T.

Remark: Equivalently, the 1D FV wave equation is invariant under
the following substitution:

Ψ = [ϕ χ ]T → Ψc = [χ∗ ϕ∗ ]T ,

but the conditions V = −V ∗ and S = S∗ must be satis�ed, i.e., if
the latter conditions are satis�ed, then Ψ and Ψc satisfy the same
equation (the latter is the equation for the 1D KFGM particle).

The standard Majorana condition, namely,

Ψ =
1

2

[
ψ + 1

mc2
(Ê− V )ψ

ψ − 1
mc2

(Ê− V )ψ

]
=

[
0 1
1 0

]
1

2

[
ψ∗ − 1

mc2
(Ê− V )ψ∗

ψ∗ + 1
mc2

(Ê− V )ψ∗

]
= τ̂1Ψ∗ = Ψc,



implies the following result:

ψ = ψ∗,

which is the reality condition for the wavefunction ψ and could be
considered the standard Majorana condition for these solutions,
i.e., ψ = ψ∗ ≡ ψc, where ψc would be the charge conjugate of ψ.

Remark: The latter relation also arises immediately when using
ϕ+χ = ψ and the Majorana condition in terms of the components
of Ψ (i.e., ϕ = χ∗), namely, ψ = ϕ + χ = χ∗ + ϕ∗ = (χ + ϕ)∗ = ψ∗.

The 1D FV wave equation is also invariant under the following
substitution:

Ψ = [ϕ χ ]T → −Ψc = [−χ∗ − ϕ∗ ]T ,

and again the conditions V = −V ∗ and S = S∗ must be satis�ed.
That is, Ψ and −Ψc satisfy the same equation, but this time we
obtain the result

ψ = −ψ∗.
Thus, in this case, the solutions are imaginary, but they can be
written real simply by writing (ψ − ψ∗)/2i = ψ/i.



Summing up, the Majorana condition appears here in two forms,
one standard form,

Ψ = Ψc,

and, say, one non-standard form,

Ψ = −Ψc.

In both cases, the one-component solution ψ can (and must) be
written real, but additionally, the potentials must satisfy the con-
ditions V = −V ∗ and S = S∗.

Remark: The non-standard Majorana condition imposes the fol-
lowing relation between the components of Ψ:

ϕ = −ϕc = −χ∗ (⇔ χ = −χc = −ϕ∗),
again, ϕ and χ are not independent.

Remark: Note that,

(a) + Ψ = Ψc ⇒ ĈΨ = +Ψ, (b) − Ψ = Ψc ⇒ ĈΨ = −Ψ,

where Ψc = τ̂1Ψ∗ ≡ ĈΨ (Ĉ represents the charge conjugation trans-
formation). In principle, the existence of two Majorana conditions
de�nes two speci�c and di�erent types of 1D KFGM particles (this



is the case for 3D KFGM particles). For example, the wavefunction
corresponding to the 3D KFGM neutral pion π0 is an eigenfunction
of Ĉ with eigenvalue +1.

Then, the 1D FV wave equation describing a 1D KFGM particle,
can be written as follows:

Ê 1̂2Ψ = ĥΨ =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2)

]
Ψ,

where V = −V ∗ and S = S∗. Because the components ϕ and χ of
Ψ are not independent, from the latter equation one can write an
equation for only one of these components and obtain the other
component algebraically.

When Ψ = Ψc (⇒ χ = ϕ∗), we obtain the following equation:

Êϕ =

(
p̂2

2m
+ S

)
(ϕ + ϕ∗) + (mc2 + V )ϕ.

Alternatively, we can also write an equation for χ, namely,

Êχ = −
(

p̂2

2m
+ S

)
(χ + χ∗)− (mc2 − V )χ

(and ϕ = χ∗).



Similarly, when Ψ = −Ψc (⇒ χ = −ϕ∗), we obtain the following
equation:

Êϕ =

(
p̂2

2m
+ S

)
(ϕ− ϕ∗) + (mc2 + V )ϕ.

Alternatively, we can also write an equation for χ, namely,

Êχ = −
(

p̂2

2m
+ S

)
(χ− χ∗)− (mc2 − V )χ

(and ϕ = −χ∗).

Remark: None of the latter four equations for the 1D KFGM
particle has the form Êφ = Ĥφ.

A 1D KFGM particle in an interval

Remark: Up to this point, we have not imposed any particular or
speci�c condition on the Hamiltonian ĥ, for example, we have not
yet imposed on ĥ the condition of formal pseudo hermiticity, i.e.,

ĥadj ≡ τ̂3 ĥ† τ̂3 = ĥ

(ĥadj is the formal generalized adjoint of ĥ).



The operator ĥadj is given by

ĥadj =
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V ∗ 1̂2 + S (τ̂3 + iτ̂2).

The formula ĥadj ≡ τ̂3 ĥ† τ̂3 can also be formally written as follows:

〈〈ĥadjΨ,Φ〉〉 = 〈〈Ψ, ĥΦ〉〉,

where the pseudo inner product is de�ned by

〈〈Ψ,Φ〉〉 ≡
�

Ω

dxΨ†τ̂3Φ

(Ω = [a, b] is �an interval�, and Ψ = [ϕ χ ]T and Φ = [ ζ ξ ]T are
two-component wavefunctions).

Remark: Actually, the relation 〈〈ĥadjΨ,Φ〉〉 = 〈〈Ψ, ĥΦ〉〉 de�nes the

generalized adjoint ĥadj on an inde�nite inner product space. The

Hamiltonian operator ĥ is �formally pseudo-Hermitian� because it
satis�es the formal relation ĥadj = ĥ, namely,

p̂2

2m
(τ̂3+iτ̂2)+mc2τ̂3+V ∗ 1̂2+S (τ̂3+iτ̂2) =

p̂2

2m
(τ̂3+iτ̂2)+mc2τ̂3+V 1̂2+S (τ̂3+iτ̂2).



in consequence,
V = V ∗,

and because we are characterizing a 1D KFGM particle, i.e.,

V = −V ∗,
then V must be zero.

Finally, the 1D FV wave equation that describes a 1D KFGM
particle is given by

Ê 1̂2Ψ = ĥΨ =

[
p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + S (τ̂3 + iτ̂2)

]
Ψ,

where the Lorentz scalar potential S is real-valued. When Ψ = ±Ψc,
then Ψ = [ϕ ± ϕ∗ ]T (or Ψ = [±χ∗ χ ]T).

The Hamiltonian operator ĥ and its formal generalized adjoint ĥadj

satisfy the following relation:

〈〈ĥadjΨ,Φ〉〉 =

〈〈Ψ, ĥΦ〉〉 − ~2

2m

1

2

[
((τ̂3 + iτ̂2)Ψx)

† (τ̂3 + iτ̂2)Φ− ((τ̂3 + iτ̂2)Ψ)† (τ̂3 + iτ̂2)Φx

]∣∣∣b
a
,



where [ g ]|ba ≡ g(b, t)− g(a, t), and Ψx ≡ ∂Ψ/∂x, etc.

Remark: the latter relation is also true if the Hamiltonians ĥ and
ĥadj contain, in addition to S ∈ R, a real electric potential V .

If the boundary conditions imposed on Ψ and Φ at the ends of
interval Ω lead to the vanishing of the boundary term, the Hamil-
tonian ĥ, formally satisfying the relation ĥadj = ĥ, is e�ectively �
pseudo-Hermitian� (or generalized Hermitian). The most general
family of boundary conditions leading to the cancellation of this
boundary term is given by (we omit the variable t in the boundary
conditions hereafter)[

(τ̂3 + iτ̂2)(Ψ− iλΨx)(b)
(τ̂3 + iτ̂2)(Ψ + iλΨx)(a)

]
= Û(4×4)

[
(τ̂3 + iτ̂2)(Ψ + iλΨx)(b)
(τ̂3 + iτ̂2)(Ψ− iλΨx)(a)

]
,

where λ ∈ R is a parameter and Û(4×4) is a 4× 4 unitary matrix that
can be written as follows:

Û(4×4) = Ŝ†
[

Û(2×2) 0̂

0̂ Û(2×2)

]
Ŝ,



with

Ŝ =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

 ,
but Û(2×2) will �nally be a 2 × 2 unitary matrix that depends on
three real parameters.

For all the boundary conditions inside the latter general set of
boundary conditions, ĥ is a �pseudo-Hermitian� operator, but it
is also a �pseudo self-adjoint operator�, that is, ĥ satis�es the
relation

〈〈ĥΨ,Φ〉〉 = 〈〈Ψ, ĥΦ〉〉.
Thus, the functions belonging to the domains of ĥ and ĥadj obey
the same boundary conditions, and therefore,

ĥadj = ĥ

(in this case, the latter is not just a formal equality).



The following relation can also be written:

〈〈ĥadjΨ,Φ〉〉 = 〈〈Ψ, ĥΦ〉〉 − ~2

2m
[ψ∗x φ − ψ∗φx ]|ba ,

where ψ = ϕ + χ and φ = ζ + ξ (Ψ = [ϕ χ ]T and Φ = [ ζ ξ ]T). Ad-
ditionally, the boundary term in the latter relation can be written
as follows:

− ~2

2m
[ψ∗x φ − ψ∗φx ]|ba =

~
i

d

dt
〈〈Ψ,Φ〉〉,

where Ψ and Φ are solutions of the 1D FV wave equation (and ψ
and φ are the respective solutions of the standard 1D KFG wave
equation). Note: 〈〈Ψ,Φ〉〉 does not depend on S, but it depends
on V . However, its time derivative is independent of the two
potentials (provided they are real-valued).

Then, the most general set of pseudo self-adjoint boundary con-
ditions for ĥ = ĥadj, and consistent with the cancellation of the
boundary term, can also be written as[

ψ(b)− iλψx(b)
ψ(a) + iλψx(a)

]
= Û(2×2)

[
ψ(b) + iλψx(b)
ψ(a)− iλψx(a)

]
,



where Û(2×2) is precisely the 2 × 2 unitary matrix that appears in

the matrix Û(4×4) presented above.

Thus, the pseudo inner product 〈〈Ψ,Φ〉〉 is constant, i.e., for all the
corresponding solutions ψ and φ of the standard 1D KFG wave
equation that satisfy any of the boundary conditions included in
the general set of pseudo self-adjoint boundary conditions for ĥ.

Then, the standard 1D KFG wave equation that describes a 1D
KFGM particle is given by[

−~2 ∂
2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
ψ = 0,

where S ∈ R. When Ψ = Ψc, then ψ = ψ∗, and therefore,

ψ and also ψ∗

satisfy the general set of boundary conditions. When Ψ = −Ψc,
then ψ = −ψ∗, and therefore,

ψ and also − ψ∗

satisfy the general set of boundary conditions. Consequently, the



matrix Û(2×2) satis�es the following condition:

ÛT
(2×2) = Û(2×2),

that is, Û(2×2) must additionally be a (complex) symmetric matrix.

If we choose

Û(2×2) = eiµ

[
m0 − i m3 −m2 − i m1

m2 − i m1 m0 + i m3

]
,

where µ ∈ [0, π), and the real quantities mk (k = 0, 1, 2, 3) satisfy
(m0)2 + (m1)2 + (m2)2 + (m3)3 = 1, and impose on Û(2×2) the condition

ÛT
(2×2) = Û(2×2), we obtain the result m2 = 0.

Thus, the most general set of pseudo self-adjoint boundary condi-
tions for a 1D KFGM particle, or for the ultimately real solutions
of the 1D KFG wave equation, can be written as follows:[

ψ(b)− iλψx(b)
ψ(a) + iλψx(a)

]
= eiµ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
ψ(b) + iλψx(b)
ψ(a)− iλψx(a)

]
,

where µ ∈ [0, π) , and (m0)2 + (m1)2 + (m3)3 = 1.



Remark: Because Ŝ† = ŜT, but in addition, Û(2×2) = ÛT
(2×2), we have

that

Û(4×4) = Ŝ†
[

Û(2×2) 0̂

0̂ Û(2×2)

]
Ŝ = ÛT

(4×4),

then, Û(4×4) is given by

Û(4×4) = eiµ

[
(m0 − i m3)1̂2 −i m11̂2

−i m11̂2 (m0 + i m3)1̂2

]
.

Some of the boundary conditions included in the general set of
pseudo self-adjoint boundary conditions for a 1D particle KFGM
are the following:

Boundary condition Name
ψ(a) = ψ(b) = 0 Dirichlet
ψx(a) = ψx(b) = 0 Neumann

ψ(a)− λψx(a) = 0 and ψ(b) + λψx(b) = 0 Robin
ψ(a) = ψ(b) and ψx(a) = ψx(b) Periodic

ψ(a) = −ψ(b) and ψx(a) = −ψx(b) Antiperiodic



Remark: Some boundary conditions that are not suitable for a 1D
KFGM particle but are suitable for a 1D KFG particle (m2 6= 0) are
the following:

Boundary condition Name
ψ(a) = ±iψ(b) and ψx(a) = ±iψx(b) Quasi-periodic/antiperiodic
ψ(a) = ±iλψx(b) and ψ(b) = ±iλψx(a) Quasi-mixed

Then, when Ψ = Ψc (⇒ χ = ϕ∗, and therefore, ψ = ϕ + χ = ϕ + ϕ∗ =
2 Re(ϕ) and ψx = 2 (Re(ϕ))x), we obtain the following equation:

Êϕ =

(
p̂2

2m
+ S

)
(ϕ + ϕ∗) + mc2ϕ, (M1a)

and its solutions must satisfy any of the boundary conditions in-
cluded in the following general set of boundary conditions:[

(Re(ϕ))(b)− iλ(Re(ϕ))x(b)
(Re(ϕ))(a) + iλ(Re(ϕ))x(a)

]
=

= eiµ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Re(ϕ))(b) + iλ(Re(ϕ))x(b)
(Re(ϕ))(a)− iλ(Re(ϕ))x(a)

]
.



The following results arise from the latter di�erential equation:[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
Re(ϕ) = 0,

and

Im(ϕ) =
~

mc2

∂

∂t
Re(ϕ).

Finally, ϕ = Re(ϕ) + i Im(ϕ) (and the component χ of Ψ is obtained
from the Majorana condition, i.e., χ = ϕ∗).

Alternatively, we can also write an equation for χ, namely,

Êχ = −
(

p̂2

2m
+ S

)
(χ + χ∗)−mc2χ (M2a)

(and ϕ = χ∗, and therefore, ψ = ϕ + χ = χ∗ + χ = 2 Re(χ) and
ψx = 2 (Re(χ))x), with the following set of boundary conditions:[

(Re(χ))(b)− iλ(Re(χ))x(b)
(Re(χ))(a) + iλ(Re(χ))x(a)

]
=

= eiµ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Re(χ))(b) + iλ(Re(χ))x(b)
(Re(χ))(a)− iλ(Re(χ))x(a)

]
.



The following results arise from the latter equation:[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
Re(χ) = 0,

and

Im(χ) = − ~
mc2

∂

∂t
Re(χ).

Finally, χ = Re(χ) + i Im(χ) (and the component ϕ of Ψ is obtained
from the Majorana condition, i.e., ϕ = χ∗).

Similarly, when Ψ = −Ψc (⇒ χ = −ϕ∗, and therefore, ψ = ϕ + χ =
ϕ − ϕ∗ = 2i Im(ϕ) and ψx = 2i (Im(ϕ))x), we obtain the following
equation:

Êϕ =

(
p̂2

2m
+ S

)
(ϕ− ϕ∗) + mc2ϕ, (M3a)

and its solutions must satisfy any of the following boundary con-
ditions: [

(Im(ϕ))(b)− iλ(Im(ϕ))x(b)
(Im(ϕ))(a) + iλ(Im(ϕ))x(a)

]
=

= eiµ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Im(ϕ))(b) + iλ(Im(ϕ))x(b)
(Im(ϕ))(a)− iλ(Im(ϕ))x(a)

]
.



The following results arise from the latter di�erential equation:[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
Im(ϕ) = 0,

and

Re(ϕ) = − ~
mc2

∂

∂t
Im(ϕ).

Finally, ϕ = Re(ϕ) + i Im(ϕ) (and the component χ of Ψ is obtained
from the Majorana condition, i.e., χ = −ϕ∗).

Alternatively, we can also write an equation for χ, namely,

Êχ = −
(

p̂2

2m
+ S

)
(χ− χ∗)−mc2χ (M4a)

(and ϕ = −χ∗, and therefore, ψ = ϕ + χ = −χ∗ + χ = 2i Im(χ) and
ψx = 2i (Im(χ))x), with the following set of boundary conditions:[

(Im(χ))(b)− iλ(Im(χ))x(b)
(Im(χ))(a) + iλ(Im(χ))x(a)

]
=

eiµ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Im(χ))(b) + iλ(Im(χ))x(b)
(Im(χ))(a)− iλ(Im(χ))x(a)

]
.



The following results arise from the latter di�erential equation:[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
Im(χ) = 0,

and

Re(χ) =
~

mc2

∂

∂t
Im(χ).

Finally, χ = Re(χ) + i Im(χ) (and the component ϕ of Ψ is obtained
from the Majorana condition, i.e., ϕ = −χ∗).

Equations (M1a), (M2a), (M3a) and (M4a) could be referred to as the
�rst order in time (non-Hamiltonian) 1D Majorana equations.

Remark: The solutions of equations (M1a), (M2a), (M3a) and (M4a)
are complex. Depending on which Majorana condition is used,
the real (imaginary) parts of these solutions satisfy the standard
1D KFG equation, but then their imaginary (real) parts are simply
the time derivative of the real (imaginary) parts.

Each �rst-order 1D Majorana equation leads to a second order in
time 1D Majorana equation. In fact, applying the operator Ê to�



both sides of Eq. (M1a), we obtain the following equation:[
Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ϕ = (ÊS)(ϕ + ϕ∗). (M1b)

Similarly, from Eq. (M2a) the following equation is obtained:[
Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
χ = −(ÊS)(χ + χ∗). (M2b)

These two equations correspond to the Majorana condition Ψ = Ψc,
that is, ψ = ψ∗. If we add Eqs. (M1b) and (M2b), it is con�rmed that
ψ = ϕ + χ satis�es the standard 1D KFG equation, as expected.

Similarly, applying the operator Ê to both sides of Eq. (M3a), gives
the following equation:[

Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S
]
ϕ = (ÊS)(ϕ− ϕ∗). (M3b)

In the same manner, applying Ê on Eq. (M4a) gives the following
equation:[

Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S
]
χ = −(ÊS)(χ− χ∗). (M4b)

The latter two equations correspond to the Majorana condition�



Ψ = −Ψc, that is, ψ = −ψ∗. If we add Eqs. (M3b) and (M4b), it is
again found that ψ = ϕ+χ satis�es the standard 1D KFG equation.

Remark: The second-order 1D Majorana equations reduce to the
standard 1D KFG equation when the scalar potential is indepen-
dent of time.

Remark: Our results can also be extended to the problem of a 1D
KFGM particle in a real line with a tiny hole at a point, for exam-
ple, at x = 0 (i.e., Ω = R − {0}). Indeed, all boundary conditions
for this problem can be obtained from those corresponding to the
particle within the interval Ω = [a, b] by making the replacements
x = a→ 0+ and x = b→ 0−.

On the nonrelativistic limit of one of the 1D Majorana equations

Let us consider the nonrelativistic limit of one of the �rst order in
time 1D Majorana equations. For example, Eq. (M1a), namely,

Êϕ =

(
p̂2

2m
+ S

)
(ϕ + ϕ∗) + mc2ϕ. (M1a)

The latter is completely equivalent to the following equation:



ÔKFG Re(ϕ) ≡
[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
Re(ϕ) = 0,

plus the following relation:

Im(ϕ) =
~

mc2

∂

∂t
Re(ϕ).

Finally, ϕ = Re(ϕ) + i Im(ϕ) (and the component χ of Ψ is obtained
from the Majorana condition, i.e., χ = ϕ∗). Note that the second
order in time equation can also be written as follows:

Re
(

ÔKFGϕ
)

= Re

[(
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

)
ϕ

]
= 0.

And now is when we make the typical ansatz, namely,

ϕ = ϕNR e−imc2

~ t,

⇒ ∂tϕ =

(
∂tϕNR − i

mc2

~
ϕNR

)
e−imc2

~ t

and

⇒ ∂ttϕ =

[
∂ttϕNR − i

2mc2

~
∂tϕNR −

(mc2)2

~2
ϕNR

]
e−imc2

~ t.



In the nonrelativistic aproximation we have that

| i~ ∂tϕNR | � mc2 |ϕNR | ⇒ | ∂tϕNR | �
mc2

~
|ϕNR |

and

| i~ ∂ttϕNR | � mc2 | ∂tϕNR | ⇒ | ∂ttϕNR | �
mc2

~
| ∂tϕNR | ,

therefore,

∂tϕ ≈ −i
mc2

~
ϕNRe−imc2

~ t

and

∂ttϕ ≈
[
−i

2mc2

~
∂tϕNR −

(mc2)2

~2
ϕNR

]
e−imc2

~ t.

Substituting the latter expression into the equation Re(ÔKFGψ) = 0,
we obtain the following result:

Re

[
e−imc2

~ t

(
−i~

∂

∂t
− ~2

2m

∂2

∂x2
+ S

)
ϕNR

]
= 0. (MNR1a)

This is not the Schrödinger equation because if we have that z ∈ C
satis�es Re(z) = 0, then z is not necessarily zero.



Note that the relation giving the imaginary part of ϕ can also be
written as follows:

Im(ϕ) =
~

mc2
Re

(
∂

∂t
ϕ

)
.

In the nonrelativistic approximation, we obtain the following result:

Im

(
ϕNR e−imc2

~ t

)
=

~
mc2

Re

(
−i

mc2

~
ϕNRe−imc2

~ t

)
,

but this relation is always true because Im(z) = Re(−iz).

Remark: In �eld theory, the Schrödinger equations, namely,

i~
∂

∂t
ϕNR =

(
− ~2

2m

∂2

∂x2
+ S

)
ϕNR and −i~

∂

∂t
ϕ∗NR =

(
− ~2

2m

∂2

∂x2
+ S

)
ϕ∗NR ,

can be obtained from a Lagrangian density, but ϕNR and ϕ∗NR must
be varied independently, i.e., these two functions are treated as
independent �elds.

Remark: Some authors have considered the nonrelativistic limit�



of the standard real KFG equation, namely,[
−~2 ∂

2

∂t2
+ ~2c2 ∂

2

∂x2
− (mc2)2 − 2 mc2S

]
ψ = 0

(although without including the scalar potential). They relate the
relativistic �eld ψ to the nonrelativistic �eld ψNR as follows:

ψ = ψNR e−imc2

~ t + ψ∗NR e+imc2

~ t ∈ R.
If one inserts this transformation into the real KFG equation, one
obtains the Schrödinger equations given before but only if one
makes c → ∞ and assumes that ψNR and ψ∗NR are independent
�elds.

Remark: If one inserts the transformation given above into the
KFG Lagrangian density, one recovers the Schrödinger Lagrangian
density but only if one ignores the fast oscillating terms which are
proportional to

e±2imc2

~ t.
The latter fact may not be always valid.

Remark: Equation (MNR1a) generates the Schrodinger equations
only if ϕNR and ϕ∗NR are assumed to be independent �elds.



Some concluding remarks

The wave equations considered to describe a strictly neutral 1D
KFGM particle are the standard 1D KFG equation and/or the 1D
FV equation, both with a real Lorentz scalar potential plus their
respective Majorana condition.

Here, the Majorana condition appears in two speci�c forms, say,
one standard and one nonstandard. The imposition of the stan-
dard (nonstandard) Majorana condition on the solutions of the 1D
FV equation implies that the solutions of the standard 1D KFG
equation must be real (imaginary; however, they can also be writ-
ten real). In any case, the solutions of the 1D FV equation cannot
be real.

Both Majorana conditions determine that the scalar potential
must be real. The additional imposition of the formal pseudo
hermiticity condition on the FV Hamiltonian together with a Ma-
jorana condition determines that the electric potential must be
zero.

If we place a 1D KFGM particle in a �nite interval, one has that the
FV Hamiltonian is a pseudo self-adjoint operator. Thus, one has a
three-parameter general set of boundary conditions for the 1D FV
equation and another for the standard (real) 1D KFG equation.



The latter two general sets of boundary conditions are the same
for the two types of Majorana conditions.

Because of the Majorana condition, the (complex) components of
the wavefunction for the 1D FV equation are not independent;
hence, we wrote �rst order in time equations for each of these
components and obtained the general sets of pseudo self-adjoint
boundary conditions they must obey.

The latter equations do not have a Hamiltonian form, but any of
them alone can model a 1D KFGM particle (in fact, if we know
one of the components of the solution of the 1D FV equation, the
other component can be obtained algebraically). We may refer to
these equations as the �rst-order 1D Majorana equations for the
1D KFGM particle.

One can also write (complex) second order in time 1D Majorana
equations for each of the components of the 1D FV equation.
These equations reduce to the standard 1D KFG equation when
the scalar potential does not explicitly depend on time.

The nonrelativistic limit of one of the �rst-order 1D Majorana
equations can only lead to Schrodinger equations if ϕNR and ϕ∗NR
are assumed to be independent �elds.
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