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Abstract The non-holonomic deformation of the
nonlinear Schrödinger equation, uniquely obtained
from both the Lax pair and Kupershmidt’s bi-Hamil-
tonian (Kupershmidt in Phys Lett A 372:2634, 2008)
approaches, is compared with the quasi-integrable
deformation of the same system (Ferreira et al. in JHEP
2012:103, 2012). It is found that these two deforma-
tions can locally coincide only when the phase of the
corresponding solution is discontinuous in space, fol-
lowing a definite phase-modulus coupling of the non-
holonomic inhomogeneity function. These two defor-
mations are further found to be not gauge equivalent in
general, following the Lax formalism of the nonlinear
Schrödinger equation.However, the localized solutions
corresponding to both these cases converge asymptoti-
cally as expected. Similar conditional correspondence
of non-holonomic deformation with a non-integrable
deformation, namely due to locally scaled amplitude
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is further obtained.
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1 Introduction

Integrable partial differential equations appearing in
field theory are best studied via the Lax pair method
(zero-curvature condition). They are deemed integrable
if they contain infinitely many conserved quantities
responsible for the stability of the soliton solutions [1].
In particular, these constants of motion uniquely define
the dynamics of the system, rendering the correspond-
ing equations to be completely solvable. The nonlin-
ear Schrödinger (NLS) equation, in one space and one
time (1+1) dimensions, is one such system that fur-
ther incorporates semi-classical soliton solutionswhich
are physically realizable [2]. These solitons have high
degree of symmetry that mandates infinitely many con-
served quantities. Such stable solutions of integrable
models are subjected to the zero-curvature condition
[3–5] involving connections that constitute the Lax pair
which linearize the nonlinear system. New classes of
such solutions are still being obtained [6,7].

However, real physical systems do not posses infi-
nite degrees of freedom, and thus, a corresponding field
theoretical model cannot be integrable in principle.
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On the other hand, such systems do possess solitonic
states very similar to those of integrable models, e.g.,
sine-Gordon [8]. Although infinite-dimensional mod-
els, especially of the NLS type [9,10], have been suc-
cessful in explaining real physical dynamics, they all
enjoy the luxury of being an infinite limit to the latter.
Therefore, the study of continuous physical systems
as slightly deformed integrable models makes concep-
tual sense. Recently, it was shown that the sine-Gordon
model can be deformed and following suitable approx-
imation leads to a finite number of conserved quantities
[11]. However, a class of deformed defocussing NLS
[12] andSG [13]models display an infinite subset of the
charges to be conserved, leaving out an infinite number
of anomalous charges. In these systems, almost flat con-
nection induces anomaly in the zero-curvature condi-
tion, rendering them to be quasi-integrable. Exact dark
[12] and bright [14] soliton configurations of the quasi-
NLS system have very recently been obtained, the lat-
ter having infinite towers of exactly conserved charges,
making it very close to be integrable. Ferreira et al.
[15] considered modifications of the NLSE to investi-
gate the concept of quasi-integrability, where they per-
turbed the NLS potential (nonlinearity) as V (|ψ |2)2+ε

by the parameter ε to show that such models possess
an infinite number of charges which are conserved only
asymptotically.

On the other hand, different systems which are com-
pletely integrable have been found to be related through
certain deformations known as non-holonomic defor-
mations (NHD). As a concrete example of this class
of deformation, we momentarily digress to the work
of Karasu-Kalkani et al. [16] who demonstrated that
the integrable sixth-order KdV equation represented a
NHD of the celebrated KdV equation. The equation is
given as

(∂3x + 8ux∂x + 4uxx )(ut + uxxx + 6u2x ) = 0. (1)

With the change of variables v = ux and w = ut +
uxxx + 6u2x , the above equation can be rewritten as a
pair:

vt + vxxx + 12vvx − wx = 0

and wxxx + 8vwx + 4wvx = 0. (2)

The authors of [16] obtained the Lax pair as well as an
auto-Bäcklund transformation corresponding to Eq. 2
and claimed that these equations were different from
a KdV equation having self-consistent sources. They

explored corresponding higher-order symmetries, con-
served densities and Hamiltonian formalism. It is a
recurring characteristic that the integrability properties
of two systems can be completely different even if they
are connected through NHD.

The terminology “non-holonomic deformation”was
introduced by Kupershmidt [17], who re-scaled v and
t to modify Eq. 2 as:

ut − 6uux − uxxx + wx = 0

and wxxx + 4uwx + 2uxw = 0. (3)

The above pair of equations can now converted into a
bi-Hamiltonian system as

ut = B1

(
δHn+1

δu

)
− B1(w)

= B2

(
δHn

δu

)
− B1(w) and B2(w) = 0, (4)

with the Hamiltonian operators,

B1 ≡ ∂ ≡ ∂x and B2 ≡ ∂3 + 2(u∂ + ∂u), (5)

where Hns denote the conserved densities. First few of
the conserved densities for the KdV case are given by
H1 = u, H2 = 1

2u
2, H3 = u3 − 1

2u
2
x , etc., and w rep-

resents the deformation to obtain the sixth-order KdV
system. Following Ref. [16], the formalism in Eq. 4
allows for NHD of any bi-Hamiltonian system. This
understanding is carried forward to the NLS systems,
in particular to those which model many well-known
physical systems. However, we will further adopt a
more convenient approach to obtain the correspond-
ing NHD in the following, though it is to be noted that
Kupershmidt’s formulation depicted above sets up the
generic integrability structure of this class of deforma-
tion.

The NHD for field theoretical integrable models is
known to be characterized by constraints in the form
of nonlinear differential equation(s) involving only x-
derivatives of the perturbing function(s), obtained by
deforming the original integrable equation [18]. This
type of integrable deformation is relatively new, which
also allows to build infinite-dimensional framework
of Euler–Poincaré–Suslov theory [19,20]. It is well
known that actual physical systems can directly or
indirectly be represented by nonlinear equations. For
example, the NLS equation itself is the mean-field
description of a four-Fermi interaction [21] respon-
sible for phenomena like superconductivity, super-
fluidity and Bose–Einstein condensation. Further, the
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same equation is the continuum representation of the
one-dimensional Heisenberg XXX spin system [22]
through the Hasimoto map [23]. Such maps further
link more generalized systems like one-dimensional
inhomogeneous Heisenberg XXX spin system to an
integro-differential NLS-type equation [24,25] which
is integrable [26] and can be identified as anNHDof the
standard NLS equation [27]. Further, a different NHD
of the NLS system can bemapped [27] to quantum vor-
tex filament moving with drag [28,29]. It is also known
that through Bethe ansatz the one-dimensional Heisen-
berg XXZ spin system can be related to the KdV equa-
tion [30]. These are compelling motivations toward
the study of non-holonomic deformation of nonlinear
equations, especially of the NLS type, as it is highly
likely to correlate otherwise completely independent
physical systems and thereby to improve their under-
standing. In all likelihood, recently obtained modified
NLS systems as in references [31,32] could be non-
holonomically related to the standard NLS counter-
part.

1.1 The purpose and structure of the paper

The purpose of the present work is to seek a con-
nection between two different types of deformations
explained above, non-holonomic and quasi-integrable,
subjected to the NLS system. The demonstration of
these two types of deformation for both NLS and
derivative NLS (or DNLS) hierarchies was carried
out by the present authors [33] wherein the possi-
bility of a connection between the two for Kaup-
Newell and other DNLS systems had been inferred.
This is of interest owing to the fact that quasi-deformed
systems retain integrability in the asymptotic limit,
whereas NHDmaintains integrability absolutely, albeit
constraint at higher orders. In the present work, we
compare these two deformations exclusively for the
NLS system, which has a very wide range of applica-
tion in different branch of mathematics and physics,
to obtain a much clearer picture. Even locally, the
quasi-integrable deformation (QID) could appear as
local inhomogeneity of the NLS system, of the same
form as in NHD. Therefore, though essentially dif-
ferent, these two deformations can be related under
certain conditions. In doing so a clear cut demonstra-
tion of the distinction between the two deformations
is further expected. It is found that they can indeed

be identified, both locally as the phase of the quasi-
deformed solution becomes discontinuous in space,
and asymptotically where moduli of the solutions in
both cases as well as that of the deformation inhomo-
geneity become constants as the quasi-deformed sys-
tem regains integrability. Locally, in general, these two
deformations mandate distinct analytic and physical
nature with a clear criteria as only one of them is inte-
grable. In addition, the equivalence between the Lax
pair and the Kupershmidt ansatz approaches for non-
holonomic NLS system is further explicated in the pro-
cess.

The rest of the paper is organized as follows: Sect. 2
demonstrates the NHD of the NLS system, by using
both the Lax pair approach and the Kupershmidt’s bi-
Hamiltonian prescription and some further discussions
in its successive subsections. Section 3 describes a few
types of QIDs of the same system in the defocussing
case. Section 4 deals with derivation of explicit condi-
tion(s) for correspondence between QID of the defo-
cussing NLS system with the corresponding NHD. We
further demonstrate in detail the extent of their gen-
eral incompatibility. The conditional compatibility of
NHD is further seen to extend to local scaling of the
NLS amplitude.We conclude in Sect. 5 by pointing out
possible outcomes.

2 NHD of the NLS equation

It would be pertinent to explain what exactly is meant
by the non-holonomic deformation of integrable sys-
tems. Perturbation can change the system dynamics
and in some systems it disturbs integrability [34,35].
However, when we consider NHD of an integrable sys-
tem, the perturbation is such that under suitable differ-
ential constraints on the perturbing function, the sys-
tem maintains its integrability. The constraints are fur-
nished in the form of differential relations which are
non-holonomic in nature.

To impose a NHD, one starts with the concerned
Lax pair of the system, keeping the space part U (λ)

unchanged but modifying the temporal component
V (λ), λ being the spectral parameter. This implies
that the scattering problem remains unchanged, but
the time evolution of the spectral data becomes dif-
ferent in the perturbed models. To retain integrabil-
ity, the non-holonomic constraints have to be affine
in velocities prohibiting explicit velocity dependence
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after the deformation. This insists on the deforma-
tion being exclusive to the temporal Lax component
as it is not acted upon by a time derivative to yield
the dynamical equation [36]. The explication of this
particular point will be provided in the next section
by the exclusive time dependence of the parameters
when NHD can be identified with QID. Correspond-
ing to these deformed systems, it is possible to gen-
erate some kind of twofold integrable hierarchy. One
method is to keep the perturbed equations the same
but increase the order of the differential constraints in
a recursive manner, thus generating a new integrable
hierarchy for the deformed system. Alternatively, the
constraint itself may be kept fixed at its lowest level,
but the order of the original equation may be increased
in the usual way, thereby leading to new hierarchies of
integrable systems. Indeed, we will demonstrate in the
next sections that one can derive the non-holonomic
NLS equation in two equivalent methods, using Lax
pair representation and the bi-Hamiltonian method,
respectively.

The method of adding extra terms in the Lax pair
(in this case, the temporal component of the Lax pair)
has been adopted in some earlier cases also [37,38]
wherein some integrable generalizations of the Toda
system generated by flat connection forms taking val-
ues in higher Z-grading subspaces of a simple Lie
algebra were considered. However, in case of the non-
holonomic deformation, the additional relations gen-
erated due to inclusion of extra terms in the temporal
Lax component are treated as differential constraints
imposed on the deformed systems and not as equations
involving new field variables.

2.1 Non-holonomic deformation using Lax method

The spatial and temporal components of the Lax pair
for the NLS equation are, respectively, given as

U = iλσ3 + qσ+ + rσ−,

VO = −i

(
λ2 + 1

2
qr

)
σ3 + λ(qσ+ + rσ−)

+ i

2
(qxσ+ − rxσ−) . (6)

Then, the paired NLS equation, in terms of both the
dynamical variables q and r , takes the forms:

qt − i

2
qxx + iq2r = 0, and rt + i

2
rxx − ir2q = 0,

(7)

which can be obtained as consistency equations, by
imposing the usual zero-curvature condition:

Ut − VO, x + [U, VO ] = 0. (8)

The only scale present in the system is the spectral
parameterλ, defining the corresponding solution space.
In order to deform the temporal component VO so that
integrability is preserved through the flatness condition
(Eq. 8), it is intuitively obvious that the deformation
part has to be a function of λ.We consider the following
additive deformation term:

VD = i

2
λ−1G(1),where,

G(1) = aσ3 + g1σ+ + g2σ−, (9)

so that the resultant overall temporal Lax component
takes the form

Ṽ = VO + VD, (10)

thereby changing zero-curvature condition to,

Ftx = Ut − Ṽx + [U, Ṽ ] = 0, (11)

in order to keep the system integrable. The adopted
deformation of Eq. 9 contains only O (

λ−1
)
terms.

Deformation terms ofO (
λn≥0

)
only lead to additional

perturbed dynamical systems at each order and vanish
when the terms are substituted order by order. This is
because the NLS equations arise from contributions at
O (

λ0
)
in the flatness condition, and the presence of any

higher-order contribution is decoupled from the corre-
sponding dynamics. Therefore, the higher-order defor-
mations end up yielding trivial identities that eventually
eliminate all the NLS contributions atO (

λn≥0
)
which

can easily be verified. Hence, the deformation of Eq. 9
can be considered as a general one.

The O (
λ0

)
terms in the zero-curvature condition

lead to the deformed pair of the NLS equations:

qt − i

2
qxx + iq2r = −g1

and rt + i

2
rxx − iqr2 = g2. (12)
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As expected trivially, inhomogeneous terms g1,2 are
introduced in the NLS system. Such equations are
already known to be integrable, and thus, the primary
objective is achieved.

The O (
λ−1

)
sector in the flatness condition, on

equating the coefficients of the generators σ3, σ+ and
σ−, yields the constraints:

ax − qg2 + rg1 = 0, g1x + 2aq = 0

and g2x − 2ar = 0, (13)

on the functions a, g1 and g2, respectively. The last two
of the above set of three equations can be combined to
yield the expression

rg1x + qg2x = 0.

Again, all these equations can be combined, through
mutual substitution, to give rise to the differential con-
straint:

L̂(g1, g2) = rg1xx+qx g2x+2qr(qg2−rg1) = 0, (14)

which can be used to eliminate the deforming func-
tions g1 and g2 in Eq. 12, to obtain a new higher-order
equation as

r

(
qt − i

2
qxx + iq2r

)
xx

= qx

(
rt + i

2
rxx − iqr2

)
x

+ 2qr

[
q

(
rt + i

2
rxx − iqr2

)

+ r

(
qt − i

2
qxx + iq2r

)]
. (15)

This equation is subjected to the dynamics ofEq. 12 and
therefore does not yield any new dynamics. It eventu-
ally reflects only the constraint in a different form. This
is in accord with the previous argument that no term,
with power of λ other than that responsible for yielding
Eq. 12, can yield dynamics of theNLS system, as it will
violate the overall integrability of the system itself.

The constraint of Eq. 14, characterizing the defor-
mation, is non-holonomic in nature as it contains dif-
ferentials of corresponding variables. Noticeably, such
a constraint solely arises from the terms with negative
power of the spectral parameter. Further, explicit forms
of the local functions a, g1 and g2 are not necessary to
establish the integrability, and they represent a class
that satisfies the constraint in Eq. 14. In other words,
constraints arise formO (

λ−1
)
contributions that addi-

tionally restrict the allowed values of q and r of the

deformed dynamics at O (
λ0

)
. The former is neces-

sary for integrability, while the latter ensures that any
solution of Eq. 12 is valid for Eq. 15. For the defo-
cussing case r = q∗, which is of main interest in the
present comparative studywithQID,Eqs. 13, 14 and15
exactly reduce to those found for NH NLS system in
Ref. [39] where the exact solution was constructed in a
phenomenological way. Therein, a further demonstra-
tion of twofold integrable hierarchyusing the constraint
Eq. 13 in defocussing case was performed, including a
higher-order NLS equation with constrained perturba-
tion. This is discussed in a general framework consid-
ering the O (

λ−1
)
perturbation below. The other hier-

archy appears as the tri-Hamiltonian formulation of
self-induced transparency equations [40] with explicit
integrability and isospectral flows, thereby establishing
the same for the NLS counterpart. This is rather a spe-
cial case of NHD where the flows regarding deformed
equation and constraints do commute, unlike the gen-
eral scenario where they do not, as demonstrated for
the KdV6 system [17]. The non-holonomic deforma-
tion of DNLS equation for controlling the optical soli-
ton in doped fiber media was discussed in Ref. [41],
while the role of self-induced transparency of solitons
in erbium-doped fiber waveguide is dealt with in Ref.
[42]. The coexistence of two different types of soli-
tons, viz. the self-induced transparency soliton and the
nonlinear Schrodinger one, is examined in Ref. [43].

2.2 Non-holonomic deformation via bi-Hamiltonian
method

We now apply the ansatz due to Kupershmidt [17]
to derive the non-holonomic deformed NLS equations
as well as the constraints on the deforming variables
themselves. The NLS equations are written, after slight
rescaling of the variables to resemble Kupershmidt’s
definitions, as:

qt = qxx − 2q2r,

and rt = −rxx + 2r2q.

The bi-Hamiltonian structures of the pair of NLS equa-
tions are given as:

B1 =
(
0 −1
1 0

)
,

B2 =
(

2q∂−1
x q ∂x − 2q∂−1

x r

∂x − 2r∂−1
x q 2r∂−1

x r

)
, (16)
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1184 K. Abhinav et al.

and the corresponding conserved densities are:

H1 = qxrx + q2r2 and H2 = qxr. (17)

Introducing w1 and w2 as the deforming variables
and following the Kupershmidt ansatz, the pair of NLS
equations under non-holonomic deformation can be
written in the following way:(
q
r

)
t
= B1

(
δ
δq
δ
δr

)
H1 − B1

(
w1

w2

)

= B2

(
δ
δq
δ
δr

)
H2 − B1

(
w1

w2

)
, (18)

leading to the final forms:

qt = qxx − 2q2r +w2 and rt = −rxx + 2qr2 −w1.

(19)

The constraint conditions on the deforming variables
w1,2, which can easily be identified with g1,2 of
the previous subsection, are obtained in the integro-
differential form by setting

B2
(

w1

w2

)
= 0, (20)

that leads to the conditions:

w1x + 2r∂−1
x (rw2 − qw1) = 0

and w2x + 2q∂−1
x (qw1 − rw2) = 0. (21)

On multiplying first of the above equations by q and
the second by r and adding together, we obtain

qw1x + rw2x = 0. (22)

This is exactly similar to the relation obtained among
the field variables and deforming variables by using
the Lax pair method. This is probably the first time
that the equivalence between the Lax pair and the bi-
Hamiltonianmethods for theNHDof an integrable sys-
tems is explicitly obtained.

2.3 Further consideration of the non-holonomic
deformation

Although we have considered only an O (
λ−1

)
defor-

mation of theNLS system, this process can be extended

to oneswith higher negative power ofλ as a hierarchical
deformation structure [39] with additional constrained
dynamics. To show that, we next consider a ‘higher’-
order deformation by taking

VD(λ) = i

2

(
λ−1G(1) + λ−2G(2)

)
, (23)

where the second-order contributionG(2) has the form:

G(2) = bσ3 + f1σ+ + f2σ−. (24)

As a consequence, the zero-curvature condition, with
the new VD , leads to the following results:

1. No change occurs in the deformedNLS equations,
as the new contribution VD is of order O (

λ−2
)
.

2. Picking up the terms in λ−1 and equating the coef-
ficients of the generators σ3, σ+ and σ− succes-
sively, we are led to the following new set of con-
ditions:

ax − qg2 + rg1 = 0,

g1x + 2i f1 + 2aq = 0,

g2x − 2i f2 − 2ar = 0, (25)

finally yielding the extended differential con-
straint:

L̂(g1, g2) + 2i(r f1x − qx f2) = 0, (26)

with L̂(g1, g2) given in Eq. 14.
3. The additional presence of O (

λ−2
)
terms in the

zero-curvature condition yields a second con-
straint of the form

L̂( f1, f2) = 0, (27)

with f1,2 replacing g1,2, respectively, in Eq. 14.

Thus, the perturbed NLS equations (Eq. 12) remain
the same, although the order of the differential con-
straint is increased recursively, thereby creating a new
integrable hierarchy for the corresponding system. This
is possible as the NLS equations themselves are sensi-
ble exclusively to the O (

λ−1
)
contribution of VD(λ).

Any other additional deformations of O (
λ−n

)
, 1 <

n ∈ Z only construct additional higher-order con-
straints.
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In the above, a one-to-one correspondence is estab-
lished between the NHDs of Lax pair and Kupersh-
midt’s formalism. In case of the prior, the deformed
equations and the constraint conditions both follow
from a specific Lax pair which automatically points
toward compatibility between the dynamical flows
and the constraints imposed on them. Kupershmidt’s
method deals with the identification of such compati-
bility through several examples involving both contin-
uous and discrete cases. In the next section, the QID
of the NLS system will be discussed, which preserves
integrability of the system only partially. A compari-
son of the same with the NH deformation will illustrate
critical aspects of integrability conditions of the con-
cerned system.

3 QID of the NLS equation

Certain non-integrable models are known to possess
physical properties similar to the integrable ones. This
distinct class is found to contain models that have soli-
tonic solutions, with properties very similar to the inte-
grable counterparts [11]. In 2+1 dimensions, such soli-
tonic structures are observed in baby Skyrme model
having many potentials and in Ward-modified chiral
model [44]. Therefore, recent attempts were made to
model such systems as deformed version of integrable
ones, with partially conserved nature, called quasi-
integrable (QI) systems [11,15]. They are viewed as
parametric generalizations of their integrable counter-
parts. Such a generalizationmanifests itself through the
existence of the functions Pn [44] as:
dQn(t)

dt
= Pn(t), n ∈ Z,

wherein Qns are the ‘charges’ that would have been
conserved for the corresponding integrable systemwith
vanishing Pns. In general, for quasi-integrable systems,
only a subset of all Pns vanish. However, asymptoti-
cally, all of them disappear rendering the systems inte-
grable. In particular, the two soliton configuration has
the property

Qn(t → +∞)−Qn(t → −∞) =
∫ ∞

−∞
dt Pn(t) = 0,

(28)

corresponding to conserved asymptotic charges. For
breather-like solutions, the corresponding asymptotic

condition is Qn(t) = Qn(t + T ). For other config-
urations, such as multi-soliton systems, Pns do not
vanish, but display interesting boundary properties of
topological nature [44]. Recently, the concept of quasi-
integrability has also been extended to supersymmetric
models [45].

The quasi-deformed systems are usually obtained
through deforming the ‘potential’ (nonlinear) term of
the concerned integrable systemperturbatively [11,44].
However, this scheme of deformation may not be
unique [15], especially for the NLS system. Then, the
curvature function of Eq. 11 is obtained to identify the
anomaly function X such that Ftx ∝ X 	= 0 [15].
In order to achieve this, gauge transformation is per-
formed under the characteristic sl(2) loop algebra of
the system and the equations of motion are utilized.

3.1 The quasi-NLS construction

Our aim here is to obtain the analytic structure of the
quasi-NLSequation that can be comparedwith itsNHD
counterpart in Eqs. 12, 14 and 15. Subjected to the
liberty of choice in deformation of quasi-NLS system
in Ref. [15], the deformation in the NLS potential:

V(q) → V(q, ε) = 1

2 + ε

(
|q|2

)2+ε

, ε ∈ R,

V(q) ≡ V(q, ε = 0) = 1

2
|q|4, (29)

is adopted.Moreover, in theNHDcase, only the tempo-
ral Lax component V was deformed so that the reverse-
scattering properties remain unaffected. This essen-
tially amounts to identifying the term(s) in V respon-
sible for the nonlinear term (potential) in the equation,
which can naturally be interpreted as functional deriva-
tive(s) of the potential V with respect to the modulus
of the NLS solution. Considering the defocussing case,
the Lax pair for the quasi-NLS system can be expressed
as [15]:

U = iλσ3 + qσ+ + q∗σ−,

VQ = −i

(
λ2 + 1

2

δV
δ|q|2

)
σ3 + λ(qσ+q∗σ−)

+ i

2

(
qxσ+ − q∗

xσ−
)
, (30)

where we have taken the self-coupling strength to be
unity. Indeed, the derivative of the potential appears
only in the temporal Lax component VQ . The QID
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can be induced by substituting the deformed potential
V(q, ε) in the expression.

Before going aheadwith the formal comparisonwith
NH deformation, it is fruitful to concisely review the
QID performed in Ref. [15]. The anomalous charges
were obtained through the standardAbelianization pro-
cedure by performing gauge transformations based on
the characteristic sl(2) loop algebra of theNLS system,
with the gauge-fixing condition that the new temporal
Lax component is defined in the kernel subspace of
the loop algebra. The quasi-conserved charges Qn are
found to satisfy:

dQn

dt
=

∫ ∞

−∞
dx Xαn, (31)

withX being the anomaly from the deformed curvature
condition and αns being the expansion coefficients of
the same in the kernel subspace, following the gauge
transformation. Then, utilizing theZ2 symmetry (sl(2)
automorphism ⊗ space-time parity) of the system, it
was shown that all αns are parity-even in time. Thus,
for the NLS system, as X is parity-odd by construc-
tion, the charges in Eq. 31 are conserved asymptotically
(scattering limit) which ensures quasi-integrability of
the system. This result is general up to the potential
being dependent on the modulus |q|, the latter being
parity-even, along with a phase that is parity-odd.

Following Eq. 29 (or Eq. 30), the NLS equation gets
quasi-deformed as:

qt − i

2
qxx + i |q|2+2εq = 0. (32)

The preceding discussion of NHD in Sect. 2 suggests
that the above system cannot be identified with QID
absolutely. By definition, QID supports a subset (infi-
nite or finite) of charges which are anomalous, whereas
NHD preserves all the charges of the initial system,
albeit subjected to additional constraints. Equivalently,
if the exact identification was possible, then one should
obtain VQ = Ṽ = VO + VD . From Eq. 30 that is pos-
sible iff,

∂V(q, ε)

∂|q|2 σ3 = |q|2σ3 + i2VD . (33)

However, this contradicts with the prescription in Eq. 9
as VD needs to be of O (

λ−1
)
and g1,2 	= 0 to invoke

NHD. Even a wishful thinking like ε = ε(λ) fails to
compensate as one ends up with the requirement

G(1) = −λ|q|2
∞∑
n=1

εn

n

(
log |q|2

)n
σ3, ε → 0, (34)

which was specifically required to be O (
λ0

)
for a

meaningful NHD. However, the condition of asymp-
totic integrability for theQID, especially in case ofNLS
equation [15], strongly suggests a conditional equiva-
lence. Therefore, it is logical to expect certain limits to
exist under which the QID-NHD correspondence can
be realized.

We take the lead from the single soliton solution for
the deformed potential in Eq. 29 [15]:

q =
[
(2 + ε)ρ2sech2 {(1 + ε)ρ(x − vt − x0)}

]1/(1+ε)

× exp
{
i2

(
ρ2t − v2

4
t + v

2
x

) }
, (35)

with (ρ, v, x0) ∈ R, which falls back to the standard
NLS bright soliton solution for ε → 0. Even otherwise,
the ‘deformed’ soliton has the same asymptotic behav-
ior as the undeformed counterpart [15]. We consider
the ε → 0 approach to extract the NHD-QID corre-
spondence locally. For comparison, the bright soliton
solution for a non-holonomic NLS system is given as
[39]:

q = 2ρ2
dsech

2 [ρd(x − vd t − x0)]

exp

[
i2

(
ρ2
d t − v2d

4
t + vd

2
x

)]
, (36)

having velocity vd = v + v′ with v′ = c̃(t)/t |λ1|2
and frequency ρdvd = ρv + ω′ with ω′ = −2ρ(x −
vt)c̃(t)/t |λ1|2. Here, λ1 = ρ(x − vt) + iη, η being
a parameter of deformation, and c̃(t) is the asymp-
totic value of the perturbing function. It is clear that
all these parameters again approach their undeformed
values asymptotically (|x | → ∞). Therefore, it com-
plements the parametric limit ε → 0 of QID asymp-
totically.

In the limit ε → 0, the quasi-NLS system of Eq. 32
can be expanded as:

qt − i

2
qxx + i |q|2q = −iε|q|2q log(|q|2)

− i

2
ε2|q|2q log2(|q|2) + O(ε3). (37)

The singularity of logarithms for |q|2 → 0 is effec-
tively regulated by the term |q|2q for first few val-
ues of n, the latter being the power of the logarithm
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(logn(|q|2)). Beyond that a singularity is still assured to
be avoided due to the factor εn . In fact, asymptotically
speaking, localized soliton solutions given in Eqs. 35
and 36 always attain infinitesimal but nonzero values
in physical systems, avoiding such singularities alto-
gether. However, the QID in Eq. 29 is not unique, as
the following choices of deformation,

V(q, ε) = 1

2
|q|4 + ε|q|6

or V(q, ε) = 1

2
|q|4 exp

(
−ε|q|2

)
, (38)

also work [15]. Such deformations fall within the gen-
eral premise of the Hamiltonian approach to QID [46].
From the above deformations, one obtains the follow-
ing quasi-NLS equations:

qt − i

2
qxx + i |q|2q = −i

3

2
ε|q|4q and (39)

qt − i

2
qxx + i |q|2q = i

3

2
ε|q|4q − iε2|q|6q

+O(ε3), (40)

respectively. It is to be noted that only for the second
equation above, the limit ε → 0 is necessary. In gen-
eral, Eqs. 37, 39 and 40 can be written as:

qt − i

2
qxx + i |q|2q = −i

(
δV(q, ε)

δ|q|2 − |q|2
)
q

= q
∫ x

X where,

X = −i∂x

(
δV(q, ε)

δ|q|2 − |q|2
)

, (41)

is the QID anomaly mentioned above.
The last two examples reveal an important aspect.

To obtain a quasi-NLS system in the form qt − i
2qxx +

i |q|2q 	= 0, similar in form to the case of NHD of
Eq. 8, it is not always necessary to take the ε → 0
limit. However, when ε effects the degree of nonlin-
earity, this limit becomes important. It makes sense as
a stable solution for a given nonlinear system depends
on the counterbalance between dispersion and nonlin-
earity, and when the order of the latter is changed, the
immediate stable structures that still survive are small
deviations from the original. This crucial aspect was
highlighted in Ref. [15] along with numerical support.
However, except for the need of a localized solution
that has ‘sensible’ asymptotic behavior, the perturba-
tive limit ε → 0 is not necessary for quasi-deformation
in general [8,11,15,45,46]. This appears quite simply
in case of the deformation of Eq. 39, wherein the ε

does not appear in the power of the nonlinear term,
and thus, the RHS is exact. Such a system with clearly
higher-order nonlinearity can have stable solutions, but
are expected to be very different from the undeformed
ones. However, in case of localized solution, the sys-
tem can always be expected to match asymptotically
with the undeformed one in the limit ε → 0 owing to
the smallness of |q|.

4 Comparison between NHD and QID

We have seen that NHD deforms the NLS system by
introducing inhomogeneity yet preserves the integra-
bility of the system through higher-order constraints
among the deformation functions. On the other hand,
QID is implemented by modifying the inherent non-
linearity in a way that the system remains ‘partially
integrable’ in terms of remaining number of conserved
charges. However, the fact that the latter deformation
returns to complete integrability in the asymptotic limit
renders the questionwhether these two classes of defor-
mations have something in common.Albeit they cannot
be absolutely identified, only NHD maintains absolute
integrability.

From the Lax pair in Eq. 6, theNHD can be achieved
for both focussing (r = −q∗) anddefocussing (r = q∗)
NLS systems. However, the quasi-NLS systems were
derived specifically for the defocussing case [15] by
modifying the self-interaction ‘potential’ which only
effected the modulus |q| of the NLS solution but not
its phase. For a comparison between NHD and QID
of the NLS system, we will consider the defocussing
case explicitly from hereon. The focussing case corre-
sponds to somewhat differentQID treatment, following
different asymptotic behavior for x → ±∞ [47].

The phase discontinuity For r = q∗ in case of NHD,
Eqs. 12 and 13 lead to simpler results,

g2 = −g∗
1 , a ∈ R and

g1 x
q

∈ R, (42)

not possible for the focussing analogue. The last of the
above equations forces a constraint,

θx = Rx

R
tan(φ − θ); g1 := R exp(iθ)

and q = |q| exp(iφ), (43)
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which in essence is equivalent to Eqs. 14 and 15. Thus,
the non-holonomic constraint in this case essentially
becomes a modulus-phase correlation for the corre-
sponding inhomogeneity parameter g1 = −g∗

2 . The
parameter a is real and can be completely eliminated.
Any function g1 that satisfies Eq. 43 is suitable for
imposing NHD on the defocussing NLS system.

On eliminating the real parameter a in Eq. 15 for
r = q∗ and then separating real and imaginary parts
eventually lead to a pair of equations:

1

|q|
(
Rxx − (θx )

2R
)

− 1

|q|2 (Rx |q|x − θxφx |q|R)

= − 4R|q| cos2(θ − φ) and
1

|q| (2θx Rx + θxx R) − 1

|q|2 (θx R|q|x + Rxφx |q|)
= 2R|q| sin 2(θ − φ). (44)

These equations need to be satisfied simultaneously
along with Eq. 43. This leaves enough room to choose
R as R = R(|q|), allowing for a possibility of identi-
fication with QID. One can hope that the RHS of the a
quasi-NLS system of the type in Eq. 41 could be iden-
tified with −g1. As the prior have the general form:

i × (modulus) × exp(iφ) = (modulus)

× exp
[
i
(
φ + π

2

)]
,

such an identification would imply θ = φ +π/2. From
Eq. 43 this will mean that the phase of the deformation
inhomogeneity is discontinuous as θx = φx = ∞. For
such singular behavior, R in Eq. 44 is now undeter-
mined and one can chose it to match QID. This highly
non-trivial analytic condition for the phase of g1 (and
also that of the solution q) demonstrates the incompati-
bility between QID and NHD in general. Even θx = ∞
the ‘identification’ of QID with NHD is superfluous as
the quasi-integrability itself becomes undefined. This
is because all the αns in Eq. 31 for n ≥ 3 contain φx

(Appendix A of Ref. [15]) and become singular imply-
ing dt Qn = ∞.

Although rare, the observed overlap between non-
holonomic and quasi-deformed NLS system mandates
further clarification. This overlap can be straightfor-
wardly verified for the higher-order NHD induced by
the deformations in Eq. 23. The constraint conditions
for NHD (Eq. 13), in principle, can be solved leaving

out only one independent function among a, g1 and
g2.1 Quantitatively, for

g1 = i

(
δV

δ|q|2 − |q|2
)
q, (45)

the QID anomaly function can be expressed as:

X = −∂x

(
g1
q

)
≡ −i∂x

(
R

|q|
)

. (46)

As X is parity-odd for parity-even |q| (soliton case)
[15], we see that R also needs to be parity-even for
the NHD-QID correspondence. This conclusion is of
considerable importance subjected to the asymptotic
behavior as we will see next. Also, the QID parameter
ε could be a local function (both in space and time) in
general [15] additionally requiring it to be parity-even.

The perturbative limit To illustrate the scenario more
clearly, let us consider the perturbative limit of QID as
it amounts to minimal deviation from integrability. In
that case, an attempt to identify QID with NHD at the
level of Lax pair, then from Eq. 34 one gets

G(1) ≈ −λε|q|2 log
(
|q|2

)
σ3, (47)

for ε → 0. A simple redefinition ε → ε/λ then implies

a = −ε|q|2 log
(
|q|2

)
, g1,2 = 0. (48)

These results are not compatible with the general con-
ditions in Eq. 13 except for the trivial case q = 0.

Gauge incompatibility QID manifests through modifi-
cation of the Lax pair (Eq. 30) exclusively in the ker-
nel subspace of the SL(2) loop algebra which auto-
matically implies g1,2 = 0. On the other hand, NHD
maintains integrability through contribution from the
image subspace supported by additional constraints.
The deformed dynamical equations in both cases, how-
ever, belong to the image sector of the zero-curvature
condition. This situation endorses the possibility that
for θ = φ + π

2 the respective Lax components for

1 For the defocussing case, those three conditions reduce to two
as g2 = −g∗

1 .
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QID and NHD are gauge equivalent. In particular, this
amounts to the conditions,

GṼG−1 + GtG
−1 = VQ

and GUG−1 + GxG
−1 = U, (49)

to be satisfied. The element of the sl(2) gauge group
can be parameterized as:

G = exp (α · σ )

with α · σ = α3σ3 + α+σ+ + α−σ−.

Further, G = cosh |α| + α̂ · σ sinh |α|
where |α|2 = α · α. (50)

Therefore, the gauge transformations take the explicit
forms:

α̂ · αx α̂ · σ

+
[
2

(
U − α̂ · U α̂

) + 1

|α|
(
α̂ × αx

)] · σ sinh2 |α|

+
[
i
(
α̂ × U

) + 1

2|α|
(
αx − α̂ · αx α̂

)] · σ sinh 2|α| = 0

and

VD + α̂ · αt α̂ · σ

+
[
2

(
Ṽ − α̂ · Ṽ α̂

)
+ i

|α|
(
α̂ × αt

)] · σ sinh2 |α|

+
[
i
(
α̂ × Ṽ

)
+ 1

2|α|
(
αt − α̂ · αt α̂

)] · σ sinh 2|α|

= 1

2

∫ x

Xσ3. (51)

In the aboveU = U ·σ and Ṽ = Ṽ ·σ , Ṽ = V0+VD

with α̂ = α/|α|. Though the above equations look
complicated enough to solve for |α|, on isolating coeffi-
cients of σ3,± and then further isolating different orders
of λ yield a set of simpler equations. Particularly, from
the first equation at O (λ) the coefficients of σ3 yield
the result:

sinh |α| = 0, implying |α| = inπ, n ∈ Z. (52)

This makes sense as being constructed out of sl(2)
gauge parameters α3,±, which are ought to be com-
plex in general, the Euclidean product |α|2 can very
well be negative (e. g., −n2π2). This greatly simplifies
Eq. 51 to

α̂ ·αx α̂ ·σ = 0 and VD + α̂ ·αt α̂ ·σ = 1

2

∫ x

Xσ3,

(53)

wherewe have utilized Eq. 46. The first equation essen-
tially is the identity that |α|x = 0 following Eq. 52.
Since |α| is a constant, the coefficients of σ3,± in the
second of Eq. 53 lead to the null result,

a = −iλ
∫ x

X , g1,2 = 0 ∀α3,±, (54)

which is exactly same as Eq. 48. So we conclude that
even for themost general case (i.e., arbitraryα and non-
perturbatively) QID and NHD cannot be gauge equiv-
alent.2

Amplitude scaling The comparison of local deforma-
tions like QID of the NLS system with NHD can be
extended to more arbitrary classes of deformations in
order to understand their proximity to the NHD. As an
example, we consider the simple case of scaling the
modulus of the NLS solution:

|q| →
[
1 + f (ε, |q|)

]
|q|

and |q|2 →
[
1 + g (ε, |q|)

]
|q|2; (55)

that complements the QID of the defocussing NLS sys-
tem with ε → 0, where,

f (ε, |q|) ≈ 1

4

(
ϕ − 1

2

)
ε + 1

32

(
ϕ2 − ϕ + 5

4

)
ε2 + O

(
ε3

)
,

g (ε, |q|) ≈ 1

2

(
ϕ − 1

2

)
ε + 1

8

(
ϕ2 − ϕ + 3

4

)
ε2 + O

(
ε3

)
;

ϕ := log
(
|q|2

)
. (56)

Accordingly, the corresponding Lax pair components
get deformed as:

U → Ũ = −iλσ3 + (1 + f ) (qσ+ + q∗σ−),

VO → Ṽ = −iλ2σ3 + λ (1 + f ) (qσ+ + q∗σ−)

− i

2
(1 + g)|q|2σ3 + i

2
(1 + f )(qxσ+ − q∗

xσ−)

+ i

2
fx (qσ+ − q∗σ−). (57)

This further effects the scattering properties of the orig-
inal system, unlike in NHD, as the spatial Lax com-
ponent is also deformed. As we will see in the fol-
lowing, this essentially means the correspondence to

2 We have not considered the possibility α = α(λ) here since
gauge invariance of the NLS and non-holonomic-NLS system
does not permit it. However, for a more generalized NLS-like
system, this may be allowedwhichmay disagree with the current
null result but is highly unlikely.
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NHD in this case will also be approximate. On impos-
ing the zero-curvature condition, the independent equa-
tions turn out to be:

qt − i

2
qxx + i(1 + g)|q|2q

= (1 + f )−1
[
i fxqx + i

2
fxxq − ft q

]
,

q∗
t + i

2
q∗
xx − i(1 + g)|q|2q∗

= −(1 + f )−1
[
i fxq

∗
x + i

2
fxxq

∗ + ft q
∗
]

and[
(1 + f )|q|2

]
x

+ fx |q|2 = (1 + f )−1
[
(1 + g)|q|2

]
x
.

(58)

The last equation above reduces to a mere identity for
f, g = 0, and the first two equations reduces to the
usual defocussing NLS equation and its complex con-
jugate. As f and g are small (Eq. 56), the explicit form
of the deformed equations is:

qt − i

2
qxx + i |q|2q ≈ εA + ε2B; where,

A =
[ 1

4|q|2
(
i |q|2xqx + i

2
|q|2xxq − |q|2t q

)

− i

8|q|4
(
|q|2x

)2
q − i

2

(
log

(
|q|2

)
− 1

2

)
|q|2q

]
,

B = 1

8

[ i

2|q|4
(
log

(
|q|2

)
− 1

) (
|q|2x

)2
q

−
(
log2

(
|q|2

)
− log

(
|q|2

)
+ 3

4

)
|q|2q

]
, (59)

and its complex conjugate. It is clear that if the defor-
mation of Eq. 55 is kept only at the level of the potential
(Eq. 29), then only the last terms in the square brackets
on the RHS in Eq. 59 would have survived, which is
the case for QID.

ThoughA andB contain singular functions like log-
arithms of the NLS modulus |q|, they are regulated
by suitable powers of |q| in the denominators. There-
fore, the expansion is indeed perturbative. This addi-
tionally ensures that the system will approach integra-
bility asymptotically, as |q| is physically expected to
be well behaved there.

Evidently, the RHS of Eq. 59 does not have the same
phase φ + π

2 as for QID and therefore can satisfy the
NHD constraint for θ − φ 	= π

2 and thus can non-
trivially be identified as modulus R of g1. Therefore,
similar to the quasi-NLS case, it is tempting to identify

this local scaling as a conditional NHD though the spa-
tial Lax component Ũ is also changed. For only |q|2
being scaled but not |q|, i.e., f (ε, |q|) = 0, g(ε, |q|) 	=
0, this scaling can take the form of a QID as only the
kernel sector of the temporal Lax component will be
effected.

4.1 The asymptotic behavior

If g1 is localized and asymptotically well behaved,
then for (x, t) → ±∞, R assumes fixed value(s)
and thereby Rx , Rt → 0. This condition particularly
effects Eq. 43 as now θx = 0 identically. Still, the phase
φ of the deformed solution cannot be space dependent
as for Rx = 0, θx = 0 Eq. 44 implies:

θ = φ + (2n + 1)
π

2
, n ∈ Z. (60)

Hence, the non-holonomic NLS solution attains a con-
stant phase at the spatial infinity and such a solution
can now be identified with the integrable limit of a
quasi-NLS system. Additionally, as now θ = φ + π

2
modulo a multiple of 2π for n being even, the quasi-
NLS case stated before can be identified with the NHD.
For a localized solution |q|x (x → ±∞) = 0, the QID
anomaly in Eq. 41 vanishes and the charges Qns are
trivially conserved. Therefore, the ε-dependent part of
the quasi-NLS equation can now be identified with the
NHD inhomogeneity g1 safely.As for the scaling defor-
mation, the RHS of Eq. 59 differs from φ in a more
complicated way than that for the QID case. Still it
can be assumed that the deformation parameter ε can
take complex values so that there is an overall phase
on the RHS of the form φ + (2n + 1)π

2 making the
identification with NHD possible.

The above inferences are in conformity to the local-
ized solutions for quasi-deformed and non-holonomic
NLS system, given in Eqs. 35 and 36, respectively,
which have been plotted for a clearer picture. In Fig. 1a
the real parts of the localized (solitonic) solution for
both the cases are plotted with respect to space coordi-
nate x . As the respective deformation parameters for
NHD (δρ = ρd − ρ, δv = vd − v) and QID (ε)
increase (from red to brown), the local parts of the solu-
tions deviatemore andmore from the undeformed solu-
tion (solid black line) in ‘opposite’ directions depicting
mutual incompatibility.However, they tend to converge
more and more as x increases and can be expected to
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(a) (b)

Fig. 1 The real and imaginary parts of the localized solutions for both NHD (Eq. 35, solid lines) and QID (Eq. 36, dotted lines) of NLS
system as functions of space (x) where ρ = 1 = v and x0 = 0 with t = 0.5

coincide for x → ±∞. The same behavior is seen for
the respective imaginary parts in Fig. 1b. These plots
have been made in Mathematica 8.

The case of temporal asymptote (t → ∞) is not as
directly apparent as the spatial counterpart since NHD
conditions do not contain time derivatives by construc-
tion. Still wemay assume Rt (t → ∞) = 0 for a g1 that
is also temporally localized. A further assumption of
θ(x, t → ∞) = θ(t) and φ(x, t → ∞) = φ(t) for a
system that deviates a little fromanon-dissipative (inte-
grable) system.This does not conflictwith the restricted
identifications we have encountered for QID and scal-
ing deformation. Particularly, forQIDas integrability is
regained for t → ±∞, the system is likely to be of non-
holonomic NLS type at that limit in general. The NHD
formalism is tailored not to effect the time evolution of
the particular system, and thus, a non-holonomic sys-
tem should not change at the temporal infinity. In that

case as X is restricted to the kernel subspace of the
algebra and as it does not vanish at t → ±∞ in gen-
eral, it is viable to identify X (x, t → ±∞) as a non-
holonomic deformation. This in effect translates to a
complementing behavior of the deformation parameter
ε at the temporal infinity.

The temporal behavior of the deformed solitons cor-
responding to QID and NHD, given in Eqs. 35 and 36,
respectively, is plotted in Fig. 2 using Mathematica 8.
Though both the solutions locally deform more and
more (from red to brown)with the increase in the defor-
mation parameters (δρ and δv for NHD and ε for QID),
these two types of deviations do not increase in the
opposite sense unlike the case of x-variation. Both real
and imaginary parts of the solution display this behav-
ior. This might be attributed to the fact that NHD does
not effect the time evolution of the system, whereas
QIDonly effects themodulus |q| of the solution. There-
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(a) (b)

Fig. 2 The real and imaginary parts of the localized solutions for both NHD (Eq. 35, solid lines) and QID (Eq. 36, dotted lines) as
functions of time where ρ = 1 = v and x0 = 0 with x = 0.5

fore, for certain fixed value of x , with suitable param-
eterization the time profile of the respective solutions
may coincide even locally.3 However, both the solu-
tions tend to converge as t → ±∞ as inferred before.

In light of the preceding discussion, the deviation
from integrability is compensated by suitable contri-
bution from both image and kernel subspaces in case
of NHD. For the case of QID and scaling deformation,
there is no such compensation, the latter even effecting
the scattering data through deforming U . What hap-
pens asymptotically is that all these three deformations
converge to a simpler case. In case for NHD the ker-
nel contribution a vanishes as the image one (g1) is
fixed. This leaves a simple phase relation to be satis-
fied byQID and scaling deformation to get identified as
NHD. Further, the non-holonomic constraints live at a
different spectral order than the equation(s) of motion.
In comparison, the QID anomaly X lives in the same

3 The exceptional condition θx = ∞ for NHD-QID overlap
could be demonstratively incorporated given x is fixed.

spectral order as the scaling deformation. This supports
the intuition that the deformation parameter for the lat-
ter two should be ε = ε(λ) and ε = ε(λ), respectively,
for identification with NHD. However, this requires an
asymptotic limit as only then the kernel subspace con-
tribution to NHD becomes trivial.

Therefore, we see that deformations (QID and the
particular local scaling of the modulus) of the defo-
cussing NLS system can conditionally be identified
with the corresponding NHD. QID can locally be iden-
tified for the exceptional case of θx = ∞4 and asymp-
totically (x, t → ±∞) with a more relaxed condition
(Eq. 60) as the required constraints become trivial. This
is independent of whether the QID parameter ε is per-
turbative or not. On the other hand, the scaling defor-
mation needs to be perturbative to be identified with
the NHD even asymptotically. Otherwise, it may even
develop some non-local features (Eq. 58).

4 Which might be in terms of the time profile.
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5 Conclusion

We have demonstrated through explicit analysis for
bothNHDandQIDof the defocussingNLS system that
these two cases of deformation have distinct analytic
structures. The NHD induces inhomogeneity in the
dynamical equation in addition to higher-order differ-
ential constraints at a different spectral order, thereby
preserving the integrability. We have shown the agree-
ment between the bi-Hamiltonian and the Lax pair
methods of inducingNHD to theNLS system. TheQID
disrupts integrability locally by making a subset of the
charges anomalous. It can return to complete integra-
bility as a NHD when the phases of NLS solution and
non-holonomic inhomogeneity satisfy at exceptional
condition of non-local phase which shows them to be
not gauge equivalent. However, both these deforma-
tions can asymptotically be identified given the local-
ity of the NLS solution and the NHD inhomogeneity.
This was intuitively expected as the quasi-deformed
systems are already known to regain integrability in the
asymptotic limit. For DNLS hierarchy [33], it was seen
that the quasi-integrable anomaly disappears from the
equation of motion and thus, QID and NHD for such
systems could be related much more closely. There-
fore, it will be of considerable interest to extend this
approach to those and other integrable systems, with
additional focus on more general (multi-soliton) solu-
tion domains [48,49], non-local counterparts [50] and
higher-order hierarchies [31].
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