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1st) Consider the following discrete orthonormal basis in £2(Q2), where  is the interval

[0, £]:
1 2ma
Ya(x) = \/;exp <1€x> , oa=--,—2,—1,0,4+1,+2,--- . (1.1)
Every function v¢(x) € L£2(2) can be expanded in one and only one way in terms of the
(ulo)} )
b(x) = Y Catha(w). (1.2)

As you know, the coefficients of the latter series are given by the formula C, = (¢,,%). Also
note that 1(x) satisfies the periodic boundary condition, i.e., ¥(0) = 1(¢). (a) Try to obtain
the typical Fourier series from the series given above, namely,

Y(z) = Ao+ > A, cos (27;(11) + > B, sin (27;ax) : (1.3)
a=1 a=1

with the coefficients Ay, A, and B, written in terms of the coefficients C,, namely,

1 1/
¢ ma
A, = \/E(C’a +C_,) = ?/0 dz cos <2£ZU) (), (1.5)

B, = \/}(oa 0= i/j dz sin (27;%) b(x). (1.6)

(b) Demonstrate that ¢ (x) is real if and only if C_, = C* (the asterisk *denotes the complex
conjugate, as usual), and therefore, the coefficients Ay, A, and B, are real.
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2nd) Try to demonstrate the following integral representation for the Dirac delta:

+oo +oo
/ dz el = / dz e** = lim dz e*@e~l*l = 27 § (k). (2.1)
R oo a—0 oo

Note that, I am proposing you to add a regularizing factor to derive the expression. You
will also need to use the following representation of the Dirac delta:

1 a
alE)I(l) ;m = (5(/{:) (22)

Note: In both limits, the parameter a approaches zero from the positive side.

3rd) As presented in class, if ¢(z) is a (real or complex) function of the variable z, its
Fourier transform ¢(k), if it exist, is defined by

1 oo .
o) = <= [ deifa) e = FT[u(a) (3.1)
and the inverse formula is:
1 oo )
o) = = [ dkak) et = (FT) o (h) 32)
(a) Demonstrate the following property:
FT(er)] = 1o 0 (k/c). (3.3)

where ¢ is a (real) constant. (b) In particular, FT[¢)(—x)] = ¢(—k), and together with
FT[(z)] = ¢(k) (see Eq. (3.1)), it follows that if the function ¢ (z) has a definite parity, its
Fourier transform ¢(k) has the same parity. Prove it!

4th) (a) Let us consider the following function:

1
w(:v)zﬁ[@(:v—l—a)—@(x—a)], (4.1)

where a > 0 and O(z) is the Heaviside step function, namely, ©(z < 0) = 0 and O(x > 0) =
1. Find the Fourier transform of ¢ (z), namely,

b(k) = \/127 /R dz v(z) ek (4.2)

(b) Is the function ¢ (z) normalized to unity? In other words, is ¥ (z) a square-integrable
function with norm equal to one? (c) But furthermore, is also ¢(k) a square-integrable



function with norm equal to one? Hint: You may find the following integral useful:

/*"O du sin’(u) _
0

T
u2 2"

(4.3)

5th) Prove the following result (in fact, it is a theorem): If ¢(k) and (k) are the respective
Fourier transforms of the square-integrable functions ¢ (x) and x(z), one has that

“+o0o “+o0o

| arv@etn = [ ke mo), (5.)
A particular case of this result is the conservation of the norm
+o0 9 +00 5

[ awer= [ aklemr, (5.2

that is, a function and its Fourier transform have the same norm. This result is called the

Parseval-Plancherel formula.

6th) (a) Demonstrate that the Fourier transform of the Heaviside step function ©(z) is given

by

o(k) =FT[O(x)] = \/12_7T/Rdx O(r)e " = S/_% lim B _1 o (6.1)

(remember that O(z < 0) = 0 and ©(x > 0) = 1). The limit can be evaluated using the
following identity:

lim L P.V. (1) Fimd(k)

a—0 k £ ia k
- f (k) fk) .
ll.e., ill)r(l) /dek:tia :P.V./de:k F 17T/de3f(k‘)6(k‘)

- P.V./defgf) + iwf(o)] | (6.2)

Certainly, f(z) is a regular function at £ = 0 (in these limits, the parameter approaches zero
from the positive side), and P.V. represents the Cauchy principal value of the integral to the
right of the symbol P.V., namely,

P.V./dk:f(kk)zlim /_edkff)Jrlim /Jroodkﬂk) (e > 0). (6.3)

e—0 oo e—0 Te k

(b) Find the inverse Fourier transform of ¢(k)

(FT) " [6(k)) = Vg_ﬁ / dk (k) e+, (6.4)



Did you find what you expected? Hint:

71T/de Singfk'x) _ Sgn(ﬂf) _ 2@@;) —1. (6.5)

7th) Let ¢ = ¢ (z) be a function on which the operator p~! acts, where p = —ihd/dx is the
momentum operator. Let ¢ = ¢(z) be the result of this operation:

¢(a) =P~ ¥(2). (7.1)

(a) How does p~! act on the function ¥ (z)? T will tell you how to answer this question. If
f(p) and g(p) are, respectively, the Fourier transforms of ¢ (z) and ¢(x), we can write the
following relations:

vi) = = | :odpf(m exp (+ie) = 1) == [ :dew) exp (~iLz)

(7.2)
and
R P R T e P
o) = o= [ o) e (+iF2) = o) = = [ drola) exp (hx)( |
7.3
Show that
g()=p""f(p). (7.4)

Multiplying the latter relation by exp(+ipz/h)/v/27h, and then integrating over p, the fol-
lowing result is obtained:

! /Md ) <+ip)—1/+ood L) (+i22)
ot . pPg\p) exp hx = ot . pp p) €xp ﬁx )

or even better
=g o[ ffe-slher e

—00

(where expressions included in Eqs. (7.2) and (7.3) were used). Show that the formula (7.5)
can be written as follows:

o) =5 [ vy o [ ) (7.6)

Note: Formula (7.4) shows that the function g(p) has, in general, a pole at p = 0. To avoid
this result, the condition f(p = 0) = 0 could be imposed, which implies that fj;o da'(2’) =
0. Thus, the result in Eq. (7.6) can be written as follows:

o) =5 [ a' i) (.7
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Clearly, the operator p~! is an integral operator of the form

pl = ;_L/_ dr’ (), (7.8)

and acts on a function of x (which should be placed inside the parenthesis in (7.8) as a
function of 2’). (b) Final note: Verify, using formula (7.7), that p ¢(z) = ¥(z).

8th) In a given representation, or basis, a bounded operator can be represented by a matrix.
If we change the representation, the operator will be represented by a different matrix. On
the other hand, if we write the matrix in the basis of its own eigenvectors, then the matrix

01 ] in the basis of its eigenvectors. Which

is diagonal. Write the Pauli matrix X = [ 10

matrix did you find?
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