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ABSTRACT

Yukawa scattering, includes the effecting mass in the interaction to inci-
dent particle, is pedagogically interpreted by the Schwinger’s quantum dynamical
principle involving the generating functions. These functions are finally replaced
by a functional differential operation. As for the results, we got the asymptotically
free Green function that explains the behavior of the Yukawa potential when the
mass parameter is increasing. In particular, it can also lead to scattering amplitude
and differential cross section, respectively.



CHAPTER I

INTRODUCTION

1.1 Literature review

Presently, many discovery of elementary particles were found from the
scattering by accelerating those particle to hit each other, such as electron, neu-
tron, proton or nucleus. These occurred particles were observed and detected in
the experiment. Physicists had discovered many particle from the detector, shows
and tracks the particle’s trajectories on screen, along late 19th century until now.
Historically, they found the electron, nucleus (consists of proton and neutron), the
photon (by Compton scattering), mesons, antiparticles, neutrinos (carry out the
momentum energy), strange particles and quarks, respectively. Finally, the stan-
dard model was established to interpret all of particles [2]. This theory includes
many rules of number ratio which explain the reaction probability, like the chem-
ical reaction. Moreover, the toy model (Feynman diagram), presented by R. P.
Feynman, simplifies all this scattering phenomena.[13, 14]

In the field of quantum theory, many methods have been applied to ex-
plain a behavior of the particles traveling; propagator. One of all, the quantum
dynamical principle (QDP) provides a formalism for quantum physics which is de-
veloped and proposed by J. S. Schwinger [17, 18, 19, 20, 21, 22, 23]. It has been
proved to be the powerful and elegant tool of the elementary particles dynamics
and, furthermore, high-energy physics. It gives an expression for the variation of a
transformation function, δ⟨at|bt′⟩, from a B at time t′ to an A at time t, whereas
occurring from any changing of the parameters of Hamiltonian such as masses,
coupling constants, charges, external sources, etc. This method is derived from
the functional differentiation that respects to the general Hamiltonian, depending
on time. It bases on the source theory, imposed by Schwinger [23]. These sources
generate the coordinates or degrees of freedom for any dynamical system that de-
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pends on time evolution. Our interested system is satisfied the Hamiltonian with
sources, like H(q,p, t) = H0 − q · F(t) + p · S(t), where H0 is the free Hamilto-
nian which only includes the momenta, p2/2m. This generating function (source)
is finally replaced by the functional differential. For the specific transformations
are ⟨qt|q′t′⟩, ⟨qt|pt′⟩ or ⟨pt|p′t′⟩ in q,p language. These transformations func-
tions lead to the propagator, as the final result, that we have to evaluate it. This
propagator actually describes the behavior of particle’s motion, evolved on time.
The quantum dynamical principle is a wideness length tool that can be applied
to many problems of quantum physics, including the particle propagator through
the potential problem, the forced harmonic oscillator problems, Bose/Fermi exci-
tations. Furthermore, surprisingly, it can also apply to the path integrals [5, 15].
Comparing with the path integrals method, proposed by R. P. Feynman, it is an
infinite continual integrating which uses many approximations for scattering case,
such as estimating a range [12]. In a case of the dynamical principle, however,
we have to do many step of mathematics but it is elegant and powerful when we
actually want to use this transformation function in the closed-form for propagator
calculating.

For theory of scattering, the classical one is considered an impact param-
eter b, and a scattering angle θ, when given a small impact parameter, will get
the greater scattering angle. In the measurement, the particle incident with a
cross-sectional area, σ will scatter corresponding solid angle, Ω. The ratio between
a cross -sectional and a solid angle is the differential (scattering) cross section,
denoted as D(θ) = dσ/dΩ. Also, for the quantum scattering which is measured
within the solid angle, we deal with a wave traveling scatter the potential and
get the outgoing spherical wave. So, we have to work with scattering amplitude,
f(θ) that is the probability of scattering [1]. Finally, we get the differential cross
section from that scattering amplitude by taking the absolute square. In this case,
the Born approximation which applies and describes the scattering amplitude of
incident particles, is very useful. Obviously, it leads to the Born series, explains
a situation that the incident particles are effected by the force of potential with
many times. If we need correcting the Born approximation, it has to deal in higher
order of this scattering. The quantum dynamical principle also leads to this ap-
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proximation by deriving the transformation function, gives a propagator. It gives
us the modified Born approximation which is multiplied with a particle’s trajectory
[5, 7], eventually. Thus, this method inspires us applying to other potential such
as Yukawa potential.

For the condense-matter field, so-called the material sciences, they work
with the charge particles (electrons) scattered the potential of the semiconduc-
tors, valence-band holes, and analyze the radial wave functions from the Lippman-
Schwinger integral equation by dealing with the Yukawa potential [11]. Many
application in this field is always based on the quantum theory that consider the
potential or a band energy, depends on the material kind.

1.2 Objectives

For this thesis, our objective is how to use the method of Quantum Dy-
namical principle in a case of Yukawa scattering. And, this method is applied to
Yukawa potential to obtain the asymptotically free Green function which leads to
the scattering amplitude and differential cross section eventually.

1.3 Frameworks

In this project, we apply the quantum dynamical principle to deal with
the Yukawa potential, called the screened Coulomb potential that has the mass
of particles involving. A detail about the basic of scattering is provided in
the Chapter II. In the Chapter III, we simplify and explain a process of the
quantum dynamical principle, a visual concept of this method and, in particular,
the simple source theory concept. The free particle and the asymptotically free
Green functional propagators, by using the QDP, are in the Chapter IV. It is
about the Coulomb scattering, an interaction between the charge particles, and
then we obtained the transition amplitude. For the Chapter V, it is about the
calculation of this method (QDP) which using Yukawa potential to carry out the
asymptotically free Green function. The last chapter is a conclusion that about
the obtained propagator and differential cross section, given in Chapter VI.



CHAPTER II

THE THEORY OF SCATTERING

Now a day, many particles, also known as “standard model” of elementary
particles, are discovered by the experimental scattering system in the frame of
laboratory. In this chapter, we present about the theory of scattering, begins
with classical and becomes to quantum. Generally, the system of a scattering
consists of two particles, are the own potential particle (a target) and the in-coming
particle (an incident). In the classical scattering, it deals with the differential cross
section. But in the case of the quantum scattering, it performs with the scattering
amplitude. The detail is given in the following section.

2.1 Classical Scattering

Let’s imagine about the scattering system, in normal sense, when you kick
a smaller football to the bigger one and then its trajectory will bend from the
straight line. In experimental, a particle collides on the target (Scattering center)
with the momentum energy E and impact parameter b. After scattering, it
emits at some scattering angle θ -(Figure 1). When we give the small impact
parameter, we will get the large scattering angle.
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b
Scattering center

θ
Incident particles

Scattered particles

Figure 1 The classical scattering with the impact parameter b and the
scattering angle θ.

The particles incident with an infinitesimal of cross-sectional area dσ is scattered
from the scattering center with an infinitesimal solid angle dΩ. dσ and dΩ are
proportional value which equal to the differential cross-section, (Figure 2),

D(θ) ≡ dσ

dΩ
. (2.1)

θ

dθ

dΩ

dσ

b

ϕ

Figure 2 Particles incident in the cross-section area dσ scatter to the
solid angle dΩ.

For the impact parameter and the azimuthal angle ϕ, dσ = bdbdϕ and
dΩ = sin θdθdϕ, thus

D(θ) = b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ . (2.2)

The absolute of db/dθ in Eq.(2.2) because θ is a function of b which decreasing.
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After integrating over solid angles for D(θ), we get the total cross-
section is

σ ≡
∫
D(θ)dΩ. (2.3)

In the experiment, a target is “soft” such as the Coulomb potential of nucleus, how-
ever, for normal sense with football kicking is “hard-sphere” which about incoming
particles with the impact parameter b might miss the target. The soft-sphere is
not about hitting or missing.

Lastly, we assume that have an incident particles beam, it is called inten-
sity (luminosity)

L ≡ number of incident particles
unit area /unit time . (2.4)

From Figure 2, the number of particles passing an dσ area per unit time
and scattering through the solid angle dΩ, is

dN = Ldσ = LD(θ)dΩ . (2.5)

Therefore
D(θ) = 1

L
dN

dΩ
(2.6)

which is the definition of the differential cross-section in the laboratory that is easy
to be measured [1].

2.2 Quantum Scattering

In a case of the quantum scattering theory, we are thinking about an
incident plane wave, ψ(z) = Aeikz travels in the z direction, which enters a potential
and scatters that producing an outgoing spherical wave [1] - (Figure 3). Therefore,
we have to look for the solution of the Schrödinger equation. It is given in the
form as

ψ(r, θ) ≈ A

[
eikz + f(θ)e

ikr

r

]
, (2.7)

where radius r is large, an azimuthal ϕ of target is symmetric, and f(θ) is the
scattering amplitude.
The wave number k is associated to the energy of the incident particles that is

k ≡
√

2mE
~

. (2.8)
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z

θ

e
ikz

e
ikr

Figure 3 Wave scattering which an incoming plane wave produces an
outgoing spherical wave.

This scattering amplitude f(θ) gives us the probability of scattered at
an angle θ that is related to the differential cross-section. For the probability of
the incident particles through an infinitesimal cross-section area dσ at speed v in
time dt is given as

dP = |ψincident|2dV = |A|2(vdt)dσ. (2.9)

For the probability of the scattered particles passing a solid angle dΩ is

dP = |ψscattered|2dV = |A|2|f |2

r2 (vdt)r2dΩ. (2.10)

The following result, by comparing Eq.(2.9) and (2.10), dσ = |f |2dΩ, is

D(θ) = dσ

dΩ
= |f(θ)|2. (2.11)

The differential cross-section equals to the absolute square of the scatter-
ing amplitude which solving from the Schrödinger equation.

This problem can use many techniques to evaluate the scattering ampli-
tude, such as the partial wave analysis and the Born approximation. How-
ever, in this thesis, we will give you the detail of the Born approximation method
so you can read more content about the partial wave analysis in the J.Griffiths’
book [1].
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2.3 The Born approximation

We gently start with the time-independent Schrödinger equation to find
the integral form of this equation,

− ~2

2m
∇2ψ + V ψ = Eψ. (2.12)

It is simply written as
(∇2 + k2)ψ = Q, (2.13)

where
k ≡

√
2mE
~

and Q ≡ 2m
~2 V ψ (2.14)

This is the inhomogeneous differential equation, called the Helmholtz equation,
with Q is depends on ψ. Thus, Eq.(2.13) obviously becomes

(∇2 + k2)G(r) = δ3(r) (2.15)

We have to find G(r), called Green’s function, which solves the above
equation. So, the ψ is expressed, integral form, as

ψ(r) =
∫
G(r − r0)Q(r0)d3r0, (2.16)

and then we substitute Eq.(2.16) in Eq.(2.13). We get

(∇2 + k2)ψ(r) =
∫ [

(∇2 + k2)G(r − r0)
]

Q(r0)d3r0

=
∫
δ3(r − r0)Q(r0)d3r0 = Q(r)

(2.17)

The first, the Fourier transform for G(r) is

G(r) = 1
(2π)3/2

∫
eis·rg(s)d3s. (2.18)

Taking (∇2 + k2) operator to the above equation, so

(∇2 + k2)G(r) = 1
(2π)3/2

∫ [
(∇2 + k2)eis·r

]
g(s)d3s. (2.19)

From the operator ∇2, we get

∇2eis·r = −s2eis·r, (2.20)
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and the Fourier transforms of the delta function in Eq.(2.15) is

δ3(r) = 1
(2π)3

∫
eis·rd3s. (2.21)

So, Eq.(2.15) becomes

1
(2π)3/2

∫
(−s2 + k2)eis·rg(s)d3s = 1

(2π)3

∫
eis·rd3s. (2.22)

The result is
g(s) = 1

(2π)3/2(k2 − s2)
. (2.23)

Then, we substitute g(s) back into Eq.(2.18), so

G(r) = 1
(2π)3

∫
eis·r 1

(k2 − s2)
d3s. (2.24)

By using the Complex analysis, a detail about calculating is given in Ap-
pendix.A, we get

G(r) = − eikr

4πr
. (2.25)

Eq.(2.15) possible add any function G0(r) which satisfies the homogeneous
Helmholtz equation,

(∇2 + k2)G0(r) = 0. (2.26)

Of course, the result of (G+G0) satisfies Eq.(2.15).
For Eq.(2.16), the solution of the Schrödinger equation becomes

ψ(r) = ψ0(r) − m

2π~2

∫ eik|r−r0|

|r − r0|
V (r0)ψ(r0)d3r0 (2.27)

where ψ0 satisfies the free-particle Schrödinger equation, as

(∇2 + k2)ψ0 = 0. (2.28)

Eq.(2.27) is the intergral form of the Schrödinger equation for any potential.

2.3.1 The First Born Approximation

Assume V (r0) is localized that r0 ≈ 0 and we have to calculate ψ(r) at
far away from the scattering center. So, |r| ≫ |r0| for all points in the integral of
Eq.(2.27), therefore, it is

|r − r0|2 = r2 + r2
0 − 2r · r0 ≈ r2

(
1 − 2r · r0

r2

)
, (2.29)
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then
|r − r0| ≈ r − r̂ · r0. (2.30)

Let
k ≡ kr̂, (2.31)

so
eik|r−r0| ∼= eikre−ik·r0 , (2.32)

and we got
eik|r−r0

|r − r0|
∼=
eikr

r
e−ik·r0 . (2.33)

For an incident plane wave that scattering, we give

ψ0(r) = Aeikz. (2.34)

A large r, by input Eq.(2.33), thus, it is given as

ψ(r) ∼= Aeikz − m

2π~2
eikr

r

∫
e−ik·r0V (r0)ψ(r0)d3r0. (2.35)

Comparing between Eq.(2.35) and Eq.(2.7), the above equation is a general
form. So, we get the scattering amplitude as

f(θ, ϕ) = − m

2π~2A

∫
e−ik·r0V (r0)ψ(r0)d3r0. (2.36)

In a case of that depending on the Born approximation, we suppose the incident
plane wave is not under influenced by the potential, so

ψ(r0) ≈ ψ0(r0) = Aeikz0 = Aeik′·r0 , (2.37)

where k′ ≡ kẑ. Then, we finally get the Born approximation that is

f(θ, ϕ) ∼= − m

2π~2

∫
ei(k′−k)·r0V (r0)d3r0. (2.38)

This method is very useful for many scattering cases which easily gives us
the scattering amplitude.
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2.3.2 The Born series

The Born approximation likes the impulse approximation, the meaning
of impulsing is a ball hits a wall and returned by the impulse of force, in the case of
classical scattering. With the force from an impulse to the particle which entering
the potential, we get

I =
∫
F⊥dt. (2.39)

The incident particles, with the momentum p, pass through the scattering center
by the scattering angle θ, is very small, that is

θ ∼= tan−1(I/p). (2.40)

From the integral form of the solution of the Schrödinger equation is

ψ(r) = ψ0(r) +
∫
g(r − r0)V (r0)ψ(r0)d3r0, (2.41)

where
g(r) ≡ − m

2π~2
eikr

r
, (2.42)

which is the Green’s function. The ψ0 is the incoming plane wave without the
potential influencing, is the 0th order Born approximation. So, Eq.(2.42) is simpler
rewritten as

ψ = ψ0 +
∫
gV ψ, (2.43)

where V is the scattering potential.
When, we substitute Eq.(2.43) into itself, thus it becomes

ψ = ψ0 +
∫
gV ψ0 +

∫ ∫
gV gV ψ. (2.44)

Repeating the process again, we obtain a series for ψ, is

ψ = ψ0 +
∫
gV ψ0 +

∫ ∫
gV gV ψ0 +

∫ ∫ ∫
gV gV gV ψ0 + · · · . (2.45)
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ψ  =
ψ0 ψ0 ψ0 ψ0

+ + + +...
V

V

Vg

g

V
V

V

g
g

g

Figure 4 The representational diagram of the Born series.

This Eq.(2.45) generates for us the higher-order correction. The Born series, rep-
resented in Figure 4, was the inspiration for Feynman’s formulation of relativistic
quantum mechanics, Feynman diagrams.[1]



CHAPTER III

THE QUANTUM DYNAMICAL PRINCIPLE

The quantum dynamical principle (QDP) is, also called the quantum ac-
tion principle (QAP), proposed by Julian S. Schwinger. It easily apply to many
case of quantum physics. In the working frame, it takes an expression of the varia-
tion of transformation function, δ ⟨at|bt′⟩, from a B state at an initial time t′ to an
A state at a final time t. This ⟨at|bt′⟩ is given by changing on the parameters of a
Hamiltonian that depends on masses, coupling constants, prescribed frequencies,
external sources, etc.,[5]. The specific transformation functions is considered in the
term of ⟨qt|q′t′⟩ and ⟨qt|pt′⟩ which q and p are the general coordinate.

The QDP is the powerful method for the development of quantum physics
that can apply to many problem, one possible as approaching over the “path inte-
gral” and, moreover, the Quantum field theory.

Before we start the detail and mathematical background of this method.
We would like to present the concept of the external source which is early given.

3.1 The Simple Source Theory

At this state, we will give the detail about the “Source theory” in the
scope of Quantum theory that is the reduced concept from Quantum field theory,
presented by Julian S. Schwinger [16, 18, 23].

3.1.1 The Visual concept of the External Source

First of all, we would like to tell reader about the sources theory which are
defined from the mathematical source or numerical function, F(x). The physical
source meaning is a creation of the physical properties that is own by the created
particles.

Comparing with the normal situation in real life, you can see an object
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with the light that reflects and go to your eyes. In this case, the light (particle-like)
emits from a candle or a light bulbs (the sources) and travels to incident our eyes
(the detector) given in Figure 5. Here, these sources mean that it generates, emits
or stimulates something from nothing.

photon

eye

Figure 5 The normal situation of the source and dectector.

Moreover, this external source also means an external force, depends on time, where
it affects only in a temporary time. An example, the harmonic oscillator is added
the external source. The details about this system is given in next subsection.

In the quantum interpretation, we give the Fourier transform of source as

F(p) =
∫

dx e−ip·xF(x). (3.1)

This thesis, the sources are F(τ) and S(τ), t′ ≤ τ < t, which is the
generator of general coordinates, is called the degrees of freedom, and also cause
the transition of |pt′⟩ to |qt⟩ state. For transformation function ⟨qt|pt′⟩, we impose
the Hamiltonian equation that is

H(τ) = −q · F(τ) + p · S(τ). (3.2)

The image of sources which generates the physical states, is given in the
Figure 6 below
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t' t𝜏

F(𝜏)S(𝜏),

q(𝜏)p(𝜏),

Active

Figure 6 The Generated q(τ),p(τ) state by the sources.

In particular, these two sources are activated over the interval of time between t′

and t. Time is possible expanded to −∞ and ∞. This situation begins from −∞

then approaches t′. For the F(τ) source generates the q(τ) state and the p(τ)

state is generated by the S(τ) source. This time-dependent source is similar to
the situation that the external force stimulates the system. An example, the box
is gentle pushed by our force which affects its position, x, infinitesimal moving to
x + δx. According to previous, the source generates, emits or stimulates for the
system at an initial state to reach a final state, founded by detector, so, this event
makes sense to an experiment.

3.1.2 The External Source

At the beginning, we introduce the Hamiltonian, for Harmonic oscillator,
that include the external force (or source). This force is linear coupling with the
disturbance which is the time-dependent source. It is written as

H(t) = P2

2m
+ 1

2
mω2x2 −

√
2mω
~

x · F (t) (3.3)

where F (t) is the external force. Then, by using the annihilation and creation
operators, (a, a†), that are defined as

a = 1√
2

(
∂

∂q + q
)

and a† = 1√
2

(
− ∂

∂q + q
)
.
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Defining x =
√
~/mωq, for removing a unit, an above equation can be rewritten

in the form of
H(t) = ~ω

(
a†a+ 1

2

)
− F (t)(a+ a†) (3.4)

which consists (a+ a†), coupling with F (t). This equation is the prototype of field
theory in zero-dimension space at time t = 0 [5].

The external source leads to the disturbance of system that provides the
transition between the different states, means that ground-states to excited states.
But, somehow, the state still stay in their old state, initial state.

We set this force is “on” after T1 time and “off” at T2 time where T2 > T1,
so we draw it down in Figure 7. Denoting, the external force vanishes in t 6 T1

and t > T2.

T1 T2

F(t) F(t)=0F(t)=0

t

OFFON

Figure 7 The external force is swicthed ON and OFF at T1 and T2 times,
respectively.

We consider the chosen ground-state which is

|ψ(T1)⟩ ≡ |0−⟩ , (3.5)

where this |0−⟩ notation is borrowed from quantum field theory.
To find the possible transitions, we have to solve the time-dependent

Schrödinger equation for the final states, |ψ(T2)⟩, which is

i~
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (3.6)

Consequently, we can make the ansatz as

|ψ(t)⟩ = exp
[
− i

~
(
ξ(t)a† + η(t)

)]
|0−⟩ , (3.7)

where ξ(t) and η(t) are any numbering functions that satisfy

ξ(T1) = 0, η(T1) = 0 (3.8)
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for initial conditions. Then, Eq.(3.7) is substituted in Eq.(3.6) where we use the
identity which is

aeξ(t)a† = eξ(t)a†(a+ ξ)

and the truth that a |0−⟩ = 0. Finally, we obtain
[
ξ̇(t)a† + η̇(t)

]
|0−⟩ =

[
~ω

(1
2

− i

~
ξ(t)a†

)
− F (t)

(
− i

~
ξ(t) + a†

)]
|0−⟩ . (3.9)

This result leads to the solution of ξ(t) and η(t) by using the integration
factor of differential equation and the initial condition in Eq.(3.8). After integrat-
ing, ξ(t) and η(t) are written as

ξ(t) = −e−iωt
∫ t

−∞
dt′ eiωt′

F (t′), (3.10)

η(t) = ~ω
2

(t− T1)

− i

~

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′ e−iω(t′′−t′)F (t′′)Θ(t− t′′)Θ(t′′ − t′)F (t′). (3.11)

The integrating bound of these two equations are expanded to infinity
time that covers T1 6 t 6 T2 time interval. For Eq.(3.11), the two terms will
be vanished when t = T1. In particular, Θ(t − t′) is a step function, orders the
time-dependent event of this system, which is zero when t− t′ < 0.

We are interested in the remaining ground-state amplitude that is

⟨0+|0−⟩F = ⟨0|ψ(T2)⟩

⟨0|ψ(T2)⟩
∣∣∣∣
F =0

, (3.12)

which subscribed F is defined that this transition is disturbed by the external force.
For ⟨0|ψ(T2)⟩, it is given as

⟨0|ψ(T2)⟩ = ⟨0| exp
[
− i

~
(
ξ(T2)a† + η(T2)

)]
|0⟩ , (3.13)

= ⟨0| exp
[
− i

~
η(T2)

]
|0⟩ , (3.14)

where using the fact that ⟨0| a† = 0. This result is substituted in Eq.(3.12) then
we obtain

⟨0+|0−⟩F =
⟨0| exp

[
− i

~η(T2)
]

|0⟩

⟨0| exp
[
− i

~η(T2)
]
|0⟩

∣∣∣∣
F =0

, (3.15)
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where ⟨0+| implies the ground-state at a final time.
At last, Eq.(3.15) is immediately rewritten as

⟨0+|0−⟩F = exp
[
− i

2
ω(T2 − T1)

]

× exp
[
− 1
~2

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ e−iω(t′′−t′)F (t′′)Θ(T2 − t′′)Θ(t′′ − t′)F (t′)

]
, (3.16)

when F = 0, for a dividing term. It is become equaling to one and ⟨0|0⟩ are cancel
each other. After, exp [−iω(T2 − T1)/2] is canceled because of zero point energy,
from boundary condition, and Θ(T2 − t′′) = 1 due to F (t′′) = 0 when t′′ > T2.
Thus, we actually have

⟨0+|0−⟩F = exp
[
− 1
~2

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ e−iω(t′′−t′)F (t′′)Θ(t′′ − t′)F (t′)

]
. (3.17)

Therefore, in the case of remaining ground-state probability, it is computed
and written as

|⟨0+|0−⟩F |2 = exp
[
− 2
~2

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ F (t′′)F (t′) cos(ω(t′′ − t′))Θ(t′′ − t′)

]
.

(3.18)
This Eq.(3.18) may be rewritten where we obtain

|⟨0+|0−⟩F |2 = exp
[
−1
~

∣∣∣∣∫ ∞

−∞
dt e−iωtF (t)

∣∣∣∣2
]

(3.19)

and then we use the Fourier transform. So, immediately, Eq.(3.19) is simple written
as

|⟨0+|0−⟩F |2 = exp
[
−|F (ω)|2

~2

]
, (3.20)

where
F (ω) =

∫ ∞

−∞
dt eiωtF (t).

Importantly, for all possible states have the probability that is defined as

1 = |⟨0+|0−⟩F |2 + |⟨n+|0−⟩F |2 . (3.21)

Thus, we have the excited states, by F (t) source, which is

|⟨n+|0−⟩F |2 = 1 − |⟨0+|0−⟩F |2

= 1 − exp
[
−|F (ω)|2

~2

]
. (3.22)
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Accordingly, for the transition amplitude, defined as ⟨n+|0−⟩, we give this
source, is the sum of two sources, is

F (t) = F1(t) + F2(t). (3.23)

By setting, F1(t) is switched on and off then F2(t) is switched on, immediately.
Consequently, we use Eq.(3.17) to directly obtain

⟨0+|0−⟩F = ⟨0+|0−⟩F2
⟨0+|0−⟩F1

× exp
[
−1
~

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ e−iω(t′′−t′)F2(t′′)F1(t′)

]
, (3.24)

by using the step same as Eq.(3.15), where Θ(t′′ − t) = 1 and F1(t′′) = 0 when
F2(t′′) ̸= 0.

We also follow the previously representation of the Fourier transform and
have

⟨0+|0−⟩F = ⟨0+|0−⟩F2
⟨0+|0−⟩F1

exp
[
iF ∗

2 (ω)
~

iF1(ω)
~

]
. (3.25)

Using the taylor series, the above equation becomes

⟨0+|0−⟩F =
∞∑

n=0
⟨0+|0−⟩F2

[iF ∗
2 (ω)/~]n√
n!

[iF1(ω)/~]n√
n!

⟨0+|0−⟩F1
. (3.26)

Therefore, comparing with the completeness relation, we obtain

⟨0+|0−⟩F =
∑
n,m

⟨0+|m−⟩F2
⟨m|n⟩′

0 ⟨n+|0−⟩F1
, (3.27)

where F1(t) is switched on then off therefore the |0−⟩ state may transit to the |n+⟩

state that stays in this state until F2(t) is switched on.
In particular, ⟨m|n⟩′

0 is the amplitude of a force-free interval between the
two sources F1(t) and F2(t). This transition evolves in time with a free Hamiltonian
which is

⟨m|n⟩′
0 = exp [−iωn(t2 − t1)] δmn. (3.28)

As a result, Eq.(3.27) becomes

⟨0+|0−⟩F =
∑
n,m

⟨0+|m−⟩F2
exp [−iωn(t2 − t1)] δmn ⟨n+|0−⟩F1

,

=
∑

n

⟨
0+

∣∣∣n′
−

⟩
F ′

[
e−iω(t2−t1)

]n
⟨n+|0−⟩F , (3.29)
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where m have to equal to n due to the property of Kronecker delta function and
we must define the new variables, n′ is the states before F2 is switched on. For F2

and F1 are also redefined as F ′ and F , respectively.
From Eq.(3.26) and Eq.(3.29), so, the transition amplitude, disturbed by

the external sources, are meaningful given as

⟨n+|0−⟩F = [ie−iωt2F (ω)/~]n√
n!

⟨0+|0−⟩F , (3.30)

⟨0+|n−⟩F ′ = ⟨0+|0−⟩F ′
[ieiωt1F ′∗(ω)/~]n√

n!
, (3.31)

which t2 represents the time that F (ω) is switched off and, t1 denotes the time
that F ′(ω) is switched on.

Importantly, thus, the following probability of the transition states from
the ground-state |0−⟩ to an excited state |n+⟩, from Eq.(3.30), we finally obtain

|⟨n+|0−⟩F |2 = [|F (ω)|2/~2]n

n!
|⟨0+|0−⟩F |2 ,

= [|F (ω)|2/~2]n

n!
exp

[
−|F (ω)|2

~2

]
(3.32)

by using the probability of remaining ground-state from Eq.(3.20).
This result leads to the average of the system at an excited state which

starts with
n̄ =

∞∑
i=1

ni |⟨n+|0−⟩F |2 . (3.33)

After, we substitute Eq.(3.32) in an above equation and obtain

n̄ = exp
(

−|F (ω)|2

~2

) ∞∑
i=1

[|F (ω)|2/~2]ni

(ni − 1)!
. (3.34)

Then we and change the variables to l = ni − 1 so it is rewritten as

n̄ = exp
(

−|F (ω)|2

~2

)(
|F (ω)|2

~2

) ∞∑
l=0

[|F (ω)|2/~2]l

l!
,

= exp
(

−|F (ω)|2

~2

)(
|F (ω)|2

~2

)
exp

(
+ |F (ω)|2

~2

)
, (3.35)

where using the Taylor series. Finally, the average of system at the excited states
is found as

n̄ = |F (ω)|2

~2 , (3.36)
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after the intervening source is activated.
For obtaining the transition from |n−⟩ to |m+⟩, we provide the intervening

source, previously, is switch on, therefore, the source is given by

F (t) = F1(t) + F2(t) + F3(t), (3.37)

where all of these sources are defined a same logic ordering as early in Eq.(3.23),
F1 → F2 → F3. Then, we also imply Eq.(3.17) and immediately get

⟨0+|0−⟩F = ⟨0+|0−⟩F3
⟨0+|0−⟩F2

⟨0+|0−⟩F1
exp

[
iF ∗

3 (ω)
~

iF2(ω)
~

]

× exp
[
iF ∗

3 (ω)
~

iF1(ω)
~

]
exp

[
iF ∗

2 (ω)
~

iF1(ω)
~

]

=
∑
n,m

⟨0+|m−⟩F3
⟨m+|n−⟩F2

⟨n+|0−⟩F1
. (3.38)

By using Eq.(3.30) and (3.31), the last line in Eq.(3.38) is rewritten as

⟨0+|0−⟩F =
∑
n,m

⟨0+|0−⟩F3

[
i
~e

iωT2F ∗
3 (ω)

]m
√
m!

⟨m+|n−⟩F2

×

[
i
~e

−iωT1F ∗
1 (ω)

]n
√
n!

⟨0+|0−⟩F1
. (3.39)

Then, we use the identity[9] which is

exp
[
iF ∗

3 (ω)
~

iF2(ω)
~

]
exp

[
iF ∗

3 (ω)
~

iF1(ω)
~

]
exp

[
iF ∗

2 (ω)
~

iF1(ω)
~

]

=
∑

L,M,N

[
i
~F

∗
3 (ω)

]L+M

L!

[
i
~F2(ω)

]M [
i
~F

∗
2 (ω)

]N
M !

[
i
~F1(ω)

]L+N

N !
. (3.40)

By setting
L+M = m, L+N = n,

so Eq.(3.40) becomes

exp
[
iF ∗

3 (ω)
~

iF2(ω)
~

]
exp

[
iF ∗

3 (ω)
~

iF1(ω)
~

]
exp

[
iF ∗

2 (ω)
~

iF1(ω)
~

]

=
√
m!

√
n!

[
i
~F

∗
3 (ω)

]m
√
m!

[
i
~F2(ω)

]m−L [
i
~F

∗
2 (ω)

]n−L

L!(m− L)!(n− L)!

[
i
~F1(ω)

]n
√
n!

. (3.41)
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After that, we compare Eq.(3.40) to Eq.(3.41), thus, and obtain

⟨m+|n−⟩F = ⟨0+|0−⟩F

√
m!n!

min(m,n)∑
L=0

[
i
~F (ω)

]m−L
e−iωmT2eiωnT1

[
i
~F

∗(ω)
]n−L

(m− L)!L!(n− L)!
,

(3.42)
where changing F2 → F . This equation is the transition |n−⟩ to |m+⟩ states by
the intervening source, F2(t), is activated.

In a case of non-transition, the state is still at its old state which |m+⟩ →

|n+⟩. At this step, we absolutely obtain

⟨n+|n−⟩F = ⟨0+|0−⟩F n!
min(n)∑

L=0

[
i
~F (ω)

]n−L
e−iωnT2eiωnT1

[
i
~F

∗(ω)
]n−L

[(n− L)!]2L!

= ⟨0+|0−⟩F n!
min(n)∑

L=0

[
− |F (ω)|2

~2

]n−L
e−iωn(T2−T1)

[(n− L)!]2L!
. (3.43)

And then we set k = n − L → L = n − k and n = k + L therefore Eq.(3.43) is
rewritten as

⟨n+|n−⟩F = ⟨0+|0−⟩F n!
n∑

k=0

[
− |F (ω)|2

~2

]k
(k!)2(n− k)!

(3.44)

where, lastly, exponential term is divided for normalization of ⟨n+|n−⟩F . At the
result in Eq.(3.42) and (3.44) are the transition of any excited state to other excited
state or unchanged state.

The important point is that the external force or source affects the system
to be changed reaching an excited state, with initial state. For application of
this theory is given in the next section where you will understand how to use
it. Moreover, how is it role as the action of dynamical variables to generate the
quantum variables.

3.2 The Quantum Dynamical Principle

This section is about how the quantum dynamical principle was proved.
At first, let consider the general Hamiltonian that is

H(t, λ) = H1(t) +H2(t, λ) (3.45)
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whereH1(t), H2(t, λ) are time-dependent butH2(t, λ) is added some parameters (λ)
such as masses, coupling constants, prescribed frequencies, external sources, etc.
Furthermore, H(t, λ) comes from a priori that given the time-dependent potential
or external sources.

For the time evolution operator of Hamiltonian H(t, λ) is U(t, λ) that is
defined as

i~
∂

∂t
U(t, λ) = H(t, λ)U(t, λ). (3.46)

And, for the specific state a, we have

i~
∂

∂t
⟨at| = ⟨at|H(t, λ). (3.47)

For the Hamiltonian H1(t), independent of λ, gives the following time
evolution operator U1(t) as

i~
∂

∂t
U1(t) = H1(t)U1(t), (3.48)

then setting
i~
∂

∂t
1⟨at| = 1⟨at|H1(t). (3.49)

Clearly, the physical state ⟨at| which is related to 1⟨at|, becomes

⟨at| = 1⟨at|U †
1(t)U(t, λ). (3.50)

Introducing, the unitary operator is

V (t, λ) = U †
1(t)U(t, λ) (3.51)

so Eq.(3.50) becomes
⟨at| = 1⟨at|V (t, λ). (3.52)

Thus, Eq.(3.46), by multiplying the U †
1(t) is

i~
∂

∂t
V (t, λ) = U †

1(t)H2(t, λ)U(t, λ) (3.53)

by using the Eq.(3.51).
To end this, we use the identity which beginning with

i~
∂

∂τ

[
V (t, λ)V †(τ, λ)V (τ, λ′)V †(t′, λ′)

]
= V (t, λ)i~ ∂

∂τ

[
V †(τ, λ)V (τ, λ′)

]
V †(t′, λ′),

(3.54)
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and considering only the function of τ term, so

i~
∂

∂τ

[
V †(τ, λ)V (τ, λ′)

]
= i~

[
V †(τ, λ) ∂

∂τ
V (τ, λ′) + d

dτ
V †(τ, λ)V (τ, λ′)

]

= V †(τ, λ)
(
i~
∂

∂τ
V (τ, λ′)

)
+
(
i~
∂

∂τ
V †(τ, λ)

)
V (τ, λ′).

(3.55)

From the Eq.(3.53) and using the complex conjugate, we obtain

(i~V (t, λ))† =
(
U †

1(t)H2(t, λ)U(t, λ)
)†

→ −i~ ∂
∂τ
V †(τ, λ) = U †(τ, λ)H†

2(τ, λ)U1(τ),
(3.56)

and Eq.(3.55), by substituting Eq.(3.56), becomes

i~
∂

∂τ

[
V †(τ, λ)V (τ, λ′)

]
= V †(τ, λ)U †

1(τ)H2(τ, λ′)U(τ, λ′) − U †(τ, λ)H†
2(τ, λ)U1(τ)V (τ, λ′).

(3.57)

From the unitary operator, V (t, λ) and V †(t, λ), Eq.(3.57) is rewritten as

i~
∂

∂τ

[
V †(τ, λ)V (τ, λ′)

]
= U †(τ, λ)

(
U1(τ)U †

1(τ)
)
H2(τ, λ′)U(τ, λ′)

− U †(τ, λ)H†
2(τ, λ)

(
U1(τ)U †

1(τ)
)
U(τ, λ′),

= U †(τ, λ) [H2(τ, λ′) −H2(τ, λ)]U(τ, λ′),

(3.58)

where using the unitary U(t)U †(t) = 1 and the Hermitian operator.
Finally, this Eq.(3.54) becomes

i~
∂

∂τ

[
V (t, λ)V †(τ, λ)V (τ, λ′)V †(t′, λ′)

]
= V (t, λ)

[
U †(τ, λ) (H2(τ, λ′) −H2(τ, λ))U(τ, λ′)

]
V †(t′, λ′),

= V (t, λ)
[
U †(τ, λ) (H(τ, λ′) −H(τ, λ))U(τ, λ′)

]
V †(t′, λ′),

(3.59)

by using the earlier Hamiltonian equation.
Note that, generally, the λ′ and λ are not the same, and the unitary of

V (t, λ) are
V (t, λ)V †(t, λ) = 1 , V †(t, λ)V (t, λ) = 1. (3.60)
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Let integrating over τ from t′ to t, Eq.(3.59) becomes

[
V (t, λ)V †(τ, λ)V (τ, λ′)V †(t′, λ′)

] ∣∣∣∣τ=t

τ=t′

= − i

~
V (t, λ)

[∫ t

t′
dτU †(τ, λ) (H(τ, λ′) −H(τ, λ))U(τ, λ′)

]
V †(t′, λ′),

(3.61)

and consider only the left hand side, is

= V (t, λ)V †(t, λ)V (t, λ′)V †(t′, λ′) − V (t, λ)V †(t′, λ)V (t′, λ)V †(t′, λ′)

= V (t, λ)
[
V †(t, λ)V (t, λ′) − V †(t′, λ)V (t′, λ′)

]
V †(t′, λ′).

(3.62)

Rewriting, the two terms in a bracket are

V †(t, λ)V (t, λ′) = U †(t, λ)U(t, λ′),

V †(t′, λ)V (t′, λ′) = U †(t′, λ)U(t′, λ′),
(3.63)

then we input Eq.(3.63) into Eq.(3.62). So, we get

= U1 † (t)U(t, λ)
[
U †(t, λ)U(t, λ) − U †(t′, λ)U(t′, λ′)

]
U †(t′, λ′)U1(t′)

=
[
U †

1(t)U(t, λ′)
] [
U †(t′, λ′)U1(t′)

]
−
[
U †

1(t)U(t, λ)
] [
U †(t′, λ)U1(t′)

]
.

(3.64)

by using the unitary of U(t, λ) and a property of the unitary operator V (t, λ).
From a mathematical result of the left hand side is

[
V (t, λ)V †(τ, λ)V (τ, λ′)V †(t′, λ′)

] ∣∣∣∣τ=t

τ=t′
= V (t, λ′)V †(t′, λ′) − V (t, λ)V †(t′, λ).

(3.65)
Finally, we obtain[
V (t, λ′)V †(t′, λ′) − V (t, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

[∫ t

t′
dτU †(τ, λ) (H(τ, λ′) −H(τ, λ))

]
V †(t′, λ′).

(3.66)

Let setting λ′ = λ+ δλ, get the variational of Eq.(3.66) that is

δ
[
V (t, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

[∫ t

t′
dτU †(τ, λ)δH(τ, λ)U(τ, λ)

]
V †(t′, λ). (3.67)

Using the (q,p) language, the Hamiltonian H(τ, λ) can be rewritten as

H(τ, λ) = H(q,p, τ ;λ) (3.68)
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where δH(q,p, τ ;λ) , the λ parameter is changing but q,p and τ are kept fixed,
is presented the change of H(q,p, τ ;λ).

The Heisenberg representation of H(q,p, τ ;λ) was defined as

H(τ, λ) = U †(τ, λ)H(q,p, τ ;λ)U(τ, λ) ≡ H(q(τ),p(τ), τ ;λ) (3.69)

where q(τ) and p(τ) are given by

q(τ) = U †(τ, λ)qU(τ, λ), p(τ) = U †(τ, λ)pU(τ, λ) (3.70)

which are the Heisenberg representation of q and p.
Thus, we can rewrite Eq.(3.67) as

δ
[
V (t, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

[∫ t

t′
dτδH (q(τ),p(τ), τ ;λ)

]
V †(t′, λ), (3.71)

where it gives us the variation of H(q(τ),p(τ), τ ;λ) that depends on the λ param-
eter changing, q(τ),p(τ) and τ are kept fixed. The q and p are carried the indices
of various degrees of freedom.

Now, we take the matrix element 1⟨at|bt′⟩1 into an Eq.(3.71) and use
Eq.(3.52) to obtain

δ⟨at|bt′⟩ = − i

~

∫ t

t′
dτ⟨at|δH (q(τ),p(τ), τ ;λ) |bt′⟩ (3.72)

The equation above is the celebrated Schwinger’s dynamical (action)
principle or the quantum dynamical principle [5]. This is expression in the
physical states |at⟩ and |bt′⟩ which depend on λ. Also, the a, b are kept fixed as
same as q(τ), p(τ).

The particular transformation functions are ⟨qt|q′t′⟩, ⟨qt|pt′⟩ and ⟨pt|p′t′⟩,
given as

δ⟨qt|q′t′⟩ = − i

~

∫ t

t′
dτ⟨qt|δH(q(τ),p(τ), τ ;λ)|q′t′⟩, (3.73)

δ⟨qt|pt′⟩ = − i

~

∫ t

t′
dτ⟨qt|δH(q(τ),p(τ), τ ;λ)|pt′⟩, (3.74)

and
δ⟨pt|p′t′⟩ = − i

~

∫ t

t′
dτ⟨pt|δH(q(τ),p(τ), τ ;λ)|p′t′⟩. (3.75)

The application of all above equations will be given below.
Considering, the Hamiltonian equation as

H(q,p, τ ; F(τ),S(τ)) = H(q,p, τ) − q · F(τ) + p · S(τ), (3.76)
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where F(τ) and S(τ), the numerical functions of τ , are the external sources, H(τ, λ)

independents of these sources and a minus sign of q ·F(τ) is used for mathematical
convenience.

The definition of the functional derivatives, with the meaning that the
sources F,S will only exist at time t (τ = t), are

δ

δF(t)
F(τ) = δ(t− τ), (3.77)

δ

δS(t)
S(τ) = δ(t− τ), (3.78)

and then we obtain, from Eq.(3.76), as

δ

δF(t)
H(q,p, τ ; F(τ),S(τ)) = −qδ(t− τ), (3.79)

δ

δS(t)
H(q,p, τ ; F(τ),S(τ)) = pδ(t− τ), (3.80)

where the λ parameter is replaced by the external sources ,F(τ) and S(τ).
The important following result, examples, from the Eq.(3.73)-(3.75) are

(−i~) δ

δF(τ)
⟨qt|q′t′⟩ = ⟨qt|q(τ)|q′t′⟩, (3.81)

(i~) δ

δS(τ)
⟨qt|q′t′⟩ = ⟨qt|p(τ)|q′t′⟩, (3.82)

where these equations for the matrix elements, in Eq.(3.73), of Heisenberg opera-
tors q(τ) and p(τ), for t′ < τ < t, which depend on the F(τ) and S(τ) sources are
set to be zero, eventually.

3.2.1 The Arbitrary Function

Example of functional (function of function), we consider

G[F,S] =
∫ t

t′
dτ ′

∫ t

t′
dτ ′′F(τ ′)A(τ ′, τ ′′)S(τ ′′), (3.83)

where A(τ ′, τ ′′) is independent of F,S.
So that,

δ

δF(τ1)
G[F,S] =

∫ t

t′
dτ ′′A(τ1, τ

′′)S(τ ′′), (3.84)

δ

δS(τ2)
δ

δF(τ1)
G[F,S] = A(τ1, τ2), (3.85)
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where t′ < τ1 < t , t′ < τ2 < t.
Likewise, for t′ < τ < t, we get

δ

δF (τ)

∫ t

t′
dτ ′

∫ t

t′
dτ ′′F(τ ′)A(τ ′, τ ′′)F(τ ′′)

=
∫ t

t′
dτ ′′A(τ, τ ′′)F(τ ′′) +

∫ t

t′
dτ ′F(τ ′)A(τ ′, τ).

(3.86)

Now, let consider the arbitrary function, B(q,p, τ ;λ), with the Heisenberg
representation as

B(τ, λ) ≡ B(q(τ),p(τ), τ ;λ) = U †(τ, λ)B(q,p, τ ;λ)U(τ, λ). (3.87)

Taking the unitary operator to the previous function, we get

V (t, λ)B(τ, λ)V †(t′, λ)

= V (t, λ)V †(τ, λ)U †
1(τ)B(q,p, τ ;λ)U1(τ)V (τ, λ)V †(t′, λ),

(3.88)

so the functional derivative, the variation of λ, for the above equation is

δ
[
V (t, λ)B(τ, λ)V †(t′, λ)

]
= δ

[
V (t, λ)V †(τ, λ)U †

1(τ)B(q,p, τ ;λ)U1(τ)V (τ, λ)V †(t′, λ)
] (3.89)

= δ
[
V (t, λ)V †(τ, λ)

]
U †

1(τ)B(q,p, τ ;λ)U1(τ)V (τ, λ)V †(t′, λ)

+ V (t, λ)δB(τ, λ)V †(t′, λ)

+ V (t, λ)V †(τ, λ)U †
1(τ)B(q,p, τ ;λ)U1(τ)δ

[
V (τ, λ)V †(t′, λ)

]
.

(3.90)

Using the Eq.(3.71), we consider the first term of Eq.(3.90) as

δ
[
V (t, λ)V †(τ, λ)

]
U †

1(τ)B(q,p, τ ;λ)U1(τ)V (τ, λ)V †(t′, λ)

= − i

~
V (t, λ)

[(∫ t

τ
dτ ′U †(τ ′, λ)δH(τ ′, λ)U(τ, λ)

)
B(τ, λ)

]
V †(t′, λ)

= − i

~
V (t, λ)

[∫ t

τ
dτ ′δH(τ ′, λ)B(τ, λ)

]
V †(t′, λ),

(3.91)

where

V †(τ, λ)U †
1(τ)B(q,p, τ ;λ)U1(τ)V (τ, λ)

= U †(τ, λ)U1(τ)U †
1(τ)B(q,p, τ ;λ)U1(τ)U †

1(τ)U(τ, λ)

= U †(τ, λ)B(q,p, τ ;λ)U(τ, λ)

≡ B(τ, λ)

(3.92)
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by using the unitary operator’s property. As the same as the third term, is
V (t, λ)V †(τ, λ)U †

1(τ)B(q,p, τ ;λ)U1(τ)δ
[
V (τ, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

[∫ τ

t′
dτ ′B(τ, λ)δH(τ ′, λ)

]
V †(t′, λ).

(3.93)

Finally, substituting Eq.(3.91) and Eq.(3.93), we obtain

δ
[
V (t, λ)B(τ, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

[∫ t

τ
dτ ′δH(τ ′, λ)B(τ, λ)

]
V †(t′, λ)

+ V (tλ)δB(τ, λ)V †(t′, λ)

− i

~
V (t, λ)

[∫ τ

t′
dτ ′B(τ, λ)δH(τ ′, λ)

]
V †(t′, λ).

(3.94)

Using the definition of the Chronological Ordering[6] which is denoted
as

(H(t)H(t′))+ = (H(t′)H(t))+ = H(t)H(t′), (3.95)

then we can merge the two term, the first and the third, as

δ
[
V (t, λ)B(τ, λ)V †(t′, λ)

]
= − i

~
V (t, λ)

∫ t

t′
dτ ′ (B(τ, λ)δH(τ ′, λ))+ V

†(t′, λ)

+ V (t, λ)δB(τ, λ)V †(t′, λ).
(3.96)

Taking Eq.(3.96) for the matrix element, 1⟨at|bt′⟩1, we get
δ1⟨at|V (t, λ)B(τ, λ)V †(t′, λ)|bt′⟩1

= − i

~1
⟨at|V (t, λ)

∫ t

t′
dτ ′ (B(τ, λ)δH(τ ′, λ)+)V †(t′, λ)|bt′⟩1

+ 1⟨at|V (t, λ)δB(τ, λ)V †(t′, λ)|bt′⟩1.

(3.97)

At last, an equation above is

δ⟨at|B(τ, λ)|bt′⟩ = − i

~
⟨at|

∫ t

t′
dτ ′ (B(τ, λ)δH(τ ′, λ))+ |bt′⟩ + ⟨at|δB(τ, λ)|bt′⟩,

(3.98)
where, similarly, q(τ),p(τ) and also a,b are kept fixed.

Eq.(3.98), by replacing B(τ, λ) by q(τ) and using the functional derivative,
F(τ ′), leads to

(−i~) δ

δF(τ ′)
⟨qt|q(τ)|q′t′⟩ = δ

δF(τ ′)
⟨qt|

∫ t

t′
dτ ′ (q(τ)δH(τ ′, λ))+ |q′t′⟩

+ δ

δF(τ ′)
⟨qt|δq(τ)|q′t′⟩

= ⟨qt| (q(τ ′)q(τ))+ |q′t′⟩

= (i~) δ

δF(τ ′)
(−i~) δ

δF(τ)
⟨qt|q′t′⟩,

(3.99)
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where without the last term, be zero, because of q(τ) is kept fixed, and from
Eq.(3.81) that given in a last line.

Replacing Eq.(3.99) again, by using Eq.(3.81) and Eq.(3.82), it gives

(−i~) δ

δF(τ1)
...(−i~) δ

δF(τ)n

(i~) δ

δS(τ ′
1)
...(i~) δ

δS(τ ′
m)

⟨qt|q′t′⟩

= ⟨qt| (q(τ1)...q(τn)p(τ ′
1)...p(τ ′

m))+ |q′t′⟩,
(3.100)

where t′ ≤ τ1, ..., τn and τ ′
1, ..., τ

′
m ≤ t. Note that the all functional derivative oper-

ators commute.
The functional derivative operators are imposed as the Generating func-

tion that can create the various degrees of freedom, q(τ) and p(τ).

3.2.2 The Propagator of Harmonic Oscillator

We will give you an easy example to find the propagator, ⟨x2t2|x1t1⟩ (but
it does not quite short) that base on the quantum dynamical principle [24] at a
below detail.

The propagator satisfies the differential equation that is

i~
∂

∂t
K(x2, t2; x1, t1) = ⟨x2, t2|Ĥ|x1, t1⟩, (t2 > t1). (3.101)

The first step, starting with the Hamiltonian operator which is

Ĥ = P̂ 2(t)
2m

+ 1
2
mω2X̂2(t) (3.102)

with the initial and final state are

Ĥ = P̂ 2(t1)
2m

+ 1
2
mω2X̂2(t1), (3.103)

Ĥ = P̂ 2(t2)
2m

+ 1
2
mω2X̂2(t2). (3.104)

The Hamiltonian operator is independent of time but P̂ (t) and X̂(t) are
time-dependent operators.

Corresponding, the Heisenberg equations are

d
dt
X̂(t) = − i

~
[X̂(t), Ĥ] = P̂ (t)

m
, (3.105)
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d
dt
P̂ (t) = − i

~
[P̂ (t), Ĥ] = −mω2X̂(t). (3.106)

Next, using the normal differential equation method to find the solution
of this system that is X(t) = A cosωt and time-splitting then we get

X(t) = A cos(ω(t− t1) + ωt1).

From that solution, the momentum operator is

P (t) = mdX(t)/dt = −mωA sin(ωt).

Finally, for the two operators at t2, we obtain

X̂(t2) = X̂(t1) cos(ω(t2 − t1)) + P̂ (t1)
mω

sin(ω(t2 − t1)), (3.107)

P̂ (t2) = −mωX̂(t1) sin(ω(t2 − t1)) + P̂ (t1) cos(ω(t2 − t1)). (3.108)

Now, rewriting Eq.(3.107) as

P̂ (t1) = mω

sin(ω(t2 − t1))
[
X̂(t2) − X̂(t2) cos(ω(t2 − t1))

]
, (3.109)

and substituting in Eq.(3.103), we get

Ĥord = mω2

2 sin2(ωT )
[
X̂(t2) + X̂2(t1) − 2X̂(t2)X̂(t1) cos(ωT )

]
− i~ω

2
cot(ωT ),

(3.110)
where T = t2 − t1 and by using

[
X̂(t2), X̂(t1)

]
= i~ sin(ωT )/mω, the commuting.

The second step, we find the function F (x2, t2;x1, t1) which is

F (x2, t2; x1, t1) = ⟨x2, t2|Ĥ(X̂(t2), X̂(t1))|x1, t1⟩
⟨x2, t2|x1, t1⟩

= mω2

2
[
(x2

2 + x2
1) csc2(ωT ) − 2x2x1 cot(ωT ) csc(ωT )

]
− i~ω

2
cot(ωT ).

(3.111)

From Eq.(3.101), we integrate over t time and it gives

⟨x2, t2|x1, t1⟩ = C(x2, x1) exp
(

− i

~

∫ t2

t1
dT F (x2, T ;x1, 0)

)
. (3.112)
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By the way, the F (x2, t2;x1, t1) function in an above equation is replaced by the
Eq.(3.111) and we get

⟨x2, T |x1, 0⟩ = C(x2, x1) exp

− i

~

∫ T

0
dT ′ mω

2

2

(
(x2

2 + x2
1) csc2(ωT ′)

− 2x2x1 cot(ωT ′) csc(ωT ′)
)

+ i

~

∫ T

0
dT ′ i~ω

2
cot(ωT ′)

.
(3.113)

Finally, we obtain the propagator which is

⟨x2, T |x1, 0⟩ = C(x2, x1)√
sin(ωT )

exp
(

imω

2~ sin(ωT )
[
(x2

2 + x2
1) cos(ωT ) − 2x2x1

])
.

(3.114)
The third step, we prove that C(x2, x1) are independent of x2, x1 and try

to write P̂ (t2) that is a function of x(t2) and x(t1), as

P̂ (t2) = mω cot(ω(t2 − t1))
[
X̂(t2) − X̂(t1) cos(ω(t2 − t1))

]
−mωX̂(t1) sin(ω(t2 − t1)).

(3.115)

The conditions are

⟨x2, t2|P̂ (t2)|x1, t1⟩ = −i~ ∂

∂x2
⟨x2, t2|x1, t1⟩, (3.116)

⟨x2, t2|P̂ (t1)|x1, t1⟩ = i~
∂

∂x1
⟨x2, t2|x1, t1⟩. (3.117)

So, we substitute the Eq.(3.109) and Eq.(3.115) in the two above equations and
we actually get

∂C(x2, x1)
∂x1

= ∂C(x2, x1)
∂x2

= 0 (3.118)

that C(x2, x1) is not depend on x2, x1.
To evaluate C, we have to take the limit of T to zero of the Eq.(3.114)

and use the Gaussian integral which is

lim
T →0+

⟨x2, T |x1, 0⟩ = lim
T →0+

C√
ωT

exp
[
im

2~T
(x2 − x1)2

]

= C

√
2πi~
mω

δ(x2 − x1),
(3.119)

where the value of ωT is small, leads to sin(ωT ) ≈ ωT and cos(ωT ) ≈ 1.
The result of C is given as

C = mω

2πi~
(3.120)
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by the definition of initial,

lim
T →0+

⟨x2, T |x1, 0⟩ = δ(x2 − x1). (3.121)

Finally, the Eq.(3.114), the transformation function, becomes

⟨x2, T |x1, 0⟩ =
√

mω

2πi~ sin(ωT )
exp

(
imω

2~ sin(ωT )
[
(x2

2 + x2
1) cos(ωT ) − 2x2x1

])
.

(3.122)
The truly propagator, includes the time ordering condition, is

K(x2, t2;x1, t1) = Θ(t2 − t1)
√

mω

2πi~ sin(ωT )

x exp
(

imω

2~ sin(ωT )
[
(x2

2 + x2
1) cos(ωT ) − 2x2x1

])
.

(3.123)

For the applications of the Quantum Dynamical Principle is given in the
next chapter that about free particle and the potential scattering.



CHAPTER IV

THE PARTICLE WITH/WITHOUT THE POTENTIAL

In this chapter, we would like to provide a detail about the particle wave
travels trough free space or some potential. With the potential, the particle is
scattered and detected at last. We apply the Quantum Dynamical Principle
(QDP) to this situation (system) for finding the propagator. Eventually, we have
to find the Asymptotically Free Green function which is the time functional, going
to infinity, and independent of x for the word “free”.

4.1 The Free Particle

For free particle, (H = p2/2m, with the momentum p) we introduce the
Hamiltonian equation, includes the sources term, as

H0 = ξ
p2

2m
− q · F(τ) + p · S(τ), (4.1)

and from the previous chapter, see Eq.(3.73), we get

∂

∂ξ
⟨qt|q′t′⟩ξ = − i

~

∫ t

t′
dτ⟨qt|H(q(τ),p(τ), τ)|q′t′⟩ξ, (4.2)

∂

∂ξ
⟨qt|q′t′⟩ξ = − i

~

∫ t

t′
dτH

(
−i~ δ

δF(τ)
, i~

δ

δS(τ)
, τ

)
⟨qt|q′t′⟩ξ, (4.3)

where ξ is the arbitrary parameter which varying and replacing q(τ),p(τ) by the
sources F(τ),S(τ), the functional derivative that we have been proof before.

We integrate over ξ from ξ = 0 to 1 and get

ln⟨qt|q′t′⟩ξ

∣∣∣∣1
0

= − i

~

∫ t

t′
dτH

(
−i~ δ

δF(τ)
, i~

δ

δS(τ)
, τ

)
, (4.4)

⟨qt|q′t′⟩ = exp
[
− i

~

∫ t

t′
dτH

(
−i~ δ

δF(τ)
, i~

δ

δS(τ)
, τ

)]
⟨qt|q′t′⟩0 (4.5)
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with t′ ≤ τ < t and ⟨qt|q′t′⟩ξ=1 = ⟨qt|q′t′⟩. So, for the Hamiltonian equation
Eq.(4.1) with the lower script 0, the Eq.(4.5) becomes

⟨qt|q′t′⟩(0) = exp

− i

2m~

∫ t

t′
dτ
(
i~

δ

δS(τ)

)2
 ⟨qt|q′t′⟩0

∣∣∣∣∣∣
S=0,F=0

, (4.6)

where, for the free particle, we have to finally set F,S = 0.
Next, we have to find ⟨qt|q′t′⟩0 which is ξ = 0. From the Hamiltonian

equation is
H = −q · F(τ) + p · S(τ). (4.7)

The Heisenberg equations from this Hamiltonian are

q̇(τ) = S(τ), (4.8)

ṗ(τ) = F(τ). (4.9)

These all the above equations are integrated as

q(τ) = q(t) −
∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′) ; τ ′ < τ, (4.10)

p(τ) = p(t′) +
∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′) ; τ ′ > τ, (4.11)

where Θ(τ ′ − τ) and Θ(τ − τ ′) are the time ordering which tell us that the existing
of sources in time interval. For q(τ), we integrate from τ to t because the S(τ)

exists in that time. Also for the F(τ) source, because of p(τ), is integrated from
t′ to τ .

Next, we take the matrix elements ⟨qt| and |pt′⟩ into the two equations
above for ξ = 0 and calculate as

⟨qt|q(τ)|pt′⟩0 = 0⟨qt|q(t)|pt′⟩0 −
∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′)⟨qt|pt′⟩0

= q⟨qt|pt′⟩0 −
∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′)⟨qt|pt′⟩0

=
[
q −

∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′)

]
⟨qt|pt′⟩0,

(4.12)

where using the relation for this equation is 0⟨qt|q(t) = (q)0⟨qt|. Then,

⟨qt|p(τ)|pt′⟩0 = 0⟨qt|p(t′)|pt′⟩0 +
∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′)⟨qt|pt′⟩0

= p⟨qt|pt′⟩0 +
∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′)⟨qt|pt′⟩0

=
[
p +

∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′)

]
⟨qt|pt′⟩0,

(4.13)
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where this equation with p(t′)|pt′⟩0 = (p)|pt′⟩0.
Finally, we get

⟨qt|q(τ)|pt′⟩0 =
[
q −

∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′)

]
⟨qt|pt′⟩0, (4.14)

⟨qt|p(τ)|pt′⟩0 =
[
p +

∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′)

]
⟨qt|pt′⟩0. (4.15)

From the previous chapter ((3.81) and (3.82)), the Eq.(4.14) and Eq.(4.15)
are rewritten as

− i~
δ

δF(τ)
⟨qt|pt′⟩0 =

[
q −

∫ t

t′
dτ ′Θ(τ ′ − τ)S(τ ′)

]
⟨qt|pt′⟩0, (4.16)

i~
δ

δS(τ)
⟨qt|pt′⟩0 =

[
p +

∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′)

]
⟨qt|pt′⟩0. (4.17)

The Eq.(4.16) and Eq.(4.17) are integrated as

⟨qt|pt′⟩0 = exp
[
i

~
q
∫ t

t′
dτF(τ)

]
exp

[
− i

~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)Θ(τ ′ − τ)S(τ ′)

]

× exp
[
i

~
q · p

] (4.18)

and

⟨qt|pt′⟩0 = exp
[
− i

~
p
∫ t

t′
dτS(τ)

]
exp

[
i

~

∫ t

t′
dτ
∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]

× exp
[
i

~
q · p

]
,

(4.19)

where exp(iq · p/~) = ⟨qt′|pt′⟩ is satisfied the boundary condition for F = 0 and
S = 0.

The final result is

⟨qt|pt′⟩0 = exp
[
i

~
q
∫ t

t′
dτF(τ)

]
exp

[
− i

~
p
∫ t

t′
dτS(τ)

]
exp

(
i

~
q · p

)

× exp
[
− i

~

∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]
.

(4.20)

For the other application, immediately, we multiply Eq.(4.20) by
⟨pt′|q′t′⟩ = exp(−iq′ · p/~) and integrate over p by dp/2π~

⟨qt|pt′⟩⟨pt′|q′t′⟩0 =
∫ dp

2π~
exp

[
− i

~
p
∫ t

t′
dτS(τ)

]
exp

(
i

~
(q − q′) · p

)

× exp
[
i

~
q
∫ t

t′
dτF(τ)

]
exp

[
− i

~

∫ t

t′
dτ
∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]
(4.21)
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then it was rewriting as

⟨qt|q′t′⟩0 =
∫ dp

2π~
exp

[
i

~

(
q − q′ −

∫ t

t′
dτS(τ)

)
p
]

exp
[
i

~
q
∫ t

t′
dτF(τ)

]

× exp
[
− i

~

∫ t

t′
dτ
∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]
.

(4.22)

At last, we get

⟨qt|q′t′⟩0 = δ
(

q − q′ −
∫ t

t′
dτS(τ)

)
exp

[
i

~
q
∫ t

t′
dτF(τ)

]

× exp
[
− i

~

∫ t

t′
dτ
∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]
,

(4.23)

where using the Dirac delta function, is

δ(q − q′ −
∫ t

t′
dτS(τ)) =

∫ dp
2π~

exp
[
ip
~

(
q − q′ −

∫ t

t′
dτS(τ)

)]
.

The above transformation function, Eq.(4.23), is very useful for the path integral.
We use the result in Eq.(4.20) for the Eq.(4.6) and set

∫ t

t′
dτ ′Θ(τ − τ ′)F(τ ′) = F̂(τ). (4.24)

For Eq.(4.20) is rewritten as

⟨qt|pt′⟩0 = exp
[
i

~
q
∫ t

t′
dτF(τ)

]
exp

(
i

~
q · p

)
exp

[
− i

~

∫ t

t′
dτS(τ)

(
p + F̂(τ)

)]
(4.25)

and, in above equation, the last exponential term, after using the variation of S(τ),
generates

[
−i(p + F̂(τ))/~

]
when the limit is S(τ) → 0.

Thus, (δ/δS(τ))2 can be replacing by
[
−i(p + F̂(τ))/~

]2
and from Eq.(4.6), we

obtain

⟨qt|pt′⟩(0) = exp
[
− i

2π~

∫ t

t′
dτ
(
p + F̂(τ)

)2
]

exp
[
i

~
q
∫ t

t′
dτF (τ)

]

× exp
(
i

~
q · p

)
exp

[
− i

~

∫ t

t′
dτS(τ)(p + F̂(τ))

] ∣∣∣∣∣∣
S=0

,

(4.26)

where associates with the Hamiltonian, for S(τ) = 0, is

H(0) = p2

2m
− q · F(τ). (4.27)
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Finally, Eq.(4.26) becomes

⟨qt|pt′⟩(0)
∣∣∣∣
S=0

= exp
[
i

~

(
q · p − p2

2m
(t− t′)

)]
exp

[
i

~

∫ t

t′
dτF(τ)

(
q − p

2m
(t− τ)

)]

× exp
[
− i

2π~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)(t− τ>)F(τ ′)

]
,

(4.28)

where τ> = max(τ, τ ′). This equation apply to next section for finding the scat-
tering propagator.

Multiplying Eq.(4.28) by ⟨pt′|q′t′⟩ = exp(−iq′ · p/~) and, similar
Eq.(4.23), integrating over p with dp/2π~, we get

⟨qt|q′t′⟩(0) =
∫ dp

2π~
exp

[
i

~

(
q · p − q′ · p − p2

2m
(t− t′)

)]

× exp
[
i

~

∫ t

t′
dτF(τ)

(
q − p

m
(t− τ)

)]

× exp
[
− i

2m~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)(t− τ>)F(τ ′)

]
.

(4.29)

Then, by using the Gaussian integral that is denoted as
∫

dxe−ax2+bx+c =
√
π

a
e

b2
4a

+c, (4.30)

we obtain The Free Particle which is expressed as

⟨qt|q′t′⟩(0) =
√

m

2πi~T
exp

[
im

2~T
(q − q′)2

]

× exp
[
i

~

∫ t

t′
dτF(τ)

(
q′ + (q − q′)

T
(τ − t′)

)]

× exp
[
− i

m~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)(t− τ)Θ(τ − τ ′)(τ ′ − t′)

T
F(τ ′)

]
,

(4.31)

where, after, setting F = 0 which generates i
~(q′ + (q − q′)(τ − t′)/T ) that can

replace (δ/δF(τ)).
At last, this method gives us the above equation is the transformation

function, for the free particle from the q′ → q, which is very useful for many
application. For the next section, you will understand this method.
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4.2 The Functional Treatment for Quantum Scattering

In this case, we pleased to apply the functional method (QDP) [5, 7] to
find the propagator of this general potential. We would like to start with the given
Hamiltonian

H = p2

2m
+ V (x), (4.32)

where the particle mass is m that interact with the potential V (x). This section,
we use the q,p language as x,p.

Introducing, the new Hamiltonian associates with the external sources
F(τ) and S(τ) as

H ′(λ, τ) = p2

2m
+ λV (x) − x · F(τ) + p · S(τ), (4.33)

where λ, the arbitrary parameter, will be set equal to one.
From the QDP, Eq.(4.3), the variation of the transformation function of

the Hamiltonian H ′(λ, τ) which respect to the λ parameter, is

δ⟨xt|pt′⟩ = − i

~

∫ t

t′
dτδ

[
λV

(
−i~ δ

δF(τ)

)]
⟨xt|pt′⟩, (4.34)

where V (x) = V (−i~δ/δF(τ)) with x is replaced by −i~δ/δF(τ).
The Eq.(4.34) above can be immediately integrated over λ from 0 to 1 and

F(τ),S(τ) are set equal to zero, so, it becomes

⟨xt|pt′⟩ = exp
[
− i

~

∫ t

t′
dτV

(
−i~ δ

δF(τ)

)]
⟨xt|pt′⟩(0)

∣∣∣∣∣∣
F,S=0

(4.35)

which here the ⟨xt|pt′⟩ is governed by the Hamiltonian in Eq.(4.32).
The Hamiltonian for the transformation function ⟨xt|pt′⟩(0) which λ = 0,

is
H ′(0, τ) = p2

2m
− x · F(τ) + p · S(τ) (4.36)

and, for the free particle which depend on the Hamiltonian in Eq. (4.1), we get

⟨xt|pt′⟩(0) = exp

− i

2m~

∫ t

t′
dτ
(
i~

δ

δS(τ)

)2
 ⟨xt|pt′⟩0 (4.37)

by using a same step as integration over ξ from 0 → 1 in Eq.(4.6).
The transformation function ⟨xt|pt′⟩0 associates to

Ĥ(τ) = −x · F(τ) + p · S(τ) (4.38)
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and is token to calculate, finally, as

⟨xt|pt′⟩0 = exp
[
i

~
x ·

(
p +

∫ t

t′
dτF(τ)

)]
exp

[
− i

~
p
∫ t

t′
dτS(τ)

]

× exp
[
− i

~

∫ t

t′
dτ
∫ t

t′
dτ ′S(τ)Θ(τ − τ ′)F(τ ′)

]
.

(4.39)

Next, we set S(τ) = 0 that give the boundary condition is ⟨xt|pt⟩ = exp(ix · p/~)

and set the same as Eq.(4.24) (You can turn pages back to reread this method
again).

Finally, this process likes the previous deriving Eq.(4.28) that is

⟨xt|pt′⟩(0)

∣∣∣∣∣∣
S=0

= exp
[

i
~

(
x · p − p2

2m
(t− t′)

)]
exp

[
i
~

∫ t

t′
dτF(τ)

(
x − p

2m
(t− τ)

)]

× exp
[
− i

2π~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)(t− τ>)F(τ ′)

]
,

and substitute this equation back to Eq.(4.35). We obtain

⟨xt|pt′⟩ = exp
[
− i

~

∫ t

t′
dτV

(
−i~ δ

δF(τ)

)]
exp

[
i

~

(
x · p − p2

2m
(t− t′)

)]

× exp
[
i

~

∫ t

t′
dτF(τ)

(
x − p

m
(t− τ)

)]
× exp

[
− i

2m~

∫ t

t′
dτ
∫ t

t′
dτ ′F(τ)(t− τ>)F(τ ′)

]
,

(4.40)

where we just set S(τ) = 0 and, next, set F(τ) = 0 that give δ/δF(τ) can be
replaced by i

~(x−p(t−τ)/m). Also, for the F(τ) source is replaced by −i~δ/δF(τ).
At last, it is given us the important result as

⟨xt|pt′⟩ = exp
[
i

~

(
x · p − p2

2m
(t− t′)

)]

× exp
[
i~
2m

∫ t

t′
dτ
∫ t

t′
dτ ′(t− τ>) δ

δF(τ)
δ

δF(τ ′)

]

× exp
[
− i

~

∫ t

t′
dτ V

(
x − p

m
(t− τ) + F(τ)

)] ∣∣∣∣∣∣
F=0

,

(4.41)

which is the Translational Invariant in Time from this theory.
For the Green function, t > t′, is defined as

⟨xt|x′t′⟩ = G+(xt,x′t′) (4.42)
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with the condition is G+(xt,x′t′) = 0 for t < t′.
We introduce the Fourier transform that are

⟨xt|pt′⟩ = G+(xt,pt′) =
∫

d3x′ eip·x′/~G+(xt,x′t′), (4.43)

and

G+(p,p′; p0) = − i

~
1

(2π~)3

∫ ∞

0
dTei(p0+iϵ)T/~

∫
d3x e−ip·x/~⟨xT |p′0⟩, (4.44)

where t− t′ ≡ T and ϵ → +0.
We rewrite the Eq.(4.41) for ⟨xT |p′0⟩, becomes

⟨xT |p′0⟩ = exp
[
i

~

(
x · p′ − p′2

m
T

)]

× exp
[
i~
2m

∫ T

0
dτ
∫ T

0
dτ ′(t− τ>) δ

δF(τ)
δ

δF(τ ′)

]

× exp
[
− i

~

∫ T

0
dτ V

(
x − p′

m
(t− τ) + F(τ)

)] ∣∣∣∣∣∣
F=0

,

(4.45)

and substitute back into the Eq.(4.44), we obtain

G+(p,p′; p0) = − i

~
1

(2π~)3

∫ ∞

0
dαei(p0−E(p′)+iϵ)α/~

∫
d3x e−ix·(p−p′)/~K(x,p′;α),

(4.46)
where E(p′) = p2/2m, p0 = mc2 is rest mass energy. For the last function term is
denoted as

K(x,p′;α) = exp
[
i~
2m

∫ t

t′
dτ
∫ t

t′
dτ ′(t− τ>) δ

δF(τ)
δ

δF(τ ′)

]

× exp
[
− i

~

∫ t

t′
dτV

(
x − p′

m
(t− τ) + F(τ)

)] ∣∣∣∣∣∣
F=0

,

(4.47)

for above equation, we just replace T by α, t − t′ ≡ α, which α is often used in
field theory [5, 7].

The physical meaning of the K(x,p′;α) is the term of source which reacts
to the particle with depends on the time parameter. Moreover, the [x−p′(t−τ)/m]

functional of V (x) is the trajectory of this particle after scattering that respect to
F(τ).

Note that, for the α-integrand in Eq.(4.46), the [p0 − E(p) + iϵ] term is



42

the inverse of the free Green function in the energy-momentum representation.
Next, the scattering amplitude f(p,p′) with initial p momentum and final

p′ momenta, is

f(p,p′) = − m

2π~2

∫
d3p′′ V (p − p′′)G+(p′′,p′; p0)[p0 − E(p′)]

∣∣∣∣∣∣
p0=E(p′)

, (4.48)

where here the Fourier transform for the potential is

V (p) =
∫

d3x e−ix·p/~V (x). (4.49)

Let consider to find the two last terms in Eq.(4.48), by multiplying the
Eq.(4.45) with [p0 − E(p′)], we calculate

G+(p,p′; p0)[p0 − E(p′)] = − i

~
[p0 − E(p′) + iϵ]

(2π~)3

∫ ∞

0
dαeiα[p0−E(p′)+iϵ]/~

×
∫

d3x eix·(p−p′)/~K(x,p′;α),

= − 1
(2π~)3

∫ ∞

0
dα

(
∂

∂α
eiα[p0−E(p′)iϵ]/~

)

×
∫

d3x e−ix·(p−p′)/~K(x,p′;α).

(4.50)

We integrate the above equation over α from 0 to ∞ with the integration by parts.
Before integrating, we have to determine the K(x,p′;α) for each boundary

condition, after, is set p0 = E(p′), that are

For α = 0;
K(x,p′; 0) = exp [0] exp [0] = 1, (4.51)

where t− t′ ≡ α = 0 cause the integrate boundaries similarly equal to zero.

For α → ∞;
lim

α→∞

∫
d3x e−ix·(p−p′)/~K(x,p′;α), (4.52)

if this case exists, for ϵ > 0, it will imply that

lim
α→∞

e(−ϵα/~)
∫

d3x e−ix·(p−p′)/~K(x,p′;α) = 0. (4.53)

Starting integrate, from Eq.(4.50), we separate computing, without constant, that
is ∫ ∞

0
dα

(
∂e(−ϵα/~)

∂α

) [∫
d3x e−ix·(p−p′)/~K(x,p′;α)

]
. (4.54)
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Next, we use the integration by parts method to consider this case, beginning with∫
udv = uv| −

∫
vdu, (4.55)

where we set

u =
∫

d3x e−ix·(p−p′)/~K(x,p′;α),

du =
[∫

d3x e−ix·(p−p′)/~∂K(x,p′;α)
∂α

]
dα,

(4.56)

and

d v =
(
∂e(−ϵα/~)

∂α

)
,

v = e(−ϵα/~).

(4.57)

We immediately input the results of Eq.(4.56) and Eq.(4.57) into Eq.(4.55) and
obtain ∫ ∞

0
dα

(
∂e(−ϵα/~)

∂α

) [∫
d3x e−ix·(p−p′)/~K(x,p′;α)

]

= − lim
α→∞

∫
d3x e−ix·(p−p′)/~K(x,p′;α).

(4.58)

Finally, the Eq.(4.50) becomes

G+(p,p′; p0)[p0 − E(p′)]

∣∣∣∣∣∣
p0=E(p′)

= lim
α→∞

1
(2π~)3

∫
d3x e−ix·(p−p′)/~K(x,p′;α)

(4.59)
with p0 = E(p′) means that the scattering occurs on the energy shell.

The scattering amplitude in Eq.(4.48) can be rewritten as

f(p,p′) = − m

2π~2

∫
d3p′′

∫
d3x e−ix·(p−p′)/~V (x)

× lim
α→∞

1
(2π~)3

∫
d3x e−ix·(p′′−p′)/~K(x,p′;α),

(4.60)

where using the Fourier transform, Eq.(4.49).
After, integrating over p′′, we take the Dirac delta function to evaluate

the last form which Eq.(4.60) is

f(p,p′) = − m

2π~2 lim
α→∞

∫
d3x e−ix·(p−p′)/~V (x)K(x,p′;α). (4.61)
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In the Born approximation for the scattering amplitude is given as

f(p,p′) = − m

2π~2

∫
d3x e−ix·(p−p′)V (x) (4.62)

with K(x,p′;α) = 1.
Previously, in Eq.(4.47), V [x−p′(t−τ)/m+F(τ)] is a term with the func-

tional differentiations that respect to F(τ) which is created by the potential. This
F(τ) is the fluctuation or derivations of dynamics from straight line trajectory.

When we ignore all functional differentiations with respect to F(τ), ap-
proximately, setting to be zero. We get the scattering amplitude f(p,p′), expressed
as

f(p,p′) = − m

2π~2

∫
d3x e−ix·(p−p′)/~V (x) exp

[
− i

~

∫ ∞

0
dαV

(
x − p′

m
α

)]
. (4.63)

This equation is the Modifies of Born approximation with additional
phase factor in the last integrand, depends on the potential. For Eq.(4.61), when
the scattering is small deflections at high energies, called eikonal approximation,
where obtain from the straight line trajectory approximation with including the
functional differential operation.

The result of this section is very powerful for applying to many potentials
of the scattering problems that we will give you a detail in next section.

4.3 The Coulomb Potential

The Coulomb potential is the interaction between charge particles, for
scattering, where the incident particle straight travels to the target, own potential,
and is deflected then becomes the outgoing particle.

The Coulomb potential’s problem is about that it is a long range potential
when α → ∞, it increases with no bound. In case of Eq.(4.52) does not exist where
it cannot be integrated by parts.

Therefore, the asymptotically free Green function is used to find the prop-
agator;
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4.3.1 Asymptotically Free Green function

In a case of the α → ∞ in Eq.(4.52) does not exist. Thus, we consider the
G+(p.p′; p0) near the energy shell, p0 ≃ p′2/2m.

We introduce the new integral variable, is

z = α

~
[
p0 − E(p′)

]
. (4.64)

Therefore, the Eq.(4.46) becomes

G+(p,p′; p0)
[
p0 − E(p′)

]
= − i

(2π~)3

∫ ∞

0
dz eiz(1+iϵ)

∫
d3x e−ix·(p−p′)/~

× K

(
x,p′; z~

p0 − E(p′)

)
.

(4.65)

Next, we separately consider the K(x,p′; z~/(p0 − E(p′))) term, F(τ) is
neglected. So, we get

K

(
x,p′; z~

p0 − E(p′)

)
≈ exp

[
− i

~

∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)]
. (4.66)

Following result, Eq.(4.65) is rewritten as

G+(p,p′; p0)
[
p0 − E(p′)

]
= − i

(2π~)3

∫ ∞

0
dz eiz(1+iϵ)

∫
d3x e−ix·(p−p′)/~

× exp
[
− i

~

∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)]
.

(4.67)

Using the inverse Fourier transform of G+(p,p′; p0), for x 3-dimensions exchanging
to p momenta space with the definition as

ψ(x) =
∫ d3p

(2π~)3 e
ix·p/~ψ(p), (4.68)

we obtain∫
d3p eix·p/~G+(p,p′; p0) ≈ −ieix·p/~

[p0 − E(p′) + iϵ]

∫ ∞

0
dzeiz(1+iϵ)

× exp
[
− i

~

∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)]
,

(4.69)

where always recall ϵ → +0.
Paying more attention here this is important and many mathematical step,
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for a case of the Coulomb potential V (x) = λ/|x|, we get
∫ z~/(p0−E(p′))

0
dαV

(
x− p′

m
α

)

=
∫ z~/(p0−E(p′))

0
dα

λ√
|x|2 + |p′|2 α2

m2 − 2 α
m

|p′||x| cos θ
,

(4.70)

where x and p are vector variable, for the absolute, we have to calculate it in term
of vector magnitude.
For integrating, we set a new integral variable which is

u =
√

|x|2 + |p′|2 α
2

m2 − 2 α
m

|p′||x| cos θ

dα = m

|p′|
udu√

u2 − |x|2(1 − cos2 θ)
,

(4.71)

and then Eq.(4.70) is rewritten as

λm

|p′|

∫
du√

u2 − |x|2 sin2 θ
. (4.72)

After this step, we will ignore a boundary condition as well as a constant to simplify
integrating for a while.

Next, we set a2 = |x|2 sin2 θ and let u = a secϕ that leads to du =

a secϕ tanϕdϕ thus the above equation becomes∫ du√
u2 − a2

=
∫

secϕ = ln | secϕ+ tanϕ|

= ln |u+
√
u2 − a2|.

(4.73)

Taking the integral variable back to get the result that we want, therefore, it is

ln

∣∣∣∣∣∣ |p
′|α
m

− |x| cos θ +
√

|x|2 + |p′|2α2

m2 − 2 α
m

|p′||x| cos θ

∣∣∣∣∣∣
∣∣∣∣∣∣
z~/(p0−E(p′))

0

= ln

∣∣∣∣∣∣ |p′|z~
m(p0 − E(p′))

− |x| cos θ

+

√√√√|x|2(1 − cos2 θ) +
(

|p′|z~
m(p0 − E(p′)))

− |x| cos θ
)2
∣∣∣∣∣∣− ln

∣∣∣∣|x|(1 − cos θ)
∣∣∣∣,
(4.74)
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where we just give a boundary condition back.
For α = z~/[p0 − E(p′)], we early set (α → ∞) thus we actually get

ln

∣∣∣∣∣∣ |p
′|α
m

− |x| cos θ +
√

|x|2 + |p′|2α2

m2 − 2 α
m

|p′||x| cos θ

∣∣∣∣∣∣
∣∣∣∣∣∣
z~/(p0−E(p′))

0

≈ ln

∣∣∣∣∣∣ 2|p′|z~
m(p0 − E(p′))

∣∣∣∣∣∣− ln
∣∣∣∣|x|(1 − cos θ)

∣∣∣∣
≈ ln

∣∣∣∣∣∣ 2|p′|z~
m(p0 − E(p′))|x|(1 − cos θ)

∣∣∣∣∣∣.

(4.75)

Finally, for Eq.(4.70), the following result is
∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)
≈ λm

|p′|
ln
[

2|p′|z~
m(p0 − E(p′))|x|(1 − cos θ)

]
, (4.76)

where, from vector dot product, cos θ = p′ · x/|p′||x|.
Therefore, the last exponential term in Eq.(4.69) is given as

exp
[
− i

~

∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)]

≈ 1
[p0 − E(p′) + iϵ]−iγ exp

[
−iγ ln

(
2|p′|2z~

m(|p′||x| − p′ · x)

)]
,

(4.77)

where γ = λm/~|p′|.
The above result leads Eq.(4.69) to

∫
d3p eip·x/~G+(p,p′; p0) ≈ −ieix·p′/~

[p0 − E(p′) + iϵ]1−iγ

∫ ∞

0
dz eiz(1+iϵ)z−iγ

× exp
[
−iγ ln

(
2|p′|2/m

)]
exp

[
iγ ln

(
|p′||x| − p′ · x

~

)]
,

(4.78)

and, for only the z-functional term, we use the complex analysis to integrate this
term, is ∫ ∞

0
dzeiz(1+iϵ)z−iγ. (4.79)

Now, we change the integral variable as

u = −iz(1 + iϵ),

dz = − du
i(1 + iϵ)

,
(4.80)
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so, we obtain∫ ∞

0
dz eiz(1+iϵ)z−iγ = i

1 + iϵ

(
i

1 + iϵ

)−iγ ∫ ∞

0
e−uu−iγ du . (4.81)

The last integrating term in Eq.(4.81) can be used the Gamma function to evaluate
as ∫ ∞

0
e−uu−iγ du = Γ(1 − iγ). (4.82)

Next, we evaluate a complex value constant in Eq.(4.81), for ϵ → +0,
which is (

i

1 + iϵ

)1−iγ

→ i

iiγ
. (4.83)

Using the exponential properties to calculate this iiγ, is expressed as

iiγ = eiγ log i, (4.84)

where

log i = ln(1) + i
(
π

2
+ 2nπ

)
= 0 +

(
2n+ 1

2

)
πi ;n ∈ I. (4.85)

Therefore, we get
iiγ = eiγ(2n+ 1

2)πi. (4.86)

For n = 0, it gives Eq.(4.84) as

iiγ = exp
[
−πγ

2

]
, (4.87)

and, certainly, Eq.(4.83) is (
i

1 + iϵ

)1−iγ

= i exp
[
πγ

2

]
. (4.88)

Finally, Eq.(4.79) becomes∫ ∞

0
dz eiz(1+iϵ)z−iγ = ieπγ/2Γ(1 − iγ), (4.89)

and we obtain
∫

d3p eix·p/~G+(p,p′; p0) ≃ eix·p′/~ e−iγ ln(2|p′|2/m)

[p0 − E(p′) + iϵ]1−iγ

× exp
[
iγ ln

(
|p′||x| − p′ · x

~

)]
eπγ/2Γ(1 − iγ).

(4.90)
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When we separate a x-independent part, eventually, we obtain

G0
+C(p) = eiγ ln(2|p′|2/m)

[p0 − E(p′) + iϵ]1−iγ e
πγ/2Γ(1 − iγ), (4.91)

which is the Asymptotically free Green function, in the energy-momentum
representation, that can be plot below as Figure 8.
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(p
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-1
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2

Figure 8 The Asymptotically free Green function of Coulomb scatter-
ing.

4.3.2 Scattering Amplitude

For this step, we have to find the scattering amplitude so we recall the
Eq.(4.48) as

f(p,p′) = − m

2π~2

∫
d3p′′

V (p − p′′)G+(p′′,p′; p0)[p0 − E(p′)]
∣∣∣∣
p0=E(p′)

, (4.92)

and then we use the solution from Eq.(4.90) that is given as∫
d3p eix·p/~G+(p,p′; p0) ≃ e−ip′·x/~ exp

[
iγ ln

(
|p′||x| − p′ · x

~

)]
G0

+C(p′),

(4.93)
where G0

+C(p′) is previously defined in Eq.(4.91).
After using the Fourier transform, V (p) =

∫
d3x e−ix·p/~V (x), thus,

Eq.(4.92) is rewritten as

f(p,p′) = − m

2π~2

∫
d3p′′

∫
d3x e−ix·(p−p′′)/~V (x)

×G+(p′′,p′; p0)
[
p0 − E(p′)

] ∣∣∣∣
p0=E(p′)

.
(4.94)
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Eventually, Eq.(4.93) is substituted in the Eq.(4.92) for the scattering
amplitude, becomes

f(p,p′) = − m

2π~2

∫
d3x

∫
d3p′′ e−ix·p′′/~G+(p′′,p′; p0)

× e−ix·p/~V (x)
[
p0 − E(p′)

] ∣∣∣∣
p0=E(p′)

,
(4.95)

= − m

2π~2

∫
d3x e−ix·(p−p′)/~V (x)

[p0 − E(p′) + iϵ]−iγ
exp

[
iγ ln

(
|p′||x| − p′ · x

~

)]

× e−iγ ln(2p′2/m)eπγ/2Γ(1 − iγ)
∣∣∣∣
p0=E(p′)

.

(4.96)
Next, we use the Fourier transform for x variables, so, we immediately get

f(p,p′) = − m

2π~2V (p − p′) exp
[
iγ ln

(
|p′||p − p′| − p′ · (p − p′)

~

)]

× e−iγ ln(2p′2/m)

[p0 − E(p′) + iϵ]−iγ
eπγ/2Γ(1 − iγ)

∣∣∣∣
p0=E(p′)

.

(4.97)

Using the Coulomb potential in the momenta space which is denoted as

V (p − p′) = 4πλ
(p − p′)2 , (4.98)

therefore, Eq.(4.97) is

f(p,p′) = − m

2π~2
4πλ

(p − p′)2

(
|p′|||p − p′|| − p′ · p − p′

~

)iγ

× e−iγ ln(2p′2/m)

[p0 − E(p′) + iϵ]−iγ
eπγ/2Γ(1 − iγ)

∣∣∣∣
p0=E(p′)

.

(4.99)

Finally, we get the Coulomb scattering amplitude that is

fC(p,p′) = − mλ

~2(p − p′)2

(
|p′||p − p′| − p′ · p − p′

~

)iγ

× eiγ ln(2|p′|2/m)

[p0 − E(p′) + iϵ]−iγ e
πγ/2Γ(1 − iγ)

∣∣∣∣
p0=E(p′)

.

(4.100)

4.3.3 Cross Section

Next, we can calculate the cross section for this situation that is early
defined as

D(θ) = dσ

dΩ
= |f(p,p′)|2. (4.101)
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So, the following result ,by taking Eq.(4.100) into an above equation, is

|f(p,p′)|2 =
(

− mλ

~2(p − p′)2

)2

eπγΓ(1 − iγ)Γ∗(1 − iγ), (4.102)

where, for the Gamma function, it is approximated as Γ(1 − iγ)Γ∗(1 − iγ) ≈ 1 in
case of γ is small. So, the previous equation becomes

|f(p, p′)|2 = 4m2λ2eπγ

~4(p− p′)4 . (4.103)

By defining p = |p′|n and p · p′ = |p′|2 cos θ for the angle is θ, it gives

(p − p′)2 = 4|p′|2 sin2(θ
2

). (4.104)

At last, the differential cross section is imposed as

DC(θ) = dσ

dΩ
= m2λ2eπγ

4~4|p′|4 sin4(θ/2)
, (4.105)

where γ = λm/~|p′|.
This is, may be called, the modified Coulomb differential cross

section that different from the Classical cross section. Therefore, we can illustrate
a graph of this differential cross section as below, Figure 9,

D
(θ
)

θ
0 20 40 8060 100 120 140 160 180

Figure 9 The Coulomb differential cross section of scattering angle θ
(degrees).



CHAPTER V

YUKAWA SCATTERING BY DYNAMICAL
PRINCIPLE

The most important part of this project, we will talk about the procedure
of the Quantum Dynamical Principle which is applied for the case of Yukawa
potential.

5.1 The Functional Treatment Method (QDP)

From the early proving in the fourth chapter, we start with the Asymp-
totically free Green function which is in case of α → ∞.

Therefore, we directly recall the Eq.(4.65) that is

G+(p,p′; p0)[p0 − E(p′)] = − i

(2π~)3

∫ ∞

0
dz eiz(1+iϵ)

×
∫

d3x e−ix·(p−p′)/~K

(
x,p′; z~

p0 − E(p′)

)
,

(5.1)

where z = α/~[p0 − E(p′)] and ϵ → +0.
The first step, we consider only K term for nearing the energy shell, p0 ≃

E(p′), so it becomes

K

(
x,p′; z~

(p0 − E(p′))

)
≃ exp

[
− i

~

∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)]
, (5.2)

when we set F = 0. To end this, we have to find the propagator by finishing of K
term that is substituted for the Yukawa potential which is

V (x) = λ
e−kM |x|

|x|
, (5.3)

where k is scaling parameter and M , target mass, is a mass of particle mediating
the force.
Thus, it is evaluated as∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)
≃ λ

∫ z~/(p0−E(p′))

0
dα

exp
(
−kM |x − p′

m
α|
)

∣∣∣∣x − p′

m
α
∣∣∣∣ , (5.4)
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and changed the integral variable by setting

u =
√

|x|2 + |p′|2α2

m2 − 2 α
m

|p′||x| cos θ,

dα = m

|p′|
udu√
u2 − a2

; a = x sin θ,
(5.5)

therefore, it becomes
λkmM

|p′|

∫
du e−u

√
u2 − a2

. (5.6)

The terrible problem of this function, e−u/
√
u2 − a2, is the integrating diverges.

So, lets approximate the exponential function, by Taylor series, as

e−u ≃ 1 − u+ u2

2!
− u3

3!
+ u4

4!
± ... (5.7)

Separating integration, for each part, we get

1)
∫ du√

u2 − a2
≃ ln

(
2|p′|z~

m(p0 − E(p′))|x|(1 − cos θ)

)
,

2)
∫ u du√

u2 − a2
≃
(

|p′|z~
m(p0 − E(p′))

)
,

3)
∫ u2 du√

u2 − a2
≃ 1

2

(
|p′|z~

m(p0 − E(p′))

)2

,

4)
∫ u3 du√

u2 − a2
≃ 1

3

(
|p′|z~

m(p0 − E(p′))

)3

,

5)
∫ u4 du√

u2 − a2
≃ 1

4

(
|p′|z~

m(p0 − E(p′))

)4

,

... ...

(5.8)
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after input the boundary condition and z is very large value.
Next, we sum all parts from above equations thus the following result is

λkmM

|p′|

∫
du e−u

√
u2 − a2

≃ λkmM

|p′|

 ln
(

2|p′|z~
m(p0 − E(p′)|x|(1 − cos θ)

)

−
(

|p′|z~
m(p0 − E(p′))

)
+ 1

2!2

(
|p′|z~

m(p0 − E(p′))

)2

− 1
3!3

(
|p′|z~

m(p0 − E(p′))

)3

+ 1
4!4

(
|p′|z~

m(p0 − E(p′))

)4

− 1
5!5

(
|p′|z~

m(p0 − E(p′))

)5

± . . .

.
(5.9)

We can take the summation form for the second term and so on where it becomes

λkmM

|p′|

∫
du e−u

√
u2 − a2

≃ η

 ln
(

2|p′|z~
m(p0 − E(p′))|x|(1 − cos θ)

)

+
∞∑

n=1

(−1)nSn

n!n

.
(5.10)

Simplify, we set

η = λkmM

|p′|
, and S = |p′|z~

m(p0 − E(p′))
. (5.11)

For the term of summation, it can be evaluated by the incomplete Gamma
function which is explain below as

Γ(a, z) = Γ(a) − γ(a, z), (5.12)

where Γ(a, z) is the upper incomplete Gamma function, Γ(a) is the Gamma func-
tion and γ(a, z) is the lower incomplete Gamma function.
We start with the lower incomplete Gamma function, it take in term of

γ(a, z) =
∫ z

0
ta−1e−td t,

=
∫ z

0

∞∑
n=0

(−1)n t
a+n−1

n!
d t,

=
∞∑

n=0

(−1)nza+n

n!(a+ n)
,

= za
∞∑

n=0

(−1)nzn

n!(a+ n)
.

(5.13)
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Adding (−1/a) for both side of equation, we get

γ(a, z) − 1
a

= −1
a

+ za
∞∑

n=0

(−z)n

n!n
= za − 1

a
+ za

∞∑
n=1

(−z)n

n!n
. (5.14)

Next, we take the limit that a → 0 for Eq.(5.12) and adding (−1/a) so it
becomes

lim
a→0

Γ(a, z) = lim
a→0

(Γ(z) − γ(a, z)) ,

= lim
a→0

(
Γ(z) − 1

a
−
(
γ(a, z) − 1

a

))
,

= lim
a→0

(
Γ(z) − 1

a

)
− lim

a→0

(
γ(a, z) − 1

a

)
,

= −γ − lim
a→

(
za − 1
a

+ za
∞∑

n=1

(−z)n

n!n

)

Γ(0, z) = −γ − ln(z) −
∞∑

n=1

(−z)n

n!n
.

(5.15)

The final result is
∞∑

n=1

(−1)nzn

n!n
= − ln(z) − Γ(0, z) − γ , (5.16)

where γ = 0.577, is the Euler–Mascheroni constant.
Comparing, for the summation in Eq.(5.10), it equals to

∞∑
n=1

(−1)nSn

n!n
= − ln(S) − Γ(0, S) − γ , (5.17)

and, for the upper incomplete Gamma function in case of S → ∞, very large, we
get

lim
S→∞

Γ(0, S) = 0. (5.18)

Then, substituting it back and replacing for S to the Eq.(5.10), we obtain

η
∫ z~/(p0−E(p′))

0
dαV

(
x − p′

m
α

)
≃ η

 ln
(

2|p′|z~
m(p0 − E(p′))|x|(1 − cos θ)

)

− ln
(

|p′|z~
m(p0 − E(p′))

)
− γ

,
≃ η

[
ln
(

2
|x|(1 − cos θ)

)
− γ

]
.

(5.19)
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The second step, for the Eq.(5.2), it can be rewritten as

K

(
x,p′; z~

(p0 − E(p′))

)
≃ exp

[
− i

~
λkm2

|p′|

[
ln
(

2
|x|(1 − cos θ)

)
− γ

]]

≃ eiβγ exp
[
−iβ ln

(
2|p′|

|p′||x| − p′ · x

)]
,

(5.20)

where β = λkmM/~|p′| and cos θ = p′ · x/|p′||x|.
Eventually, from the Eq.(5.1), we obtain

G+(p,p′; p0) ≃ 1
(2π~)3

−ie−iβ ln(2|p′|)eiβγ

[p0 − E(p′) + iϵ]

∫
d3x e−ix·(p−p′)/~

× exp [iβ ln(|p′||x| − p′ · x)]
∫ ∞

0
d zeiz(1+iϵ).

(5.21)

And we consider the last term that is z functional, as

∫ ∞

0
d zei(1+iϵ)z = ei(1+iϵ)z

i(1 + iϵ)

∣∣∣∣∣∣
∞

0

= 1
i(1 + iϵ)

[
lim

z→∞
ei(1+iϵ)z − 1

]

= −1
i(1 + iϵ)

,

(5.22)

where we thank to the epsilon for easiest integration of this case.
The following result is

∫
d3p eip·x/~G+(p,p′; p0) ≃ eix·p′/~ e−iβ ln(2|p′|)eiβγ

[p0 − E(p′) + iϵ]

× exp [iβ ln(|p′||x| − p′ · x)] ,
(5.23)

and, for the asymptotically free Green function, without the x-dependent, it is
finally expressed as

G0
+Y (p) = eiβγe−iβ ln(2|p|)

[p0 − E(p) + iϵ]
, (5.24)

which is in the term of the energy-momentum representation. This Green function
can be plotted as below.
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Figure 10 The Asymptotically free Green function of Yukawa scatter-
ing.

5.2 Scattering Amplitude and Cross section

5.2.1 Scattering Amplitude

We recall the Eq.(4.48) again which is

f(p,p′) = − m

2π~2

∫
d3p′′

V (p − p′′)G+(p′′,p′; p0)[p0 − E(p′)]
∣∣∣∣
p0=E(p′)

, (5.25)

and use the Fourier transform for V (p − p′′) for an above equation. So, we get

f(p,p′) = − m

2π~2

∫
d3x

∫
d3p′′ eip′′·x/~G+(p′′,p′; p0)

× e−ix·p/~V (x)[p0 − E(p′)]

∣∣∣∣∣∣
p0=E(p′)

.
(5.26)

After inputting the result from Eq.(5.23), we obtain

f(p,p′) = − m

2π~2

∫
d3x e−ip·x/~eiβ ln(|p′||x|−p′·x)eiβγe−iβ ln(2|p′|), (5.27)

and, eventually, by using the Fourier transform for x variables, also get

f(p,p′) = − m

2π~2V (p − p′)eiβ ln(|p′||p−p′|−p′·(p−p′))eiβγe−iβ ln(2|p′|). (5.28)

Next, for the Yukawa potential in the momentum representation is

V (p − p′) = 4πλ
(p − p′)2 + (kM)2 , (5.29)
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so the Eq.(5.28) becomes

fY (p,p′) = − m

2π~2
4πλ

(p − p′)2 + (kM)2

×; eiβ ln(|p′||p−p′|−p′·(p−p′))eiβγe−iβ ln(2|p′|)

∣∣∣∣∣∣
p0−E(p′)

.

(5.30)

So, finally, the above equation becomes

f(p,p′) = − m

2π~2
4πλ

(p − p′)2 + (kM)2

× (|p′||p − p′| − p′ · (p − p′))iβ
eiβγe−iβ ln(2|p′|).

(5.31)

which is the Yukawa scattering amplitude.

5.2.2 Cross Section

We have to find the differential cross section that is defined as

D(θ) = dσ

dΩ
= |f(p,p′)|2, (5.32)

and calculate the absolute that is

|f(p,p′)|2 =
(

− m

2π~2

)2
(

4πλ
(p − p′)2 + (kM)2

)
. (5.33)

Where we use the similar condition as Eq.(4.104), (p−p′)2 = 4|p′|2 sin2(θ/2), then
we obtain the differential cross section as

DY (θ) = dσ

dΩ
= 4m2λ2

~4(4|p′|2 sin2(θ/2) + (kM)2)
, (5.34)

where is the Yukawa differential cross section, is illustrated as below.
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Figure 11 The Differential Cross section of Yukawa scattering.



CHAPTER VI

CONCLUSION

The conclusion, after we apply the Quantum Dynamical Principle to
the specific case of Yukawa potential where the incident particles are scattered.
Consequently, all details is given and described below.

From many step of mathematical deriving, we obtain the final result of
the Asymptotically Free Green function of this scattering, can be expressed
in term of the energy-momentum representation as

G0
+Y (p) = eiβγe−iβ ln(2|p|)

[p0 − E(p) + iϵ]
, (6.1)

where β = λkmM/~|p| and E(p) = p2/2m.
For this asymptotically free Green function, we can repeat it in the graph

below, where varying the parameter of mass.

G
0 +(p
)

p
0 1 2 3 4 5 6 7 8 9 10

-1

0

1

M=1.5
M=1

M=0.510

Figure 12 The Asymptotically free Green function of Yukawa scatter-
ing.

According to this graph, Figure 12, when the incident wave, traveling with the
form of sine, cosine or some kind of periodic waves, is coming to the target and
then it is scattered. The consequent result is when the parameter, mass, of the
Yukawa potentail is increasing cause a range of potential is shorten. Therefore, for
the dot-line and dash-line maintain the form of periodic wave in a short range.
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In a contrast, for a lowest parameter, M = 0, it seem to be the Coulomb asymptotic
free propagator but it is not, and for a case of parameter M is 1.5, an effect of
this potential, is stronger than others higher values parameters. In particular, the
influence is powerful so the incident wave is lost its periodic.

Next, for the Scattering Amplitude, defined in Eq.(4.48), we obtain

fY (p,p′) = − m

2π~2
4πλ

(p − p′)2 + (kM)2 (|p′||x| − p′ · x)iβ
eiβγe−iβ ln(2|p′|), (6.2)

which leads to the Differential Cross section. It is expressed as

DY (θ) = dσ

dΩ
= 4m2λ2

~4(4|p′|2 sin2(θ/2) + (kM)2)
. (6.3)

Finally, we present the graph of the differential cross section again which is given
below.
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Figure 13 The Differential Cross section of Yukawa scattering.

According to the graph above, Figure 13, comparing the M mass param-
eters of Yukawa potential, we can say that when the mass parameter is increased
the curves of amplitude are lowered and more expanded along the angle degrees.
For m → 0, this differential cross section of Yukawa scattering approaches to the
differential cross section of Coulomb potential. A physical meaning of these line is
a probability of detecting the outgoing particles wave at any angle.

Certainly, this method, quantum dynamical principle, provides the Green
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function or transformation functions for the scattering case, which leads to the
theoretical foundation of the particles physics. Especially, the external sources af-
fect the system from the ground-state to the excited states and also generates the
quantum variables. Summary, you will found that this method is very powerful
and useful.
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APPENDIX A COMPLEX ANALYSIS

Recalling Eq.(2.24), as

G(r) = 1
(2π)3

∫
eis·r 1

(k2 − s2)
d3s, (A.1)

so, we take this integrand in spherical coordinates that the derivative is

d3s = s2 sin θ ds dθ dϕ . (A.2)

Next, we change Eq.(A.1) to become

G(r) = − 1
(2π)3

2π∫
0

π∫
0

∞∫
0

eisr cos θ

(s2 − k2)
s2 sin θ ds dθ dϕ . (A.3)

Considering only integrand that is

2π∫
0

π∫
0

∞∫
0

eisr cos θ

(s2 − k2)
s2 sin θ ds dθ dϕ = 2π

π∫
0

∞∫
0

s2eisr cos θ

(s2 − k2)
sin θ ds dθ (A.4)

and changing the integral variable as

u = isr cos θ and du = −isr sin θ dθ . (A.5)

Integrating over θ, it is

−
∫

du seu

ir (k2 − s2)
= − seisr cos θ

ir (k2 − s2)

∣∣∣∣∣∣
π

0

= 2s sin(sr)
r (k2 − s2)

, (A.6)

then we get

G(r) = − 1
4π2r

∞∫
−∞

s sin(sr) ds
(k − s)(k + s)

. (A.7)
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S= S=-k +k

Figure 14 The contour integral, avoids the poles.

Using the Cauchy’s integral, the determining function as
∮

C
dz zeizr

(z2 − k2)
, (A.8)

which is in Fig.14.
We consider two path integration

∮
C

dz zeizr

(z2 − k2)
= IC = I1 + I (A.9)

where IC is the contour integral. To end this, I1 is calculated as

I1 =
∫

dz zeizr

z2 − k2 = i
∫

dθ eiRr cos θ(
1 − k2

R2ei2θ

)
eRr sin θ

, (A.10)

when using z = Reiθ and dz = iReiθ dθ and let R → ∞, we finally get

I1 = lim
R→∞

i
∫

dθ eiRr cos θ(
1 − k2

R2ei2θ

)
eRr sin θ

= 0 (A.11)

where exp(Rr sin θ) → ∞.
For IC , we use the residue theorem which the poles are in this contour

integral, z0 = k,−k, thus, it is

IC = 2π i
∑

Res{z0}. (A.12)

Where z0 = k, its residue is

Res{k} = zeizr(z − k)
(z − k)(z + k)

∣∣∣∣∣∣
z=k

= eikr

2
, (A.13)
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and for z0 = −k, its residue is

Res{−k} = zeizr(z + k)
(z − k)(z + k)

∣∣∣∣∣∣
z=k

= e−ikr

2
. (A.14)

So, we get
IC = iπ

(
eikr + e−ikr

)
= iπ eikr (A.15)

where r → ∞ lead to exp(−ikr) = 0. Recall Eq.(A.7), for sin function, we want
only an imaginary part, so, we get

G(r) = − 1
4π2r

Im
∞∫

−∞

seisr ds
(s2 − k2)

= − 1
4π2r

Im
[
iπ eikr

]
. (A.16)

At last, it becomes
G(r) = − eikr

4π r
. (A.17)
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