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Abstract
We derive conditions which are sufficient for theories consisting of multiple vector
fields, which could also couple to non-dynamical external fields, to have the required
structure of constraints of multi-field generalised Proca theories, so that the number
of degrees of freedom is correct. The Faddeev–Jackiw constraint analysis is used
and is cross-checked by Lagrangian constraint analysis. To ensure the theory is con-
straint, we impose a standard special form of Hessian matrix. The derivation benefits
from the realisation that the theories are diffeomorphism invariance. The sufficient
conditions obtained include a refinement of secondary-constraint enforcing relations
derived previously in literature, as well as a condition which ensures that the iteration
process of constraint analysis terminates. Some examples of theories are analysed to
show whether they satisfy the sufficient conditions. Most notably, due to the obtained
refinement on some of the conditions, some theories which are previously interpreted
as being undesirable are in fact legitimate, and vice versa. This in turn affects the
previous interpretations of cosmological implications which should later be reinves-
tigated.
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1 Introduction

Physical phenomena are well described fundamentally by field theories, which pro-
vide fundamental laws andmechanisms fromwhich phenomena arise.Many important
phenomena can be described by theories of vector fields. For example, light can be
described as a massless particle arising from the quantisation of a vector gauge field.
Force carriers of weak interactions [1–3] are described by vector fields which gain
mass due to spontaneous symmetry breaking mechanism [4–7]. Theories describing
this type of vector fields have gauge symmetry which is spontaneously broken in the
vacuum. More recently, important physical phenomena especially in cosmology can
also be described by another type of massive vector field theories, in which gauge
symmetry is explicitly broken due to the presence of the explicit mass terms. Further-
more, these theories are considered as effective field theories. Attempts to describe
cosmological phenomena, for example, primordial inflation [8] and late-time acceler-
ated expansion [9, 10] using theories of massive vector fields are given for example
in [11–13].

In order to obtain a better understanding of vector-field-related phenomena, one
of the important steps would be to classify vector theories and give the most general
form of theories of each type. In particular, the criteria of the classification would be
based on the constraint structure. For theories which describe a single vector field, the
most useful types would be theories which generaliseMaxwell theory and those which
generalise Proca theory [14]. The Dirac–Born–Infeld theory [15, 16] is an example
of theory which generalises Maxwell theory. As for theories which generalise Proca
theories, the notable constructions, with the aim to describe cosmological phenomena,
start from the references [17, 18] (see [19–23] for developments; see also [24] for a
review). The idea of [18] is to impose the condition which we will call, for definite-
ness, “the special Hessian condition”, in which time–time and time–space components
of Hessian vanishes while determinant of space–space components is non-zero. The
reference [25] shows by using constraint analysis that vector theories which are local,
diffeomorphism invariance, having Lagrangian containing up to first order derivative
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in time (which ensures that the theory is free of Ostrogradski instability [26]), as
well as passing the special Hessian condition are likely to be generalised Proca the-
ories. Further generalisations to generalised Proca theories are possible, for example,
references [27–29] construct beyond generalised Proca theories, references [30–33]
construct Proca–Nuevo.1

When considering theories which describe systems of multiple vector fields, one
would expect that they would simply be describable by several systems of single
vector fields arbitrarily interacting with each other. It turns out, however, that the
interactions cannot be arbitrary. Further conditions are required. As shown in [34],
the special Hessian condition is not sufficient to ensure that theories legitimately
contain only the required degrees of freedom. Further conditions called “secondary-
constraint enforcing relations” should be imposed. Constructions of theories satisfying
the special Hessian conditions and secondary-constraint enforcing relations are given
in, for example, [35, 36]. Amore ambitious generalisation is provided by [37] in which
the systems of any fields, not necessarily vector fields, whose Lagrangian depends up
to the first order derivative in the fields are attempted to be classified.

In principle, the formulation presented by [34, 35, 37] still needs small refinements.
By nature of constraint analysis, including Lagrangian constraint analysis, time and
space are not put on equal footing. Therefore, the analysis is carried out in the way
that diffeomorphism invariance is not manifest in most steps (intermediate equations
are usually not in the form where spacetime indices are contracted). This should
be compensated by making use of the conditions that we will call “diffeomorphism
invariance requirements”, which are conditions automatically satisfied by any theory
which is diffeomorphism invariant. Although trivial for each specific theory, these
conditions are helpful for the simplifications of equations in intermediate steps of
constraint analysis. Although these requirements are not used in [34, 35, 37], we expect
that they are crucial in providing and simplifying sufficient conditions for theories to
have the desired number of degrees of freedom. This is in fact demonstrated [25] in
the case of single-field generalised Proca theories. We will also demonstrate in our
paper in the case of multi-field generalised Proca theories.

In fact, as will be discussed later in this paper, the conditions imposed by [34, 35]
to ensure that the theories have secondary constraints are incorrect. There is one term
missing from each of these conditions. Generically, this leads to incorrect counting
of the number of degrees of freedom. Some theories which are previously interpreted
as being undesirable in fact have the desired number of degrees of freedom, and
vice versa. In principle, this could consequently lead to incomplete or even incorrect
cosmological implications related to multi-field generalised Proca theories.

The goal of this paper is to derive conditionswhich are sufficient for theories to have
the correct number of degrees of freedom as multi-field generalised Proca theories.
This is done by using Faddeev–Jackiw constraint analysis [38–41] with the help of
diffeomorphism invariance requirements. The steps to obtain the sufficient conditions
are as follow. We first impose the special Hessian condition. This ensures that the
theories are constraint as well as giving n primary constraints where n is the number

1 Note that [33] points out that [32] has obtained incorrect secondary constraint. So the result of [32] are
not correct. We thank Claudia de Rham for letting us know this recent development and related discussions.
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of vector fields in the system. Next, extra conditions should be imposed [34, 35] which
ensure that the theories have secondary constraints. The conditions we find actually
give the correction to their counterpart obtained in [34, 35]. Further conditions should
also be imposed to ensure that the symplectic two-form at the second iteration does
not have a zero mode so that the constraint analysis terminates [32, 34, 35, 37]. If a
theory passes all these requirements, then it is a multi-field generalised Proca theory.

This paper is organised as follows. In Sect. 2, we consider theories ofmultiple vector
fields which could also couple to non-dynamical external fields.2 We only consider
the theories whose Lagrangians are local, diffeomorphism invariance, depend up to
first order derivative of the vector fields and satisfy the special Hessian condition. We
then proceed to use Faddeev–Jackiw constraint analysis on these theories and obtain
the sufficient conditions for the vector sector to have the expected constraints structure
and hence the correct number of degrees of freedom. We then make a cross-check in
Sect. 3 by using Lagrangian constraint analysis, which give rise to conditions which
after transforming to phase space agree with those obtained in Sect. 2. In Sect. 4,
we discuss how to apply the sufficient conditions. In particular, we demonstrate in
Sect. 4.1 the usage of these conditions to check example theories previously presented
in the literature. Most notably, we provide an example legitimate theory which is
previously misinterpreted in the literature as containing extra degrees of freedom. We
also provide an example undesirable theory which is previously misinterpreted in the
literature as being legitimate. In Sect. 4.2, we argue how the reinterpretations given in
Sect. 4.1 would affect the study of cosmological implications previously presented in
the literature. In Sect. 5, we provide conclusion and discussion of results and possible
future works.

2 Analysis

2.1 Imposing special Hessian condition

For definiteness, we consider theories in 4-dimensional spacetime. However, the anal-
ysis of this paper can easily be extended to spacetimewith other number of dimensions.
We define Lagrangian density L via

S =
∫

d4x L. (1)

We denote spacetime coordinates by xμ with μ = 0, 1, 2, 3. We also use other middle
lower-case Greek indices μ, ν, ρ ∈ {0, 1, 2, 3} to denote spacetime indices. We will
denote spatial indices by using middle lower-case Latin indices i, j, k, l ∈ {1, 2, 3}.
When expressing field we will omit the dependence on time coordinate t . We will
also often drop the dependence on space variables x (but keep explicit other space
variables e.g. x′, y, z). So for example ϕ stands for ϕ(t, x), whereas ϕ( y) stands for
ϕ(t, y).

2 In this paper, the external fields are non-dynamical in the sense to be described in Sect. 2. The consideration
of dynamics of the external fields especially gravity is not within the scope of this paper.

123



On sufficient conditions for degrees of freedom… Page 5 of 39 5

We are interested in the class of multi-field generalised Proca theories which is a
system of n vector fields Aα

μ with α = 1, 2, . . . , n possibly coupled to external fields,
which might also include the metric gμν, and their derivatives. The external fields can
be thought of as being predetermined functions on time and space. For example, the
system of multiple massive vector fields might be put in a flat or curved backgrounds
and might also couple to other external fields. As for the notations, we use beginning
lower-case Greek indices α, β, γ ∈ {1, 2, . . . , n} to denote internal indices for vector
fields. The collection of external fields is of the form

{K } ≡
{
(K (r))μ1···μr ′

ν1···νr ′′
}

, (2)

whereas the collection of external fields and their derivatives is of the form

{K , ∂K , ∂∂K , . . .} ≡
{
∂ρ1 · · · ∂ρr ′′′ (K

(r))μ1···μr ′
ν1···νr ′′

}
, (3)

where r , r ′, r ′′, r ′′′ take values in sets of integers. For example, one of possi-
ble cases could be K (1), ∂ν1K

(1), ∂ν1∂ν2K
(1), . . ., K (2), ∂ρ1K

(2), ∂ρ1∂ρ2K
(2), . . .,

(K (3))μ1μ2 , ∂ρ1(K
(3))μ1μ2 , ∂ρ1∂ρ2(K

(3))μ1μ2 , . . ., (K (4))μ1μ2
ν1 , ∂ρ1(K

(4))μ1μ2
ν1 ,

∂ρ1∂ρ2(K
(4))μ1μ2

ν1 , . . . ,∈ {K , ∂K , ∂∂K , . . .}, in which case, K (1), K (2) are tensors
of rank (0, 0), K (3) is a tensor of rank (0, 2), whereas K (4) is a tensor of rank (1, 2).
Of course, this is only one of the examples. The analysis in this paper will apply to
any types of collection of external fields and their derivatives, provided that the system
satisfies the criteria to be specified. Note that for brevity and in order to avoid clutter
of notation, we will discard the index structure of the collection of external fields and
collection of external fields and their derivatives by simply using the notations defined
in Eqs. (2)–(3).

In more details and for definiteness, let us provide further explanations as follows.
One may think of the system of interest as being a part of a full system described by
the action

Sfull =
∫

d4x Lfull, (4)

where

Lfull = Lvector sector

(
Aα

μ, ∂μA
α
ν ,

{
∂ρ1 · · · ∂ρr ′′′ (K

(r))μ1···μr ′
ν1···νr ′′

})

+ Lbackground

({
∂ρ1 · · · ∂ρr ′′′ (K

(r))μ1···μr ′
ν1···νr ′′

})
.

(5)

The Lagrangian Lvector sector contain terms which describe dynamics of Aα
μ as

well as the terms describing interaction between Aα
μ and the fields {K } ≡

{(K (r))μ1···μr ′
ν1···νr ′′ }, whereas the Lagrangian Lbackground only contain terms with

the fields {K } and their derivatives. The equations of motion for the fields {K } are
schematically given by

δ
∫
d4xLvector sector

δ(K (r))μ1···μr ′
ν1···νr ′′ + δ

∫
d4xLbackground

δ(K (r))μ1···μr ′
ν1···νr ′′ = 0. (6)
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It would be ultimately useful if the dynamics of the full system is fully analysed.
However, in some situation, the analysis might be too involved while it is possible to
consider simplified situations to gain some insights. In particular, one may consider
the situations in which the effect of the first term on LHS of Eq. (6) is negligible.
For example, we may consider a system in which the fields Aα

μ is on a fixed curved
background in such a way that Aα

μ does not back-react to the background. In this kind
of situation, the system of Eq. (6) is approximated as

δ
∫
d4xLbackground

δ(K (r))μ1···μr ′
ν1···νr ′′ = 0, (7)

which can in principle be used to solve for {K }. Suppose that one of the solutions of
(7) is (

K (r)
)

μ1···μr ′
ν1···νr ′′ =

(
K (r)
soln

)
μ1···μr ′

ν1···νr ′′ . (8)

The full Lagrangian then becomes

Lfull = Lvector sector

(
Aα

μ, ∂μA
α
ν ,

{
∂ρ1 · · · ∂ρr ′′′ (K

(r)
soln)μ1···μr ′

ν1···νr ′′
})

+ Lbackground

({
∂ρ1 · · · ∂ρr ′′′ (K

(r)
soln)μ1···μr ′

ν1···νr ′′
})

.
(9)

Since the fields {Ksoln} are already fixed to be some predetermined functions of time
and space, at this stage the Lagrangian Lfull only describe the dynamics of Aα

μ. So the
only Lvector sector is relevant to our consideration. That is, we consider the Lagrangian

L = Lvector sector

(
Aα

μ, ∂μA
α
ν ,

{
∂ρ1 · · · ∂ρr ′′′ (K

(r)
soln)μ1···μr ′

ν1···νr ′′
})

, (10)

in which {∂ρ1 · · · ∂ρr ′′′ (K
(r)
soln)μ1···μr ′

ν1···νr ′′ } are predetermined functions of time and
space. In order to make the notation less cluttered, we may simply drop the subscripts
“vector sector” and “soln” and adopt the notation (3) so that Eq. (10) now reads

L = L
(
Aα

μ, ∂μA
α
ν , {K , ∂K , ∂∂K , . . .}) . (11)

We consider the system (11) simply with the expectation to gain some insights
towards the ultimate goal of considering the full system in which the dynamics of all
fields are taken into account. Of course the analysis of the full system could be more
involved as for example, since the dynamics of gravity is taken into account, one may
need to make use of ADM decomposition in constraint analysis.

Having explained the context of the set-up that for theories of interest, we will
consider vector sector of the full system, let us now state some initial criteria that we
will impose on the theories. We first demand that the full Lagrangian Lfull is local
and diffeomorphism invariance. Next, we demand that the vector sector Lagrangian L
which describes the dynamics of the vector fields Aα

μ is free of Ostrogradski instability
and depend up to first order derivatives of the vector fields.
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In principle, one could also impose some physical conditions on the external fields
{K }. However, since we are only interested in the vector sector Lagrangian L which
does not describe the dynamics of {K } and that {K , ∂K , ∂∂K , . . .} only enters the
vector sector Lagrangian as predetermined functions of time and space, conditions to
be imposed on the external fields would be independent from the analysis to be given
in this paper.

For definiteness, we call the space of the vector fields and their first order time
derivatives as the tangent bundle. It would be useful to discuss the different consid-
erations of the vector fields Aα

μ and the external fields. We may describe the tangent
bundle by saying that at each given value of (t, x), there is a space of (Aα

μ, Ȧα
μ).On the

other hand, as for the external fields and their derivatives, since they are predetermined
functions, each of them describe a real valued indexed object for each given value of
(t, x).

Next, in order for the vector sector to be constraint, the Hessian condition3

det

(
∂2L

∂ Ȧα
μ∂ Ȧβ

ν

)
= 0 (12)

should be satisfied. However, in this paper, we will restrict the study to theories satis-
fying condition

∂2L
∂ Ȧα

0∂ Ȧβ
μ

= 0, det

(
∂2L

∂ Ȧα
i ∂ Ȧβ

j

)
�= 0, (13)

which would imply the Hessian condition (12). For definiteness, let us call Eq. (13)
as “the special Hessian condition”. This condition has also been imposed by many
references for example [34–36, 42, 43], in order to construct multi-field generalised
Proca theories.

By requiring ∂2L/∂ Ȧα
0∂ Ȧβ

0 = 0, we see that L should be at most linear in Ȧα
0 .

Then by using the condition ∂2L/∂ Ȧα
0∂ Ȧβ

i = 0, we see that the coefficient of the

linear term does not depend on Ȧα
i . Then imposing det(∂2L/∂ Ȧα

i ∂ Ȧβ
j ) �= 0 exhausts

all the requirements of Eq. (13).
Therefore, theories we consider have Lagrangians of the form

L = T
(
Aα

μ, ∂i A
α
μ, Ȧα

i , {K , ∂K , ∂∂K , . . .})
+Uβ

(
Aα

μ, ∂i A
α
μ, {K , ∂K , ∂∂K , . . .}) Ȧβ

0 , (14)

subject to

det

(
∂2T

∂ Ȧα
i ∂ Ȧβ

j

)
�= 0. (15)

3 The determinants in Eqs. (12), (13) and (15) are defined as follows. We combine the two indices of
each vector field into one collective index. The matrices appearing within the determinants then have two
collective indices. Standard definition for determinant then applies.
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Since these theories are diffeomorphism invariance, they satisfy conditions on T ,Uβ

as given in Appendix 1. Further requirements will be imposed in order for the theory
to possess the correct number of degrees of freedom. These requirements are known in
the literature to allow secondary constraints and to terminate the process of constraint
analysis [34, 35, 37, 43]. The conditions which we will present are slightly differed
from their counterparts in the literature. These differences, however, are important.
Later in this section, we will comment on how and why they differ.

Euler–Lagrange equations for the vector fields are of the form

∂2L
∂ Ȧα

i ∂ Ȧβ
j

Äβ
j + ∂ j

∂L
∂∂ j Aα

i
− ∂L

∂Aα
i

+ · · · = 0, (16)

U̇α + ∂i
∂L

∂∂i Aα
0

− ∂L
∂Aα

0
= 0, (17)

where · · · are terms which do not contain Äα
μ. Since the Euler–Lagrange equations do

not contain time derivative with order higher than two, the theories are free of Ostro-
gradski instability [26] in the vector sector. Furthermore, it is clear that the systems are
free of Ostrogradski instability and are constrained as Euler–Lagrange equations are
of second order derivative in time of Aβ

j while there is only up to first order derivative

in time for Aβ
0 . In Sect. 3, we will start from these Euler–Lagrange equations and

rederive, as a cross-check to the analysis of the present section, secondary-constraint
enforcing relations [34, 35]. As to be seen in the analysis, the relations given in [34,
35] miss one term, which would invalidate some of their justifications on behaviour
of example theories.

2.2 Faddeev–Jackiw constraint analysis

We require that theories presented in the previous subsection should have the correct
number of degrees of freedom. For this, we are going tomake use of constraint analysis
using the Faddeev–Jackiw method [38–41]. The analysis will give further conditions
that the theories should satisfy. We will use the notations and conventions similar to
those used in [25, 44].

2.2.1 First iteration

In order to transform from the tangent bundle to phase space, one considers conjugate
momenta. Conjugate momenta for the Lagrangian Eq. (14) are

π
μ
β = δ

μ
0Uβ + δ

μ
i

∂T

∂ Ȧβ
i

. (18)

These equations allow us to identify primary constraints

�β = π0
β −Uβ. (19)
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The spatial components of conjugate momenta are given by

π i
β = ∂T

∂ Ȧβ
i

. (20)

Because of the condition (15), these equations can be inverted to give

Ȧβ
i = 

β
i

(
Aα

μ, ∂i A
α
μ, π i

α, {K , ∂K , ∂∂K , . . .}
)

. (21)

Since we work in phase space, it would be convenient to define

T
(
Aα

μ, ∂i A
α
μ,α

i , {K , ∂K , ∂∂K , . . .})

= T
(
Aα

μ, ∂i A
α
μ, Ȧα

i , {K , ∂K , ∂∂K , . . .})
∣∣∣∣
Ȧα
i →α

i

. (22)

Hamiltonian is given by

H = πμ
α Ȧα

μ − L − γ̇ α�α

≈ π i
αα

i − T − γ̇ α�α, (23)

where γ α are Lagrange multipliers. Note that the time derivatives of external fields is
allowed in the Hamiltonian (through T ) since for the system of interest, the external
fields are predetermined functions of time and space. So their time derivatives are
also predetermined functions. The presence of time-dependent external fields in the
Hamiltonian simply means that the Hamiltonian depends explicitly on time. It is also
not possible and not relevant to work out the conjugate momenta of the external fields
as, apart from the fact that the external fields are predetermined functions, L does not
contain terms describing dynamics of the external fields.

Let us start considering first iteration. First order form of the Lagrangian is given
by

LFOF = πμ
α Ȧα

μ + Lv + γ̇ α�α, (24)

where
Lv ≡ T − π i

αα
i . (25)

Symplectic variables are
ξ I = (

Aα
μ, πμ

α , γ α
)
. (26)

Note that since the system of interest only describes the dynamics of Aα
μ, the phase

space only contain variables relevant to Aα
μ. On the other hand, the external fields {K }

are simply predetermined functions of time and space and are not treated as variables.
Each of them is a real valued indexed object at each given spacetime position.

Canonical one-form is given by

A =
∫

d3x
(
πμ

α δAα
μ + �αδγ α

)
. (27)
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So symplectic two-form is

F =
∫

d3x
(

δπμ
α ∧δAα

μ + δπ0
α∧δγ α − ∂Uα

∂Aβ
μ

δAβ
μ∧δγ α

− ∂Uα

∂∂i A
β
μ

δ∂i A
β
μ∧δγ α

)
. (28)

Demanding izF = 0 gives

zπ
μ
α + ∂Uβ

∂Aα
μ

zγ
β − ∂i

(
∂Uβ

∂∂i Aα
μ

zγ
β

)
= 0, (29)

zA
α
μ + δ0μz

γ α = 0, (30)

zπ
0
α − ∂Uα

∂Aβ
μ

zA
β
μ − ∂Uα

∂∂i A
β
μ

∂i z
Aβ

μ = 0. (31)

In order for these equations to be consistent, the equation

(
∂Uα

∂Aβ
0

− ∂Uβ

∂Aα
0

+ ∂i
∂Uβ

∂∂i Aα
0

)
zγ

β +
(

∂Uβ

∂∂i Aα
0

+ ∂Uα

∂∂i A
β
0

)
∂i z

γ β = 0 (32)

has to be satisfied. In fact as analysed in Appendix 1 diffeomorphism invariance
requires, among others, Eq. (A10). So we are left with

(
∂Uα

∂Aβ
0

− ∂Uβ

∂Aα
0

+ ∂i
∂Uβ

∂∂i Aα
0

)
zγ

β = 0. (33)

Let us denote

qαβ ≡ ∂Uα

∂Aβ
0

− ∂Uβ

∂Aα
0

+ ∂i
∂Uβ

∂∂i Aα
0
. (34)

We are particularly interested in the case where rank(qαβ) = 0, that is

∂Uα

∂Aβ
0

− ∂Uβ

∂Aα
0

+ ∂i
∂Uβ

∂∂i Aα
0

= 0. (35)

Aswill be seen later, enforcing these conditions would lead to n secondary constraints.
We are only interested in the class of theories with this constraint structure. This class
include, for example, a theory of n uncoupled generalised Proca fields (an analysis
will be given in Sect. 4.1). On the other hand, if rank(qαβ) �= 0, and we want the
procedure not to terminate after the second iteration, the theory would either have
undesired number of degrees of freedom or have first class constraints. Either of these
cases are not what we are interested in.
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As a cross-check, one may note that after imposing diffeomorphism invariance
requirement,

[�α,�β(x′)] ≈ qαβδ(3)(x − x′). (36)

Therefore, the conditionEq. (35) is equivalent to the vanishingof thePoisson’s brackets
of the primary constraints among themselves. That is

[�α,�β(x′)] ≈ 0. (37)

In Dirac constraint analysis [45, 46], if we demand the primary constraints to be
preserved in time we would have, with Hamiltonian density being H = H0 + uβ�β

where H0 = π i
αα

i − T ,

∫
d3x′[�α,H0(x′)] +

∫
d3x′uβ(x′)[�α,�β(x′)] + ∂�α

∂t
≈ 0. (38)

Then since the explicit dependence on time of �α appears in Uα due to the presence
of {K , ∂K , ∂∂K , . . .}, we may simply use the chain rule to obtain

∫
d3x′[�α,H0(x′)] + ∫

d3x′uβ(x′)[�α,�β(x′)]
− ∂Uα

∂∂ρ1 ···∂ρr ′′′ (K
(r))μ1···μr ′

ν1 ···νr ′′ ∂ρ1 · · · ∂ρr ′′′ (K̇
(r))μ1···μr ′

ν1···νr ′′ ≈ 0, (39)

where it is understood that in the third term on LHS of Eq. (39) there is a sum over
the collection of the external fields and their derivatives. If the conditions (37) are
not fulfilled, i.e. rank(qαβ) �= 0, Eq. (39) would determine some components of
uβ. So there will be less than n secondary constraints. In the extreme case where
rank(qαβ) = n, i.e. det(qαβ) �= 0, there is no secondary constraint. Furthermore, after
classification, it is easy to see that all of these constraints are of second class. So the
number of degrees of freedom is less than 3n, which is not desirable.

Note that in the tangent bundle, Eq. (35) can also be expressed as

∂2L
∂ Ȧα

0∂Aβ
0

− ∂2L
∂Aα

0∂ Ȧβ
0

+ ∂i

(
∂2L

∂∂i Aα
0∂ Ȧβ

0

)
= 0, (40)

which is a correction to the secondary-constraint enforcing relations derived in [34,
35]. Only the last term on the LHS of Eq. (40) is not present in these references.
This could be due to the fact that their analysis discards the dependence on spatial
derivatives of vector fields.While this is sufficient for themain purpose of counting the
number of degrees of freedom, one should be careful with the conditions derived in the
process. In order to make use of such conditions, one should appropriately restore the
dependence on spatial derivatives of vector fields. It turns out that the restoration in this
case is given by the inclusion of the third term on LHS of Eq. (40). As a consequence
of the missing term in the secondary-constraint enforcing relations, behaviours of
some theories receive incorrect interpretations. For example, a special case of theory
presented in [42] is interpreted by [34] to contain extra degrees of freedom. In fact,

123
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however, by a careful analysis to be discussed in Sect. 4.1, the theory is a legitimate
multi-field generalised Proca theory since it has the desirable number of degrees of
freedom.

It would be helpful to first demonstrate that Eq. (40) is indeed satisfied by some
simple cases. In particular, it can be shown that Eq. (40) is satisfied by single field
generalised Proca theories. In this case, Eq. (40) reduces to

∂i

(
∂2L

∂∂i A0∂ Ȧ0

)
= 0, (41)

which is in fact trivially satisfied. The systems of interest as described at the start of
Sect. 2 automatically satisfies the diffeomorphism invariant requirement. In particular,
consider a diffeomorphism condition, Eq. (A10), which reduces to

∂2L
∂∂i A0∂ Ȧ0

= 0, (42)

where we recall that U ≡ ∂L/∂ Ȧ0. So by imposing the condition (42), it can be seen
that Eq. (41) is trivially satisfied. Having shown that Eq. (40) is satisfied by single
field generalised Proca theories, it can immediately be seen that it is also satisfied by
separable multi-field generalised Proca theories. See Sect. 4.1.1 for more details.

Let us continue the Faddeev–Jackiw analysis. The zero mode of F is

z1 = zγ
α

(
δ

δγ α
− δ

δAα
0

)
+

(
− ∂Uα

∂Aβ
0

zγ
β − ∂Uα

∂∂i A
β
0

∂i z
γ β

)
δ

δπ0
α

+
(

−∂Uβ

∂Aα
i
zγ

β + ∂ j

(
∂Uβ

∂∂ j Aα
i
zγ

β

))
δ

δπ i
α

, (43)

subject to secondary-constraint enforcing relations (35). Having obtained the zero
mode, let us check whether there are further constraints in the system by considering

iz1

∫
d3x δLv =

∫
d3x

(
− ∂T

∂Aβ
0

+∂i
∂T

∂∂i A
β
0

+
(

∂Uβ

∂Aα
i

+ ∂Uβ

∂∂ j Aα
i
∂ j

)
α

i

)
zγ

β

, (44)

where we have used the identity

π i
α = ∂T

∂α
i
, (45)

which is equivalent to Eq. (20). The result from Eq. (44) gives secondary constraints

�̃β = ∂T
∂Aβ

0

− ∂i
∂T

∂∂i A
β
0

−
(

∂Uβ

∂Aα
i

+ ∂Uβ

∂∂ j Aα
i
∂ j

)
α

i

− ∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ (K̇
(r))μ1···μr ′

ν1···νr ′′ (46)
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which, written as functions,

�̃β = �̃β(Aα
μ, ∂i A

α
μ, ∂i∂ j A

α
μ, πα

i , ∂iπ
α
j , {K , ∂K , ∂∂K , . . .}). (47)

Note that when reading off the constraint (46), there is also the contribution from
external fields as presented in the last term on RHS. This is because the external fields
are considered to be functions with explicit dependence on time. So when working
out secondary constraints which essentially involves taking derivative of primary con-
straints with respect to time, the explicit time derivative of the external field should
also be taken into account.

2.2.2 Second iteration

Having obtained new constraints from the first iteration, let us start the second iteration
by including Lagrange multipliers corresponding to the new constraints. Symplectic
variables are

ξ I = (Aα
μ, πμ

α , γ α, γ̃ α). (48)

Canonical one-form is given by

A =
∫

d3x(πμ
α δAα

μ + �αδγ α + �̃αδγ̃ α). (49)

So symplectic two-form is

F =
∫

d3x
(
δπμ

α ∧δAα
μ + δ�α∧δγ α + δ�̃α∧δγ̃ α

)
. (50)

We may also denote the constraints and Lagrange multipliers as �
(1)
α ≡ �α,�

(2)
α ≡

�̃α, γ α
(1) ≡ γ α, γ α

(2) ≡ γ̃ α.

When solving for zero mode of the symplectic two-form F , equations involving
Poisson’s brackets would arise. In order to easily see this, it will be useful to define the
notation for generalised derivatives ∂I as follows. Suppose that f and g are functions
of Aα

μ, ∂i Aα
μ, ∂i∂ j Aα

μ, . . . , π
μ
α , ∂iπ

μ
α , ∂i∂ jπ

μ
α , . . . , {K , ∂K , ∂∂K , . . .}. So

δ f

δAα
μ(z)

= ∂ f

∂Aα
μ

δ(3)(x − z) + ∂ f

∂∂i Aα
μ

∂iδ
(3)(x − z) + ∂ f

∂∂i∂ j Aα
μ

∂i∂ jδ
(3)(x − z) + · · ·

≡ ∂ f

∂∂I Aα
μ

∂Iδ(3)(x − z), (51)

where summation over I is understood. Similarly,

δ f

δπ
μ
α (z)

= ∂ f

∂∂Iπ
μ
α

∂Iδ(3)(x − z). (52)
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Then in this notation Poisson’s bracket can be written as

[ f , g( y)] = (−1)|J | ∂ f

∂∂I Aα
μ

∂I∂J
(

∂g

∂∂J π
μ
α

δ(3)(x − y)
)

−(−1)|J | ∂ f

∂∂Iπ
μ
α

∂I∂J

(
∂g

∂∂J Aα
μ

δ(3)(x − y)

)
, (53)

where |J | is the order of partial derivatives of J , and summation over I and J is
understood.

Let us then find zero mode of F . Demanding izF = 0 gives

zπ
μ
β −

2∑
s=1

(−1)|I|∂I

(
zγ

α
(s)

∂�
(s)
α

∂∂I A
β
μ

)
= 0, (54)

−zA
β
μ −

2∑
s=1

(−1)|I|∂I

(
zγ

α
(s)

∂�
(s)
α

∂∂Iπ
μ
β

)
= 0, (55)

∂I zA
α
μ

∂�
(s)
β

∂∂I Aα
μ

+ ∂I zπ
μ
α

∂�
(s)
β

∂∂Iπ
μ
α

= 0, for s = 1, 2. (56)

Eliminating zA
α
μ and zπ

μ
α and using the identity Eq. (53), we obtain

2∑
s=1

∫
d3 y[�(1)

α ,�
(s)
β ( y)]zγ β

(s) ( y) = 0, (57)

2∑
s=1

∫
d3 y[�(2)

α ,�
(s)
β ( y)]zγ β

(s) ( y) = 0. (58)

Note that

[�α,�γ ( y)] =
(

−qαγ +
(

∂�α

∂∂i A
γ
0

+ ∂�γ

∂∂i Aα
0

)
∂i

)
δ(3)(x − y). (59)

Imposing diffeomorphism conditions Eq. (A10) and secondary-constraint enforcing
relations Eq. (35), we obtain

[�α,�γ ( y)] = 0. (60)

Next, after expressing the Poisson’s brackets between primary and secondary con-
straints and substituting this along with Eq. (60) into Eq. (57), one obtains

C0αγ z
γ̃ γ + Ci1αγ ∂i z

γ̃ γ + Ci j2αγ ∂i∂ j z
γ̃ γ = 0, (61)

where

C0αγ ≡ ∂�̃γ

∂Aα
0

− ∂i

(
∂�̃γ

∂∂i Aα
0

)
+ ∂i∂ j

(
∂�̃γ

∂∂i∂ j Aα
0

)
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−
(

∂�α

∂Aβ
k

+ ∂�α

∂∂i A
β
k

∂i

) (
∂�̃γ

∂πk
β

− ∂ j

(
∂�̃γ

∂∂ jπ
k
β

))
, (62)

Ci1αγ ≡ − ∂�̃γ

∂∂i Aα
0

+ 2∂ j

(
∂�̃γ

∂∂i∂ j Aα
0

)
+ ∂�α

∂Aβ
k

∂�̃γ

∂∂iπ
k
β

− ∂�α

∂∂i A
β
k

(
∂�̃γ

∂πk
β

− ∂ j

(
∂�̃γ

∂∂ jπ
k
β

))
+ ∂�α

∂∂ j A
β
k

∂ j

(
∂�̃γ

∂∂iπ
k
β

)
, (63)

Ci j2αγ ≡ ∂�̃γ

∂∂i∂ j Aα
0

+ ∂�α

∂∂(i |Aβ
k

∂�̃γ

∂∂| j)πk
β

. (64)

It would be helpful to rewrite Eqs. (62)–(64) in the forms which are easier to use.
In particular, one may express C0αγ , Ci1αγ , Ci j2αγ in terms of T and Uβ. However,
even with the help of diffeomorphism invariance requirements, the expressions are
still not simple to use. It is in fact even better to express these quantities in tangent
bundle. We will postpone the presentation of these forms to Sect. 3, where the relevant
expressions are given in Eqs. (110)–(111). Nevertheless, we may readily note here
that by working in phase space and using diffeomorphism invariance requirements, it
can be seen explicitly that

Ci1αγ = −Ci1γα, Ci j2αγ = 0. (65)

After using Eq. (65), it can be seen that Eq. (61) becomes

C0αγ z
γ̃ γ + Ci1αγ ∂i z

γ̃ γ = 0. (66)

It is clear that zγ̃
γ = 0 is a solution to Eq. (66). However, the question is whether this

solution is unique. If zγ̃
γ = 0 is the unique solution to Eq. (66), then after substituting

into Eq. (58), we obtain

(C0γα − ∂iCi1γα)zγ
γ + Ci1αγ ∂i z

γ γ = 0. (67)

As to be discussed in Sect. 3, it can be shown by using diffeomorphism conditions
that

C0αγ − C0γα = ∂iCi1αγ . (68)

So Eq. (67) is equivalent to Eq. (66). If Eq. (66) has the unique solution zγ̃
γ = 0, then

zγ
γ = 0 should also be the unique solution to Eq. (67). Then by using Eqs. (54)–(55)

we obtain zA
α
μ = zπ

μ
α = 0. So there is no zero mode, and the procedure terminates.

Note that the requirement that the constraint analysis should terminate is previously
suggested and emphasised in [32, 34, 35, 37]. By using the criteria presented by [47],
it can be concluded that the number of degrees of freedom is 3n as required.

For definiteness, let us call the condition

C0αγ z
γ̃ γ + Ci1αγ ∂i z

γ̃ γ = 0 	⇒ unique solution zγ̃
γ = 0 (69)
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as the “completion requirement” since it signals the end of the second iteration. There
are two main cases which would satisfy the completion requirement (69):

• Case 1: Ci1αγ �= 0, and the boundary condition that fields should vanish fast enough
near spatial infinity (this is the boundary condition which is required in the whole
analysis tomake integrals of total derivatives vanish) is sufficient to fix the solution
to the equation in (69) to be unique.

• Case 2: Ci1αγ = 0 and det(C0αγ ) �= 0.

In the case where Ci1αγ �= 0, it is not clear whether the boundary condition would be
sufficient to fix the solution to the equation in (69) to be unique. We expect that the
analysis should be done separately for each given specific theory. Even then, it would
still be quite difficult, if at all possible, to show that the solution is unique. This means
that it would not be simple to show whether a given theory with Ci1αγ �= 0 is within

the case 1. As for the case where a theory has Ci1αγ = 0, it could be very likely that
det(C0αγ ) �= 0.This is because the formofC0αγ containsmany terms in the expression,
which make it difficult for C0αγ to be singular. On the other hand, the requirement
Ci1αγ = 0 itself would look quite restrictive, which might bring an immediate question
as to whether it is possible to find theories within case 2. In fact, as to be explicitly
discussed in Sect. 4.1, theories passing this requirement have already appeared in the
literature. However, some of them might have been mistakenly ruled out due to the
usage of the incorrect version of secondary-constraint enforcing relations [34, 35]. We
will only provide one such example.

2.2.3 Matrix form ofF

In Faddeev–Jackiw constraint analysis, it is often convenient to consider the matrix
form ofF . This would allow us to cross-check the analysis at the second iteration and
at the same time further justify the completion requirement (69). In order to obtain
the components of F , it is convenient to first denote

fξ I ≡ i δ

δξ I
F . (70)

From direct calculation, we obtain

f Aα
μ

= −δπμ
α +

2∑
s=1

∫
d3 y

δ�
(s)
β ( y)

δAα
μ

δγ
β

(s)( y), (71)

fπμ
α

= δAα
μ +

2∑
s=1

∫
d3 y

δ�
(s)
β ( y)

δπ
μ
α

δγ
β

(s)( y), (72)

fγ α = −
∫

d3 y
δ�α

δAβ
μ( y)

δAβ
μ( y) −

∫
d3 y

δ�α

δπ
μ
β ( y)

δπ
μ
β ( y), (73)

fγ̃ α = −
∫

d3 y
δ�̃α

δAβ
μ( y)

δAβ
μ( y) −

∫
d3 y

δ�̃α

δπ
μ
β ( y)

δπ
μ
β ( y). (74)
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The matrix element ofF can then be obtained by taking interior product of Eqs. (71)–
(74) with respect to phase space coordinate basis as follows

FI J (x, x′) = i δ

δξ J (x′)
fξ I (x). (75)

The matrix form of F is given by

F(x, x′) =
(
A(x, x′) B(x, x′)
C(x, x′) D(x, x′)

)
, (76)

where

A(x, x′) =
(

0 −δ
β
α δ

μ
ν

δα
βδν

μ 0

)
δ(3)(x − x′), (77)

B(x, x′) =
⎛
⎝

∂�β

∂∂I Aα
μ
(x′) ∂�̃β

∂∂I Aα
μ
(x′)

∂�β

∂∂Iπ
μ
α
(x′) ∂�̃β

∂∂Iπ
μ
α
(x′)

⎞
⎠ ∂ ′

Iδ(3)(x − x′), (78)

C(x, x′) = −
⎛
⎝

∂�α

∂∂I Aβ
ν

∂�α

∂∂Iπν
β

∂�̃α

∂∂I Aβ
ν

∂�̃α

∂∂Iπν
β

⎞
⎠ ∂Iδ(3)(x − x′), (79)

D(x, x′) =
(
0 0
0 0

)
, (80)

where ∂ ′
I are generalised derivatives with respect to x′. One important steps of

Faddeev–Jackiw constraint analysis is to find the determinant of F . This determinant
would also be useful when working out path integral quantisation as its square root
would appear in the path integration measure. By the standard formula of determinant
of block matrix, we have

detF = det(A) det(D − CA−1B). (81)

By direct calculation, it can be shown that det(A) = 1. So in order to evaluate detF ,

one needs to first compute (D − CA−1B). Direct computation gives, after applying
Eqs. (65) and (68),

(D − CA−1B)(x, x′) =
([�α,�β(x′)] [�α, �̃β(x′)]

[�̃α,�β(x′)] [�̃α, �̃β(x′)]
)

=
(

0 −C0αβ − Ci1αβ∂i

C0βα − Ci1βα(x′)∂i DI
αβ∂I

)

δ(3)(x − x′), (82)

where DI
αβ are functions whose form are not relevant to the analysis of this paper, so

we do not provide its explicit form.
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In order for (D − CA−1B) to be invertible, the solution w of (D − CA−1B)w =
ψ should be unique. Let us denote w(x′) ≡ (uβ(x′), vβ(x′))T , and ψ(x) ≡
(χα(x), λα(x))T . So

−
(
C0αβ + Ci1αβ∂i

)
vβ = χα, (83)

(C0αβ + Ci1αβ∂i )u
β + DI

αβ∂Ivβ = λα. (84)

Solution to Eq. (83) is

vβ =
∫

d3x′Gβγ (x, x′)χγ (x′) + v
β
0 , (85)

where Gβγ (x, x′) and v
β
0 satisfy

−
(
C0αβ + Ci1αβ∂i

)
Gβγ (x, x′) = δγ

α δ(3)(x − x′), (86)

and
−

(
C0αβ + Ci1αβ∂i

)
v

β
0 = 0. (87)

In order for vβ to be the unique solution to Eq. (83), we demand that v
β
0 is unique.

This is precisely the completion requirement (69).
In the casewhere D−CA−1B is invertible, the determinant ofF can be determined.

In this case, by direct calculation using the standard formula of determinant of block
matrix and using the property of determinant of product of squarematrices, one obtains

detF = {det[(C0αβ + Ci1αβ∂i )δ
(3)(x − x′)]}2. (88)

Demanding that there is no zero mode of F at the second iteration is equivalent to
demanding that detF �= 0. So by using Eq. (88), it can be seen that one should demand
the differential operator C0αβ + Ci1αβ∂i to have no zero mode. This also implies the
completion requirement.

The class of theories we consider indeed include the particular theories investigated
in [37], in which the conditions called “quantum consistency condition” are derived.
The result of our paper suggests that these conditions can indeed be generalised to a
larger class of theories. The generalisation is simply the condition we called “com-
pletion requirement”. The idea is that our differential operator C0αβ + Ci1αβ∂i could
be thought of as a generalisation to their differential operator Zαβ . We have provided
in Eqs. (110)–(111) the formula to directly compute the coefficients C0αβ and Ci1αβ,

which in turn give rise the required differential operator. The quantum consistency
condition derived in [37] is Zαβ �= 0. This seems to demand a differential operator to
be non-zero.We suppose that it would be useful to give a slightly clearer interpretation.
In particular, one should interpret it as being that the differential operator Zαβ has no
zero mode. This is exactly generalised to our requirement.

Furthermore, by using diffeomorphism invariance requirement, we have shown that
C0βα = C0αβ − ∂iCi1αβ and Ci1αβ = −Ci1βα. This implies that C0βα − Ci1βα(x′)∂i =
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C0αβ + Ci1αβ∂i , which should be the generalisation to −Z ′
βα = Zαβ of the theories in

[37]. This provides an explanation why the determinant of the symplectic two-form
factorises as Eq. (88). For example, in the particular theories of [37], the determinant
reduces as detF = (det(Zδ(3)(x − x′)))2 = det(Z · Zδ(3)(x − x′)) = det(−Z ′ ·
Zδ(3)(x− x′)), in agreement, modulo a possible minor typographical error, with [37].

An immediate application is that if the theory passes the completion requirement,
path integral quantisation can be carried out [44]. In particular, it is possible to read
off √

detF = det
[(

C0αβ + Ci1αβ∂i

)
δ(3)(x − x′)

]
, (89)

which is an expression that appears in the measure of the generating functional in path
integral quantisation.

3 Consistency check using Lagrangian constraint analysis

In the previous section, we have presented the criteria for which the theories of n vector
fields with Lagrangian of the form Eq. (14) would have 3n degrees of freedom, which
corresponds to theories of multi-field generalised Proca. In short, the criteria is that
the theory should transform in a standard way under diffeomorphism transformation
and should satisfy Eqs. (13), (35) and (69).

In this section, we present a consistency check of our result by using Lagrangian
constraint analysis developed in [34, 35, 37, 48], andwork out the equivalence between
the conditions to be obtained in this section with those from the previous section.

In this analysis, it is convenient to define collective coordinates as follows. Let
QM , Qα, QA be collective for Aα

μ, Aα
0 , Aα

i , respectively. The Lagrangianwe are inter-
ested in is given by

L = L
(
QM , Q̇M , ∂i Q

M , {K , ∂K , ∂∂K , . . .}
)

, (90)

Euler–Lagrange equations for vector fields are

0 = d

dt

(
∂L

∂ Q̇M

)
+ ∂i

(
∂L

∂∂i QM

)
− ∂L

∂QM

= WMN Q̈
N + αM , (91)

where

WMN ≡ ∂2L
∂ Q̇M∂ Q̇N

, (92)

αM = ∂2L
∂ Q̇M∂QN

Q̇N + ∂2L
∂ Q̇M∂∂i QN

∂i Q̇
N

+ ∂2L
∂ Q̇M∂∂ρ1 · · · ∂ρr ′′′ (K

(r))μ1···μr ′
ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ (K̇

(r))μ1···μr ′
ν1···νr ′′

123



5 Page 20 of 39 S. Janaun, P. Vanichchapongjaroen

+∂i

(
∂L

∂∂i QM

)
− ∂L

∂QM
. (93)

Note that Eqs. (91)–(93) suggest that higher time derivatives on the external fields
in the Euler–Lagrange equations for vector fields can be present. This, however, is
not problematic since the external fields are non-dynamical since they appear in these
equations as predetermined functions. So their time derivatives are also predetermined
functions. The special Hessian conditions Eq. (13) give the following conditions on
WMN :

WαN = 0, det(WAB) �= 0. (94)

So Euler Lagrange Eq. (91) can be separated into equations of motion:

WAB Q̈
B + αA = 0, (95)

and primary constraints
αα = 0. (96)

Let MAB be the inverse of WAB . So the equations of motion imply

Q̈ A + MABαB = 0. (97)

Time evolution of constraints is given by, after making use of Eq. (97),

α̇α =
1∑

|I|=0

∂αα

∂∂I Q̇β
∂I Q̈β +

2∑
|I|=0

∂αα

∂∂IQM
∂I Q̇M −

1∑
|I|=0

∂αα

∂∂I Q̇B
∂I(MBCαC )

+ ∂αα

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ (K̇
(r))μ1···μr ′

ν1···νr ′′ . (98)

We demand that the process should not terminate at this stage. So the conditions
α̇α = 0 should not introduce further dynamics on the vector fields. This means that the
expressions with second order derivative in time of Qβ should not appear in Eq. (98).
These expressions are Q̈β and ∂i Q̈β. From direct calculation, their coefficients are

∂αα

∂ Q̇β
≡ ∂2L

∂ Q̇α∂Qβ
− ∂2L

∂Qα∂ Q̇β
+ ∂i

(
∂2L

∂∂i Qα∂ Q̇β

)
, (99)

and
∂αα

∂∂i Q̇β
= ∂2L

∂ Q̇α∂∂i Qβ
+ ∂2L

∂ Q̇β∂∂i Qα
. (100)

By using a diffeomorphism condition (A10), the coefficient of ∂i Q̈β vanishes. So we
are left with the terms with Q̈β . In order for the coefficients of these terms to vanish,
we should set

∂αα

∂ Q̇β
= 0, (101)
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which turns out to be equivalent to Eq. (35).
Two remarks are in order. The first is that the analysis in [34] does not show

explicit dependence on spatial derivatives of fields. While this might be sufficient for
the purpose of counting the number of degrees of freedom, the conditions derived
in the process are not readily correct until time dependence on spatial derivatives
of fields are re-introduced. From their analysis, the last term on RHS of Eq. (99) is
missing. This term could be considered as restoring spatial derivatives of fields. The
second remark is that the reference [37] does not seem to mention the dependence
of α̇α on ∂i Q̈β nor on whether their coefficients disappear. We have learned from the
analysis above that diffeomorphism invariance requirement is crucial, at least in the
case of multi-field generalised Proca theories that we are analysing, to make the the
coefficients disappear. It would be interesting to see whether this behaviour is also the
case in the analysis of more general theories given in [37].

Although Lagrangian constraint analysis is more advantageous than Hamiltonian
constraint analysis in that it treats time and space on a more equal footing, the nature
of constraint analysis still requires that time and space should be treated differently.
For example, to see whether there are further constraints, only the time evolution is
required. Some information on manifest covariance would then be lost. In order to
recover them, one needs to make use of the fact that theories are diffeomorphism
invariance (or, in the case of flat spacetime, Lorentz invariance).

Let us continue the analysis. By imposing Eq. (101), we then have n secondary
constraints φα = α̇α ≈ 0. The next step is to consider the time evolution of φα. We
demand that the condition φ̇α ≈ 0 should not lead to further constraints. For this, φ̇α

should contain terms with second order derivative in time on Qβ. These terms are

∂φα

∂ Q̇β
Q̈β + ∂φα

∂∂i Q̇β
∂i Q̈

β + ∂φα

∂∂i∂ j Q̇β
∂i∂ j Q̈

β ∈ φ̇α. (102)

The analysis in [37] does not mention terms with ∂i Q̈β and ∂i∂ j Q̈β. In principle,
these terms are also crucial in determining whether the procedure should be termi-
nated. Analysis of a particular case, for example in [43], also show the dependence of
constraints on these terms, especially ∂i Q̈β.

Let us connect the result in this subsection with the analysis in phase space given
in Sect. 2. For this, we first show that by transforming to tangent bundle, �̃α = −αα.

We start from Eq. (46). Then by using T = L − Uγ Q̇γ , and realising that Uα is
independent of Q̇M , we obtain4

�̃α = −αα +
(

∂Uα

∂Qβ
− ∂Uβ

∂Qα
+ ∂i

(
∂Uβ

∂∂i Qα

))
Q̇β

+
(

∂Uα

∂∂i Qβ
+ ∂Uβ

∂∂i Qα

)
∂i Q̇

β. (103)

4 It is understood that LHS of Eq. (103) is actually the pullback of �̃α to tangent bundle. Throughout this
paper, we do not use different notations to distinguish the functions from their pullbacks as it should be
clear from the context.
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The second and the third term on RHS vanish due to secondary-constraint enforcing
relations (35) and diffeomorphism invariance requirement (A10). This finally gives

�̃α = −αα, (104)

as required. Then by following the calculations outlined in Appendix 1, we obtain

∂φα

∂ Q̇β
= −C0αβ,

∂φα

∂∂i Q̇β
= −Ci1αβ,

∂φα

∂∂i∂ j Q̇β
= 0. (105)

Note in passing that the condition

C0αβ = C0βα − ∂iCi1βα, (106)

which is also proven in Appendix 1 is crucial in the derivation of Eq. (105).
Therefore, time evolution of φ̇α is of the form

φ̇α = −
(
C0αβ + Ci1αβ∂i

)
Q̈β + · · · , (107)

where · · · are terms with up to first order in time derivative in QM . In order for φ̇ ≈ 0
not to lead to further constraints, we should demand that it is equivalent to

Q̈β + · · · = 0. (108)

This would be possible only when the differential operator

(
C0αβ + Ci1αβ∂i

)
(109)

is invertible. Equivalently, this differential operator should have no zero mode. This
would lead exactly to the completion requirements (69) given at the end of Sect. 2.2.2.

We have seen that the analysis of Lagrangian constraint analysis agree with the
Faddeev–Jackiw constraint analysis. In particular, the functions C0αβ and Ci1αβ appear
in ones of the important conditions. Having worked with Lagrangian analysis, we are
now in a position to express them in a more useful form. They are

C0αβ = − ∂αα

∂Aβ
0

− ∂ j

(
∂α

j
α

∂ Ȧβ
0

)
+ ∂αk

γ

∂ Ȧα
0

Mγ δ

kl

∂αl
δ

∂ Ȧβ
0

, (110)

Ci1αβ = − ∂αα

∂∂i A
β
0

− ∂αi
α

∂ Ȧβ
0

− ∂αα

∂ Ȧβ
i

, (111)

where

∂αα

∂Aβ
0

= ∂μ

(
∂2L

∂∂μAα
0∂Aβ

0

)
− ∂2L

∂Aα
0∂Aβ

0

, (112)
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∂αk
γ

∂ Ȧβ
0

= ∂2L
∂Aβ

0 ∂ Ȧγ

k

+ ∂i

(
∂2L

∂ Ȧβ
0 ∂∂i A

γ

k

)
− ∂2L

∂ Ȧβ
0 ∂Aγ

k

, (113)

∂αα

∂∂i A
β
0

= ∂μ

(
∂2L

∂∂μAα
0∂∂i A

β
0

)
+ 2

∂2L
∂∂i A

[α
0 ∂Aβ]

0

. (114)

4 Application of the sufficient conditions

In the previous sections, we have studied a class of theories of n vector fields, with a
possibility to couple to non-dynamical external fields, as described at the beginning
of Sect. 2. For the theories in this class, let us call Eqs. (13), (40), (69) as sufficient
conditions because if these conditions are satisfied, the theory of interest will have the
correct constraint structure as an n−field generalised Proca system coupled to non-
dynamical external fields. In more details, these conditions are the special Hessian
condition (13), secondary-constraint enforcing relation (40), as well as the completion
requirement (69) which demands that Eq. (66) contains no zero mode. The completion
requirement is the most involved. In order to consider them, one needs to write down
the expression of C0αβ and Ci1αβ. Their explicit forms can be computed by using
Eqs. (110)–(114).

In this section, we will demonstrate the use of the criteria presented in Sects. 2–3.
We provide a few examples of theories which pass these requirements, as well as
an example theory which does not pass, but is previously incorrectly identified in the
literature as being legitimate. These examples should be sufficient to serve the purpose.
They are, however, far from exhaustive. We expect that many other theories passing
these requirements are already presented in the literature, but some of them may have
been previously misinterpreted.

4.1 Examples

4.1.1 Separable multi-field generalised Proca theories

One of simple examples is the case where each of the n vector fields in the system does
not couple to one another. The system is considered to be separated into n sub-systems
of single vector field, possibly coupled to external fields. It could then be expected
that one can simply separately apply the constraint analysis on each sub-system. For
example, an analysis of [25] confirms that as long as each sub-system describes a
generalised Proca field, possibly coupled to external fields, then the vector sector has
3 degrees of freedom.

Direct use of the results presented in Sects. 2–3 can also easily be done. The
Lagrangian of the example system takes the form

L =
n∑

α=1

L(α), (115)
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where for each α ∈ {1, 2, . . . , n}, the sub-Lagrangian L(α) is a function of only the
αth vector field Aα

μ, its first order derivative ∂μAα
ν , and possibly external fields; but

L(α) does not depend on the βth vector fields nor their derivatives if β �= α. After
demanding that it satisfies the special Hessian condition (13), we obtain

L(α) = T(α) +Uα Ȧ
α
0 (no summation overα). (116)

So we have
∂Uα

∂Aβ
0

= δαβ

∂Uα

∂Aα
0

(no summation over α), (117)

and from Eq. (A10), we have
∂Uα

∂∂i A
β
0

= 0. (118)

Therefore, the secondary-constraint enforcing relations are automatically satisfied.
Next, since the derivative of L(α) with respect to Aβ

μ or ∂μA
β
ν vanish if α �= β, then

C0αβ and Ci1αβ are diagonal matrices. In fact, since Ci1αβ = −Ci1βα, we can conclude

that Ci1αβ = 0. So we have

C0αβ = C0ααδαβ, Ci1αβ = 0, (no summation over α). (119)

Then in order for Eq. (66) to have no zero mode, we should require

det(C0αβ) =
n∏

α=1

C0αα �= 0, (120)

which is possible if C0αα �= 0 for each α ∈ {1, 2, . . . , n}. This means that each sub-
system has to be described by a generalised Proca field, possibly coupled to external
fields.

4.1.2 A less trivial example

Let us consider an example theory whose Lagrangian is of the form

L = L2
(
Aα

μ, Aα
μν, {K , ∂K , ∂∂K , . . .}) , (121)

where Aα
μν ≡ ∂μAα

ν −∂ν Aα
μ. It is one of the simplest forms of multi-field generalised

Proca theories being presented in the literature, see for example [34–36, 42]. We
confirm that the theory is indeed legitimate. For this theory,

∂L
∂∂μAα

ν

= − ∂L
∂∂ν Aα

μ

= 2
∂L2

∂Aα
μν

. (122)
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This immediately gives Uα = 0. So the secondary-constraint enforcing relations (40)
is trivially satisfied. Furthermore, C0αβ and Ci1αβ are simplified to

C0αβ = ∂2L2

∂Aα
0∂Aβ

0

− 4
∂2L2

∂Aγ
0 j∂Aα

0
Mγ δ

jk
∂2L2

∂Aδ
0k∂A

β
0

, Ci1αβ = 0. (123)

It can be seen that, apart from some exceptions, det C0αβ �= 0. So the theory has the
required number of degrees of freedom, and hence is an n−field generalised Proca
theory.

A notable exception is when L is independent from Aα1
0 for α1 ∈ {1, 2, . . . , r},

where 1 < r ≤ n. While the criteria provided in Sects. 2–3 can only be used to state
that this exception is not an n−field generalised Proca theory, it should nevertheless
intuitively be expected that it describes (n−r) generalised Proca fields while the other
r fields might be, provided that it passes some further criteria, generalised Maxwell
fields. These criteria, if any, should arise when one considers multi-field generalised
Maxwell–Proca theories. While [34, 35, 37] might have already provided the criteria
for identifying multi-field generalised Maxwell–Proca theories, we have found in this
work that even when restricted to purely (multi-field) Proca theories, their analysis
seems to require some non-trivial refinements. So we expect that the refinements to
the criteria of multi-field generalised Maxwell–Proca theories are needed. We leave
this for future works.

Nevertheless, suppose that we have considered a Lagrangian L(1) whose Ci1αβ,

denoted Ci1αβ(L(1)), is zero while its C0αβ, denoted C0αβ(L(1)), is singular. It could

still be possible to add to it another Lagrangian L(2) with Ci1αβ(L(2)) = 0 so that the

resulting Lagrangian L(1) +L(2) might describe an n−field generalised Proca theory.
This is because, due to Eq. (111), Ci1αβ is linear. So Ci1αβ(L(1) +L(2)) = Ci1αβ(L(1))+
Ci1αβ(L(2)) = 0. On the other hand, due to the last term on RHS of Eq. (110), C0αβ is

non-linear. So C0αβ(L(1) +L(2)) = C0αβ(L(1))+C0αβ(L(2))+non-linear(L(1),L(2)).

Due to non-linearity of C0αβ and of its determinant, it is likely that C0αβ(L(1) +L(2)) is
not singular even if both C0αβ(L(1)) and C0αβ(L(2)) are singular. Of course, although
highly likely to be the case, direct calculations are required in each case to confirm
whether this is truly the case.

4.1.3 A legitimate theory previously misinterpreted

Allys et al. [42], actions formultiple vector fields are constructed by using a systematic
approach which demands that the special Hessian condition is satisfied. In principle,
this is not sufficient to give legitimate theories as further conditions, for example
secondary-constraint enforcing relations, are required. The reference [34] points out
that one of theories proposed in [42], does not pass secondary-constraint enforcing
relations and hence contains extra degrees of freedom. The Lagrangian of this theory
is

L = −1

4
Aα

μν Aα
μν − 4λ

(
Aασ Aβ

σ ∂μAα[μ∂ν Aβ
ν] + Aα[μA

β
ν]∂

μAα
ρ∂ν Aβρ

)
, (124)
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where λ is a non-zero constant. Actually, since secondary-constraint enforcing
relations presented in [34] miss some terms in the expression, in principle, the inter-
pretation being drawn should be revised.

Let us argue that in fact the theory (124) is legitimate. By direct calculation, one
obtains

∂2L
∂ Ȧα

0∂Aβ
0

− ∂2L
∂ Ȧβ

0 ∂Aα
0

= −8λ∂i

(
Aα[0A

β
i]
)

= −∂i

(
∂2L

∂ Ȧβ
0 ∂∂i Aα

0

)
, (125)

which means that the secondary-constraint enforcing relation (40) is satisfied. There-
fore, contrary to the interpretation given in [34], the theory Eq. (124) has secondary
constraints. Furthermore, this theory is in fact an n−field generalised Proca theory. To
see this, one notes that by making direct computation one obtains

Ci1αβ = 0. (126)

It can then be checked that if λ �= 0, then det(C0αβ) �= 0. Therefore, the completion
requirement (69) is satisfied.

Of course, the same conclusion can also be reached if one directly starts from the
Lagrangian (124) and performs either Hamiltonian or Lagrangian constraint analysis.

We expect that there are also other theories presented in [42] which are legitimate
but is previously incorrectly ruled out. A common feature for these theories is that

∂2L
∂ Ȧα

0∂Aβ
0

− ∂2L
∂ Ȧβ

0 ∂Aα
0

�= 0, (127)

which makes them incorrectly ruled out. So if ∂2L/(∂ Ȧβ
0 ∂∂i Aα

0 ) �= 0, then one might

try to see if −∂i (∂
2L/(∂ Ȧβ

0 ∂∂i Aα
0 )) would cancel out with LHS of (127). If this is the

case, then one can proceed to check the completion requirement.

4.1.4 An undesired theory previously misinterpreted

After the reference [34] suggests that the special Hessian conditions are not sufficient,
and that the secondary-constraint enforcing relations should be satisfied, theories are
being proposed in the literature in order to satisfy the required relations. Notable
examples are [34–36].

Let us argue that, by using a refined version of secondary-constraint enforcing
relations, some of the theories in fact are undesired, i.e. they contain extra degrees
of freedom. In particular, we explicitly show one example from [36]. This particular
example has the Lagrangian of the form

L=−2Aα
μνS

βμ
σ Aαρ Aβλε

νσρλ + Sα
μνS

βν
σ Aαρ Aβλε

μσρλ, (128)
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where Sα
μν ≡ ∂μAα

ν + ∂ν Aα
μ. By direct calculation, one obtains

∂2L
∂ Ȧα

0∂Aβ
0

− ∂2L
∂ Ȧβ

0 ∂Aα
0

= 0 �= −∂i

(
∂2L

∂ Ȧβ
0 ∂∂i Aα

0

)
. (129)

Therefore, this theory is in fact undesired.
We expect that there are also other theories presented in the literature which contain

extra degrees of freedom but is previously interpreted as being well-behaved. For these
theories, ∂2L/(∂ Ȧα

0∂Aβ
0 ) − ∂2L/(∂ Ȧβ

0 ∂Aα
0 ) = 0. So if they are truly undesired, one

should find that −∂i (∂
2L/(∂ Ȧβ

0 ∂∂i Aα
0 )) �= 0, which would violate the secondary-

constraint enforcing relations (40).

4.2 Cosmological implications

Multi-field generalised Proca theories have been applied for example in [11–13] to
explain cosmological phenomena. In some of these studies, the conditions presented
by [34, 35] are taken into consideration. However, as we have been discussing, these
conditions are incorrect and should be replaced by Eq. (40). In principle, one should
then investigate the validation of the cosmological implications presented in [11–13].
In this subsection, we discuss a direction for further investigations on these works.

Rodríguez and Navarro [11], a Lagrangian involving Einstein–Hilbert term, SU (2)
Yang–Mills term LYM , and a term called αL1

4 where α is a constant is considered.
Autonomous dynamical system analysis of this model in a homogeneous and isotropic
background is studied which allows dark energy and primordial inflation to be dis-
cussed.While the dark energy case leads to an interesting result, the primordial inflation
case is problematic as the model is strongly sensitive to initial conditions and the value
of α. It is then suggest that one should also include a term κL2

4, where κ is a constant,
into the Lagrangian and see if the problem can be evaded.

Let us discuss whether the Lagrangian presented in [11] would pass the sufficient
conditions in Sect. 2. Note that for the theory in [11], gravity is dynamical whereas the
sufficient conditions we have presented is useful when the gravity is non-dynamical.
Nevertheless, a simple check can still be performed in the case of flat spacetime, in
which case LYM is a function of Aα

μ, Aα
μν, whereas L1

4 is a function of Aα
μ, ∂μAα

ν

in such a way that ∂2L1
4/∂ Ȧ

α
0∂Aβ

0 = ∂2L1
4/∂ Ȧ

β
0 ∂Aα

0 , ∂2L1
4/(∂ Ȧ

α
0∂∂i A

β
0 ) = 0. So

it can easily be seen from the discussion of Sect. 4.1 that the theory in [11] pass the
sufficient conditions.

It would also be interesting to investigate whether the suggestion to include the
term κL2

4 still valid, as far as our sufficient conditions are concerned. So let us also
consider the case of flat spacetime. In this case, it can easily be seen that LYM + κL2

4
is simply expressible as a summation of the Lagrangians (121) and (124). So indeed
the term κL2

4 can be included to extend the model of [11]. Note on the other hand
that if one had used the criteria of [34, 35], the term κL2

4 would have been incorrectly
ruled out.
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Gómez and Rodríguez [12], Garnica et al. [13], cosmological implications of multi-
field generalised Proca theories are also investigated. It turns out however that some
terms of the Lagrangian, for example L2

4 presented in [11], has been incorrectly ruled
out according to the criteria of [34, 35]. But as discussed in the previous paragraph,
such a term in fact passes the criteria presented in Sect. 2, so there is no problem
with the number of degrees of freedom. It would be interesting to see for example the
cosmological implication of the inclusion of L2

4 to the models of [12, 13].

5 Discussion and conclusion

In this work, we have worked out the sufficient conditions to make a theory describe
multi-field generalised Proca theory, possibly coupled to non-dynamical external
fields. We focus on a class of theories whose Lagrangians are functions of up to first-
order derivative of the vector fields. Furthermore, we demand that the Lagrangian of
each theory satisfies the special Hessian condition (13), free of Ostrogradski instability
and that it transforms in a standard way under standard diffeomorphism. Theories in
this class should also pass the secondary-constraint enforcing relations (35) (or equiv-
alently, Eq. (40)) as well as the completion requirements (69) which can be computed
using Eqs. (110)–(114).

As a standard mathematical terminology, one says that a condition C is sufficient
for an event E if whenever C is true the event E always occurs. So in this context, we
call Eqs. (13), (40), (69) as sufficient conditions for degrees of freedom counting of
multi-field generalised Proca theories because if the set of these conditions is satisfied,
the theory of interest (being, as described at the beginning of Sect. 2, diffeomorphism
invariant and free of Ostrogradski instability) will have the correct constraint structure
and hence correct number of degrees of freedom as an n−field generalised Proca
system possibly coupled to non-dynamical external fields.

Wehave obtained these conditions by usingFaddeev–Jackiw constraint analysis and
cross checked using Lagrangian constraint analysis. In the analysis, diffeomorphism
invariance requirements, Eqs. (A10), (A16)–(A17) are needed. The diffeomorphism
invariance requirements are not extra conditions. They are in fact conditions for which
every diffeomorphism invariance theory is satisfied. If one analyses each specific the-
ory one by one, it can be explicitly seen that these requirements are automatically
satisfied. However, if one analyses a class of theories at a time, diffeomorphism invari-
ance is less manifest as, by the nature of constraint analysis, time and space are not
treated on equal footing. In this case, diffeomorphism invariance requirements help to
realise the diffeomorphism invariance that every theory in the class possesses. These
requirements are especially useful in simplifying key expressions in intermediate steps.
Let us provide two example instances where the usefulness of diffeomorphism invari-
ance requirements when analysing a class of theories are shown.

The first example is that, if the secondary-constraint enforcing relations (35) is
imposed, and if one does not know that theories which are diffeomorphism invariant
should satisfy Eq. (A10), one would not be able to see, when analysing a class of
theories, that Eq. (32) is trivial, and hence would impose Eq. (A10) as another, but
is in fact obsolete, secondary-constraint enforcing relations. Another notable exam-
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ple is that diffeomorphism invariance requirements allow us to realise the connection
between results from Faddeev–Jackiw constraint analysis and Lagrangian constraint
analysis. The diffeomorphism invariance requirements have been helping in simpli-
fying C0αβ, Ci1αβ, Ci j2αβ and allowing us to realise that these expressions also appear,
after transforming to tangent bundle, in Lagrangian constraint analysis.

Secondary-constraint enforcing relations we have obtained in this paper is a correc-
tion to [34, 35]. This means that behaviour of some theories are previously misjudged.
We have shown in Sect. 4.1 an example of a legitimate theory previously misinter-
preted as containing extra degrees of freedomaswell as an example of undesired theory
with extra degrees of freedom previously misinterpreted as being legitimate. We leave
the work of identifying or constructing all of the theories which pass the secondary-
constraint enforcing relations and the completion relations for future. Nevertheless,
a consequence can readily be discussed and is provided in Sect. 4.2 which points
out that legitimate terms previously misjudged could be reintroduced into models to
investigate cosmological implications.

An important future work is to analyse a larger class of theories, not necessarily
restricted to those describing only vector fields. In fact, an important step has already
been laid out by [37], which gives criteria for counting the number of degrees of
freedom for theories with Lagrangians as functions of up to first order derivative in
fields. These criteria, however, should be revised because as points out by [33], the
analysis of [37] is not correct even in the case of the standard Proca theory. Addi-
tionally, as reported in our paper, the analysis of [37] when specialised to multi-field
generalised Proca theories misses terms in intermediate steps, for example ∂i Q̈β and
∂i∂ j Q̈β within φ̇α. The corrections are required to address these issues. Once they
are taken care of, we expect that the analysis would benefit from the help of dif-
feomorphism conditions. This is because in constraint analysis, even for Lagrangian
constraint analysis, time and space are not treated on an equal footing. So the manifes-
tation of diffeomorphism invariance (or, in case of flat spacetime, Lorentz isometry) is
lost in the steps. The manifestation could be recovered with the use of diffeomorphism
invariance requirements.

In particular, since the external fields, including gravity, considered in this paper
are all non-dynamical, one might attempt to extend the analysis of this paper by
considering n vector fields coupled to dynamical gravity and see if it is possible to
obtain the criteria for the theory to describe n-field Proca theory, or even Maxwell–
Proca theory, coupled to dynamical gravity.
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Appendix A: Conditions from diffeomorphism invariance

In this appendix, we consider a class of theories described in Sect. 2. Since these
theories are diffeomorphism invariant, their Lagrangians would satisfy the conditions
to be presented in this appendix.

Under diffeomorphism xμ → xμ − εμ(x), the vector fields transform as

δε A
α
μ = εν∂ν A

α
μ + Aα

ν ∂μεν, (A1)

and the external fields {K } transform under standard diffeomorphism. The Lagrangian
density transforms as

δεL = ∂μ(εμL). (A2)

Demanding the expression δεL−∂μ(εμL) to vanish will give rise to useful conditions.
In order to evaluate this expression, we begin by recall that L = T +Uα Ȧα

0 . Then we
consider

δεT = ∂T

∂Aα
ν

δε A
α
ν + ∂T

∂∂k Aα
ν

∂kδε A
α
ν + ∂T

∂ Ȧα
k

∂0δε A
α
k

+ ∂T

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′ . (A3)

Next, let us consider

− ∂μ(εμT ) = −∂μεμT − εμ

(
∂T

∂Aα
ν

∂μA
α
ν + ∂T

∂∂k Aα
ν

∂k∂μA
α
ν + ∂T

∂ Ȧα
k

∂0∂μA
α
k

)

−εμ ∂T

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′ . (A4)

Combining the two expressions, we obtain

δεT − ∂μ(εμT )

= ∂T

∂Aα
ν

Aα
μ∂νε

μ + ∂T

∂∂k Aα
ν

(
∂kε

μ∂μA
α
ν + ∂k A

α
μ∂νε

μ + Aα
μ∂k∂νε

μ
)

+ ∂T

∂ Ȧα
k

(
ε̇μ∂μA

α
k + Ȧα

μ∂kε
μ + Aα

μ∂k ε̇
μ
) − ∂μεμT

+ ∂T

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′

−εμ ∂T

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′ . (A5)
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Let us also compute

δε

(
Uβ Ȧ

β
0

)
= ∂Uβ

∂Aα
ν

(
εμ∂μA

α
ν + Aα

μ∂νε
μ
)
Ȧβ
0 + ∂Uβ

∂∂i Aα
ν

∂i
(
εμ∂μA

α
ν + Aα

μ∂νε
μ
)
Ȧβ
0

+ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′

+Uβ∂0

(
εμ∂μA

β
0 + Aβ

ν ∂0ε
ν
)

, (A6)

and

−∂μ(εμUβ Ȧ
β
0 )

= −∂μεμUβ Ȧ
β
0 − εμ

(
∂Uβ

∂Aα
ν

∂μA
α
ν + ∂Uβ

∂∂i Aα
ν

∂i∂μA
α
ν

)
Ȧβ
0

−εμ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′

−εμUβ∂μ Ȧ
β
0 . (A7)

So we have

δε(Uβ Ȧ
β
0 ) − ∂μ(εμUβ Ȧ

β
0 )

= ∂Uβ

∂Aα
ν

Aα
μ∂νε

μ Ȧβ
0 +Uβ(ε̇μ∂μA

β
0 + εμ∂μ Ȧ

β
0 + Ȧβ

ν ∂0ε
ν + Aβ

ν ε̈ν)

−∂μεμUβ Ȧ
β
0 − εμUβ∂μ Ȧ

β
0

+ ∂Uβ

∂∂i Aα
ν

(∂iε
μ∂μA

α
ν + ∂i A

α
μ∂νε

μ + Aα
μ∂i∂νε

μ) Ȧβ
0

+ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′

−εμ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′ . (A8)

Combining Eq. (A5) with Eq. (A8), we obtain the expression for δεL − ∂μ(εμL).

We are now ready to obtain useful conditions. Let us note that the expression
δεL− ∂μ(εμL) is a polynomial in Ȧα

0 up to degree two. Consider the term containing

Ȧα
0 Ȧ

β
0 in δεL − ∂μ(εμL). It can easily be seen that there is only one term which is

∂Uβ

∂∂i Aα
0
∂iε

0 Ȧα
0 Ȧ

β
0 . (A9)
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Demanding this expression to vanish gives

∂Uα

∂∂i A
β
0

+ ∂Uβ

∂∂i Aα
0

= 0. (A10)

Let us next turn to the coefficients of Ȧβ
0 . For this, it would be convenient to consider

Eqs. (A5) and (A8) and collect the terms proportional to Ȧβ
0 . We have

δεT − ∂μ(εμT ) � ∂T

∂∂k Aα
0
∂kε

0 Ȧα
0 + ∂T

∂ Ȧα
k

Ȧα
0∂kε

0, (A11)

and

δε(Uβ Ȧ
β
0 ) − ∂μ(εμUβ Ȧ

β
0 )

� ∂Uβ

∂Aα
ν

Aα
μ∂νε

μ Ȧβ
0 +Uβ(ε̇0 Ȧβ

0 + Ȧβ
0 ε̇0) − ∂μεμUβ Ȧ

β
0

+ ∂Uβ

∂∂i Aα
ν

(∂iε
μ∂μA

α
ν + ∂i A

α
μ∂νε

μ + Aα
μ∂i∂νε

μ)

∣∣∣∣
Ȧα
0=0

Ȧβ
0

+ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′

−εμ Ȧβ
0

∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′ . (A12)

Therefore, we have

∂T

∂∂k A
β
0

∂kε
0 + ∂T

∂ Ȧβ
k

∂kε
0 + ∂Uβ

∂Aα
ν

Aα
μ∂νε

μ + 2Uβ ε̇0 − ∂μεμUβ

+ ∂Uβ

∂∂i Aα
ν

(∂iε
μ∂μA

α
ν + ∂i A

α
μ∂νε

μ + Aα
μ∂i∂νε

μ)

∣∣∣∣
Ȧα
0=0

+ ∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ δε(K
(r))μ1···μr ′

ν1···νr ′′

−εμ ∂Uβ

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′

×∂ρ1 · · · ∂ρr ′′′ ∂μ(K (r))μ1···μr ′
ν1···νr ′′ = 0. (A13)

Although the above equation looks complicated especially due to the explicit presence
of external fields, we will only extract some parts of this equation to obtain the condi-
tions that we will need. These conditions will look much more simple. For example,
the dependence on the external fields and their derivatives are only through T and
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Uβ. We may derive these conditions as follows. Taking derivative of Eq. (A13) with
respect to Ȧα

j gives

∂2T

∂∂k A
β
0 ∂ Ȧα

j

+ ∂2T

∂ Ȧβ
k ∂ Ȧα

j

+ ∂Uβ

∂∂k Aα
j

= 0. (A14)

Let us take derivative of Eq. (A13) with respect to ∂ j Aα
0 , then swap the indices α and

β, add it to the original equation, and use Eq. (A10), we obtain

2
∂2T

∂∂ j A
(α
0 ∂∂k A

β)
0

+2
∂2T

∂∂ j A
(α
0 ∂ Ȧβ)

k

+ ∂Uβ

∂∂ j Aα
k

+ ∂Uα

∂∂ j A
β
k

= 0. (A15)

Expressing in phase space, the conditions Eqs. (A14)–(A15) become

∂2T
∂∂k A

β
0 ∂α

j

+ ∂2T
∂

β
k ∂α

j

+ ∂Uβ

∂∂k Aα
j

= 0, (A16)

and

2
∂2T

∂∂ j A
(α
0 ∂∂k A

β)
0

+2
∂2T

∂∂ j A
(α
0 ∂

β)
k

+ ∂Uβ

∂∂ j Aα
k

+ ∂Uα

∂∂ j A
β
k

= 0. (A17)

By substituting Eq. (A16) into Eq. (A17), we obtain

∂2T
∂∂( j |Aα

0∂∂|k)Aβ
0

− ∂2T
∂α

( j∂
β

k)

= 0. (A18)

Appendix B: Expressions of @�˛/@@IQ̇ˇ in phase space

In this appendix, we outline necessary steps to express ∂φα/∂∂I Q̇β in phase space.
We use the same set-up and notations as those given in Sects. 2–3. For convenient, let
us denote PA and A as collective for π i

α and α
i , respectively.

The idea is to first express ∂φα/∂∂I Q̇β in terms of αM . This can be achieved
by recalling from Sect. 3 the Eq. (98). Recall also that diffeomorphism invariance
requirements and demanding α̇α = 0 to not introduce further dynamics on the vector
fields imply that ∂αα/∂ Q̇β = 0 = ∂αα/∂∂i Q̇β . Furthermore, due to the form of the
Lagrangian of interest, we also have ∂αα/∂∂i1∂i2 · · · ∂il Q̇β = 0 for l ≥ 2. So

∂αα

∂∂I Q̇β
= 0. (B1)
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Then since φα = α̇α we have, from Eqs. (98) and (B1)

φα =
2∑

|I|=0

∂αα

∂∂IQM
∂I Q̇M −

1∑
|I|=0

∂αα

∂∂I Q̇B
∂I(MBCαC )

+ ∂αα

∂∂ρ1 · · · ∂ρr ′′′ (K
(r))μ1···μr ′

ν1···νr ′′ ∂ρ1 · · · ∂ρr ′′′ (K̇
(r))μ1···μr ′

ν1···νr ′′ . (B2)

Due to Eq. (B1), it can be seen that φα depend on ∂I Q̇β only through the expressions
∂I Q̇M and ∂I(MBCαC ) which appear in the above equation. This gives

∂φα

∂∂I Q̇β
= ∂αα

∂∂IQβ
− ∂αα

∂∂J Q̇ A

∂∂J (MABαB)

∂∂I Q̇β
. (B3)

We thenneed to compute each expressiononRHSofEq. (B3). For this, let us directly
express αA in terms of Lagrangian then transforming to phase space, but transform αα

to −�̃α (cf. Equation (104)). Direct calculations can be given as follows. In order to
evaluate ∂∂J (MABαB)/∂∂I Q̇β we note that ∂MAB/∂∂I Q̇β = 0 for |I| ≥ 0 whereas
αB depends on Q̇β and ∂i Q̇β but not on ∂I Q̇β where |I| ≥ 2. By writing ∂kαB using
chain rule and taking derivative with respect to ∂I Q̇β, we obtain

∂∂kαB

∂∂i∂ j Q̇β
= ∂αB

∂∂l Q̇β
δi(kδ

j
l),

∂∂ jαB

∂∂i Q̇β
= ∂ j

∂αB

∂∂i Q̇β
+ δij

∂αB

∂ Q̇β
,

∂∂ jαB

∂ Q̇β
= ∂ j

∂αB

∂ Q̇β
. (B4)

This gives

∂∂k(MABαB)

∂∂i∂ j Q̇β
= ∂((∂kM AB)αB + MAB∂kαB)

∂∂i∂ j Q̇β

= MAB ∂∂kαB

∂∂i∂ j Q̇β

= MAB ∂αB

∂∂l Q̇β
δi(kδ

j
l), (B5)

∂∂ j (MABαB)

∂∂i Q̇β
= ∂ j

(
MAB ∂αB

∂∂i Q̇β

)
+ δij M

AB ∂αB

∂ Q̇β
, (B6)

∂∂ j (MABαB)

∂ Q̇β
= ∂ j

(
MAB ∂αB

∂ Q̇β

)
. (B7)

Next, let us express ∂αB/∂∂I Q̇β in terms of phase space variables. The calculations
will involve ∂(∂ j (∂L/∂∂ j QB))/∂∂I Q̇β, which can be computed by first using the
chain rule for ∂ j and then taking derivative with respect to ∂I Q̇β. The relevant results
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are

∂

∂ Q̇β

(
∂i

(
∂L

∂∂i QB

))
= ∂i

(
∂2L

∂ Q̇β∂∂i QB

)
,

∂

∂∂i Q̇β

(
∂ j

(
∂L

∂∂ j QB

))
= ∂2L

∂ Q̇β∂∂i QB
. (B8)

So

∂αB

∂ Q̇β
= ∂2L

∂ Q̇B∂Qβ
+ ∂i

(
∂2L

∂ Q̇β∂∂i QB

)
− ∂2L

∂ Q̇β∂QB

= ∂2T
∂Qβ∂B

+ ∂i

(
∂Uβ

∂∂i QB

)
− ∂Uβ

∂QB
, (B9)

∂αB

∂∂i Q̇β
= ∂2L

∂∂i Qβ∂ Q̇B
+ ∂2L

∂∂i QB∂ Q̇β

= ∂2T
∂∂i Qβ∂B

+ ∂Uβ

∂∂i QB
. (B10)

Next, let us express ∂αα/∂∂IQβ in phase space. For this, we first use Eq. (104) to
transform αα to −�̃α. More precisely, this is

αα = −�̃α

(
QM , ∂i Q

M , ∂i∂ j Q
M , PB , ∂i PB, {K , ∂K , ∂∂K , . . .}

)
, (B11)

such that PB = PB(QM , ∂i QM , Q̇B, {K , ∂K , ∂∂K , . . .}), in which both sides of
Eq. (B11) are both functions on the tangent bundle. So when taking derivative of αα

with respect to ∂IQβ,we need to also take into account that PB and ∂i PB also depend
on ∂IQβ.Aspart of the intermediate calculations,weneed to compute ∂∂k PB/∂∂IQβ,

which can be done by first writing ∂k PB using chain rule, then taking derivative with
respect to ∂IQβ. We have

∂∂k PB

∂∂i∂ j Qβ
= ∂PB

∂∂l Qβ
δi(kδ

j
l),

∂∂k PB

∂∂i Qβ
= ∂k

(
∂PB

∂∂i Qβ

)
+ δik

∂PB

∂Qβ
,

∂∂k PB

∂Qβ
= ∂k

(
∂PB

∂Qβ

)
. (B12)

Then we use Eq. (45), which is equivalent to PB = ∂T /∂B . Keeping these in mind,
we have

∂αα

∂∂i∂ j Qβ
= − ∂�̃α

∂∂i∂ j Qβ
− ∂�̃α

∂∂(i |PB

∂PB

∂∂| j)Qβ

= − ∂�̃α

∂∂i∂ j Qβ
− ∂�̃α

∂∂(i |PB

∂2T
∂∂| j)Qβ∂B

, (B13)
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∂αα

∂∂i Qβ
= − ∂�̃α

∂∂i Qβ
− ∂�̃α

∂∂I PB
∂I

(
∂PB

∂∂i Qβ

)
− ∂�̃α

∂∂i PB

∂PB

∂Qβ

= − ∂�̃α

∂∂i Qβ
− ∂�̃α

∂∂I PB
∂I

(
∂2T

∂∂i Qβ∂B

)

− ∂�̃α

∂∂i PB

∂2T
∂Qβ∂B

, (B14)

∂αα

∂Qβ
= − ∂�̃α

∂Qβ
− ∂�̃α

∂∂I PB
∂I

(
∂PB

∂Qβ

)

= − ∂�̃α

∂Qβ
− ∂�̃α

∂∂I PB
∂I

(
∂2T

∂Qβ∂B

)
. (B15)

Finally, let us compute ∂αα/∂∂IQβ . For this, as intermediate steps we compute

∂PB

∂ Q̇ A
= ∂2L

∂ Q̇ A∂ Q̇B
= WAB,

∂∂k PB

∂∂i Q̇ A
= δik

∂PB

∂ Q̇ A
= WABδik,

∂∂k PB

∂ Q̇ A
= ∂kWAB . (B16)

Then we have

∂αα

∂∂i Q̇ A
= − ∂�̃α

∂∂i PB
WAB, (B17)

∂αα

∂ Q̇ A
= − ∂�̃α

∂∂i PB
∂iWBA − ∂�̃α

∂PB
WBA. (B18)

Then by substituting Eqs. (B5)–(B7), (B9)–(B10), (B13)–(B15), (B17)–(B18) into
Eq. (B3), we obtain

∂φα

∂ Q̇β
= −C0βα + ∂iCi1βα − ∂i∂ jCi j2βα,

∂φα

∂∂i Q̇β
= Ci1βα − 2∂ jCi j2βα,

∂φα

∂∂i∂ j Q̇β
= −Ci j2βα. (B19)

By using diffeomorphism invariance requirements, Eq. (65) is realised. This simpli-
fies Eq. (B19). Further simplifications are possible. For this, let us note that using
Eqs. (B3)–(B9) and diffeomorphism invariance requirements, one obtains
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∂φα

∂ Q̇β
− ∂φβ

∂ Q̇α
+ ∂i

(
∂φβ

∂∂i Q̇α

)
= ∂αα

∂Qβ
− ∂αβ

∂Qα

+∂i

(
∂αβ

∂∂i Qα
+ ∂αβ

∂ Q̇α
i

+ ∂αi
α

∂ Q̇β

)
. (B20)

Then by expressing αM in terms of Lagrangian and using diffeomorphism invariance
and secondary-constraint enforcing relations, we obtain

∂φα

∂ Q̇β
− ∂φβ

∂ Q̇α
+ ∂i

(
∂φβ

∂∂i Q̇α

)
= 0, (B21)

which is equivalent to the phase space expression

C0αβ = C0βα − ∂iCi1βα. (B22)

Finally, this gives

∂φα

∂ Q̇β
= −C0αβ,

∂φα

∂∂i Q̇β
= −Ci1αβ,

∂φα

∂∂i∂ j Q̇β
= 0. (B23)
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