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Abstract
We present a review of cosmological solutions in nonlinear massive gravity,
focusing on the stability of perturbations. Although homogeneous and isotropic
solutions have been found, these are now known to suffer from either the
Higuchi ghost or a new nonlinear ghost instability. We discuss two approaches
to alleviate this issue. By relaxing the symmetry of the background by e.g.
breaking isotropy in the hidden sector, it is possible to accommodate a stable
cosmological solution. Alternatively, extending the theory to allow for new
dynamical degrees of freedom can also remove the conditions which lead to the
instability. As examples for this case, we study the stability of self-accelerating
solutions in the quasi-dilatonic extension and generic cosmological solutions
in the varying mass extension. While the quasi-dilaton case turns out to be
unstable, the varying mass case allows stable regimes of parameters. Viable
self-accelerating solutions in the varying mass theory yet remain to be found.

PACS numbers: 04.50.Kd, 14.70.Kv, 98.80.Es

1. Introduction

The search for a finite-range gravity has been a long-standing problem, well motivated by both
theoretical and observational considerations. On the theory side, the existence of a theoretically
consistent extension of general relativity (GR) by a mass term has been a basic question of
classical field theory. After Fierz and Pauli’s pioneering attempt in 1939 [1], this issue has
attracted a great deal of interest. On the observation side, continuing experimental probes of
gravity have revealed new unexpected phenomena at large scales; one of the most profound
discovery is the cosmic acceleration, which was found in 1998 [2]. The extremely tiny energy
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scale associated with the cosmic acceleration hints that gravity might need to be modified in
the infrared (IR). The massive gravity is one of the most interesting attempts in this direction.

However, theoretical and observational consistency of massive gravity theories has been
a challenging issue for several decades. Fierz and Pauli’s model [1], which extends GR by a
linear mass term, suffers from the van Dam–Veltman–Zakharov discontinuity [3, 4]; relativistic
and non-relativistic matter couple to gravity with different relative strengths, no matter how
small the graviton mass is. Although this problem can be alleviated by nonlinear effects, as
suggested by Vainshtein [5], the same nonlinearities lead to ghost instability. Indeed, at the
nonlinear level, the theory loses not only the momentum constraint, but also the Hamiltonian
constraint and, as a result, the nonlinear theory includes up to six degrees of freedom in the
gravity sector. While five of them properly represent the degrees of freedom of a massive
spin-2 field in a Poincaré invariant background, the sixth one is the so-called Boulware–Deser
(BD) ghost [6].

Adopting the effective field theory approach in the decoupling limit (i.e. mg → 0,
Mp → ∞, � → fixed, where � is the cutoff of the theory), it was found that the BD
ghost is related to the longitudinal mode of the Goldstone bosons associated with the broken
general covariance [7]. The construction of a theory free from the BD ghost was only recently
achieved by de Rham, Gabadadze and Tolley (dRGT) [8, 9]. It was shown that the Hamiltonian
constraint and the associated secondary constraint are restored in this theory, eliminating the
BD ghost mode as a result [10–16]4.

However, in order for the theory to be theoretically consistent and observationally viable,
the absence of the BD ghost is not sufficient. At the very least, a stable cosmological solution
is needed.

The purpose of this paper is to review the construction and the stability of cosmological
solutions in the context of nonlinear massive gravity. We start with describing the action of
dRGT theory in section 2. In section 3, we construct homogeneous and isotropic cosmological
solutions that exhibit self-acceleration. We then argue in section 4 that all homogeneous and
isotropic solutions in the dRGT theory are unstable and thus cannot describe the universe as we
know it. In section 5, we propose three alternative cosmological scenarios to avoid instabilities.
One of them is based on the observation that breaking isotropy in the hidden sector (fiducial
metric) still allows the isotropic evolution of the visible sector (physical metric) and thus the
standard thermal history of the universe. The other two proposals maintain isotropy in both
the visible and hidden sectors but are based on extended theories of massive gravity with
extra degrees of freedom, such as the quasi-dilaton theory [18] and the varying mass theory
[19, 20]5.

2. Action

We start by describing the action of dRGT massive gravity theory [9]. In order to have a
manifestly diffeomorphism invariant description of the massive gravity, the action is built out
of four Stückelberg scalar fields, φa(x), a = 0, 1, 2, 3. These four scalars enter the gravity
action through a ‘fiducial metric’ defined as

fμν ≡ f̄ab(φ
c)∂μφa∂νφ

b, (1)

4 See [17] for the proof of the absence of the BD degree in the bi-metric and multi-metric extensions.
5 We note that another possible extension, not considered here, is the bi-metric theory [17], where the fiducial metric
is promoted to a second, dynamical metric. The cosmology [21, 22] allows self-acceleration [23]. The cosmological
perturbations was studied in [24].
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where the ‘reference metric’ f̄ab(φ
c) is a metric in the field space. The action for the gravity

sector is a functional of the physical metric gμν and the fiducial metric fμν . A necessary
condition for the theory to be free from the BD ghost is that the action in the decoupling limit
to vanish up to boundary terms when restricted to the longitudinal part of the Stückelberg
fields. With this requirement, the most general mass term without the derivatives of gμν and
fμν is constructed as

Smass[gμν, fμν] = M2
Plm

2
g

∫
d4x

√−g (L2 + α3L3 + α4L4), (2)

with

L2 = 1
2 ([K]2 − [K2]), L3 = 1

6 ([K]3 − 3[K][K2] + 2[K3]),

L4 = 1
24 ([K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3] − 6[K4]), (3)

where a square bracket denotes trace operation and

Kμ
ν = δμ

ν − (
√

g−1 f )μν. (4)

It was shown that the theory is free from the BD ghost at the fully nonlinear level even away
from the decoupling limit [10–13].

3. FLRW cosmological solution

With the nonlinear massive gravity theory free from the BD ghost in hand, it is important to
study its cosmological implications. In this section, we thus construct Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) solutions.

3.1. Open FLRW solution with Minkowski reference metric

The original dRGT theory respects the Poincaré symmetry in the field space and thus the
reference metric is Minkowski, i.e. f̄ab = ηab = diag(−1, 1, 1, 1). In this subsection, we
thus review the FLRW solution with the Minkowski reference metric [25]. This is the first
non-trivial FLRW solution in the context of dRGT massive gravity.

In order to find FLRW cosmological solutions, we should adopt an ansatz in which both
gμν and fμν respect the FLRW symmetry. Since the tensor fμν is the pullback of the Minkowski
metric in the field space to the physical spacetime, such an ansatz would require a flat, closed or
open FLRW coordinate system for the Minkowski line element. The Minkowski line element
does not admit a closed chart, but it allows an open chart. Thus, while there is no closed FLRW
solution, we may hope to find open FLRW solutions. A flat FLRW solution, if it exists, is
on the boundary between the closed and open solutions but it was shown in [19] that such a
solution does not exist. For these reasons, in the following we shall seek open FLRW solutions.

Motivated by the coordinate transformation from Minkowski coordinates to Milne
coordinates, we take the following ansatz for the four Stückelberg scalars:

φ0 = f (t)
√

1 + |K|δi jxix j, φi =
√

|K| f (t)xi, (5)

with K < 0. This leads to the open FLRW form for the Minkowski fiducial metric,

fμν ≡ ηab∂μφa∂νφ
b = −( ḟ (t))2δ0

μδ0
ν + |K| f (t)2	i jδ

i
μδ j

ν . (6)

As for the physical metric, we adopt the general open (K < 0) FLRW ansatz as

gμν dxμ dxν = − N(t)2 dt2 + 	i j dxi dx j,

	i j dxi dx j = dx2 + dy2 + dz2 + K(x dx + y dy + z dz)2

1 − K(x2 + y2 + z2)
. (7)
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Here, x0 = t, x1 = x, x2 = y, x3 = z;μ, ν = 0, . . . , 3 and i, j = 1, 2, 3. Without loss of
generality, we assume that ḟ > 0, f > 0, a > 0, N > 0. By substituting the above ansatz into
the Einstein–Hilbert action plus the mass term (2), the gravity action up to a boundary term
can be written as

Sg =
∫

d4x
√

	

[
−3|K|Na − 3ȧ2a

N
+ m2

g(L2 + α3L3 + α4L4)

]
, (8)

where

L2 = 3a(a −
√

|K| f )(2Na − ḟ a − N
√

|K| f ),

L3 = (a −
√

|K| f )2(4Na − 3 ḟ a − N
√

|K| f ),

L4 = (a −
√

|K| f )3(N − ḟ ). (9)

In addition to the gravity action, we also consider a general matter content so that the total
action is Stot = Sg + Smatter.

Note that since the above ansatz fully respects the FLRW symmetry, the (0i) components
of the equations of motion for gμν are trivially satisfied; thus, the variation of the action with
respect to N(t) and a(t) should correctly give all the non-zero components of the Einstein
equation. On the other hand, because of the identity [26]

∇μ

(
2√−g

δS

δgμν

)
= 1√−g

δSg

δφa
∂νφ

a, (10)

the number of independent equations of motion for the Stückelberg scalars is one.
Now let us take the variation of the action with respect to f (t), which contains all non-

trivial information about the dynamics of the Stückelberg scalars. It leads to

(ȧ −
√

|K|N)[(3 − 2X ) + α3(3 − X )(1 − X ) + α4(1 − X )2] = 0, (11)

where X ≡ √|K| f /a. This equation has three solutions. The first one is ȧ = √|K|N and
corresponds to an empty open universe, i.e. the open FLRW chart of Minkowski spacetime.
Thus, this solution is not of our interest. The remaining two solutions are

f = a√|K|X±, X± ≡
1 + 2α3 + α4 ±

√
1 + α3 + α2

3 − α4

α3 + α4
. (12)

Note that these two solutions are singular in the limit K → 0. This is consistent with the result
in [19], i.e. the non-existence of flat FLRW cosmologies. On the other hand, with K < 0, by
taking the variation of the action with respect to N(t) and using (12), we obtain the following
modified Friedmann equation:

3H2 + 3K

a2
= ρm + �±, H ≡ ȧ

Na
, (13)

where ρm is the energy density of the matter sector and

�± ≡ − m2
g

(α3 + α4)2

[
1 + α3 ±

√
1 + α3 + α2

3 − α4

]

×
[

1 + α2
3 − 2α4 ± (1 + α3)

√
1 + α3 + α2

3 − α4

]
. (14)

In this way, the graviton mass manifests as the effective cosmological constant �±. When
�± > 0, the system exhibits self-acceleration. By taking the variation of the action with
respect to a(t), we obtain a dynamical equation, which is consistent with the above modified
Friedmann equation and the standard conservation equation for matter.
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3.2. Flat/closed/open FLRW solutions with general reference metric

In the appendix of [27], the open FLRW solution was generalized to flat/closed/open FLRW
solutions by considering a fiducial metric of the general FLRW type. (General reference
metrics were first considered in [26] and the absence of the BD ghost in this general setup
was proven by [13]. See also [17] for the absence of a ghost in the bi-metric theory.) In this
subsection, we describe the general solutions.

The most general fiducial metric consistent with flat (K = 0), closed (K > 0) or open
(K < 0) FLRW symmetries is

fμν = −n2(ϕ0)∂μϕ0∂νϕ
0 + α2(ϕ0)	i j(ϕ

k)∂μϕi∂νϕ
j, (15)

where n and α are general functions of ϕ0, and 	i j(ϕ
k) is defined as in (7) with (x, y, z)

replaced by (ϕ1, ϕ2, ϕ3), and the curvature constant K is now either zero, positive or negative.
Here, we have used the notation ϕa instead of φa to make it clear that this form of the fiducial
metric may be achieved from the original form (1) by a non-trivial change of variables (as
we have explicitly seen in the previous subsection). As for the physical metric, we adopt the
ansatz (7) with an arbitrary sign for K.

Similar to the case in the previous subsection, the equation of motion for the Stückelberg
fields allows three branches of solutions. In the general setup at hand, the first branch is
characterized by aH = αHf , where H ≡ ȧ/(Na) and Hf ≡ α̇/(nα) are Hubble expansion
rates of the physical and fiducial metrics, respectively. Unfortunately, this branch would not
allow non-trivial cosmologies since it does not evade the Higuchi bound [28] and thus linear
perturbations around the corresponding solution [26, 29, 30] include a ghost degree in the
cosmological history. Therefore, we shall not consider this branch and restrict our attention to
the other branches.

The two remaining branches are characterized by α = X±a, where X± is the same as
in (12). For these two branches, the metric equation of motion is exactly the same as (13)
with (14). Surprisingly enough, the modified Friedmann equation (including the value of the
effective cosmological constant induced by the graviton mass term) does not depend on the
properties of the fiducial metric at all. When �± > 0, the system exhibits self-acceleration.

4. New nonlinear instability of FLRW solutions

In the previous section, we have constructed flat, closed and open FLRW solutions in nonlinear
massive gravity with a general FLRW fiducial metric. The construction allows three branches
of solutions. However, the first branch characterized by aH = αHf suffers from the Higuchi
ghost at the level of linear perturbations and thus does not allow a non-trivial cosmological
history. In this section, we thus consider the other two branches of solutions characterized by
α = X±a. These solutions evade the Higuchi ghost, but unfortunately we shall see that a new
type of ghost instability shows up at nonlinear level [31]. Based on this result, we shall argue
that all homogeneous and isotropic FLRW solutions in the dRGT theory are unstable. We shall
then propose alternative cosmological scenarios in the following section.

4.1. Linear perturbation

In this subsection, following [27], we shall investigate linear perturbations around a general
flat/closed/open FLRW solution (characterized by α = X±a) with a general FLRW fiducial
metric and an arbitrary matter content. We shall see that time kinetic terms for three among the
five graviton degrees of freedom always vanish at the level of the quadratic action, signaling
for necessity of nonlinear analysis.

5
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We first define perturbations of four Stückelberg scalars through the exponential mapping,
truncating at the second order, as

ϕa = xa + πa + 1
2πb∂bπ

a + O(π3). (16)

We then perturb the physical metric as

g00 = −N2(t)[1 + 2φ], g0i = N(t)a(t)βi, gi j = a2(t)[	i j + hi j]. (17)

We suppose that πa, φ, βi, hi j = O(ε). The following gauge-invariant variables can be
constructed out of Stückelberg and metric perturbations:

φπ ≡ φ − 1

N
∂t (Nπ0), βπ

i ≡ βi + N

a
Diπ

0 − a

N
π̇i,

hπ
i j ≡ hi j − Diπ j − Djπi − 2NHπ0	i j, (18)

where Di is the spatial covariant derivative compatible with 	i j.
In section 3, we have seen that the mass term acts as an effective cosmological constant

at the background level. Hence, we define

S̃mass[gμν, fμν] ≡ Smass[gμν, fμν] + M2
Pl

∫
d4x

√−g�±, (19)

where �± is specified in (14), and expand S̃mass instead of Smass. This greatly simplifies the
perturbative expansion. As shown in [27], upon using the background equation of motion for
the Stückelberg fields but without using the background equation of motion for the physical
metric, the quadratic part of S̃mass is simplified as

S̃(2)
mass = M2

Pl

8

∫
d4xNa3

√
	 M2

GW

[
(hπ )2 − hi j

π hπ
i j

]
, (20)

where

M2
GW ≡ ±(r − 1)m2

g X2
±
√

1 + α3 + α2
3 − α4, r ≡ na

Nα
= 1

X±

H

Hf
, (21)

X± is given by (12), hπ ≡ 	i jhπ
i j, hi j

π ≡ 	ik	 jlhπ
kl and 	i j is the inverse of 	i j. This is

manifestly gauge-invariant.
What is important here is that the gauge-invariance of S̃(2)

mass was shown without using the
background equation of motion for the physical metric. This means that S̃(2)

mass is gauge-invariant
for any matter content (as far as the matter action does not depend on the Stückelberg fields
so that the Stückelberg equation of motion is derived solely from the graviton mass term) and
that the remaining part S̃(2)

GR ≡ S(2)
tot − S̃(2)

mass of the total (gravity plus matter) quadratic action
S(2)

tot is also gauge-invariant by itself. Hence, the remaining part S̃(2)

GR never depends on the
Stückelberg perturbations for any gauge choice. Another important point is that S̃(2)

mass shown in
(20) does not depend on φπ and βπ

i , and hence does not include time derivatives of Stückelberg
perturbations. Therefore, for any matter content, the dependence of the total quadratic action
on the Stückelberg perturbations is completely given by (20) and the time derivatives of
Stückelberg perturbations do not enter the quadratic action at all. This completes the proof of
the statement that time kinetic terms for three among five gravity degrees of freedom always
vanish at the level of the quadratic action. This proof holds for any matter content [27].

The absence of quadratic kinetic terms for three gravity degrees of freedom shown in
this subsection implies that the self-accelerating FLRW solutions evade the Higuchi bound
[28] and thus are free from the ghost at the linearized level even when the expansion rate is
significantly higher than the graviton mass. At the same time, this signals for the necessity
of a nonlinear analysis. In contrast, the first branch solution mentioned in section 3.2, which
gives a H = α Hf , contains five propagating degrees of freedom. In this case, however, one of
these degrees turns out to be the Higuchi ghost [29].

6
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4.2. Nonlinear perturbation

In order to understand the physical content of the FLRW background in dRGT massive gravity,
we need to investigate the reason why the kinetic term of one of the scalar modes and two of
the vector ones have a vanishing kinetic term. We will show that this feature does not hold in
general for the theory, but is rather a consequence of the symmetries of the FLRW background.

Therefore, it is convenient to study another background which has less symmetries than
FLRW, but does lead FLRW in some limit. Probably, the simplest implementation of such a
background is the axisymmetric Bianchi type-I class of metrics, which can be written as

ds2 = −N2(t) dt2 + a2(t)[e4σ (t) dx2 + e−2σ (t)δi j dyi dy j], (22)

where here i, j ∈ {2, 3}, and y2 = y, y3 = z. It is evident that this manifold is not isotropic;
however, as σ approaches 0, the spacetime reduces to flat FLRW. Since we want to study the
reason why there are missing kinetic terms for the perturbed FLRW fields, we will not consider
the above metric as physical. Rather, for the time being, we will merely use it as a tool to
study nonlinear perturbations on FLRW. In other words, linear perturbations on an anisotropic
manifold will give information equivalent to nonlinear perturbation theory on FLRW. This
provides a consistent truncation of the nonlinear perturbations, allowing us to analyze them in
a simple way. The goal of this section is to show how the missing kinetic terms will depend on
σ , namely we will study their sign and the dispersion relations of the associated perturbation
fields.

According to the properties of the perturbation fields under a rotation in the y−z plane, we
can decompose such fields into scalar (a.k.a. even) and vector (a.k.a. odd) modes. In particular,
we can write the metric for the even modes as

ds2
even = −N2(1 + 2�) dt2 + 2aN dt[e2σ ∂xχ dx + e−σ ∂iB dyi] + a2 e4σ (1 + ψ) dx2

+ 2a2 eσ ∂x∂iβ dx dyi + a2 e−2σ [δi j(1 + τ ) + ∂i∂ jE] dyi dy j, (23)

whereas the metric for the odd modes reads

ds2
odd = −N2 dt2 + 2a e−σ Nvi dt dyi + 2a2 eσ ∂xλi dx dyi + a2 e4σ dx2

+ a2 e−2σ (δi j + ∂(ih j)) dyi dy j, (24)

where the transverse condition holds, i.e. ∂ ivi = 0 = ∂ iλi = 0 = ∂ ihi. At the same time, we
also need to specify the form of the fiducial metric fμν . Since we want to study the FLRW
limit, we need the fiducial metric to possess already the FLRW symmetries from the beginning.
The anisotropic physical metric corresponds to the simplest deviation from an overall FLRW
symmetry for the whole system. Therefore, we assume

fμν = −n(φ0)2∂μφ0∂νφ
0 + α(φ0)2(∂μφ1∂νφ

1 + δi j∂μφi∂νφ
j), (25)

so that we need to give the perturbations of the Stückelberg fields according to even/odd-mode
decomposition. In fact, the even-type perturbations of Stückelberg fields read

φ0 = t + π0, φ1 = x + ∂xπ
1, φi = yi + ∂ iπ. (26)

For the odd-mode sector, we consider instead

φ0 = t, φ1 = x, φi = yi + π i, (27)

where ∂iπ
i = 0.

7
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It is possible to define gauge-invariant fields for even perturbations as follows:

�̂ = � − 1

2 N
∂t

(
τ

H − �

)
, B̂ = B + eσ

2 a (H − �)
τ − a e−σ

2 N
Ė,

χ̂ = χ + τ e−2σ

2a(H − �)
− a e2σ

N
∂t

[
e−3σ

(
β − e−3σ

2
E

)]
,

ψ̂ = ψ − H + 2 �

H − �
τ − e−3 σ ∂2

x (2 β − e−3 σ E ), Êπ = π − 1

2
E,

τ̂π = π0 − τ

2 N (H − �)
, β̂π = π1 − e−3 σ

(
β − e−3 σ

2
E

)
, (28)

where we have defined � ≡ σ̇ /N.
Then, we can proceed to integrate out all the present auxiliary fields. In general, we can

integrate out three modes, that is, �̂, B̂ and χ̂ . However, in the dRGT theory, it is possible to
show that also the field τ̂π can be integrated out. Therefore, there are only three independent
fields describing the even-mode perturbations, so we need to study the kinetic matrix of the
three remaining fields, ψ̂ , β̂π and Êπ . As σ → 0, the eigenvalues of the 3 × 3 kinetic matrix
reduce to

κ1 � p4
T

8 p4
, κ2 � −2a4M2

GW p2
L

1 − r2
σ, κ3 � − p2

T

2 p2
L

κ2, (29)

where we have introduced r ≡ an/(αN), M2
GW ≡ m2

g(1− r)X2[(1+2α3 +α4)− (α3 +α4)X],
X ≡ α/a, pL ≡ kL/(a e2σ ) � kL/a, pT ≡ kT /(a e−σ ) � kT /a, k2

T ≡ k2
y +k2

z and p2 ≡ p2
L + p2

T .
The first and most important consideration is that κ2 and κ3 have opposite sign. This property
implies that a ghost will always be present in the even-mode sector, as the manifold approaches
the FLRW limit. Furthermore, both κ2 and κ3 vanish in the exact FLRW case. One could wonder
whether these modes, if their mass is finite—but non-zero, can be integrated out in this same
FLRW limit. If the masses are heavy, then the corresponding modes can be integrated out and
the ghost is harmless in general. Otherwise, the ghost will be physical and the theory—at least
on FLRW backgrounds—will not be consistent.

In fact, we find

ω2
1 � p2 + M2

GW,

ω2
2 �

(
r2 − 1

24σ

)[√(
10p2 + p2

T

)2 − 8p2
L p2

T − (
2p2 + 3p2

T

)]
,

ω2
3 � − ω2

2 + 1 − r2

12σ

(
2p2

L + 5p2
T

)
, (30)

with ω2
2ω

2
3 < 0 in general. Since there is not any mass gap (i.e. there always exists some value

of the momenta for which the frequency vanishes) for ω2
2,3, we conclude that the ghost is

physical and cannot be integrated out from the Lagrangian. Therefore, the FLRW background
is not viable in the dRGT massive gravity theory. Note that the first mode corresponds to
the massive gravitational wave. Even though the theory succeeds in removing the BD ghost
and giving the tensor mode a mass, it does not accept a stable FLRW solution. This result
agrees with the nonlinear analysis of [32], where the cubic kinetic terms are shown to be
non-vanishing.

We conclude this section by studying the odd modes. For these modes, a procedure similar
to the one followed for the even modes leads to two independent fields. Therefore, we confirm
the expected presence of five dynamical degrees of freedom for this theory (3 even modes +
2 odd ones). The kinetic terms and the frequencies for these two independent odd modes read

κ1 = a4 p2
L p4

T

2 p2
, κ2 = a4 p2

T M2
GW

4 (1 − r2)
σ, ω2

1 = p2 + M2
GW, ω2

2 = c2
odd p2, (31)

8
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where c2
odd = (1−r2)/(2σ ). Therefore, we find a massive tensor mode, and a healthy massless

propagating mode (at speed codd), provided that (1 − r)σ > 0.

5. Toward healthy massive cosmologies

The appearance of the nonlinear ghost shown in subsection 4.2 originates from the fact that
quadratic kinetic terms exactly vanish: the kinetic terms show up at the cubic order and can
become negative. The disappearance of kinetic terms at the quadratic order was shown upon
using the background equation of motion for the Stückelberg fields but without using other
background equations. One can actually show that the off-shell quadratic kinetic terms have
coefficients proportional to Jφ ≡ (3−2X )+α3(3−X )(1−X )+α4(1−X )2, where X ≡ α/a,
and that the self-accelerating FLRW solution is characterized by Jφ = 0 (or X = X± with X±
shown in (12)).

For this reason, in order to find a stable cosmological background, one needs to detune the
proportionality between the quadratic kinetic terms and the Stückelberg equation of motion
characterizing the self-accelerating background. One way to achieve this would be to relax
the FLRW symmetry by a deformation of the background. This possibility will be considered
in subsection 5.1. We shall find that relatively large deformation by anisotropy in the hidden
sector (fiducial metric) may render the background solution stable. Another possibility would
be to maintain the FLRW symmetry but to change the Stückelberg equation of motion by
adding extra dynamical degrees of freedom to the theory. We shall thus consider the quasi-
dilaton extension in subsection 5.2 and the varying mass extension in subsection 5.3. While
self-accelerating FLRW solutions in the quasi-dilaton theory turn out to be unstable, the
varying mass case allows some stable regimes of parameters.

Before presenting our results, we note that other extensions, such as the bi-metric theory
[17], where both metrics are dynamical, may also give rise to FLRW-type cosmologies
[21–23], although perturbation analysis in [24] indicates that such cosmologies, in the presence
of perfect fluids, may develop instabilities.

5.1. Anisotropic FLRW solution

As argued above, the appearance of the nonlinear ghost shown in subsection 4.2 is a
consequence of the FLRW symmetry and the structure of the theory; in order to obtain a
stable solution within the same theory, the FLRW symmetry needs to be relaxed.

An inhomogeneous background solution was obtained in [19], where the observable
universe is approximately FLRW for a horizon size smaller than the Compton length of
graviton. Similar solutions with inhomogeneities in the Stückelberg sector, meaning that the
physical metric and the fiducial metric do not have common isometries acting transitively, were
found in [33]. Note that those inhomogeneous solutions cannot be isotropic everywhere since
isotropy at every point implies homogeneity. Note also that cosmological perturbations can in
principle probe inhomogeneities in the Stückelberg sector. For example, generic spherically
symmetric solutions are isotropic only when they are observed from the origin.

The goal of this subsection is, following [34], to introduce an alternative option, where
the assumption of isotropy is dropped but homogeneity is kept. In a region with a relatively
large anisotropy, we find an attractor solution. On the attractor, the physical metric is still
isotropic, and the background geometry is of FLRW type. Hence, the thermal history of the
standard cosmology can be accommodated in this class of solutions. However, the Stückelberg
field configuration is anisotropic, which may lead to effects at the level of the perturbations,
suppressed by smallness of the graviton mass.

9
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5.1.1. Fixed point solutions. In this subsection, we review anisotropic FLRW solutions in
the dRGT theory with the de Sitter reference metric [34]6.

The fiducial metric is obtained by taking (15) and setting K = 0 and Hf ≡ α̇/(n α) =
constant. For the physical metric, we consider axisymmetric anisotropic extension of a flat
FLRW, i.e. the axisymmetric Bianchi type-I metric, given by

g(0)
μν dxμ dxν = −dt2 + a2(t)[e4σ (t) dx2 + e−2σ (t)δi j dyi dy j], (32)

where indices i, j = 2, 3 correspond to the coordinates on the y−z plane.
The Stückelberg equation gives

J(x)
φ (H + 2 � − Hf e−2 σ X ) + 2 J(y)

φ (H − � − Hf eσ X ) = 0, (33)

where

J(x)
φ ≡ (3 + 3 α3 + α4) − 2 (1 + 2 α3 + α4) eσ X + (α3 + α4) e2σ X2,

J(y)

φ ≡ (3 + 3α3 + α4) − (1 + 2 α3 + α4)(e
−2σ + eσ )X + (α3 + α4) e−σ X2, (34)

H ≡ ȧ/a, � ≡ σ̇ and X ≡ α/a. The metric equations of motion are given by

3(H2 − �2) − � = m2
g[−(6 + 4α3 + α4) + (3 + 3 α3 + α4) (2 eσ + e−2σ )X.

− (1 + 2 α3 + α4)(e
2σ + 2 e−σ ) X2 + (α3 + α4) X3],

�̇ + 3H� = m2
g

3
(e−2 σ − eσ )X[(3 + 3 α3 + α4) − (1 + 2 α3 + α4)(e

σ + r)X

+ (α3 + α4) r eσ X2], (35)

where

r ≡ n a

α
≡ 1

X Hf

(
Ẋ

X
+ H

)
. (36)

We now look for solutions that are anisotropic (� = 0, σ = σ0 	= 0) and undergo a de Sitter
(Ḣ = 0, H = H0) expansion, which implies that the remaining parameters are also constant,
i.e. X = X0, r = r0. Excluding the fixed points which are isotropic σ0 = 0 and those which
exist only for special values of parameters (i.e. in a measure-zero subspace of the parameter
space), we find a characteristic relation for the anisotropic fixed point, r0 = e−2σ0 , or,

X0 = H0

Hf
e2 σ0 . (37)

The remaining two equations allow us to determine X0 and σ0. One can show that this solution
is stable against homogeneous linear perturbations if [34]

M2
σ ≡ − 3 M2 M̃2 (9 H2

0 + M̃2)

M̃4 + 9 H2
0 (3 M2 − M̃2)

> 0, (38)

where [35]

M2 ≡ H0 m2
g

3 H3
f

[
H2

0 e3 σ0 (1 + 2 e3 σ0 )(α3 + α4) − 2 H0 Hf (1 + e3 σ0 + e6 σ0 )(1 + 2 α3 + α4)

+ H2
f (2 + e3 σ0 )(3 + 3 α3 + α4)

]
,

M̃2 ≡ −3 H0 m2
g

2 H3
f

[
H2

0 e6 σ0 (α3 + α4) − 2 H0 Hf e3 σ0 (1 + 2 α3 + α4) + H2
f (3 + 3 α3 + α4)

]
.

(39)

6 The adoption of the de Sitter reference metric here is due to the flat spatial curvature associated with the Bianchi
type-I metric. We remind the reader that the Minkowski reference metric cannot be put into a flat FLRW form (see
section 3.1).

10
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5.1.2. Linear perturbations. The linear perturbation theory around axisymmetric Bianchi
type-I backgrounds in dRGT theory was formulated in [35]. The formulation can be used
to calculate the coefficients of the kinetic terms for the five gravity degrees of freedom.
Similarly to the off-shell kinetic terms around isotropic FLRW solutions mentioned in the
second paragraph of section 5, it turns out that the kinetic term of one of the five degrees
is proportional to J(x)

φ and other two are proportional to J(y)

φ . The remaining two correspond
to the standard two polarizations of the tensor graviton and thus they always have finite and
positive kinetic terms.

By studying (33), we see that on the fixed point (37), J(x)
φ 	= 0 while J(y)

φ = 0. Hence,
the kinetic terms for two of the expected five gravity degrees of freedom vanish, signaling for
necessity of nonlinear analysis.

5.1.3. Nonlinear perturbations. Due to the broken SO(3) symmetry, we can no longer use the
standard scalar/vector/tensor decomposition for the perturbations. However, the axisymmetry
of the background allows us to use SO(2) symmetry in the classification. The following analysis
is based on [35].

Even modes. The even-mode perturbations are introduced according to the decomposition
(23) and once the non-dynamical degrees are integrated out, there are generically three
dynamical degrees of freedom. However, once the background is fixed to be the anisotropic
attractor solution, one of these modes has a vanishing kinetic term. On the other hand, we
can still analyze the properties of the higher order kinetic terms by considering homogeneous
deformations around the attractor solution, characterized by

σ = σ0 + ε σ1 + O(ε2), � = ε �1 + O(ε2) = ε σ̇1 + O(ε2), (40)

where the background-physical-metric coefficients are given by gtt = −N2, gxx = a2 e4σ ,
gyy = gzz = a2 e−2σ . Furthermore, we have defined � as � ≡ σ̇ , and expanded both σ and �

on the attractor solution. After diagonalization, the kinetic terms become

κ1 �
[

8 p4

p4
T

− 8 M̃4

M̃4 + 9 H2
0 (3 M2 − M̃2)

]−1

,

κ2 � 2 a4
0 e8 σ0 M̃2 p2

L

[
9 H2

0 p4 (M̃2 − 3 M2) + M̃4 p2
L

( − 2 p2 + p2
L

)]
M̃2 p2

L(M̃2 − 3 p2)2 − 9H2
0 (M̃2 − 3 M2)

[
6 p4 + M̃2

( − 4 p2 + p2
L

)] ,

κ3 � −3 M̃2 e2 σ0 a4
0 p2

T

[
3 M2

(
9 H2

0 + M̃2
)
σ1 + 2 H0 (9 M2 − 2 M̃2)�1

]
(1 − e6 σ0 )

[
M̃4 − 27 H2

0 (3 M2 − M̃2)
] , (41)

where pL and pT are the components of the physical momentum vector along the x̂ direction
and on the y−z plane, respectively, while p2 ≡ p2

L + p2
T . Furthermore, we have introduced the

mass scale M̃2 as in equation (39). Generically, the absence of ghosts imposes momentum-
dependent conditions. However, one can ensure stability at all scales by adopting the sufficient
condition

M̃2 < 0, M2 <
M̃2

(
9H2

0 − M̃2
)

27 H2
0

< 0, (42)

under which, both κ1 and κ2 can be made positive. For a parameter set which satisfies (42),
the no-ghost condition for the third mode (with order ε kinetic term) becomes

σ0
[ − 3|M2|(9 H2

0 − |M̃2|)σ1 + 2 H0 (2|M̃2| − 9|M2|)�1
]

< 0, (43)

which depends linearly on the homogeneous deformations σ1 and �1 around the fixed point.
Thus, regardless of the value of M2 and M̃2, there could always be a region where σ1 and

11
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�1 conspire to render the third mode a ghost. On the other hand, if the initial conditions
are such that the system is close to the attractor, it is possible to connect the evolution of
�1 algebraically to that of σ1 and obtain a regime where one can avoid the instability. By
considering the equation of motion for σ1,

�̇1 + 3 H0 �1 + M2
σ σ1 = 0, (44)

we first note that condition (38) for the stability of the fixed point against homogeneous
perturbations, combined with the conditions (42), yields

9H2
0 − |M̃2| > 0. (45)

To satisfy condition (43), we suppose that the system is in the attractor regime, so that �1 ∝ σ1

and that σ1 does not change sign during the course of evolution. This scenario can be attained
if the friction term in (44) dominates over the mass term, i.e.

9 H2
0 > 4 M2

σ . (46)

Then, solving equation (44) and evaluating the solution at late times, we find the relation

�1 �
(

−3

2
H0 +

√
9

4
H2

0 − M2
σ

)
σ1. (47)

Thus, in this regime, condition (43) can in principle be satisfied by choosing the appropriate
sign for σ1.

Odd modes. The odd-mode perturbations are introduced according to the decomposition
(24) and once the non-dynamical degree is integrated out (another mode can be gauged
away), there are generically two dynamical degrees of freedom. On the anisotropic attractor
solution, the kinetic term of one of these modes vanishes, and as we did for the even modes,
we consider homogeneous deviations from the fixed point to determine the conditions for
nonlinear stability.

After diagonalization, the kinetic terms become

κ1 � a4
0 e−4 σ0 p2

L p4
T

2 p2
,

κ2 � −3 M̃2 e2 σ0 a4
0 p2

T

[
3 M2

(
9 H2

0 + M̃2
)
σ1 + 2 H0 (9 M2 − 2 M̃2)�1

]
4 (1 − e6 σ0 )

[
M̃4 − 27 H2

0 (3 M2 − M̃2)
] . (48)

The first kinetic term is always positive, whereas the second mode acquires a kinetic term
proportional to the deviation from the fixed point. In fact, up to a numerical factor, κ2 above is
the same as the kinetic term of the third mode in equation (42), so if the conditions discussed
in the even sector are satisfied, the odd sector will also be stable.

5.2. Extended theory I: quasi-dilaton

The quasi-dilaton theory is obtained by introducing a scalar field σ associated with a
dilation-like global symmetry to the dRGT action (σ has different meaning than the previous
subsection),

σ → σ − αMPl, φa → eα φa. (49)

The action compatible with this symmetry is given in Einstein frame as [18]7

S = M2
Pl

2

∫
d4x

√−g

[
R − 2 � + 2 m2

g(L2(K̄) + α3 L3(K̄) + α4 L4(K̄))

− ω

M2
Pl

∂μσ ∂νσ + Lmatter

]
, (50)

7 There is an additional term allowed by the symmetry,
∫

d4x
√− f e4 σ/Mp , which does not change the conclusions

of the present discussion (see [36, 37] for details).

12
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where L2, L3 and L4 are given in equation (3), but the building block tensor (4) is replaced
with

Kμ
ν → K̄μ

ν ≡ δμ
ν − eσ/MPl (

√
g−1 f )μν . (51)

5.2.1. Self-accelerating solutions. We adopt the Minkowski reference metric and the flat
FLRW ansatz for the physical metric as

fμν = −n2(t)δ0
μδ0

ν + δi jδ
i
μδ j

ν, gμν dxμ dxν = −dt2 + a2(t) δi j dxi dx j. (52)

The equations of motion for the Stückelberg fields yield

(1 − X ) X [3 + 3 α3 + α4 − (3 α3 + 2 α4) X + α4 X 2] = constant

a4
, (53)

where X ≡ eσ/Mp/a, leading to four attractors: X = 0, X = 1 and X = X± with

X± =
3 α3 + 2 α4 ±

√
9 α2

3 − 12 α4

2 α4
. (54)

Among them, X = 0 and X = 1 leads to either strong coupling or instability [18]. We thus
consider X = X± as backgrounds. Along these branches of solutions, the (modified) Friedmann
equation becomes(

3 − ω

2

)
H2 = � + �±, (55)

where the graviton mass manifests as the effective cosmological constant

�± = − m2
g

2 α3
4

[
9
(
3 α4

3 − 6 α2
3 α4 + 2 α2

4

) ± α3
(
9 α2

3 − 12 α4
)3/2]

. (56)

From (55), we immediately see that a sensible cosmology requires ω < 6. Finally, the equation
of motion for the quasi-dilaton field gives

r ≡ n a = 1 + ω H2

m2
g X2[α3 (X − 1) − 2]

. (57)

5.2.2. Perturbations. We now introduce perturbations as [36]

σ = MPl[log(a X ) + δσ ], δg00 = −2 �, δg0i = a
(
BT

i + ∂iB
)
,

δgi j = a2

[
2 � δi j +

(
∂i∂ j − δi j

3
∂l∂

l

)
E + 1

2

(
∂iE

T
j + ∂ jE

T
i

) + hT T
i j

]
, (58)

while we fix the unitary gauge δφa = 0, where BT
i and ET

i are transverse and hT T
i j is transverse

and traceless. With respect to the dRGT theory, we have an additional scalar field, so in total,
we expect two tensor, two vector and two scalar degrees, once the non-dynamical modes are
integrated out.

Tensor perturbations. The quadratic action for the tensor modes reduces to

ST = M2
Pl

8

∫
d3k a3 dt

[∣∣ḣT T
i j

∣∣2 −
(

k2

a2
+ M2

GW

) ∣∣hT T
i j

∣∣2
]

, (59)

where

M2
GW ≡ m2

g (r − 1) X3

X − 1
+ H2 ω

(
r

r − 1
+ 2

X − 1

)
. (60)

Generically, MGW ∼ O(H) so even if the tensor modes are tachyonic, the timescale of their
instability is of the order of the age of the universe [36].
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Vector perturbations. For the vector modes, the quadratic action is

SV = M2
Pl

16

∫
d3k a3 dt k2

⎡
⎣ ∣∣ĖT

i

∣∣2(
1 + k2(r2−1)

2a2 H2 ω

) − M2
GW

∣∣ET
i

∣∣2

⎤
⎦ . (61)

We see from (61) that if (r2 − 1)/ω < 0, there is a critical momentum above which the
vector modes have ghost instability. Therefore, the UV cut-off scale of the effective theory
�UV should be lower than this critical (physical) momentum to ensure the stability of the
system: �2

UV (1 − r2)/(H2 ω) < 2. In addition, the frequency in the canonical normalization
yields a further condition on avoiding tachyonic instability, which arises if M2

GW > 0 and
(r2 − 1)/ω > 0. The growth rate of this instability can be made lower than or at most of the
cosmological scale for all physical momenta below the UV cut-off �UV, provided that [36]

�2
UV � 2 H2 ω

r2 − 1
. (62)

Scalar perturbations. After integrating out δg0 μ as well as the would-be BD degree, the
scalar sector contains two coupled modes. The kinetic part of the quadratic action is formally
written as

SS �
∫

d3k

2
a3 dt [K11|Ẏ1|2 + K22|Ẏ2|2 + K12(Ẏ1 Ẏ2

� + Ẏ2 Ẏ1
�
)], (63)

where Y1 and Y2 are particular linear combinations of � and δσ . For our purposes, it is enough
to study the determinant of the kinetic matrix, given by

det K ≡ K11K22 − K2
12 = 3 k6 ω2 a4 H4[

ω a2 H2 − 4 k2

(6−ω)

]
(r − 1)2

, (64)

The absence of ghost degrees in the scalar sector requires det K > 0 as a necessary condition.
We first note that the determinant is always negative if ω < 0. Along with the condition
obtained from (55), we thus obtain 0 < ω < 6 as a necessary condition.

Furthermore, demanding that det K > 0 for all physical momenta below the UV cutoff of
the theory, we obtain

�UV

H
<

√
ω(6 − ω)

2
<

3

2
, (65)

where we have used the condition 0 < ω < 6 to obtain the last inequality. Unfortunately,
(65) is not acceptable since it would imply that the UV cut-off scale would be lower than the
cosmological scale and that the theory would not be applicable to cosmology. Therefore, we
conclude that for physical wavelengths shorter than cosmological scales, det K < 0 and one
of the two degrees of freedom is a ghost [36].

It can also be checked (see [36] for details) that energies of the ghost mode are not
parametrically higher than H ∼ mg. This signals the presence of ghost instabilities in the
regime of validity of the effective field theory.

5.3. Extended theory II: varying mass

A further way of extending the dRGT theory is to allow the parameters of the theory to vary
with a scalar field σ . The action in this case is [20],

S =
∫

d4x
√−g

{
M2

Pl

[
R

2
− � + m2

g(σ )[L2 + α3(σ )L3 + α4(σ )L4]

]

− 1

2
∂μσ ∂νσ − V (σ ) + Lm

}
, (66)

where L2, L3 and L4 are given by equation (3).
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5.3.1. Background. As in the previous subsection, we adopt the Minkowski reference metric
and the flat FLRW ansatz for the physical metric (52). The equations of motion for the
Stückelberg fields yield

m2
g(X − 1)

X3
[3 − 3 (X − 1) α3 + (X − 1)2 α4] = constant, (67)

where X ≡ 1/a and r ≡ a n. Due to the assumptions of flat space and Minkowski reference
metric, if mg and α3,4 are time independent, the solution X = constant does not allow any
non-trivial cosmologies (see the second paragraph of subsection 3.1).

By defining

ρm ≡ M2
Plm

2
g (X − 1) [6 + 4 α3 + α4 − X (3 + 5 α3 + 2 α4) + X2 (α3 + α4)],

pm ≡ M2
Plm

2
g [6 + 4 α3 + α4 − (2 + r) X (3 + 3 α3 + α4)

+ (1 + 2 r) X2 (1 + 2 α3 + α4) − r X3 (α3 + α4)],

Q ≡ M2
Pl m2

g σ̇ (X − 1)2

{
α′

3 (4 − X − 3 r X ) + α′
4(X − 1) (r X − 1)

+ 2 m′
g

mg

[
3 − (X − 1)α3 + r X − 1

X − 1
[3 − 3 (X − 1) α3 + (X − 1)2α4]

]}
,

ρσ ≡ σ̇ 2

2
+ V, pσ ≡ σ̇ 2

2
− V, (68)

we can write the set of background equations of motion in the following form:

3 H2 = � + 1

M2
Pl

(ρσ + ρm), Ḣ = − 1

2 M2
Pl

[(ρσ + pσ ) + (ρm + pm)],

ρ̇m + 3 H (ρm + pm) = −Q, ρ̇σ + 3 H (ρσ + pσ ) = Q. (69)

where prime denotes differentiation with respect to σ .
Although dynamical analysis for these equations have been studied in the literature [38],

there is not yet a simple self-accelerating solution in the varying parameter massive gravity. In
the following, we do not assume any specific evolution and keep the functions mg(σ ), α3(σ )

and α4(σ ) generic.

5.3.2. Perturbations. We now introduce perturbations, following [36]. The metric is
decomposed as in equation (58) and we adopt the unitary gauge as δφa = 0, while the
scalar field is perturbed as

σ = 〈σ 〉 + MPl δσ. (70)

Tensor perturbations. The tensor action reduces to

ST = M2
Pl

8

∫
d3k a3 dt

[∣∣ḣT T
i j

∣∣2 −
(

k2

a2
+ M2

GW

) ∣∣hT T
i j

∣∣2
]

, (71)

where

M2
GW = (r − 1) X2

(X − 1)2

[
m2

g (X − 1) − ρm

M2
Pl

]
−

(
1

r − 1
+ 2 X

X − 1

)
ρm + pm

M2
Pl

. (72)

The stability of long wavelength tensor modes is ensured by M2
GW > 0.

Vector perturbations. For the vector modes, the action is

SV = M2
Pl

16

∫
d3k a3 dt k2

⎡
⎣ ∣∣ĖT

i

∣∣2(
1 − k2 (r2−1) M2

Pl
2a2 (ρm+pm)

) − M2
GW

∣∣ET
i

∣∣2

⎤
⎦ . (73)
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By requiring that the kinetic term is positive for all physical momenta below the cut-off scale
of the theory �UV, we obtain the stability condition for the vector modes as

�2
UV (1 − r2)

H2R
< 2, R ≡ −ρm + pm

M2
PlH

2
. (74)

Under the above condition, we can further analyze the stability of the vector sector, by
introducing a time reparametrization which renders the modes ET

i canonical, and then requiring
that their frequency is an increasing function. This procedure yields a sufficient (but not
necessary) condition for stability[

1 + 1

8NH

d

dt
ln

(
RM2

GW

r2 − 1

)]
�2

UV(1 − r2)

H2R
<

3

2
+ 1

4NH

d ln
(
M2

GW

)
dt

. (75)

Scalar perturbations. As in the quasi-dilaton theory, we integrate out the nondynamical
degrees and are left with two coupled modes in the scalar sector. The kinetic part of the action
is formally

SS �
∫

d3k

2
a3 dt [K11|Ẏ1|2 + K22|Ẏ2|2 + K12(Ẏ1 Ẏ2

� + Ẏ2 Ẏ1
�
)], (76)

where Y1 and Y2 are linear combinations of � and δσ . For our purposes, it is enough to study
det K = K11K22 − K2

12, whose explicit form is

det K = 3 M2
Pl a2 k6 (ρm + pm)2

(
ρσ + pσ − 6 M2

Pl H2
)

(r − 1
)2

[
4 M4

Pl H2 k2

a2 − (ρm + pm)
(
ρσ + pσ − 6 M2

Pl H2
)] . (77)

By requiring that the determinant is positive, we see that in order to avoid a ghost degree of
freedom, the momenta in the range 0 � k/a � �UV should all satisfy(

ρσ + pσ

4 M2
Pl H2

− 3

2

)−1 k2

a2
>

ρm + pm

M2
Pl

. (78)

Explicit diagonalization of the system shows that this condition is actually a sufficient condition
to avoid ghost instabilities in the scalar sector [36].

For a background solution which can effectively describe the late time acceleration, we
can assume a de Sitter like expansion, i.e. |Ḣ| � H2. With these considerations, the stability
requirement for the scalar sector becomes even simpler,

R + 4

R − 6

k2

H2a2
> 0, (79)

where R is defined in (74). If indeed all the physical momenta below the cut-off scale �UV

satisfy (79) and if we suppose �UV/H > 3/2 so that the theory is applicable to cosmological
scales, then the no-ghost condition for scalar perturbations in the regime |Ḣ| � H2 becomes
simply

R > 6. (80)

6. Summary and discussion

The extension of GR by a mass term has been studied for several decades. Nonetheless, a
self-consistent nonlinear massive gravity theory with five propagating degrees of freedom,
dubbed the dRGT theory, has been proposed only recently.

In this paper, we reviewed several cosmological solutions in the context of the dRGT theory
[8, 9]. We have firstly described open FLRW solutions with a Minkowski reference metric.
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By considering a general FLRW-form fiducial metric, the branch of open FLRW solutions
was generalized to FLRW solutions with a general spatial curvature. However, for all of these
FLRW-type cosmological solutions, the kinetic terms of three among five gravity degrees of
freedom vanish at the level of the quadratic action. This phenomenon is a consequence of the
symmetry of the FLRW background. On analyzing the behavior of the nonlinear perturbations
by considering a consistent truncation, it was then shown that there is always at least one ghost
(among the five degrees of freedom) in the gravity sector.

We have then discussed two approaches toward healthy cosmologies in massive gravity.
One proposal is to introduce relatively large anisotropy in the configuration of Stückelberg
fields, which form the hidden sector of the theory. We considered the fixed point solution
named as ‘anisotropic FLRW’, a solution with the FLRW symmetry in the visible sector
(physical metric) but with anisotropy in the hidden sector. Performing a nonlinear analysis
around the anisotropic fixed point yields that anisotropic FLRW solutions can be ghost-free
for a range of parameters and initial conditions. The second proposal discussed here consists
of introducing an extra degree of freedom coupled to the hidden sector. As examples for this
possibility, we have considered the quasi-dilaton theory and the varying mass model. For the
quasi-dilaton theory, the self-accelerating background turns out to be unstable. On the other
hand, in the varying mass case, there is a regime of parameters in which a stable cosmological
evolution is possible, although viable self-accelerating solutions yet remain to be found.

Besides the stability investigation, the study of observational signals from graviton mass,
although not included in this review, is also important. For example, in [39], it was found that
graviton mass may leave a prominent feature with a sharp peak in the stochastic gravitational
wave spectrum. The position and height of the peak may tell us information about the graviton
mass today and the duration of the inflationary period.

Last but not least, as a developing field, massive gravity still leaves many intriguing
unsolved questions. One of the most interesting questions is the construction of a possible UV
completion of massive gravity. One of the potential directions to this end would be to seek
a mechanism that realizes the specific structure of the graviton mass term as a consequence
of a spontaneous symmetry breaking. Another important question is the fate of super-luminal
mode [40] in the gravity sector. It is generically expected that in the massless limit, observable
effects of the super-luminal mode should disappear and GR should be recovered, provided that
the mode is excited by a fixed amount of matter source. Thus, it should be possible to obtain
an observational upper bound on the graviton mass although it is probably not stronger than
mg < O(H0).
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