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1 Introduction

Theories of gravitation on cosmic scales have become an area of intense interest, both as a
possible explanation for the observed cosmic acceleration and as an exploration of consistent
extensions of general relativity. Generically such extensions lead to additional degrees of
freedom, e.g. scalar modes in scalar-tensor theories, with possible pitfalls of higher than
second order derivative field equations that may lack a well posed initial value formulation,
or of ghosts and other instabilities.

Horndeski in 1974 wrote the most general scalar-tensor theory giving second order field
equations in four dimensional spacetimes [1]. In an alternate view, Galileon theories [2–
4], shift symmetric scalar fields possessing nonlinear combinations of field derivatives, have
recently been studied with interest as sound models capable of cosmic acceleration. Also
recently, as an approach to solve the cosmological constant problem, a linear combination
of four terms called the Fab Four has been identified [5–7] as the unique terms allowing
self tuning vacua that can cancel a large bare Λ term. Horndeski’s scalar tensor theory has
recently been shown to be equivalent to the generalized Galileon [8, 9] in 4D [10].

Here we draw on aspects of all three of these approaches to demonstrate that non-
linear combinations of terms involving shift symmetric scalar fields can possess interesting
advantages and properties. This extension of the “most general” scalar-tensor theory retains
second order field equations and avoids pathologies on symmetric spacetimes such as the
usual Friedmann-Lemâıtre-Robertson-Walker (FLRW) and de Sitter cosmologies. While the
nonlinear approach can be applied quite generally, we give a proof of principle using a simple
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example of purely kinetic couplings with noncanonical forms, extending the “purely kinetic
gravity” of [11].

Our example employs a nonlinear combination of the standard kinetic term and deriva-
tive coupling to the Einstein tensor. Besides possessing second order field equations it does
not add any further propagating degrees of freedom, and it can achieve lasting cosmic accel-
eration unlike the linear, canonical, purely kinetic gravity theory of [11], avoid at least some
instabilities unlike the derivatively coupled Galileon theory investigated by [12], and self tune
away a cosmological constant like the Fab Four.

Deeper implications exist beyond our simple proof of principle. We emphasize that the
example given is intended purely as a proof of principle to inspire further investigation into
the theoretical properties of general nonlinear combinations, and not as a fit to observations.

In section 2 we explain our nonlinear generalization procedure and the conditions under
which no additional propagating degrees of freedom are generated. The equations of motion
are solved in section 3 on a FLRW background, giving the cosmic and field evolution complete
with attractors, revealing two distinct ways of approaching a de Sitter asymptotic state.
Section 4 demonstrates the self tuning properties of the theory, erasing an initial cosmological
constant. The perturbed equations in section 5 yield the no-ghost and stability conditions
and the evolution of the effective Newton’s constant Geff . We discuss various implications of
the results in section 6.

2 Promotion to nonlinear function

The Einstein-Hilbert action of general relativity is extremely simple, condensing all the grav-
itational influence into the Ricci scalar curvature R. To allow cosmic acceleration, however,
one must add either a cosmological constant Λ or additional degrees of freedom such as a
scalar field φ, e.g. with a potential and canonical kinetic term X ≡ (−1/2)gµνφµφν where
φµ = ∇µφ. The cosmological constant, or the field potential, raises issues of fine tuning and
naturalness: why don’t high energy radiative corrections affect the form and magnitude to
something characteristic of the early universe? We therefore do not employ either (except in
section 4 where we erase them).

A canonical kinetic term cannot by itself give rise to acceleration but noncanonical
(but still minimally coupled) kinetic terms can, called k-essence [13–15], or in the absence
of any potential, purely kinetic k-essence (e.g. [16]). One can think of this as promoting the
Lagrangian term linear in the canonical kinetic contribution to a function. This generically
gives an extra degree of freedom, in that the sound speed is no longer fixed to the speed of
light.

Alternately, one could promote the Ricci scalar term to a function, hence f(R) theo-
ries [17]. This again adds a degree of freedom and one can view these as coupled scalar-
tensor theories. Similarly one can have theories involving the Gauss-Bonnet combination
GGB = RabcdRabcd − 4RabRab + R2 of the Riemann tensor, Ricci tensor, and Ricci scalar,
either linearly in GGB or promoted to a function [18, 19]. In generalized Galileon theories
one can promote the coefficients of the standard Galileon terms to functions of the canonical
kinetic term, for example [8, 9].

Taking these examples as motivation, suppose we take the Horndeski theory action,
composed of the linear combination of several terms, and instead promote them to nonlinear
functions or combinations. In generality we cannot do this without resulting in higher than
second order equations of motion or adding unconstrained degrees of freedom. However, in
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specific circumstances we can. For example a theory involving a function of the Ricci scalar
and Gauss-Bonnet term f(R,GGB) can be sound [20]. In Fab Four terminology, this mixes
George and Ringo (though we do not allow the field potentials). This is permissible because
of particular symmetries within these terms.

In purely kinetic gravity theories, similar symmetries impose a unique Lagrangian in-
volving only the Einstein tensor coupled to the field derivatives [21] (which Fab Four term
John basically replicates). Up to mass dimension 6, the action is just the linear combination
of the canonical kinetic term and the Einstein coupled kinetic term [11], effectively giving a
disformal field theory. This could achieve transient cosmic acceleration but not an asymptotic
de Sitter state, and was later shown to have ghosts [12]. Allowing for an arbitrary constant
coefficient of the canonical kinetic term, one could achieve a de Sitter asymptote but the
theory has an early time Laplace instability [12].

Merging these two approaches of nonlinear function promotion and purely kinetic terms
of great simplicity, we examine as a specific example nonlinear functions of the canonical and
the Einstein coupled kinetic terms. The combination of nonlinearity and noncanonical nature
delivers new characteristics to the theory. Since this “hip-hop” kinetic evolution extends the
Fab Four self tuning possibilities, among other properties, we call this new Lagrangian term
Fab 5 Freddy. As the line “Fab 5 Freddy told me everybody’s fly” from Blondie’s Rapture [22]
predicts, this term also enables cosmic acceleration and an asymptotic de Sitter behavior,
indeed in multiple ways.

The action we study in detail is

S =

∫

d4x
√−g

[

M2
pl

2
R+ c1X + f

(

c2X +
cG
M2

Gµνφµφν

)

]

+ Sm , (2.1)

where Gµν is the Einstein tensor associated to the metric gµν , Sm represents the action for
the matter fields, and M is a mass scale to keep cG dimensionless, where we normalize to
M = H0. When the function f is linear then this is the derivatively coupled Galileon (using
only L2 in [12]), generalizing the purely kinetic gravity model by allowing a free constant
coefficient for the canonical term.

To study the effects of the nonlinear promotion we consider two cases: 1) c1 = 0, so the
canonical and Einstein coupled kinetic terms are directly coupled nonlinearly, and 2) c2 = 0,
so only the derivative coupling appears nonlinearly. This allows us to compare these two
different theories with the same linear limit.

We can rewrite the action in terms of a Lagrange multiplier field χ, as

S =

∫

d4x
√−g

[

M2
pl

2
R+ c1X + f(χ) +

(

c2X +
cG
M2

Gµνφµφν − χ
) df

dχ

]

+ Sm . (2.2)

Varying the action (2.2) in terms of χ we find

(

c2X +
cG
M2

Gµνφµφν − χ
) d2f

dχ2
= 0 . (2.3)

This has the solution
χ = c2X +

cG
M2

Gµνφµφν , (2.4)

except at particular points for which fχχ = 0 (and note that in the linear case χ is moot).
Subscripts χ denote derivatives with respect to χ. By re-inserting the solution eq. (2.4) back
into eq. (2.2), we verify that we obtain the original action eq. (2.1).
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Introducing a Lagrange multiplier field χ helps understanding of the independent degrees
of freedom. In particular, such a Lagrange multiplier can be coupled with other elements
(such as the Ricci scalar, as in the f(R) theories, or the Einstein tensor, as in our case).
Both the Ricci scalar and the Einstein tensor are functions of a second derivative of the
metric. Therefore by integrating by parts, a time-derivative for the Lagrange multiplier may
appear. In this case, such a Lagrange multiplier can in general acquire a kinetic term, and
it may start propagating. This situation, as already said, is common to those theories which
can be written in terms of a Lagrange multiplier coupled to a second-order operator, e.g. as
in f(R) or R + f(GGB). The theory f(R,GGB) introduces two Lagrange multipliers. This
theory is quite interesting as it has been proven that only one of these two new scalar degrees
of freedom will propagate on Friedmann-Lemâıtre-Robertson-Walker backgrounds [20]. On
the other hand, both these degrees of freedom do propagate on anisotropic backgrounds.
Therefore whether or not these Lagrange multipliers propagate or not depends on the chosen
theory.

We will see that the theory at hand, eq. (2.1), will not introduce on cosmological back-
grounds any new degree of freedom. However, we will find that the high-k limit (where k
is the wavemode) dispersion relation of perturbations will be modified, leading to a scale-
dependent speed of propagation, i.e. c2s ∝ k2. This is indeed similar to what happens in the
f(R,GGB) case. On a formal level it will be interesting to study eventually our theory on
anisotropic backgrounds to see whether or not the Lagrange multiplier will start propagating
and we will discuss this issue in a future project.

3 Equations of motion and evolution

We give the general covariant background equations of motions in appendix A. Here we
specialize to a homogeneous and isotropic spacetime where the metric is FLRW. The theory
then has the property that the equations of motion for the action remain second order. We
include a barotropic fluid (i.e. matter and radiation) with energy density ρ and pressure P
and assume spatial flatness for simplicity. The background equations of motion for the action
of eq. (2.2) are then

3M2
plH

2 = ρ+
1

2
c1φ̇

2 +
1

2
c2fχφ̇

2 + fχ χ− f + 9
cG
M2

fχH
2φ̇2 , (3.1)

2
(

M2
pl −

cG
M2

fχφ̇
2
)

Ḣ = −P − 3M2
plH

2 − 1

2
c1φ̇

2 − f (3.2)

−
(

1

2
c2φ̇

2 − 3
cG
M2

H2φ̇2 − χ− 4
cG
M2

Hφ̇φ̈

)

fχ + 2
cG
M2

Hφ̇2ḟχ,

(

c1 + c2fχ + 6
cG
M2

H2fχ

)

φ̈ = −3c1Hφ̇− 12
cG
M2

fχ φ̇HḢ − (ḟχ + 3Hfχ)
(

c2 + 6
cG
M2

H2
)

φ̇ ,

(3.3)

χ =

(

1

2
c2 + 3

cG
M2

H2

)

φ̇2 , (3.4)

ρ̇ = −3H (ρ+ P ) , (3.5)

where H = ȧ/a is the Hubble expansion rate of the scale factor a.
Linear perturbations about the background are important for calculating the growth

of structure, which we consider in section 5, but also for analyzing the degrees of freedom.
Details of the equations are given in appendix B but here we note a key point. The coupled
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system of perturbed equations for the two metric potentials, the barotropic fluid density and
velocity, the φ scalar field, and the Lagrange multiplier scalar field χ does not possess any
time derivatives ˙δχ. This indicates that χ is merely an auxiliary field with no dynamics but
rather an algebraic constraint, and is uniquely determined by the other fields. This arises
because the Einstein tensor within f(χ) only depends on first derivatives and not second
derivatives in the Robertson-Walker background, i.e. only H2 appears.

To obtain the solutions to the evolution of the expansion H and field φ, we put the
background equations in the form of an autonomous system of coupled equations, using the
dimensionless parameters H̄ ≡ H/H0 and x ≡ φ′/Mpl, where primes denote derivatives with
respect to N = ln a. Then

x′ =
λγ − ωα

ασ − λβ
(3.6)

H̄ ′ = −γ
α
− β

α
x′ (3.7)

where

α = 2H̄ − 6fχcGH̄
3x2 − 2cGfχχH̄

4x2
(

c2H̄x
2 + 12cGH̄

3x2
)

(3.8)

β = −2cGfχχH̄
4x2

(

c2H̄
2x+ 6cGH̄

4x
)

− 4fχcGH̄
4x (3.9)

γ = 3H̄2 + fχ

(c2
2
H̄2x2 − χ− 3cGH̄

4x2
)

+
Ωr0
a4

+ f +
c1
2
H̄2x2 (3.10)

σ = c2fχH̄
2 + 6fχcGH̄

4 + fχχH̄
2x
(

c2 + 6cGH̄
2
) (

c2H̄
2x+ 6cGH̄

4x
)

+ c1H̄
2 (3.11)

λ = fχc2H̄x+ 18fχcGH̄
3x+ fχχH̄

2x
(

c2 + 6cGH̄
2
) (

c2H̄x
2 + 12cGH̄

3x2
)

+ c1H̄x (3.12)

ω = 3fχH̄
2x
(

c2 + 6cGH̄
2
)

+ 3c1H̄
2x (3.13)

with Ωr0 the dimensionless radiation energy density today and

χ =
c2
2
H̄2x2 + 3cGH̄

4x2 . (3.14)

To ensure the accuracy of our numerical solution we use as a check the constraint
equation (3.1), written in the dimensionless parameters as

H̄2 =
Ωm0

a3
+

Ωr0

a4
+

1

3

(

fχχ− f + 9fχcGH̄
4x2 + fχ

c2
2
H̄2x2 +

c1
2
H̄2x2

)

, (3.15)

with Ωm0 the dimensionless matter density today. The quantity in parentheses can be viewed
as an effective dark energy density. An effective dark energy pressure can similarly be defined
using eq. (3.2), with the effective dark energy equation of state ratio wφ = Pφ/ρφ.

3.1 Early time evolution

As in [12], one can identify the early and late time asymptotic solutions. At early times,
during radiation or matter domination, when H̄2 ≫ 1, one generally has χ ≈ 3cGH̄

4x2 and
Ωφ ≪ 1 (if one fine tunes the c1 or c2 terms to dominate instead then the energy density
would decay as ρφ ∼ a−6 and hence be uninteresting). In this case the solution becomes

x ∼ a3[1+3wb+4e(1+wb)]/[2(1+2e)] (3.16)

χ ∼ a−3(1−wb)/(1+2e) , (3.17)
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where wb is the barotropic equation of state (0 for matter domination, 1/3 for radiation
domination), and e ≡ χfχχ/fχ. To go further we must adopt a specific form for the function
f . Taking f(χ) = Aχn, we have e = n− 1 and

ρφ ∼ a−3n(1−wb)/(2n−1) (3.18)

wφ =
1− n(1 + wb)

2n− 1
. (3.19)

While in the linear model (n = 1), the dark energy traces the matter during matter dom-
ination, this is not so in the nonlinear model. The case n = 0 is a cosmological constant.
Note that the dark energy is phantom (and has a ghost, we will later find) for 0 < n < 1/2.
This means that to avoid violation of early radiation/matter domination the field would have
to be highly fine tuned, more so than a cosmological constant. For n ≈ 1/2, the evolution
diverges (e = −1/2) and matter/radiation domination is violated. Note that this rules out
functions that act like n = 1/2 power laws at early times, such as a DBI type f =

√
1 + χ−1.

Therefore we concentrate on n > 1/2.

3.2 Late time evolution to de Sitter state

During its evolution, the model leads to cosmic acceleration near the present and an asymp-
totic de Sitter state. Interestingly, this can arise in two ways. For H̄ ′ = 0 and also x′ = 0 as
a fixed point one needs γ = 0 and either ω = 0 or α = 0. Combining the expression for γ
with eq. (3.15) leads to the condition

H̄2x2 [c1 + fχ (c2 + 6cGH̄
2)] = 0 . (3.20)

This guarantees that ω = 0 also. In the c1 = 0 case, this is the same de Sitter point
H̄2

dS = −c2/(6cG) as in [12] and exists irrespective of the functional form of f(χ) (as long as
fχ 6= 0 at the de Sitter point). Note that c2 and cG must have opposite signs for this de Sitter
point to be present. In the c2 = 0 case, there is a new de Sitter point H̄2

dS = −c1/(6fχcG).
Since for the c1 = 0 de Sitter point we have χ→ 0, we should choose a function f such

that f(0) = 0 otherwise we are putting in a cosmological constant. But then no solution
for this de Sitter point exists for the nonlinear power law model that simultaneously satisfies
H̄ → const and ρφ → const 6= 0. Recall that fχ ∼ χn−1.

However, there is yet another de Sitter solution that we can construct for our nonlinear
model; this arises because of the evolution of x such that asymptotically x′ 6= 0. This solution
still has H̄2

dS = −c2/(6cG) but x ∼ a3(n−1)/(3n−1). Thus as H̄ → const, x decays to 0 for
n < 1 while x diverges for n > 1.

In figure 1 we exhibit H̄2 and ρφ for the c1 = 0 cases with n = 1.5 and n = 0.8. As
noted, the n > 1 case grows quickly relative to the background components and so must
start with a small (ρφ/ρm)i to preserve later matter domination. At a = 10−6, say, this
ratio must be less than 10−6.6, but this is still not as severe as the cosmological constant
fine tuning which requires 10−16. The n = 0.8 case can actually dominate over matter at
a = 10−6, but has rather drastic evolution at z ≈ 1 as it suddenly turns toward the de Sitter
attractor.

For the c2 = 0 case, as mentioned we expect at early times no significant change to the
dynamics since again the cG term will dominate over c1. At late times, since ρφ contains
terms with different powers of x there is no extra de Sitter solution (hence ρφ = const) with

– 6 –
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1+z

(H/H0)2

n=0.8
n=1.5

Figure 1. The evolution of the effective dark energy density ρφ in the c1 = 0 case is plotted for power
law functions f ∼ χn with n = 0.8 (dotted red curve) and n = 1.5 (dashed blue). The expansion
history (H2/H0)

2 (solid black) is also shown (for n = 0.8 though the n = 1.5 case is nearly identical
on this scale). Note that for n < 1, typically ρφ must be set to large values initially so that it does
not decay to too small values at late times; conversely, for n > 1 ρφ grows relative to matter and
radiation and must be set to low values initially.

varying x. Thus the only de Sitter solution is c1 + 6fχcGH̄
2 = 0. Note that χ freezes at

a finite value and so f → const. The energy density evolution looks quite similar to the
c1 = 0 case and so instead we show the evolution of the dark energy equation of state for
the two cases in the first panel of figure 2. The spike in wφ arises due to a late time can-
cellation between the c2 and cG contributions to the energy density of the φ field. However,
ρφ never approaches zero and all quantities remains regular at this point. Such a significant
feature in the equation of state parameter will be observable in low redshift cosmological
data, and so we expect distance measures will place strong constraints on such f(χ) func-
tional forms. We also note that the feature in wφ(z) can be ameliorated by raising the
initial field energy density, but as discussed above this would impinge on matter domina-
tion.

Although both cases reach de Sitter attractors asymptotically, the manner in which they
achieve this differs. For the nonlinearity only applying to the Einstein tensor coupled kinetic
term (c2 = 0 case), the solution is the double fixed point H̄ ′ = 0 = x′. This holds as well for
the full nonlinearity (applied to both kinetic terms, i.e. the c1 = 0 case) when n > 1 (but this
is not the stable attractor). In addition the full nonlinearity case also has a de Sitter solution
with H̄ ′ = 0 but x′ 6= 0, i.e. φ̈ 6= 0. The field will decelerate, φ̈ < 0 (accelerate, φ̈ > 0) for
n < 1 (n > 1). The difference between the field evolutions for the two cases is shown in the
second panel of figure 2, for n = 0.9.

A summary of the de Sitter attractors is given in table 1, including results from section 5
on the ghost and Laplace stability conditions of the perturbations.
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w
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x=
φ, /M
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1+z
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Figure 2. Comparison of the cases c2 = 0 (solid black) and c1 = 0 (dotted blue), both with n = 0.9
and [ρφ/ρm](a = 10−6) = 10−3, is plotted for the equation of state parameter (left panel) and the
field evolution x = φ′/Mpl (right panel) of the effective dark energy. The c2 = 0 case has a more
extreme phantom feature in w(z) near the present, but both cases have the same early time tracking
and late time de Sitter attractor (although for c1 = 0 one has x′ 6= 0).

(c1, c2) n H2
dS xdS χdS No-ghost Laplace

(0, c2) 1/2 < n < 1 −c2/(6cG) 0 0 X ∼ X

(0, c2) n > 1 −c2/(6cG) ∞ ∞ × ×
(c1, 0) 1/2 < n < 1 −c1/(6cGfχ) const const X ∼ X

(c1, 0) n > 1 −c1/(6cGfχ) const const × ×

Table 1. Summary of de Sitter attractors is given for the two cases of the model, with a nonlinear
function f ∼ χn. The two cases have different approaches to de Sitter, that merge in the common
linear limit n = 1.

4 Self tuning

The ability of the theory to reach a de Sitter asymptotic state without a cosmological constant
is interesting, as is the overall expansion behavior of such a cosmological model, but more
significant is the ability of Fab 5 Freddy to self tune, in the manner of John or Paul in the Fab
Four [5]. This allows the scalar field φ — even without a potential — to cancel an existing
(large) cosmological constant. This even holds if the cosmological constant readjusts as it
passes through phase transitions. Here we present a simplified analysis showing these key
properties while neglecting matter or radiation components.

The dynamical equations are identical to eqs. (3.6)–(3.14) except for the replacement
of Ωr0 a

−4 by −3ΩΛ in the γ term, coming from (three times) the background pressure.
(Note ΩΛ 6= 0.7, the observed cosmological constant, but is instead the early universe, bare
cosmological constant.) Two de Sitter points can be found, both of which are attractors.
The first arises from the explicit cosmological constant, with H̄2

1 = 8πGρΛ/(3H
2
0 ) = ΩΛ and

the second is the self tuning solution with H̄2
2 = −c2/(6cG), as we found in the absence of a

cosmological constant. Note H̄1 ≫ H̄2.
For the first solution, the scalar field contribution dies away as ρφ ∼ x2n ∼ a−6n/(2n−1),

so the pure cosmological constant is a fixed point of the dynamics. (Of course matter and
radiation would also redshift away.) For the second solution the scalar field dynamically
adjusts such that ρφ → −ρΛ. Note that unlike in the earlier sections ρφ < 0. However the
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same approach to a de Sitter state occurs, with ρφ dynamically canceling ρΛ and retaining
a small positive residual energy density, evolving with x ∼ a−3(n−1)/(3n−1) on approach to
H̄2

2 → −c2/(6cG).
These analytic behaviors are verified numerically in figures 3 and 4. We include a

cosmological constant ΩΛ = 108 throughout the numerical calculation, and consider f(χ) =
−χn (adopting n = 1.5, cG = 1, c2 = −5.6, c1 = 0). We begin H̄ away from both asymptotic
solutions H̄ = H̄1,2, illustrating the behaviors for different initial conditions in figures 3 and 4.

In the left panel of figure 3 we observe the approach to the standard cosmological
constant attractor with H̄2 → 8πGρΛ/(3H

2
0 ), with the right panel showing the vanishing

ρφ → 0.

However, below a certain critical initial condition H̄i (depending on the other param-
eters), we observe entirely different dynamical behavior. Now, H̄ approaches the second
asymptotic point H̄2

2 = −c2/(6cG). This occurs despite the large cosmological constant
present in the model. We find that the absolute value of the φ field energy density approaches
the ρφ ∼ −ρΛ solution, canceling the vacuum energy in the field equations. Hence the model
exhibits self tuning, for some range of initial conditions (e.g. H̄2(a = 10−6) . 106H̄2

2 for the
parameters adopted in the figure).

To see how self tuning occurs, we must examine the equations of motion (here taking
c1 = 0)

3M2
plH

2 =
1

2
c2fχφ̇

2 + fχ χ− f + 9
cG
M2

fχH
2φ̇2 , (4.1)

(

c2 + 6
cG
M2

H2
)

fχ φ̈ = −12
cG
M2

fχ φ̇HḢ − (ḟχ + 3Hfχ)
(

c2 + 6
cG
M2

H2
)

φ̇ , (4.2)

χ =

(

1

2
c2 + 3

cG
M2

H2

)

φ̇2 . (4.3)

On-shell (that is, at the asymptotic de Sitter state), we have H̄2 = −c2/(6cG) and Ḣ = 0,
and hence the scalar field equation is trivially satisfied, carrying no information regarding
the evolution of φ. However, the scalar field equation contains an explicit ä dependence, and
the Hamiltonian density H in the Friedmann equation retains φ̇ dependence on shell, both
of which are conditions given in [6] for self tuning to occur. On approach to the de Sitter
point, the scalar field continues to evolve while ρφ and H̄ approach constant values.

If we choose initial conditions for H̄i such that it is initially far from the attractor
H̄2

2 = −c2/(6cG), then one can use eqs. (3.6) and (3.7) to calculate how the model approaches
the de Sitter state. For the power law models f(χ) ∼ χn, we find that the dynamical
behaviour of H̄ is independent of n, and the evolution toward de Sitter has H̄ − H̄dS ∼ a−3,
x ∼ a6. Ultimately the evolution of H̄ will depend on the presence of matter and radiation
(which we have neglected here), and also the functional form of f(χ). Whether a specific self
tuning model can be constructed that gives rise to a viable cosmological evolution will be
the subject of future work (see [7] for the Fab Four case).

Going further, we can verify that the self tuning also self adjusts if the vacuum energy
undergoes a phase transition at some redshift. We numerically model such an energy density
with a tanh function, and choose the pressure to solve the continuity equation P = −ρ′

3 − ρ.
The evolution of the quantities H̄2, ρφ, and ΩΛ are shown in figures 5 and 6, demonstrating
that the two de Sitter solutions still hold and the self tuning mechanism remains effective.
The explicit cosmological constant can be made effectively invisible in our model.
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Figure 3. [Left panel] H̄2 evolves toward its standard cosmological constant attractor H̄2
1 =

8πGρΛ/(3H
2
0 ) for high density initial conditions, here H̄i = 104

√

−c2/(6cG). [Right panel] Meanwhile
the scalar field energy density decays away.
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Figure 4. As figure 3, but with initial conditions H̄i = 103
√

−c2/(6cG). [Left panel] Now we
observe the dynamics leads to the second attractor H̄2 → −c2/(6cG), despite the presence of a large
cosmological constant. [Right panel] The scalar field energy density ρφ self tunes to cancel the ρΛ
contribution in the field equations.

5 Linear perturbations

Linear perturbations of the equations of motion are important for calculating the growth of
structure and assessing the ghost-free and stability conditions of the theory. For subhorizon
perturbations one adopts the quasistatic approximation. We begin by using eq. (B.2) to write
the equations of motion for the perturbation in the Newtonian gauge (β = 0 in appendix B)
as follows:

2M2
pl∇2Φ = (5.1)

ρmδm + 9
cG
M2

fχχH
2φ̇2δχ+

cG
M2

fχ

(

2φ̇2∇2Φ− 4Hφ̇∇2δφ
)

+ fχχχδχ+
c2
2
fχχφ̇

2δχ

δχ = 2
cG
M2

φ̇2∇2Φ (5.2)
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Figure 5. As figure 3 for H̄i = 104
√

−c2/(6cG), but with the large vacuum energy undergoing a
phase transition. The standard attractor H̄2 → 8πGρΛ/(3H

2
0 ) applies, and the φ field energy density

asymptotically decays, subject to a mild jump at the phase transition.
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Figure 6. As figure 5 with a large vacuum energy undergoing a phase transition, but with H̄i =
103
√

−c2/(6cG). Self tuning remains effective despite the transition and the second attractor H̄2 →
−c2/(6cG) is approached. The φ field dynamically adjusts energy density to cancel the vacuum energy,
and the transition does not modify the Hubble parameter due to it already being on the attractor.

c1∇2δφ+ c2fχ∇2δφ− c2φ̇(fχχδχ)̇ + 2
cG
M2

fχ(2Ḣ + 3H2)∇2δφ

− 6
cG
M2

H2φ̇(fχχδχ)̇− c2fχχ(φ̈+ 3Hφ̇)δχ− 6
cG
M2

fχχH
2φ̈δχ− 6

cG
M2

fχχH(2Ḣ + 3H2)φ̇δχ

− 4
cG
M2

fχφ̈∇2Φ− 4
cG
M2

ḟχφ̇∇2Φ+ 4
cG
M2

fχHφ̇(∇2ψ −∇2Φ) = 0 (5.3)

∂i∂jΦ− ∂i∂jψ + gij(∇2ψ −∇2Φ) =
cG
M2

fχ

{

2(φ̈+Hφ̇)(gij∇2δφ− ∂i∂jδφ) + φ̇2
[

gij
(

∇2Φ+∇2ψ
)

− (∂i∂jΦ+ ∂i∂jψ)
]

}

+ gij

(c2
2
fχχφ̇

2δχ− cG
M2

[

2Hφ̇2 (fχχδχ)˙+ fχχ

(

4Hφ̇φ̈+ 2Ḣφ̇2 + 3H2φ̇2
)

δχ
]

− fχχχδχ
)

+
cG
M2

φ̇2fχχ
(

∂i∂jδχ− gij∇2δχ
)

+ 2
cG
M2

ḟχφ̇(gij∇2δφ− ∂i∂jδφ) . (5.4)

There are some important differences between this case and the linear case where fχχ =
0, i.e. no nonlinear mixing. Here, in the (i, j) Einstein and φ field equations, terms appear
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of the form k4Φfχχ and k2Φ̇fχχ, arising from δχ. These will lead to scale dependence in the
gravitational coupling strength Geff derived below. Recall that the standard Galileon case
does not have scale dependent coupling on cosmic scales well above the Vainshtein scale (see
Geff from [12]).

5.1 Evolution of gravity

To investigate the modified Poisson equations defining the coupling of matter to the metric
potentials, we can use the (i, j = i) perturbed Einstein equation to remove (fχχδχ)̇, and
then substitute for the (i, j 6= i), φ, and χ equations. In the quasistatic limit appropriate for
linear growth on subhorizon scales the (0, 0) perturbed Einstein equation becomes

∇2Φ = 4πa2G
(Φ)
eff ρmδm . (5.5)

The equivalent modified Poisson equations for the other metric potential combinations are

∇2ψ = 4πG
(ψ)
eff ρmδm (5.6)

∇2(Φ + ψ) = 8πG
(Φ+ψ)
eff ρmδm . (5.7)

The gravitational couplings are

G
(Φ)
eff

GN
=

κ3κ8 + 2κ2κ9
κ1(κ3κ8 + 2κ2κ9) + κ2(κ5κ8 + 2κ2κ7 − κ4κ8κ6)

, (5.8)

G
(ψ)
eff

GN
= −

[

κ9
κ8

(

κ1Ḡ
(Φ)
eff − 1

κ2

)

+
κ7
κ8
Ḡ

(Φ)
eff

]

(5.9)

G
(Φ+ψ)
eff

GN
=

(

κ8 − κ7
2κ8

)

Ḡ
(Φ)
eff − κ9

2κ8

(

κ1Ḡ
(Φ)
eff − 1

κ2

)

, (5.10)

where Ḡ
(Φ)
eff = G

(Φ)
eff /GN and

κ1 = 1− 12c2Gf̄χχH̄
6x4 − c2cGf̄χχH̄

4x4 − cGf̄χH̄
2x2 (5.11)

κ2 = −2cGf̄χH̄
2x (5.12)

κ3 = c1 + c2f̄χ + 2cGf̄χ
(

2H̄H̄ ′ + 3H̄2
)

(5.13)

κ4 = −c2H̄x− 6cGH̄
3x (5.14)

κ5 = −4cGf̄χH̄
(

H̄x′ + H̄ ′x+ H̄x
)

− 12c2Gf̄χχH̄
5x2

(

3H̄x′ + 7H̄ ′x+ 3H̄x
)

− 6c2cGf̄χχH̄
3x2

(

H̄x′ + H̄ ′x+ H̄x
)

(5.15)

κ6 = −cGfχχH̄x
[

xk2 + H̄
(

4H̄x′ + 6H̄ ′x+ 7H̄x
)]

(5.16)

κ7 = 1 + cGf̄χH̄
2x2 − 2c2Gf̄χχH̄

4x4k2/a2 (5.17)

κ8 = −1 + cGf̄χH̄
2x2 (5.18)

κ9 = 2cGf̄χH̄
(

H̄x′ + H̄ ′x+ H̄x
)

+ 2cGf̄
′
χH̄

2x (5.19)

and all quantities are in dimensionless form, i.e. H̄ = H/H0, f̄ = f/(M2
plH

2
0 ), and primes

denote derivatives with respect to N = ln a.
In the de Sitter limit for the case c1 = 0, one finds Geff/GN = 1/κ1. However, although

both χ and x approach 0, they do so such that fχχ → 0, fχx
2 → const, and fχχx

4 → ∞.
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Figure 7. The gravitational couplings Geff in the nonlinear theory (left panel G
(Φ)
eff , right panel G

(ψ)
eff ,

both for f = χ0.9) become scale dependent, as shown by the evolution for three different wave modes:
k = 0.01h/Mpc (solid black), k = 0.1h/Mpc (dotted red) and k = 1.0h/Mpc (dashed blue). Gravity
vanishes at late times.

Thus |κ7| ≫ |κ1| → +∞ and Geff → 0. That is, gravity appears to turn off at late times.
This arises in this limit from the nonlinear structure of the theory, i.e. the presence of fχχ
and its power law behavior.

The numerical solutions for the evolution Geff(z) are shown in figure 7. At high redshift
the theory acts as general relativity, then deviations begin when (k/aH)2Ω2

φ ∼ 1. At this

point, the κ7 contribution to Geff will dominate due to the k2 term. Since κ7 appears in the

denominator of G
(Φ)
eff , this scale dependent effective Newton’s constant will typically vanish

at high redshift, during matter domination (the exact redshift will be scale dependent and

will also be determined by the initial conditions for the scalar field energy density). G
(ψ)
eff on

the other hand will not vanish at early times owing to its different κ7 dependence.

The gravitational coupling G
(ψ)
eff entering matter growth behaves as GR until near the

present, since large κ7 actually cancels out from it. At low redshift it spikes and then

vanishes. The gravitational coupling G
(Φ+ψ)
eff entering light deflection is given by the mean

[G
(Φ)
eff +G

(ψ)
eff ]/2 and so shows deviations at both high and low redshift. We emphasize that the

current model is not proposed as observationally viable but rather to introduce interesting
theoretical properties of nonlinear, noncanonical kinetic gravity.

5.2 Ghost and stability conditions

In order to find the ghost conditions, we need the action for the independent degrees of
freedom. It is convenient for this task to evaluate eq. (B.2) in the flat gauge (i.e. Φ = 0).
Then we can see that the fields ψ, β and δχ can be integrated out leaving only two scalars to
propagate, i.e. δφ (the new-gravity mode), and v (the matter mode). But there is a crucial
subtlety: the quadratic term δχ2 will generate a term proportional to k4δφ2/a4. This means
that this theory will modify the high k behaviour of the modes, and this will lead to possible
cosmological signatures. This situation is similar to what happens for FLRW backgrounds
in the f(R,GGB) theories [20]. This k

4-dependent term vanishes when fχχ = 0, that is when
the action is linear in the combination c2X + (cG/M

2)Gµνφµφν . This behaviour is a typical
signature of the presence of a massive mode (δχ), whose kinetic term vanishes, but not its
mass.
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After removing the auxiliary field δχ, and this is possible only when fχχ 6= 0, we can
write down the action as

S =

∫

d4xa3
[

AabV̇aV̇b +
Bǫab
a2

(∂iV̇a)(∂iVb)−
Dab

a4
(∂2Va) (∂

2Vb) (5.20)

− Eab
a2

(∂iVa)(∂iVb) + CǫabV̇aVb +MabVaVb

]

,

where we have defined V1 = δφ, V2 = v. The matrices A,D,E,M , as well as the two
coefficients B and C, are functions of the background. Here we have also defined ǫab as the
two dimensional antisymmetric matrix with ǫ12 = 1. Furthermore, the only non-zero matrix
element of the matrix D corresponds to D11.

The no-ghost requirements are

det[A] =
[

fχχ

{

cG
(

c2 + 6cGH̄
2
) (

12cGH̄
2 − c2

)

H̄4x4fχ

+ H̄2x2
(

c22 − 6c1c
2
GH̄

4x2 + 36c2GH̄
4 + 12c2cGH̄

2
)

}

+ cG
(

18cGH̄
2 − c2

)

H̄2x2f2χ +
(

c2 + 6cGH̄
2 − c1cGH̄

2x2
)

fχ + c1

]

× (1 + w)ρ̄w
(

1− cGH̄
2x2fχ

)

4∆2
> 0 (5.21)

A22 =
[

(

c2G
(

36cGH̄
2 + 5c2

)

fχH̄
6x6 − cGH̄

4x4
(

c1cGH̄
2x2 + 18cGH̄

2 + 2c2
))

fχχ

+ 9c2GH̄
4x4f2χ − 6cGH̄

2x2fχ + 1
](1 + w)ρ̄w

2∆2
> 0 (5.22)

where in addition to the scalar field we have assumed the presence of a barotropic fluid with
equation of state w and energy density ρ̄w = ρw/(H

2
0M

2
pl), and

∆2 =
[{

H̄6x6c2G
(

36cGH̄
2+5c2

)

fχ − c2Gρ̄wH̄
4x4 − cGH̄

4x4
(

cGc1H̄
2x2+18cGH̄

2+2c2
)}

fχχ

+9c2GH̄
4x4f2χ − 6cGH̄

2x2fχ + 1
]

w − c2Gρ̄wH̄
4x4fχχ . (5.23)

During the radiation era, ∆2 ≈ w = 1/3 and the square brackets in A22 resolve to 1, so
indeed A22 > 0. In the matter era where w = 0, then A22 has the same sign as −fχχ and
so we require n < 1 in the power law model f ∼ χn. For detA, since H̄2 ≫ 1 then the cG
terms will dominate in the early universe over the other scalar field terms in the absence of
fine tuning them to be small. This results in the condition (2n− 1)/(1−n) > 0, satisfied for
1/2 < n < 1. Thus such theories are free of ghosts.

Checking the speed of propagation of the field, with Laplace stability given by nonneg-
ative sound speed squared, c2s ≥ 0, is somewhat more involved. In the high-k limit, we find
that the dispersion relations are given by

ω2
φ =

B2 +A22D11

det[A]

k4

a4
=

16c4Gf
2
χH̄

8x6fχχ

(1− cGfχH̄2x2)∆

k4

a4
, (5.24)

ω2
pf =

D11E22

B2 +A22D11

k2

a2
= w

k2

a2
, (5.25)

where ∆ is defined as

∆ ≡ fχχ
[

cG(c2 + 6 cGH̄
2)(c2 − 12 cGH̄

2)H̄4x4fχ + 6c1 c
2
GH̄

6x4 − (c2 + 6 cGH̄
2)2H̄2x2

]

− cG(18 cGH̄
2 − c2)H̄

2x2f2χ + [c1cGH̄
2x2 − (c2 + 6 cGH̄

2)]fχ − c1 . (5.26)
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The speeds of propagation are then found as the group velocity c = a∂ω/∂k, or

c2φ =
64c4Gf

2
χH̄

8x6fχχ

(1− cGfχH̄2x2)∆

k2

a2
≥ 0 , c2pf = w ≥ 0 . (5.27)

One of the two solutions is trivial as it corresponds to the speed of the perfect fluid, but the
other one sets a stability condition, and states that the speed of propagation will be scale
dependent.

Because of the k4 terms in eq. (5.20), the dispersion relation and hence sound speed
will be wavenumber dependent. From eq. (5.27), we see that in the high k limit the leading
order contribution to c2φ goes like

c2φ ∼
(

k

aH

)2

Ω2
φ (5.28)

where Ωφ = 8πGρφ/(3H
2). During matter domination, we typically find k/(aH) ≫ 1 for

sub-horizon modes relevant to linear perturbation theory, and Ωφ ∼ O
(

10−2Ωm
)

(this is
largely dependent upon the initial conditions imposed, however this is a conservative upper
bound on how large Ωφ can be during matter domination). Hence we expect the k4 term in
eq. (5.20) to be the dominant contribution to c2φ between z ∼ (1, 1000).

If this held for radiation domination, then c2s ∼ (k/aH)2Ω2
φ(1− n)/(2n− 1) and so the

theory would be Laplace stable for 1/2 < n < 1. However, in the linear case n = 1, the
terms proportional to fχχ vanish identically and the leading order k2 contribution vanishes,
leaving a scale independent sound speed. As found in [12], the linear theory composed of
a standard kinetic term and a kinetic term coupled to the Einstein tensor (i.e. the purely
kinetic gravity theory of [11] with the canonical kinetic term generalized to have an arbitrary
constant coefficient) is Laplace unstable in the radiation era. Thus, the nonlinearity of the
current model can avoid that instability.

However, at early enough times during radiation domination Ωφ drops so low that
the (k/aH)2Ω2

φ term becomes subdominant for the modes k relevant to linear perturbation
theory. To calculate the leading order behaviour of cφ in the very early Universe, it is more
instructive to consider the issue from a different angle.

To preserve the CMB acoustic peak structure, and also to obtain an expansion history
consistent with observations, we want initial conditions during radiation domination such that
the effect of the scalar field φ on the background expansion and the metric perturbations is
negligible. In this case we can assume that Ωφ ≪ 1 and the metric potentials are sourced by
density perturbations only, hence we can treat the scalar field perturbations δφ as evolving on
an otherwise standard cosmological background. Under this assumption, one can analytically
calculate the no-ghost and Laplace conditions. For the linear model f(χ) ∼ χ, it was found
in [12] that the scalar field perturbations possessed a sound speed c2φ that was negative during

radiation domination; c2φ = −1/3. This would lead to exponential growth of the scalar field
perturbations, destroying the standard cosmological picture. One can perform a similar
analysis for the more general f(χ) case. We find the following no-ghost and Laplace stability
conditions

3cGH̄
2 (fχ + 2χfχχ) > 0 (5.29)

and
2Ḣ + 3H2

3H2

fχ
fχ + 2χfχχ

> 0 (5.30)
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where we assume that at early times the cG contribution to the φ energy density is much
larger than the standard canonical c2 term (which is valid barring an extreme fine tuning of
cG). For the power law models, during radiation domination these conditions correspond to

cGfχ < 0 (5.31)

2n− 1 < 0 , (5.32)

which would violate the positivity of ρφ. This could potentially cause problems in the tran-
sition to the matter dominated era, where ρφ > 0 is required to ensure that the no-ghost
condition is satisfied. We conclude that the power law models cannot simultaneously satisfy
the no-ghost and Laplace stability requirements at all times while also having ρφ > 0 during
radiation domination. This does not preclude the possibility that a non-power law model
might be constructed that can.

The presence of a scale-dependent speed of propagation is a feature of this model and it
has physical implications, especially at late times when Ωφ → 1. The reason for the presence
of such a term may be due to the large symmetries of the FLRW manifolds, similarly to what
happens in the context of f(R,GGB) theory (see e.g. [20]). In that case it was shown that
the kinetic term of one of the scalar perturbation modes was vanishing on general FLRW
manifolds, so that it could be integrated out from the Lagrangian, giving rise in this way
to a scale dependent speed of propagation c2s ∝ k2/a2. Furthermore, also in that theory, at
late times as the k2-regime starts dominating, gravity for high k’s tends to become weaker
and weaker, i.e. Geff/GN → 0. It would be interesting to study, along the same lines of the
f(R,GGB) theories, whether anisotropic models (such as Bianchi-I type manifolds) possess
more propagating degrees of freedom than FLRW. This will be investigated in a future
project. Nonetheless, if indeed this scenario does happen, then this theory would behave
similarly also to massive gravity, as it was shown that for that theory the kinetic terms
of three perturbation modes vanish on FLRW due to the high degree of symmetries of the
background [23].

6 Conclusions

Gravitation is a fundamental force that we have just begun to explore cosmologically. One
of the great advances made in gravity research in the past few years is the realization that
symmetry principles both strongly restrict the theory and open up new avenues and effects.
Galileon gravity and massive gravity both use shift symmetric fields and their couplings
to functions of the metric to enable new properties, including cosmic acceleration without
a cosmological constant or field potential. An action allowed by the symmetries and well
behaved in initial value formulation, specifically one leading to second order equations of
motion, is of particular interest. If moreover the field exhibits self tuning, allowing it to
overcome a high energy cosmological constant, the theory is well worth examining.

We show that by promoting a purely kinetic gravity term to a nonlinear function,
possibly mixed with a noncanonical kinetic term for the field, fascinating properties can
ensue. In addition to second order equations of motion and self tuning, the theory does not
incur extra propagating degrees of freedom on a cosmological background. Similar effects of
symmetric backgrounds are seen in massive gravity. For example, in massive gravity it was
found [23] that in isotropic spacetimes the shift symmetric (Stückelberg) fields have vanishing
mixing between the graviton and the scalar mode, and furthermore their kinetic terms vanish.
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The new term discussed here, “Fab 5 Freddy,” can self accelerate and is merely the
harbinger of a whole class of such nonlinear promotions or combinations of terms.

The background evolution of the expansion and field lead to early time tracker behavior
and late time de Sitter attractors. Solving the linear perturbation equations we see that
simple power law functions can be free of ghosts. The gravitational coupling and dispersion
relation of perturbations become scale dependent, possibly leading to an early time instability
and a late time vanishing of gravity. The specific models studied may not be observation-
ally viable but the characteristics arising from the nonlinear, noncanonical action open new
aspects of gravity. Most intriguing is the self tuning property that can cancel a bare cos-
mological constant dynamically, even through phase transitions. The evolution of the field
basically makes Λ invisible.

The issue of reproducing standard Newtonian gravity in the solar system has not been
addressed in this work. Due to the non-linearities involving the kinetic term a Vainshtein
screening mechanism could be expected to operate and shield the scalar mode φ on local
scales. In addition, we expect that on scales where φ is Vainshtein screened the second scalar
mode will have a large effective mass, and can also be potentially screened via a chameleon
type mechanism. However, a detailed analysis of the subtleties associated with scalar degrees
of freedom, in particular on non-cosmological backgrounds where the Einstein tensor involves
second derivatives, makes the study of screening a subject for future investigation.

That the most general scalar-tensor theory giving second order field equations in 4D
could be further generalized, at least on cosmological backgrounds, is highly interesting.
The specific term considered here, a nonlinear promotion of the field kinetics coupled to the
Einstein tensor (the unique, low mass dimension shift symmetric combination giving second
order field equations), is merely a proof of principle, while theoretically instructive. Ways to
extend this class of theory more generally, to different nonlinear functions and combinations,
are straightforward and may preserve the most interesting and desirable characteristics while
leading to more viable predictions experimentally.
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A Covariant equations of motion

The scalar field equation is given by

c1�φ+ c2∇α [fχ∇αφ]− 2cGG
αβ∇α [fχ∇βφ] = 0 . (A.1)

The χ field is given by

χ = −c2
2
∇αφ∇αφ+ cGG

αβ∇αφ∇βφ . (A.2)

The Einstein equations are given by

Gµν = 8πG
[

T (mat)
µν + T (rad)

µν + T (φ)
µν

]

, (A.3)
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where

T (φ)
µν = −cGfχ

[

gµν�φ�φ− 2�φ∇µ∇νφ+ 2∇µ∇λφ∇ν∇λφ− gµν∇λ∇αφ∇λ∇αφ
]

+cGfχ

[

Rµν∇αφ∇αφ+R∇µφ∇νφ− 1

2
gµνR∇αφ∇αφ

]

−2cGfχ

[

Rλν∇λφ∇µφ+Rλµ∇λφ∇νφ− gµνRρλ∇ρφ∇λφ+Rσµβν∇βφ∇σφ
]

+2cG

[

(∇α∇(µfχ)∇ν)φ∇αφ− 1

2
(�fχ)∇µφ∇νφ− 1

2
gµν(∇α∇βfχ)∇αφ∇βφ

− 1

2
(∇µ∇νfχ)∇αφ∇αφ+

1

2
gµν(�fχ)∇αφ∇αφ

]

+2cG

[

∇(µfχ∇ν)φ�φ−∇(µfχ∇ν)∇αφ∇αφ−∇αfχ∇α∇(µφ∇ν)φ− gµν∇αfχ∇αφ�φ

+ gµν∇αfχ∇βφ∇α∇βφ+∇αfχ∇αφ∇µ∇νφ

]

+ gµνf − gµνfχχ

+c1

[

∇µφ∇νφ− 1

2
gµν∇αφ∇αφ

]

+ c2fχ

[

∇µφ∇νφ− 1

2
gµν∇αφ∇αφ

]

, (A.4)

and parentheses in a subscript denote symmetrization of the indices.

B Perturbation equations in detail

B.1 The scalar perturbations

Let us write down the perturbed metric in the following form

ds2 = −(1 + 2ψ)dt2 + 2∂iβdt dx
i + a2 (1− 2Φ)dx2 . (B.1)

Expanding the scalar field as φ = φ(t) + δφ, and considering a barotropic perfect fluid with
equation of state P = wρ (for an action approach of perfect fluids see e.g. [24]), then we find
that in Fourier space, the action at second order in the perturbation fields can be written as

S(2) =

∫

dtd3x a3
{

−
(

W1ψ +W2
˙δφ−W3Φ̇−W4δφ− ρ (1 + w)V +W5δχ

) ∂2β

a2

+
1

2

(

ρ (1 + w)

w
−W6

)

ψ2

−



W7
˙δφ+W8Φ̇ +

ρ (1 + w)
(

V̇ − 3wHV
)

w
−W9

∂2δφ

a2
+W10

∂2Φ

a2
+W11δχ



ψ

+
1

2
W12

˙δφ
2
+

1

2
W13Φ̇

2 − 1

2
W14Φ̇ ˙δφ− 1

2
W15

(∂δφ)2

a2
− 1

2
W16

(∂Φ)2

a2

+
1

2

ρ (1 + w) V̇ 2

w
− 1

2

ρ (1 + w) k2V 2

a2
− 1

2
fχχδχ

2 +

(

W17
˙δφ−W18Φ̇ +W19

∂2Φ

a2

)

δχ

−
(

−W20
∂2δφ

a2
− 9 ρwH (1 + w)V + 3 (1 + w) ρ V̇ +W21

˙δφ

)

Φ

}

, (B.2)

where the matter field V is the scalar component of δT 0
i = −ρ(1+w)∂iV , so that the matter

density contrast δm = δρ/ρ can be written as wδm/(1 + w) = V̇ − 3wHV − ψ.
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Notice we still have one gauge degree of freedom to choose. For example, we can
consistently set β = 0 (Newtonian gauge), or δφ = 0 (uniform field gauge), or Φ = 0 (flat
gauge).

The coefficients of the previous action are the following:

W1 = 2HM2
pl − 6H

cG
M2

fχφ̇
2 , (B.3)

W2 = W9 = 4
cG
M2

fχHφ̇ (B.4)

W3 = W10 = −2M2
pl + 2

cG
M2

fχφ̇
2 , (B.5)

W4 = φ̇c2 fχ + φ̇c1 + 6 φ̇
cG
M2

H2fχ , (B.6)

W5 = 2
cG
M2

fχχHφ̇
2 , (B.7)

W6 = −c1φ̇2 + 6M2
plH

2 − 36
cG
M2

fχH
2φ̇2 − c2fχφ̇

2 , (B.8)

W7 = 18 φ̇
cG
M2

H2fχ + φ̇c1 + φ̇c2fχ , (B.9)

W8 = 6HM2
pl − 18H

cG
M2

fχφ̇
2 , (B.10)

W11 = fχχφ̇
2c2 + 12 fχχφ1

2 cG
M2

H2 , (B.11)

W12 = 6
cG
M2

fχH
2 + c1 + c2fχ , (B.12)

W13 = −6M2
pl + 6

cG
M2

fχφ̇
2 , (B.13)

W14 = 24
cG
M2

fχHφ̇ , (B.14)

W15 = c2fχ + 4
cG
M2

fχḢ + c1 + 6 cGfχH
2 , (B.15)

W16 = −2
cG
M2

fχφ̇
2 − 2M2

pl , (B.16)

W17 = φ̇fχχc2 + 6 φ̇fχχ
cG
M2

H2 , (B.17)

W18 = 6
cG
M2

fχχHφ̇
2 , (B.18)

W19 = 2 fχχφ̇
2 cG
M2

, (B.19)

W20 =
[

−4
cG
M2

fχ − 4
cG
M2

φ̇2
(

6 cGH
2 + c2

)

fχχ

]

φ̈− 4 cGfχHφ̇− 24
cG
M2

2
fχχφ̇

3HḢ ,

(B.20)

W21 = 3 φ̇
(

6
cG
M2

fχH
2 + c1 + c2fχ

)

. (B.21)

The equations of motion for the perturbations in any gauge can be derived by using standard
variational calculus.

B.2 Tensor perturbations

By introducing the two polarizations of transverse and traceless perturbations for the metric,
we can write down the action expanded at second order as

S
(2)
GW =

∑

λ=+,×

∫

dtd3x a3
[

1

8

(

M2
pl −

cG
M2

fχφ̇
2
)

ḣ2λ −
1

8

(

M2
pl +

cG
M2

fχφ̇
2
) (∂hλ)

2

a2

]

. (B.22)
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This gives the no-ghost condition 1− cGfχH̄
2x2 > 0, and speed of propagation equal to

c2GW =
1 + cGfχH̄

2x2

1− cGfχH̄2x2
. (B.23)

Note that due to the coupling to the Einstein tensor this is not equal to the speed of light.
A stable evolution for the background requires that c2GW ≥ 0. It has been argued in the
literature [25] that Cherenkov radiation, arising due to the propagation speed of gravitational
waves differing from the speed of light, will place strong constraints on general second-order
scalar-tensor models.
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