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We present the first example of a unitary theory of Lorentz-invariant massive gravity, with all degrees of
freedom propagating on a strictly homogeneous and isotropic, self-accelerating de Sitter background. The
theory is a simple extension of the quasidilaton theory, respecting the symmetry of the original theory
but allowing for a new type of coupling between the massive graviton and the quasidilaton scalar.
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Introduction

Since the pioneering work of Fierz and Pauli in 1939 [1], it
has been a long-standing question in theoretical physics whether
a graviton can have a non-vanishing mass. Recently a fully nonlin-
ear theory of massive gravity was found by de Rham, Gabadadze
and Tolley (dRGT) [2,3] and has provided a positive answer to this
fundamental question.

The study of massive gravity is motivated not only by the above
mentioned theoretical question but also by the observed accelera-
tion of cosmic expansion, one of the greatest mysteries in mod-
ern cosmology. There is a possibility that a finite graviton mass
might be the source of accelerated expansion of the universe. In
this respect, it is important to establish a theoretically consistent
and observationally viable cosmological scenario in massive grav-
ity. However, it was recently shown that all homogeneous and
isotropic cosmological solutions in the dRGT theory are unsta-
ble [4].

This no-go result suggests two possible directions: (i) to break
either homogeneity [5] or isotropy [6,7] of the cosmological back-
ground, or (ii) to extend the theory [8,9] (see also [10] for a non-
self-accelerating bi-gravity extension). The purpose of the present
Letter is to explore the second possibility and to establish a stable
self-accelerating homogeneous and isotropic cosmological solution.
The hope is that this theory will provide a theoretically acceptable
setup to start studying the phenomenology of this theory and its
potential imprints in the experimental data.
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The model

The quasidilaton, denoted hereafter as σ , is an additional scalar
field in the context of an extended dRGT massive gravity [8], intro-
duced to realize a new global symmetry

σ → σ + σ0, φa → e−σ0/MPlφa, (1)

where φa (a = 0, . . . ,3) are four scalar fields called Stückelberg
fields and σ0 is an arbitrary constant. The theory also enjoys the
Poincare symmetry in the space of Stückelberg fields

φa → φa + ca, φa → Λa
bφ

b, (2)

so that φa enter the action only through the so-called Minkowski
fiducial metric defined as

fμν = ηab∂μφa∂νφb. (3)

We extend the quasidilaton theory by adding a new type of
coupling between the massive graviton and the quasidilaton. This
is achieved by replacing fμν in the action of the original theory
with

f̃μν ≡ fμν − ασ

M2
Plm

2
g

e−2σ/MPl∂μσ∂νσ , (4)

where ασ is a new coupling constant1 and mg is the graviton mass
introduced in (10) below. Note that the factor e−2σ/MPl in the sec-
ond term was introduced so that fμν and f̃μν share the same

1 We expect ασ = O (1). In other words, the (technically natural) suppression
scale of the new term is Λ2 ∼ (MPlmg )1/2 and thus is higher than Λ3 ∼ (MPlm2

g )1/3.
The reason for this is because the original quasidilaton (i.e. the theory with ασ = 0)
in the Λ3 decoupling limit enjoys an enhanced Galileon symmetry [8].
.

http://dx.doi.org/10.1016/j.physletb.2013.12.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2013.12.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2013.12.041&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


A. De Felice, S. Mukohyama / Physics Letters B 728 (2014) 622–625 623
scaling property under (1):

fμν → e−2σ0/MPl fμν, f̃μν → e−2σ0/MPl f̃μν. (5)

Having defined f̃μν in this way, a building block for the action of
extended quasidilaton massive gravity is constructed as

Kμ
ν = δμ

ν − eσ/MPl
(√

g−1 f̃
)μ

ν, (6)

where g−1 represents the inverse gμν of the physical metric gμν .
It is easy to see from (5) that the tensor Kμ

ν is invariant under
(1). We then build the following terms, which provide a mass to
the graviton.

L2 ≡ 1

2

([K]2 − [
K2]), (7)

L3 ≡ 1

6

([K]3 − 3[K][K2] + 2
[
K3]), (8)

L4 ≡ 1

24

([K]4 − 6[K]2[K2] + 3
[
K2]2

+ 8[K][K3] − 6
[
K4]), (9)

where square brackets denote a trace.
Note that the dependence of the extended fiducial metric (4)

on the time-derivative of the quasidilaton alters the Hamiltonian
structure of the system, and one might worry about possible reap-
pearance of the Boulware–Deser (BD) ghost [11]. Since the type of
theory considered in the present Letter does not fall into a class
of models that was claimed to be free from the BD ghost [12], it
remains an open question whether the BD ghost is absent at fully
nonlinear level. (Note that a failure to prove the absence of the BD
ghost does not necessarily imply the presence of it.) In the follow-
ing, instead of providing a fully nonlinear study, we shall satisfy
ourselves by explicitly showing the absence of the BD ghost at the
level of linear perturbations around a self-accelerating solution.

After introducing a canonical kinetic term for the quasidilaton
field σ , we are ready to write down the full Lagrangian as

S = M2
Pl

2

∫
d4x

√−g

[
R − 2Λ − ω

M2
Pl

∂μσ∂μσ

+ 2m2
g(L2 + α3L3 + α4L4)

]
. (10)

This action can be further extended, e.g. by introducing shift-
symmetric covariant Galileon-type kinetic terms for the quasidila-
ton field, or/and by introducing other massive gravity Lagrangians
with different values of ασ , α3, and α4. One can also add an ex-

tra term ξ

√
− f̃ e4σ/MPl invariant under (1). In the present Letter,

however, we shall focus our attention to the simplest extension
provided by (10).

In the limit ασ → 0, the action (10) reduces to the one in the
original theory of quasidilaton, but it was shown in [13,14] that the
original theory suffers from ghost instability in the scalar sector. In
the following we shall show that the inclusion of the ασ term can
render the extended quasidilaton theory stable.

The background

Let us consider here a flat Friedmann–Lemaître–Robertson–
Walker (FLRW) ansatz for the theory defined in Eq. (10), that is

ds2 = −N(t)2 dt2 + a(t)2δi j dxi dx j, (11)

φ0 = φ0(t), φi = xi, σ = σ̄ (t). (12)
The extended fiducial metric (4) then reduces to

f̃00 = −n(t)2, f̃ i j = δi j, (13)

where

n(t)2 ≡ (
φ̇0)2 + ασ

M2
Plm

2
g

e−2σ̄ /MPl ˙̄σ 2
. (14)

We introduce the following quantities characterizing the back-
ground solution.

H ≡ ȧ

Na
, X ≡ eσ̄ /MPl

a
, r ≡ n

N
a. (15)

We consider here a to be a dimensionless quantity, so as n, N ,
X , ω, r and ασ . Also [φa] = M−1, [H] = M , and [σ ] = M . As we
shall see below, the three independent equations of motion for the
background allow for an attractor solution on which H , X , and r
are constants.

Varying the action w.r.t. φ0(t) and then setting n(t) = 1 leads
to

∂t
[
a4 X(1 − X) J φ̇0/n

] = 0, (16)

where

J ≡ 3 + 3(1 − X)α3 + (1 − X)2α4. (17)

This implies that X(1 − X) J φ̇0/n ∝ 1/a4 → 0 as the universe ex-
pands (i.e. a → ∞). We thus have three cases: X = 0, X = 1 and
J = 0. We would not consider the case with X = 0 since it would
lead to a strong coupling [8]. The case with X = 1 is not interesting
since it does not lead to a self-accelerating solution but corre-
sponds to a solution driven by the bare cosmological constant Λ.
Therefore, in this Letter we shall consider the case with

J = 0. (18)

This, together with

r = 1 + ωH2

m2
g X2[α3(X − 1) − 2] , (19)

(
3 − ω

2

)
H2 = Λ + ΛX , (20)

leads to a self-accelerating solution. The de Sitter solution we have
just found is supposed to describe the final state of the dynamics
of our universe, when all matter fields can be safely neglected.
Here,

ΛX ≡ m2
g(X − 1)

[
6 − 3X + (X − 4)(X − 1)α3

+ (X − 1)2α4
]
. (21)

Eq. (20), together with the requirement that ∂(H2)/∂Λ > 0, or, in
other words, the positivity of the effective Newton’s constant for
the background evolution, implies that

ω < 6. (22)

This study shows that it is possible, in general, for this theory
to possess self accelerating solutions with effective cosmological
constant given by ΛX . It should be noticed that the new compo-
nent in the extended fiducial metric (4), i.e. the term proportional
to ασ , does not enter in the background dynamics. However, the
parameter ασ , as we will see later on, will play a crucial role in
order to stabilize the propagation of the perturbation fields.
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Scalar perturbations

We have shown the existence of a self-accelerating solution for
this extended quasidilaton theory. In the following analysis of per-
turbations, we choose the unitary gauge: we set the Stückelberg
fields to their background values. This choice completely fixes the
gauge freedom.

As for the scalar sector we introduce the metric in the form

δg00 = −2N2Φ, δg0i = Na∂i B, (23)

δgij = a2
[

2δi jΨ +
(

∂i∂ j − 1

3
δi j∂l∂

l
)

E

]
, (24)

whereas the quasidilaton field is perturbed as

σ = σ̄ + MPlδσ . (25)

After decomposing each perturbation variable into Fourier modes,
and expanding the action up to second order, we find that B and
Φ do not have kinetic terms as expected. We can thus integrate
them out. Furthermore, on introducing the field redefinition

δσ = Ψ + ¯δσ , (26)

we notice that Ψ also becomes an auxiliary field. This feature is
due to the specific structure of the graviton mass term in the ac-
tion, which has been constructed in such a way that the Boulware–
Deser ghost [11] is removed. After integrating out the field Ψ as
well, the theory admits only two propagating scalar modes.

No-ghost condition

We then obtain the kinetic matrix K I J (I, J = 1,2) in the to-

tal Lagrangian L 	 K11| ˙̄δσ |2 + K22|Ė|2 + K12(
˙̄δσ †

Ė + h.c.). In order
to avoid a ghost degree of freedom, we demand that det K I J > 0
and K22 > 0. By requiring these two inequalities for all momenta,
and noting the condition (22) from the background evolution, we
obtain the following conditions

0 < ω < 6, X2 <
ασ H2

m2
g

< r2 X2. (27)

It should be pointed out that the latter condition implies that r > 1
(note that r is positive by definition) and that ασ H2/m2

g > 0. In
particular, if ασ = 0 then there is always a ghost in the scalar sec-
tor [13,14]. In this sense the ασ term introduced in the present
Letter plays a key role to establish the stability of the quasidila-
ton theory. We also notice that (φ̇0/n)2 = 1 −ασ H2/(m2

gr2 X2) and

that the last inequality in (27) is equivalent to (φ̇0/n)2 > 0. We
have thus shown the existence of a parameter regime in which the
scalar sector is free from ghost.

Speed of propagation

In order to find the speed of propagation for the scalar modes,
we find it convenient to diagonalize the kinetic matrix by defining
the fields q1,2 as

δ̄s ≡ kq1, E ≡ q2

k2
− K12

K22
kq1, (28)

where k is the size of the comoving momentum. The k-dependence
in this field redefinition has been introduced so that, for the new
kinetic matrix, the diagonal elements tend to finite (and non-zero)
values for large k.

The new kinetic matrix TI J is diagonal as

L 	 T11(t,k)|q̇1|2 + T22(t,k)|q̇2|2, (29)
where

T11 = (det K I J )k
2/K22, T22 = K22/k4, (30)

and, when the no-ghost conditions (27) hold we find

T11 > 0, and T22 > 0. (31)

When k/a 
 H and k/a 
 mg , we can safely ignore time-
dependence of each coefficient in the equations of motion. At the
leading order in large k expansion we thus obtain the following
structure of the equations of motion.

T11q̈1 + kBq̇2 � 0, (32)

T22q̈2 − kBq̇1 + k2Cq2 � 0, (33)

where T11, T22, and other coefficients B and C are k-independent.
All other terms in the equations of motion are suppressed by in-
verse powers of k/(aH) or k/(amg). Then one can read off the
speed of propagation as

c2
s = B2 + CT11

T11T22

a2

N2
= 1 (34)

for one mode and c2
s = 0 for the other mode. Thus, scalar modes

with k/a 
 max(H,mg) do not develop gradient instabilities. For a
self-accelerating solution (Λ = 0 and thus H ∼ mg ) this means that
there is no gradient instability parametrically faster than the cos-
mological timescale. Therefore the study of the Laplace instabilities
does not add any new constraint to the model.

Vector perturbations

The vector modes in the theory consist of the vector modes of
the metric tensor, that is

δg0i = aN BT
i , δgij = a2

2

(
∂i E T

j + ∂ j E T
i

)
, (35)

where ∂ i BT
i = ∂ i E T

i = 0. As we have seen, the new ασ term does
not affect the background evolution. It does not affect the vector
modes either and the results should agree with the case with ασ =
0 already studied in [13,14]. In fact we find that the field Bi can
be integrated out and the reduced Lagrangian becomes

L = M2
Pl

16
a3N

[
TV

N2

∣∣Ė T
i

∣∣2 − k2M2
GW

∣∣E T
i

∣∣2
]
, (36)

where

TV ≡ 2k2ωH2a2

k2(r2 − 1) + 2ωH2a2
, (37)

M2
GW ≡ (r − 1)X3m2

g

X − 1
+ ωH2(r X + r − 2)

(X − 1)(r − 1)
. (38)

The speed of propagation for large k reduces to c2
V = (M2

GW/H2) ·
(r2 − 1)/(2ω). Thus the stability for vector modes is ensured if
TV > 0 and c2

V > 0. These conditions, together with the no-ghost
conditions for the scalar modes (27), impose

M2
GW > 0. (39)

This condition does not depend on ασ , however it constrains the
other parameters in the theory.
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Tensor perturbations

As for the tensor modes, defined in the metric tensor as

δgij = a2hT T
i j , (40)

with δi jhT T
i j = 0, and ∂ jhT T

i j = 0, we also find the same results as
in [13,14]. Namely, their Lagrangian reduces to

L = M2
Pl

8
a3N

[ |ḣT T
i j |2
N2

−
(

k2

a2
+ M2

GW

)∣∣hT T
i j

∣∣2
]
. (41)

This sector is well behaved and the graviton acquires a mass M2
GW,

as expected.

Self-acceleration

For a self-accelerating background without a bare cosmological
constant (i.e. setting Λ = 0), all stability conditions are satisfied if

[0 < X < 1 and 1 < r � r̄ and 0 < ω < 6]
or [0 < X < 1 and r > r̄ and 0 < ω < ω̄]
or [X > 1 and ω̄ < ω < 6], (42)

where r̄ ≡ 2+X
1+2X and ω̄ = 6(r−1)2 X3

[r2+2r−1]X3−6r X2+6X+2r−4
, provided that

ασ is chosen to satisfy the second of (27).

Summary

We have presented the first example of a unitary theory of
Lorentz-invariant massive gravity, with all degrees of freedom
propagating on a self-accelerating de Sitter background. The the-
ory is a simple extension of the quasidilaton theory, respecting the
symmetry of the original theory but allowing for a new type of
coupling between the massive graviton and the quasidilaton scalar.
We have found that: (i) there exist non-trivial flat FLRW solutions;
(ii) a self-accelerating de Sitter universe is realized as an attrac-
tor of the system; and (iii) for a range of parameters all degrees of
freedom on the attractor have healthy kinetic terms and there is
no gradient instability parametrically faster than the cosmological
time scale.

In [13,14] it was shown that the self-accelerating solution in the
original quasidilaton theory, even including some additional inter-
actions such as Galileon terms and Goldstone-type terms, always
suffers from ghost instability. Our finding in the present Letter,
i.e. the stability of the self-accelerating solution in the extended
theory, can be considered as an important step towards a consis-
tent theory of quasidilaton massive gravity. While it was argued in
[14] that properties of perturbations in quasidilaton theories are
generically UV sensitive, the existence of a stable extended theory
is quite encouraging, and at the very least provides an existence
proof of a unitary theory with a self-accelerating cosmological
background. The setup in the present Letter also provides a frame-
work in which cosmological and phenomenological implications of
massive gravity can be tested.
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