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Abstract. The greybody factor is one of the famous results of the black hole perturbation
theory, which describes the transmission probability of a particle radiated by a black hole into
spatial infinity. In this work, we separated the angular parts of the equations of motion and
derived the radial equations for the Proca field in the Schwarzschild black hole spacetime. The
radial equations for the monopole and odd-parity modes are fully decoupled in the Schrödinger-
like form. We study the greybody factor by determining the rigorous bound.

1. Introduction
The greybody factor is the transmission probability of a particle emitting from the black hole
to spatial infinity, the behavior of the particle can be understood as Hawking radiation. The
Hawking radiation involves considering the quantum effects of particle creation and annihilation
near the event horizon of a black hole, which was first performed by Stephen Hawking in 1975 [1].
Since we cannot predict which spin of particles would be the candidates for Hawking radiation,
the greybody factor of various spin particles in various black hole spacetimes has become an
important research topic. Therefore in the current proceeding, we are interested in the greybody
factor for the Proce field (massive vector field) in the Schwarzschild black hole spacetime.

This work is organized as follows. In Section 2, we present our analysis for the Proca field in
the spherically symmetric black hole spacetimes and introduce the rigorous bound method [2]
for studying the greybody factor. We show our results and conclusion in Section 3.

2. Analysis and method
2.1. Equations of motion for Proca field in Spherically symmetric black hole spacetime
Alexandru Proca modified the electromagnetic Lagrangian density by adding the “mass” term
as

LProca = − 1

16π
FµνF

µν − m2

8π
AµA

µ, (1)

where Fµν = ∂µAν−∂νAµ is the anti-symmetric field strength tensor, Aµ is the vector potential
and m is mass term of a spin-1 particle. The equation of motion is given by

∂µF
µν = m2Aν . (2)
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We next consider the equations of motion in the spherically symmetric black hole spacetimes by
replacing the partial derivatives with the covariant derivatives. The line element is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdϕ2), (3)

where f(r) is a function of r which depends on the black hole spacetimes, then the equations of
motion for Proca field can be written as

∇µ∇µAν −∇µ∇νAµ −m2Aν = 0. (4)

To further analyze equation (4), we take the Lorenz condition ∇µA
µ = 0. The second term of

the left-hand side can be simplified as

∇µ∇νAµ = gνρRσ
µσρA

µ = R ν
µ Aµ, (5)

which related to the Ricci tensor. Then the equations of motion can be written as

∇µ∇µAν −m2Aν −R ν
µ Aµ = 0. (6)

It is worth noting that the Lorenz condition comes naturally for the Proca field in both flat and
curved spacetimes, one may check this condition by taking the contraction derivative on both
sides of equation (2). For the flat spacetime case, the anti-symmetry of Fµν and the commutative
relation of partial derivatives will lead to ∂µA

µ = 0. For the curved spacetime cases, we have

∇ν∇µF
µν ∼ RµνF

µν = 0 since Rµν = R(µν) and Fµν = F [µν], as such the Lorenz condition
must hold.

2.2. Separation variables and radial equations
To obtain the radial equations, we separate the angular parts of equation (6) by introducing the
ansatz of the vector potential as in [3]

Aµ(t, r, θ, ϕ) =
1

r

4∑
i=1

∑
lm

ciu
lm
(i)(t, r)Z

(i)lm
µ (θ, ϕ), (7)

where c1 = c2 = 1, c3 = c4 = [l(l + 1)]−1/2 and Z
(i)lm
µ (θ, ϕ) is the basis of four vector spherical

harmonics. This expression represents the vector potential that can be decomposed into a
series of angular basis functions, the coefficients ci determining the amplitude of each mode,

and the functions ulm(i)(t, r) and Z
(i)lm
µ (θ, ϕ) representing time-radial and angular dependencies,

respectively. We further defined the angular dependence as follows

Z(1)lm
µ = [1, 0, 0, 0]Y lm(θ, ϕ), (8)

Z(2)lm
µ = [0, f−1, 0, 0]Y lm(θ, ϕ), (9)

Z(3)lm
µ =

r√
l(l + 1)

[0, 0, ∂θ, ∂ϕ]Y
lm(θ, ϕ), (10)

Z(4)lm
µ =

r√
l(l + 1)

[0, 0,
1

sin θ
∂ϕ,− sin θ∂θ]Y

lm(θ, ϕ). (11)

Substituting the vector potential from equations (7)-(11) to equation (6). The radial equation
for general static spherically symmetric black holes can be written as

D̂2u1 + f ′(u̇2 − ∂r∗u1) = 0, (12)

D̂2u2 + f ′ (u̇1 − ∂r∗u2)−
2f2

r2
(u2 − u3) = 0, (13)

D̂2u3 +
2f

r2
l(l + 1)u2 = 0, (14)

D̂2u4 = 0, (15)
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where D̂2 = −∂2
t +∂2

r∗−f
[
l(l + 1)/r2 +m2

]
, u̇i = ∂tui, f

′ = ∂rf and r∗ is the tortoise coordinate
defined as dr∗ = f−1dr. The first three radial equations (12)-(14) are coupled, which describe
the even-parity sector. Equation (15) takes the same form as the Regge-Wheeler equation, which
is completely decoupled from the first three equations and describes the odd-parity sector. One
may notice that the Ricci scalar in equation (6) is eliminated in equations (12)-(15), which
is always true for both Ricci-flat and non-Ricci-flat cases. As a remark that for deriving
equations (14) and (15), it is more convenient to take the linear combination of equation (6) as
(∂θ + cotθ)× (ν = θ) + ∂ϕ (ν = ϕ) = 0 and (2 cos θ + sin θ∂θ)× (ν = ϕ)− sin−1 θ∂ϕ (ν = θ) = 0.
With further consideration of the Lorenz condition, we obtain one more coupled equation of u1,
u2, and u3,

−u̇1 + ∂r∗u2 +
f

r
(u2 − u3) = 0, (16)

which allow us to simplify equation.(13) as

D̂u2 +
f

r
(f ′ − 2f

r
)(u2 − u3) = 0. (17)

However, equations (14) and (17) are still coupled equations. We may pay the price of increasing
the order of partial differential equations to decouple the pair of equations as mentioned in [4]. A
complete discussion of the even-parity modes beyond the scope of the current proceeding, which
we left to the future direction. Therefore in the later sections, we mainly focus on two special
cases. Firstly for the odd-parity modes, we took u4(t, r) = uodd(r)e

−iωt in the equation (15),
where ω is the energy parameter for the massive spin-1 particles, and the radial equation may
be obtained as [

∂2
r∗ + ω2 − f(r)

(
l(l + 1)

r2
+m2

)]
uodd(r) = 0. (18)

Secondary for the monopole modes we took u3(t, r) = u4(t, r) = 0, l = 0 and u2(t, r) =
um(r)e−iωt, equation (17) can be simplified as a decoupled equation as [5][

∂2
r∗ + ω2 − f(r)

(
2 (r − 3)

r3
+m2

)]
um(r) = 0. (19)

Note that for the third term of the left-hand side of equations (18) and (19) were understood as
the effective potentials for each case, which we express them with Veff in the later discussions.

2.3. The rigorous bounds on the greybody factors
We studied the greybody factor by the analysis of rigorous bound [2,6–10]. The general form of
the rigorous bound on the greybody factor is given by

T ≥ sech2
∫ ∞

−∞

√
[∂r∗h(r∗)]

2 + [ω2 − Veff (r∗)− h2(r∗)]2

2h(r∗)
dr∗, (20)

where h(r∗) is a positive function that must satisfy the condition h(−∞) = h(+∞) = ω. Two
special cases that yield beneficial practical results are h(r∗) = ω and h(r∗) =

√
ω2 − Veff [2].

However, in this work, the first choice of h = ω may not be sufficient for evaluating the bounds
because of the non-vanishing of the effective potential in the asymptotic infinity, Veff (∞) ∼ m2,

then T → 0. The second choice of h(r∗) =
√
ω2 − Veff presented a sufficient bound in the

region of ω2 ≥ Veff |peak, but lost the information of Veff |peak > ω2 > m2. Therefore, we select

h(r∗) =
√
ω2 − f(r)m2 in this work and the efficient area shall be ω2 > m2.
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(a) (b)

Figure 1. (a). The effective potential for the odd-parity modes with m = 0.1 and variation
l. (b). The rigorous bound of the greybody factor for the odd-parity modes with m = 0.1 and
variation l.

(a) (b)

Figure 2. (a). The effective potential for the odd-parity modes with l = 1 and variation m. (b).
The rigorous bound of the greybody factor for the odd-parity modes with l = 1 and variation
m.

3. Results and conclusion
3.1. Results
For presenting the corresponding results in the Schwarzschild background, we took f(r) = 1− 2M

r
andM = 1 for the following calculations. The effective potential and the corresponding greybody
factor for the odd-parity modes may be obtained by taking equation (18) in equation (20), the
results are presented in figure 1 and figure 2.

In figure 1a, we fixed the mass parameter m = 0.1 of the Proca field and took the angular
parameter from l = 1 to l = 5, the maximum value of the effective potentials increase when
l increase. The corresponding greybody factors shift from lower energy to higher energy as
presented in figure 1b. The physical meaning for this shifting indicates that, with the maximum
value of the effective potential increase, a particle with a given energy includes less transmission
probability. In figure 2a, we fixed the angular parameter l = 1, the effective potential increases
when the mass parameter increases. Note that the effective potential for the Maxwell field is
presented on the same figure with a black dashed line. The effective potential for the Maxwell
field shall be the massless limit for the Proca effective potential, and the exact formula was given
in [2]. The corresponding greybody factors shift from lower energy to higher energy as presented
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(a) (b)

Figure 3. (a). The effective potential for the monopole modes with the variation of m. (b).
The rigorous bound of the greybody factor for the monopole modes with the variation of m.

in figure 2b. For the monopole modes, the results may be obtained by taking equation (19) in
equation (20). The effective potential with the variation of m and the associated greybody
factors are presented in figure 3a and figure 3b. The comparisons with the massive scalar field
are presented with dashed lines as well, where the effective potentials were given in [10]. The
spectrum of effective potentials included many differences, however, one may observe that for
the greybody factor, with the Proca mass getting smaller, the spectrum approach to the massive
scalar cases, which is consistent with the discussion in [3].

3.2. Conclusions
We may conclude our results as follows. In our current studies, the greybody factors are
influenced by the maximum value of the effective potentials within a specific given field. When
the peak of the effective potential is smaller, a particle with fixed energy includes a higher
transmission probability, which means the greybody factor increases.

In summary, we derived four radial equations for the Proca field in the spherically symmetric
black hole spacetimes. The first three equations were coupled, which described the even-parity
sector, and the monopole mode shall be a special case simplified from them. The last equation
was fully decoupled from others and described the odd-parity sector. We obtained the rigorous
bound of the greybody factor for the odd-parity and monopole modes, and the general studies
for the even-parity modes shall keep as the future direction.
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