
 A two measure model of dark energy and dark matter

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JCAP11(2012)044

(http://iopscience.iop.org/1475-7516/2012/11/044)

Download details:

IP Address: 110.164.90.86

The article was downloaded on 23/11/2012 at 03:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1475-7516/2012/11
http://iopscience.iop.org/1475-7516
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
C
A
P
1
1
(
2
0
1
2
)
0
4
4

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

A two measure model of dark energy

and dark matter

Eduardo Guendelman,a,b Douglas Singletonb,c and
N. Yongramb,d,e,1,2

aDepartment of Physics, Ben-Gurion University,
Beer-Sheva, Israel

bPhysics Department, California State University Fresno,
Fresno, CA 93740, U.S.A.

cInstitut für Mathematik, Universität Potsdam,
Am Neuen Palais 10, D-14469 Potsdam, Germany

dThEP’s CRL, NEP, The Institute of Fundamental Study (IF), Naresuan University,
Phitsanulok 65000, Thailand

eThailand Center of Excellence in Physics, CHE, Ministry of Education,
Bangkok 10400, Thailand

E-mail: guendel@bgu.ac.il, dougs@csufresno.edu, nattapongy@nu.ac.th

Received August 28, 2012
Revised November 5, 2012
Accepted November 6, 2012
Published November 22, 2012

Abstract. In this work we construct a unified model of dark energy and dark matter. This is
done with the following three elements: a gravitating scalar field, φ with a non-conventional
kinetic term, as in the string theory tachyon; an arbitrary potential, V (φ); two measures
— a metric measure (

√−g) and a non-metric measure (Φ). The model has two interesting
features: (i) For potentials which are unstable and would give rise to tachyonic scalar field,
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that results from this model is fairly insensitive to the exact form of the scalar field potential.
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1 Introduction

Currently, observations point to the Universe being dominated by two very different types
of non-luminous or “dark” fluids — dark energy, which leads to gravitational repulsion, and
dark matter, which is gravitational attractive. Dark energy was observationally discovered
rather recently through the observation of type Ia supernova [1, 2]. Dark matter was first
postulated in the 1930s, separately by J. Oort and F. Zwicky, due to the anomaly of the
orbital velocity of some stars in the Milky Way galaxy and the orbital velocity of galaxies in
clusters. A recent review of dark matter is given in [3], reviews of dark energy can be found
in [4] and a review of both dark matter and dark energy can be found in [5].

In this paper we study a simple model which has two different types of measures —
a metric and non-metric measure. The introduction of the non-metric measure opens the
possibility, in some cases, to reverse the expected stability of the scalar field. For a scalar
potential, V (φ), which is naively stable, our model can lead to an unstable scalar field, while
for a potential, V (φ), which is naively unstable our model can lead to a stable scalar field.
Thus our model might be able to stabilize systems which are unstable due to the presence
of tachyons. String theory contains tachyons [6] which have been studied in the context of
cosmology [7–9]. Generally, the string theory tachyon can be problematic for cosmological
models since it can lead to instabilities.

Another feature of our model is that the scalar field can act both as dark energy and dark
matter. This dual behavior of the scalar field is largely independent of form of the potential,
V (φ). This combined treatment of dark energy and dark matter is similar to Chaplygin
gas models [10]. Reference [11] gave a unification of dark matter and dark energy via a
Chaplygin gas which is close to the unified treatment that we present below in terms of two
measure theory, but in our case the effect of the modified measure produces two important
new effects: 1) the appearance of an integration constant that makes the observed vacuum
energy density totally decoupled from the parameters of the Lagrangian and 2) the resulting
DE-DM unified theory resembles much more the traditional Lambda - cold dark matter
model, not only for the homogeneous solutions, but also for the perturbations and therefore
the corresponding structure formation picture. Finally, since in this model the dark energy
comes from a dynamical scalar field this leads to dynamical dark energy [12] as opposed to
the simple case where dark energy is associated with a non-dynamical cosmological constant.
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The starting point is to introduce a new measure, Φ, which is independent of the metric,
gµν . This additional measure can be constructed from four scalar fields (ϕi where i = 1, 2, 3, 4)
for example

Φ = εµναβεijkl∂µϕ
i∂νϕ

j∂αϕ
k∂βϕ

l. (1.1)

In such two measures theories [13], the general action can be written as

S =

∫

L1
√−g d4x+

∫

L2Φd
4x (1.2)

where L1 and L2 are ϕi-independent. A similar type of non-metric structure is used in [14]
to study supersymmetric models.

The introduction of Φ in conjunction with
√−g =

√

− det(gµν) as measures of in-
tegration provides many uses — new approaches to scale invariance and its breaking [15],
brane-world scenarios [16], and non-singular cosmologies [17].

A general feature of these two measure theories is that the equation of motion of the ϕi

fields, given by
Aµ

i ∂µL2 = 0 , (1.3)

where Aµ
i = εµναβεijkl∂νϕ

j∂αϕ
k∂βϕ

l, leads to

L2 = constant (1.4)

It is also interesting to note that the two measures theory action (1.2) is invariant (up to the
integral of a total derivative) under the infinite dimensional group of transformations [13] (f i

being arbitrary functions),
ϕi → ϕi + f i(L2) (1.5)

as long as L1 and L2 are ϕi independent. One can think of this symmetry as the reason
the action of the two measures theories may be preserved say under quantum corrections.
The two measure theories have many points of similarity with “Lagrange Multiplier Gravity
(LMG)” [18, 19]. In LMG there is a Lagrange multiplier field which enforces the condition
that a certain function is zero. In the two measure theory this is equivalent to the constraint
given in (1.4). The two measure model presented here, as opposed to the LMG models
of [18, 19] provide us with an arbitrary constant of integration, which in the model to be
discussed here will be identified as the effective vacuum energy. This “floating vacuum
energy” is totally decoupled from the original parameters of the action. The two measures
theories could also provide a theoretical foundation for the more phenomenological approach
of the LMG model, since for example the symmetries like (1.5) of the two measure theory
can justify the analogous structure in the LMG model, if one thinks of the two measures
theory as the more basic underlying theory.

As a final comment we note that the introduction of constraints like that in (1.4) can
cause Dirac fields to contribute to dark energy [20] or scalar fields to behave like dust [18].

2 Gravity plus scalar field and non-metric measure

The system we consider is gravity with a scalar field having a non-standard kinetic term and
a non-metric measure like the second term in (1.2). The explicit action for the model is

S = Sg + Sm =

∫

R

16πG

√−g d4x+

∫

K(φ, ∂µφ)√−g Φd4x+

∫

K(φ, ∂µφ) d
4x , (2.1)
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where in the second term, Φ, is from (1.1) and the DBI-like kinetic term is given by

K(φ, ∂µφ) = V (φ)
√

− det(gµν + ∂µφ∂νφ) = V (φ)
√−g

√

1 + gµν∂µφ∂νφ. (2.2)

The DBI-like scalar field, φ, should not be confused with the auxiliary fields, ϕi, of (1.1)
which were used to show how one might define the second, non-metric measure, Φ. Note
that in (2.1) we have split the action differently than in (1.2), where the split was between
the metric measure and non-metric measure. In (2.1) the split is between the gravitational
part and matter part. The first term in (2.1) above is the standard 4D gravitational action
and is denoted by Sg. The second plus third term are grouped together in Sm as the matter
part of the total action. The second term is the non-metric measure term — it is the explicit
realization of the second term in (1.2). The last term is the non-standard kinetic scalar field
with a scalar self-interaction potential V (φ). Actions having the form of this third term
from (2.1) were used in [6, 21] to study tachyons in string theory. Also, actions similar to
the third term in (2.1) were investigated in k-essence models [22] which sought to present a
unified picture of dark matter and dark energy analogous to what is suggested here in terms
of two measure theory. Note that the second term in (2.1) is V (φ) times the ratio of the
square root of the determinants of the two natural “metrics” — gµν and gµν + ∂µφ∂νφ —
that one can define for this system. One can see that the metric gµν +∂µφ∂νφ can be related
to 5D gravity. Defining x5 = φ(x) we find that dx5 = ∂µφdx

µ which then gives

ds2 = gµνdx
µdxν + dx5dx5 → gµνdx

µdxν + (∂µφdx
µ)(∂νφdx

ν) , (2.3)

which finally gives the metric gµν + ∂µφ∂νφ.
In the second term of the action (2.1) we have coupled the metric independent measure,

Φ, to the ratio of the determinants of the two natural metrics. This kind of coupling between
Φ and the two “metrics” was used in [16] to study brane world models. The DBI-like scalar
field φ is taken to be only a function of the cosmic time t. We will show that there is a
constraint on the action (2.1) that is a specific realization of the general constraint given
in (1.4). This constraint has the effect of stabilizing unstable scalar fields like the tachyon
found in string theory. In addition we will find that the action in (2.1) leads to both dark
energy and dark matter effects, thus giving a unified model of dark energy and dark matter.
There are other unified models, such as [23], which uses graded Lie algebras to give a unified
model of dark energy and dark matter. In the present proposal the unification of these
two “dark” cosmological elements comes from using two measures — one geometric and one
non-geometric.

The action in (2.1) can be seen to fit the two measure structure in (1.2) if we take
L1 = R

16πG + K√−g
and L2 = K√−g

. Using (1.3) and (1.4) this then implies that K√−g
is a

constant. This is the constraint. Using the assumption that φ is only a function of t and
that g0i = 0 we find that the constraint from (1.4) gives

K√−g = V (φ)

√

1 +
φ̇2

g00
=M (2.4)

where M is a constant. This last equation can be written in the form of an energy equation

− φ̇2

g00
+

M2

V 2(φ)
= 1 . (2.5)
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This dynamical equation for φ is of the form of an energy equation KE + PE = constant.
We are using a signature where g00 < 0 so that the first term in (2.5) is a standard, positive
kinetic term. Because of the positivity of the first term on the left hand side of (2.5) one

finds that M2

V 2(φ)
has the bound

M2

V 2(φ)
≤ 1 =⇒ |M | ≤ |V (φ)| (2.6)

The equality holds when φ̇ = 0.

From (2.5) one can define an effective potential Veff = M2

V 2(φ)
which has the inverse

behavior of the original potential V (φ). This feature, that the effective potential is the
inverse, squaredg of the original potential opens up the possibility to change the stability
of the system. For example, in reference [24] the potential V (φ) ∝ 1

cosh(φ) is studied and is

found to lead to a tachyonic scalar field and instability. From (2.5) this form of the potential
leads to an effective potential of the form Veff(φ) ∝ [cosh(φ)]2 which is naively stable and for
which one would not expect the scalar field to be tachyonic.

Now varying the action in (2.1) with respect to the inverse metric gµν gives the field
equations (using either first order or second order formalism)

− 1

8πG

(

Rµν −
1

2
gµνR

)

+ Tµν = 0 . (2.7)

Rµν is the Ricci tensor, R = gµνRµν is the Ricci scalar, and Tµν is the total energy-momentum
tensor. Below we will split the energy-momentum tensor into a term associated with the new
measure Φ and a term associated with the scalar field, φ i.e. Tµν = TΦ

µν + T φ
µν .

The above considerations will be applied in the framework of Friedmann-Robertson-
Walker (FRW) cosmology with the metric taken to be of the form

ds2 = g00dt
2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

. (2.8)

In the above equation k = −1, 0, 1, gµν has the signature diag(−,+,+,+), a(t) is the scale
factor as a function of cosmic time t, and we have taken the time coordinate t such that
the lapse function, g00 is not simply g00 = −1, but may be some other negative constant
or may even be a function of t i.e. g00(t). When g00 is some arbitrary constant different
from −1 this just represents a simple re-scaling of the cosmic time. We have kept the
explicit g00 dependence in order to calculate correctly the contribution of the Φ term to the
energy density.

Now we write down the total energy-momentum tensor from (2.3) using the definition
Tµν = − 2√−g

δSm

δgµν
(Sm is the second and third terms of the action (2.1) — the matter part of

the action)

Tµν = −
(

1 +
Φ√−g

)

V (φ)
√

1 + gµν∂µφ∂νφ
∂µφ∂νφ+ gµνV (φ)

√

1 + gµν∂µφ∂νφ . (2.9)
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We can break up (2.9) in terms of the separate energy density and pressures components as

T00 = −g00
(

1 +
Φ√−g

)

V (φ)
√

1 + φ̇2

g00

φ̇2

g00
+ g00V (φ)

√

1 +
φ̇2

g00
= g00ρ (2.10)

Tij = gijV (φ)

√

1 +
φ̇2

g00
= −gijp , (2.11)

where we have taken into account that φ(t) only depends on t so that the partial derivatives
of φ reduce simply to time derivatives. From (2.10), (2.11) the total energy density and the
total pressure are given by

ρtotal =
ΦV 2(φ)

M
√−g

(

1− M2

V 2(φ)

)

+
V 2(φ)

M
= ρΦ + ρφ (2.12)

ptotal = −M = pφ , (2.13)

where we used (2.5) in going from (2.10), (2.11) to (2.12), (2.13) and we have split the energy
density and pressure into separate contributions coming from Φ and φ. The Φ term does not
contribute to the pressure i.e. pΦ = 0. The φ terms contributes both to the energy density
and the pressure.

2.1 Equations of motion and solution

In order to find an explicit expression for ρtotal in (2.12) we need to solve for Φ. This is
done using the gauge g00 = −1 and the Euler-Lagrange equations coming from the action

S =
∫

(

R

16πG

√−g + Lm

)

d4x where

Lm =
K√−gΦ+ V (φ)

√−g
√

1− φ̇2 = V (φ)Φ

√

1− φ̇2 + V (φ)
√−g

√

1− φ̇2 . (2.14)

The Euler-Lagrange equations for this Lagrangian density lead to the equation of motion

− ∂

∂t





V (φ)Φφ̇
√

1− φ̇2
+
V (φ)

√−gφ̇
√

1− φ̇2



 =
∂V

∂φ

(

Φ

√

1− φ̇2 +
√−g

√

1− φ̇2
)

. (2.15)

It is possible to find a simple closed form expression for Φ for fairly general V (φ). We first
note that one can solve (2.15) for the trivial case when V (φ) = const. Second it is also
possible to solve (2.15) for general varying V (φ). First we take the field φ to satisfy φ̇ 6= 0
and φ monotonic, as we discuss later, these restrictions can be dropped. Using the chain rule
and taking into account the assumed conditions on φ we can write

d

dt
= φ̇

d

dφ
. (2.16)

Using (2.16) allows us to change the derivative on the left hand side of (2.15) from a derivative

of t to a derivative of φ. Finally using (2.4) and (2.5) to write

√

1− φ̇2 = M/V and

– 5 –
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φ̇ =
√

1−M2/V 2 allows us to re-write (2.15) as

d

dφ

(

ψV 2

M

√

1− M2

V 2

)

= −
(

dV

dφ

)









ψM

V

√

1− M2

V 2









. (2.17)

In the above we have defined ψ = Φ+
√−g.

First we consider the simple case when V (φ) = const. so that the right hand side
of (2.17) vanishes. In this case one immediately sees that ψ = const. which then leads to

Φ = −√−g + const. , (2.18)

so that up to a constant the non-metric measure, Φ, is the same as the metric measure,√−g. Without going into the full details, we mention that for this simple case, when one
inserts (2.18) into the equation for the energy momentum tensor (2.12), (2.13), one finds that
this leads to a “dust” contribution plus a vacuum energy contribution equal to M .

We now treat in detail the less trivial and more interesting case when V (φ) varies.
From (2.17) we get

∫

dψ

ψ
= −

∫

2 dV

V

(

1− M2

V 2

) (2.19)

Carrying out the integration in (2.19) leads to

ψ =
C(r, θ)

(V 2 −M2)
, (2.20)

where C(r, θ) is an integration “constant” which depends on r and θ. By substituting the
definition ψ = Φ+

√−g in (2.20), we obtain an expression for Φ

Φ =
C(r, θ)

(V 2 −M2)
−√−g . (2.21)

We will take the time-independent integration function to be C(r, θ) = Dr2 sin θ/
√
1− kr2

with D a constant. The integration function C(r, θ) is chosen in this way so as to match
and therefore cancel out the r and θ dependence of

√−g in (2.12). This leads to an energy
density which is independent of the spatial coordinates r, θ, φ as required by the homogeneity
of FRW space-time.

Finally substituting Φ from (2.21) into the expression of the total energy density
from (2.12) gives

ρtotal =M +
D

Ma3
. (2.22)

The first term is a constant term (i.e. a cosmological constant-like term) while the second
term has the typical a−3 behavior of dust. The pressure for this system is negative and is
given by (2.13) as ptotal = −M .

We can use this to obtain the equation of state parameter for the system

w =
ptotal
ρtotal

=
−1

1 + D
M2a3

, (2.23)
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If D > 0 one can see that −1 < w < 0. At early times (i.e. a → 0 the denominator
in (2.23) becomes large and w → 0 from below. At late times (i.e. a→ ∞) the denominator
approaches −1 and one effectively has a cosmological constant. In this guise our toy model
still faces the coincidence problem — why we happen to live in an era where the ordinary
matter energy density (i.e. dark matter plus ordinary baryonic matter represented by the
second term in (2.22) above) is the same order of magnitude as the “cosmological constant”
energy density (represented by the first term in (2.22)).

Since we have not specified the scalar potential, V (φ) our results in (2.22) and (2.23)
will occur for a wide range of potentials. Note the constant energy density term from ρtotal
in (2.22) is not V (φ0) (where φ0 is the equilibrium value of φ as determined by (2.5)) as one
would naively expect, but rather is given by M . This “transformation” of the naive vacuum
energy from V (φ0) to M can be traced to the use of the second non-metric measure Φ and
the constraint given by (1.3), (1.4) (generically) and (2.4) (specifically for our model). Thus
this model very robustly leads to dark energy and dust for very general scalar field potentials.
Finally, we discuss now, and in the next section, how the conditions φ̇ 6= 0 and φ monotonic
are not really necessary. In fact for an oscillating solution for example, these conditions are
satisfied piecewise, and for each interval where these conditions hold the derivations above
hold. Furthermore the isolated points where φ̇ = 0 constitute a set of measure zero and do
not contribute to the integration that allowed us to solve for the measure Φ. In the next
section we will see how the covariant energy momentum conservation condition gives the
geodesic behavior of inhomogeneous perturbations and also gives us another way to look at
the equation for the measure Φ, where it will be also evident that the isolated points φ̇ = 0
do not constitute a problem.

3 Geodesic behavior for inhomogeneous perturbations

Before one can claim that the two measure model with scalar field, φ, as described above
acts as dark matter dust, as implied by the second term in (2.22) one must show that the
inhomogeneous perturbations do in fact propagate like dust i.e. along time-like geodesics. To
show this we begin by considering the general energy momentum tensor from (2.9) without
the assumptions of homogeneity or isotropy of the space time which led to the result in (2.22).
If the perturbations from the homogeneous case studied in the last section are not too big,
we can keep the gradients of the scalar field as time-like vectors — that is we still satisfy
∂αφ∂

αφ < 0. Then we can express the energy momentum in a “fluid form” by defining the
four velocity of the fluid as

uµ =
∂µφ√

−∂αφ∂αφ
. (3.1)

This four velocity of the fluid is normalized according to

uνu
ν = −1 (3.2)

The energy momentum tensor from (2.9) now takes the form

Tµν = ρduµuν +Mgµν , (3.3)

where we have used the constraint from (2.4) to write out the gµν part of Tµν . The energy
density, ρd, comes from the derivative part of the general energy momentum tensor in (2.9)
and is defined as

ρd =

(

1 +
Φ√−g

)

(∂αφ∂
αφ)V (φ)

√

1 + gµν∂µφ∂νφ
(3.4)

– 7 –
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We can consider the covariant conservation of the energy momentum tensor from (3.3).
Since the covariant derivatives of the metric are zero, the M term is separately conserved.
From the covariant conservation of the first term, we obtain then

∇µ(ρdu
µuν) = ∇µ(ρdu

µ)uν + ρdu
µ∇µu

ν = 0 (3.5)

We can see now that the two terms in the above equation must vanish separately. This
is because the vectors uν and uµ∇µu

ν are orthogonal and therefore linearly independent.
The orthogonality can be proved by just applying the operator uµ∇µ to both sides of the
normalization condition (3.2). In fact, according to (3.2) uν is a time-like vector and the
vector orthogonal to it uµ∇µu

ν is space-like, as is most easily seen in the frame where
uν = (1, 0, 0, 0). Therefore, in order to satisfy (3.5) one must set to zero both terms separately.
Therefore we get the two following results that allow us to make a connection to a “particle”
interpretation of the model:

∇µ(ρdu
µ) = 0 (3.6)

which represents a sort of “particle number” conservation, and as long as ρd 6= 0 (i.e. as long
as there are particles at that point in space-time) we obtain,

uµ∇µu
ν = 0 (3.7)

which is indeed the geodesic equation for the perturbations or equivalently the geodesic
equation for these “particles”.

This is in perfect correspondence with what was obtained before for the homogeneous
and isotropic cosmology, where we worked directly with the scalar field equation of motion.
Notice that the analysis of this section holds if V (φ) is a trivial, constant potential or a
non-trivial function.

It is particularly instructive to consider (3.6) in the case of an homogeneous and isotropic
cosmology, in the framework of Friedmann-Robertson-Walker (FRW) cosmology with the
metric taken to be of the form (2.8). In this case, taking also g00 = −1 and specializing to
the case where the scalar field depends only on time. In this case the four velocity (3.1) gives
uν = (1, 0, 0, 0) for any homogeneous scalar field φ with non zero time derivative. But if we
take the reasonable prescription that uν = (1, 0, 0, 0) also by continuity, for those isolated
points where the scalar field φ has zero time derivative, then all ambiguities get resolved.
Indeed, in this homogeneous and isotropic cosmological situation, equation (3.6) is solved by

ρd = constant/a3 (3.8)

Recalling the definition for ρd, this means indeed that (3.8) represents the same solution for
Φ as that found in the previous section (appropriately identifying the constant in (3.8) with
constants defined before) and we also see that when specialized to the homogeneous and
isotropic case produces indeed the required form for C(r, θ). So we see that the scalar field
equation as studied in the previous section is associated with a conservation law.

4 Discussion and conclusion

In this work we have studied a simple model with a metric measure,
√−g, and a non-metric

measure, Φ. The model also contained a scalar field with a non-standard, DBI-like Lagrangian
density as given by the third term in (2.1). This scalar field Lagrangian gave a tachyonic

– 8 –
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scalar field when the potential satisfied certain conditions. The dynamic equation for the
scalar field given in (2.5) has an effective potential ∝ [V (φ)]−2 thus some potentials which
would naively lead to tachyonic behavior can result in stable, non-tachyonic behavior for the
two measure model. For example, the potential [cosh(φ)]−1 which was considered in [24], led
to a tachyonic scalar field. For the two measure model discussed above this potential would
become [cosh(φ)]2 and lead to a regular, stable scalar field.

There are two other noteworthy features of the two measure model detailed above.
First, for fairly generic potentials, V (φ), the total energy density (2.22) has a constant term,
M , plus an ordinary matter term, D

Ma3
. The pressure (2.23) is negative −M . This leads

to an equation of state w = p
ρ
which is negative at early times (i.e. when a(t) → 0) and

approaches w = −1 at late times (i.e. for a(t) → ∞). Second, the scale of the energy density
and pressure is determined not by V (φ), but M . M is a constant, but from its definition

M = V (φ)

√

1− φ̇2 we see that 0 < M < V (φ), so that the vacuum energy density, M , is
always lower than V (φ), and can be as small as we want. Furthermore, the limit M → 0
has clear physical meaning, it is achieved when the scalar field φ approaches its maximum
speed (φ̇2 = 1).

The two measure model still does not address the “cosmological coincidence problem”
— i.e. why the dark energy density and ordinary matter density (including dark matter)
are of the same order of magnitude at the present time. One way to have the two measure
model address this issue is to make the constant of integration M dynamical. This can be
done by considering a 2-brane creation as follows: define Φ in terms of a rank-three tensor
as Φ = εµναβ∂µAναβ . The equation of motion with respect to Aναβ still gives that K√−g

is a

constant. We now couple this Aναβ to a 2-brane

λ

∫

Aναβdx
ν ∧ dxα ∧ dxβ . (4.1)

We assume that on one side of the brane we have K√−g
= C1 and on the other side K√−g

= C2,

where C2 −C1 = λ. As a result, M could be made dynamical if membrane creation is taken
into account. The same thing can be done with a 4-scalar field with Aναβ being a composite
of the auxiliary scalars, ϕi, defined as

Aναβ = εijklϕ
i∂νϕ

j∂αϕ
k∂βϕ

l. (4.2)

A 2-brane creation process to address the cosmological constant problem was suggested
in [25]. In this work, at late times, a small vacuum energy density was achieved, but with no
matter. In our model above we notice that by lowering the effective vacuum energy density,
which is proportional to M , we also raise the amount of effective dark matter, which is pro-
portional to 1

M
. Thus lowering of the cosmological constant should not result in an empty

Universe in our case. Instead the process of brane creation sketched above would drive the
Universe to a balance between dark energy and dark matter.

Another possible approach is that developed in the follow-up paper [26], where an ad-
ditional scalar field was introduced that could produce energy-momentum exchange between
the vacuum and dust sector.

One should also look at the theoretical justifications for the Φ-term in (2.1). In this
respect it is interesting to note that Φ appears naturally from the Polyakov action of a
3-brane, with ϕa being its coordinates, moving in a 4-D space [27, 28].
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