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Abstract. In the Horndeski’s most general scalar-tensor theories, we derive the three-point
correlation function of scalar non-Gaussianities generated during single-field inflation in the
presence of slow-variation corrections to the leading-order term. Unlike previous works, the
resulting bispectrum is valid for any shape of non-Gaussianities. In the squeezed limit, for
example, this gives rise to the same consistency relation as that derived by Maldacena in
standard single-field slow-roll inflation. We estimate the shape close to the squeezed one at
which the effect of the term inversely proportional to the scalar propagation speed squared
begins to contribute to the bispectrum. We also show that the leading-order bispectrum
can be expressed by the linear combination of two convenient bases whose shapes are highly
correlated with equilateral and orthogonal types respectively. We present concrete models in
which the orthogonal and enfolded shapes can dominate over the equilateral one.
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1 Introduction

The potential presence of primordial non-Gaussianities in the CMB temperature anisotropies
can be a powerful probe for the physics in the early Universe — especially for inflation [1].
The inflationary paradigm generally predicts nearly scale-invariant density perturbations [2]
with a suppressed tensor-to-scalar ratio, whose prediction is consistent with the CMB power
spectrum measured by COBE [3] and WMAP [4, 5]. The detection of scalar non-Gaussianities
not only breaks the degeneracy among many inflationary models, but it also offers the possi-
bility to discriminate between the inflationary paradigm and other alternative scenarios (such
as curvaton [6]) [7]–[34].

There are several different shapes of non-Gaussianities depending on the wave numbers
k1, k2, and k3 satisfying the condition k1 + k2 + k3 = 0 [35]–[45]. The simplest one is
the so-called local shape, which has a peak in the squeezed limit (i.e., the limit where the
modulus of the momenta approaches k3 → 0 and k1 ' k2). The second shape corresponds
to the equilateral configuration with a peak at k1 = k2 = k3. A factorizable shape whose
scalar product with the equilateral template vanishes is called the orthogonal one. There is
another shape dubbed the enfolded one, which is a linear combination of the equilateral and
orthogonal templates.

From the bispectrum AR of the three-point correlation function of curvature perturba-
tions R, the non-linear parameter characterizing the strength of non-Gaussianities is defined
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by fNL = (10/3)AR/
∑3

i=1 k
3
i . For purely adiabatic Gaussian perturbations we have that

fNL = 0, but the presence of non-Gaussian perturbations leads to the deviation from fNL = 0.
The WMAP 9 year data provide the following bounds on the non-linear parameters of local,
equilateral, and orthogonal non-Gaussianities, respectively [46]:

f localNL = 37.2± 19.9 (68 % CL) , f localNL = 37± 40 (95 % CL) , (1.1)

f equilNL = 51± 136 (68 % CL) , f equilNL = 51± 272 (95 % CL) , (1.2)

forthoNL = −245± 100 (68 % CL) , forthoNL = −245± 200 (95 % CL) . (1.3)

Since the non-linear parameter of the enfolded shape is given by f enfoldNL = (f equilNL −forthoNL )/2 [44,
45], we obtain the following bounds from eqs. (1.2) and (1.3):

f enfoldNL = 148± 118 (68 % CL) , f enfoldNL = 148± 236 (95 % CL) . (1.4)

For the local, orthogonal, and enfolded shapes the model with purely Gaussian perturbations
(fNL = 0) is outside the 68 % observational contour, but, apart from the orthogonal case, it
is still consistent with the WMAP constraints at 95 % CL.

In standard single-field inflation based on a canonical scalar field, Maldacena [12] showed
that the non-linear parameter in the squeezed limit is given by f localNL = (5/12)(1−nR), where
nR is the scalar spectral index. Creminelli and Zaldarriaga [47] pointed out that the same
non-Gaussianity consistency relation holds for any single-field model under the condition that
only one mode of curvature perturbations survives after the Hubble radius crossing while the
other one decays1 (see refs. [50–53] for related works).

In the context of single-field k-inflation [54], the bispectrum of curvature perturbations
was first derived by Seery and Lidsey in 2005 [18]. Since the scalar propagation speed
squared c2s can be much smaller than 1 [55], it is possible to realize the large equilateral

non-linear parameter |f equilNL | ∼ 1/c2s � 1. If we naively take the squeezed limit for the
leading-order bispectrum derived in refs. [18, 56], the term proportional to 1/c2s does not
disappear. This comes from the fact that the slow-variation corrections to the bispectrum
need to be taken into account to estimate the local-type non-Gaussianity correctly. In fact,
Chen et al. [56] showed that the Maldacena’s consistency relation is recovered in the squeezed
limit by carefully computing all the possible slow-variation corrections to the leading-order
bispectrum. Thus the slow-variation single-field k-inflation models with c2s � 1 lead to small
local non-Gaussianities, even though the equilateral non-linear parameter can be large.

In the Horndeski’s most general scalar-tensor theories with second-order equations of
motion [57–60], the leading-order three-point correlation function of curvature perturba-
tions was derived on the quasi de Sitter background [61, 62] (see refs. [63–65] for the scalar
non-Gaussianities in related Galileon models and refs. [66] for the bispectrum of tensor per-
turbations in the Horndeski’s theories). Although the result is valid for the estimation of the
equilateral non-linear parameter, the bispectrum is not general enough to be used for any
shape of non-Gaussianities. In this paper we take into account all the possible slow-variation
corrections to the leading-order bispectrum in the Horndeski’s theories.2 Not only we repro-

1If the decaying mode is non-negligible relative to the growing mode, the Maldacena’s consistency relation
can be violated [48, 49].

2In the effective field theory of inflation (which allows the equations of motion higher than second order),
a similar approach was taken by Cheung et al. [50] to show that the Maldacena’s consistency relation holds
in the squeezed limit. While the authors in this paper mainly focused on the local shape, we derive the full
bispectrum in the Horndeski’s theory which can be used for any shape of non-Gaussianities.
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duce the Maldacena’s consistency relation in the squeezed limit, but we identify the shape
close to the squeezed one at which the term 1/c2s begins to contribute to the bispectrum.

Given our general expression of the bispectrum in the most general single-field scalar-
tensor theories, we can evaluate the non-linear parameters of several different shapes to
confront each inflationary model with observations. In particular the result |f localNL | � 1 is
robust for any slow-variation single-field model, so the detection of non-Gaussianities in the
squeezed limit will allow us to falsify the slow-variation single-field scenario. Note that in
realistic observations the shape is not completely squeezed, in which case the bispectrum can
be affected by the appearance of the term 1/c2s mentioned above. Our results are useful to
distinguish such difference accurately.

If c2s � 1, then the non-linear parameters |f equilNL |, |forthoNL |, and |f enfoldNL | can be much
larger than the order of 1. Which shape dominates over the other ones depends on the models
of inflation. In ref. [62] it was shown that the correlation between the equilateral template
and the shapes arising from the Horndeski’s theories is quite high, but linear combinations
of equilateral operators can give rise to a significantly different shape for a wide range of
coefficients [44, 45]. In this regard we anticipate that there may be some models in which
the shape orthogonal to the equilateral template provides an important contribution to the
bispectrum.

In this paper we show that the leading-order three-point correlation function in the
Horndeski’s theories can be expressed by a linear combination of two bases whose shapes are
highly correlated with equilateral and orthogonal shapes respectively. This decomposition
is useful because the contributions from the equilateral and orthogonal shapes can be easily
estimated for concrete models of inflation. We show that in k-inflation with the covariant
Galileon terms there are cases in which the correlations with the orthogonal and enfolded
templates are larger than that with the equilateral one. Thus the shapes of non-Gaussianities
allow us to discriminate such models from observations.

This paper is organized as follows. In section 2 we review the background and linear
perturbation equations in the Horndeski’s theories. In section 3 we derive the three-point
correlation function of curvature perturbations in the presence of slow-variation corrections
to the leading-order bispectrum. In section 4 the non-linear parameter fNL is evaluated
in the squeezed, equilateral, and enfolded limits, respectively. In section 5 we express the
leading-order bispectrum in terms of equilateral and orthogonal bases. In section 6 we show
concrete models of inflation in which the orthogonal and enfolded shapes can dominate over
the equilateral one. Section 7 is devoted to conclusions. In appendix we show the details of
the slow-variation corrections to the bispectrum.

2 Equations of motion for the background and linear perturbations

The action corresponding to the most general scalar-tensor theories is given by [57, 58]

S =

∫
d4x
√
−g
[
M2

pl

2
R+ P (φ,X)−G3(φ,X)�φ+ L4 + L5

]
, (2.1)

where g is the determinant of the metric gµν , Mpl is the reduced Planck mass, R is a Ricci
scalar, and

L4 = G4(φ,X)R+G4,X [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] , (2.2)

L5 = G5(φ,X)Gµν (∇µ∇νφ) (2.3)

−1

6
G5,X [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ) + 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] .
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Here P and Gi’s (i = 3, 4, 5) are functions in terms of φ and X = −∂µφ∂µφ/2 with the
partial derivatives Gi,X ≡ ∂Gi/∂X, and Gµν = Rµν − gµνR/2 is the Einstein tensor (Rµν is
the Ricci tensor).

We consider the following ADM metric [67] with scalar metric perturbations α, ψ, and
R about the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background

ds2 = −[(1 + α)2 − a(t)−2 e−2R (∂ψ)2] dt2 + 2∂iψ dt dx
i + a(t)2e2Rdx2 , (2.4)

where a(t) is the scale factor with cosmic time t. We choose the uniform field gauge δφ = 0,
which fixes the time-component of a gauge-transformation vector ξµ. The spatial part of ξµ

is fixed by gauging away a perturbation E that appears as a form E,ij in the metric (2.4).

The background equations of motion are given by

3M2
plH

2F + P + 6HG4,φφ̇+
(
G3,φ − 12H2G4,X + 9H2G5,φ − P,X

)
φ̇2 (2.5)

+
(
6G4,φX − 3G3,X − 5G5,XH

2
)
Hφ̇3 + 3 (G5,φX − 2G4,XX)H2φ̇4 −H3G5,XXφ̇

5 = 0 ,

(1− 4δG4X − 2δG5X + 2δG5φ)ε =

δPX + 3δG3X − 2δG3φ + 6 δG4X − δG4φ − 6 δG5φ + 3 δG5X + 12 δG4XX + 2 δG5XX

−10 δG4φX + 2 δG4φφ − 8 δG5φX + 2 δG5φφ − δφ(δG3X + 4 δG4X − δG4φ

+8 δG4XX + 3 δG5X − 4 δG5φ + 2 δG5XX − 2δG4φX − 4 δG5φX) , (2.6)

where H = ȧ/a is the Hubble parameter (a dot represents a derivative with respect to t),
F = 1 + 2G4/M

2
pl, and

ε=− Ḣ

H2
, δφ=

φ̈

Hφ̇
, δPX =

P,XX

M2
plH

2F
, δG3X =

G3,X φ̇X

M2
plHF

, δG3φ=
G3,φX

M2
plH

2F
, δG4X =

G4,XX

M2
plF

,

δG4φ=
G4,φφ̇

M2
plHF

, δG4φX =
G4,φX φ̇X

M2
plHF

, δG4φφ=
G4,φφX

M2
plH

2F
, δG4XX =

G4,XXX
2

M2
plF

, δG5φ=
G5,φX

M2
plF

,

δG5X =
G5,XHφ̇X

M2
plF

, δG5XX =
G5,XXHφ̇X

2

M2
plF

, δG5φX =
G5,φXX

2

M2
plF

, δG5φφ=
G5,φφφ̇X

M2
plHF

, (2.7)

whose magnitudes are much smaller than 1 during inflation. The terms δG4φX , δG4φφ, δG5φX ,
δG5φφ as well as δG3φX = G3,φXX

2/(M2
plH

2F ) and δG3φφ = G3,φφφ̇X/(M
2
plH

3F ) are second-
order of ε. From eq. (2.6) it follows that

ε = δPX+3δG3X−2δG3φ+6 δG4X−δG4φ−6 δG5φ+3 δG5X+12 δG4XX+2 δG5XX+O(ε2) . (2.8)

For the quantity δF = Ḟ /(HF ) we have

δF = 2δG4φ +O(ε2) . (2.9)

Using the relations between R, ψ, and α that follows from Hamiltonian and momentum
constraints, the second-order action for perturbations reduces to [60–62, 68]

S2 =

∫
dtd3x a3Q

[
Ṙ2 − c2s

a2
(∂R)2

]
, (2.10)
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where

Q =
w1(4w1w3 + 9w2

2)

3w2
2

, (2.11)

c2s =
3(2w2

1w2H − w2
2w4 + 4w1ẇ1w2 − 2w2

1ẇ2)

w1(4w1w3 + 9w2
2)

, (2.12)

and

w1 = M2
plF − 4XG4,X − 2HXφ̇G5,X + 2XG5,φ , (2.13)

w2 = 2M2
plHF − 2Xφ̇G3,X − 16H(XG4,X +X2G4,XX) + 2φ̇(G4,φ + 2XG4,φX)

− 2H2φ̇(5XG5,X + 2X2G5,XX) + 4HX(3G5,φ + 2XG5,φX) , (2.14)

w3 = (2.15)

−9M2
plH

2F+3(XP,X+2X2P,XX)+18Hφ̇(2XG3,X+X2G3,XX)−6X(G3,φ+XG3,φX)

+18H2(7XG4,X+16X2G4,XX+4X3G4,XXX)−18Hφ̇(G4,φ+5XG4,φX+2X2G4,φXX)

+6H3φ̇(15XG5,X+13X2G5,XX+2X3G,5XXX)−18H2X(6G5,φ+9XG5,φX+2X2G5,φXX),

w4 = M2
plF − 2XG5,φ − 2XG5,X φ̈ . (2.16)

For later convenience we introduce the following parameter

εs ≡
Qc2s
M2

plF
' ε+ δG3X + δG4φ + 8δG4XX + δG5X + 2δG5XX +O(ε2) . (2.17)

At linear level the curvature perturbation obeys the equation of motion

δL2
δR

∣∣∣∣
1

≡ −2

[
d

dt
(a3QṘ)− aQc2s∂2R

]
= 0 . (2.18)

We decompose R into the Fourier components, as

R(τ,x) =
1

(2π)3

∫
d3kR(τ,k)eik·x , R(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) , (2.19)

where τ =
∫
a−1 dt, k is the comoving wave number, a(k) and a†(k) are the annihilation

and creation operators, respectively, satisfying the commutation relations
[
a(k1), a

†(k2)
]

=

(2π)3δ(3)(k1 − k2) and [a(k1), a(k2)] =
[
a†(k1), a

†(k2)
]

= 0.
Introducing a rescaled field v = zu with z = a

√
2Q, it follows that

v′′ +

(
c2sk

2 − z′′

z

)
v = 0 , (2.20)

where a prime represents a derivative with respect to τ . Under the slow-variation approxi-
mation the term z′′/z can be expressed as

z′′

z
= 2(aH)2

(
1− 1

2
ε+

3

4
ηsF −

3

2
s

)
+O(ε2) , (2.21)

where

ηsF ≡
(εsF )·

H(εsF )
= ηs + δF , ηs ≡

ε̇s
Hεs

, s ≡ ċs
Hcs

. (2.22)
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Taking the dominant contribution in eq. (2.21) and using the approximate relation a '
−1/(Hτ), we have z′′/z ' 2/τ2. The solution to eq. (2.20), which recovers the Bunch-Davies
vacuum state (v = e−icskτ/

√
2csk) in the asymptotic past (kτ → −∞), is given by

u(τ, k) =
iH e−icskτ

2(csk)3/2
√
Q

(1 + icskτ) . (2.23)

The slow-variation terms in eq. (2.21) provide the corrections to the mode function (2.23).
Later we shall discuss the effect of such corrections on the primordial non-Gaussianities.

The power spectrum PR(k1) of curvature perturbations, some time after the Hubble
radius crossing, is defined by 〈0|R(0,k1)R(0,k2)|0〉 = (2π2/k31)PR(k1) (2π)3δ(3)(k1 + k2).
From eq. (2.23) it follows that

PR =
H2

8π2M2
plεsFcs

, (2.24)

which should be evaluated at csk = aH. The spectral index nR is given by

nR − 1 ≡ d lnPR
d ln k

∣∣∣∣
csk=aH

= −2ε− ηsF − s . (2.25)

The corrections to the solution (2.23) only give rise to the O(ε2) terms in eq. (2.25).

Similarly the power spectrum Ph and the spectral index nt of gravitational waves are
given, respectively, by [60, 62]

Ph =
H2

2π2Qtc3t
' 2H2

π2M2
plF

, nt =
d lnPh
d ln k

∣∣∣∣
ctk=aH

= −2ε− δF , (2.26)

where Qt = w1/4 = (M2
plF/4)(1 − 4δG4X − 2δG5X + 2δG5φ) and c2t = w4/w1 ' 1 + 4δG4X +

2δG5X − 4δG5φ. When both PR and Ph remain constant, the tensor-to-scalar ratio can be
evaluated as

r =
Ph
PR
' 16csεs . (2.27)

3 Three-point correlation functions in the presence of correction terms

In the Horndeski’s theories the third-order action of perturbations was derived in ref. [61,
62]. Here we do not repeat the details, but we summarize the main results. Under the
approximation that all of the slow-variation terms in eq. (2.7) are much smaller than 1, the
third-order action reads

S3=

∫
dt d3x

{
a3C1M2

plRṘ2+a C2M2
plR(∂R)2+a3C3MplṘ3+a3C4Ṙ(∂iR)(∂iX )

+a3(C5/M2
pl)∂

2R(∂X )2+aC6Ṙ2∂2R+C7
[
∂2R(∂R)2−R∂i∂j(∂iR)(∂jR)

]
/a

+a(C8/Mpl)
[
∂2R∂iR∂iX−R∂i∂j(∂iR)(∂jX )

]
+F1

δL2
δR

∣∣∣∣
1

}
, (3.1)
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where ∂2X = QṘ. The dimensionless coefficients Ci (i = 1, · · · , 8) and the coefficient F1

are [62]

C1 = −3Fεs
c2s

(
1

c2s
− 1

)
+
Fεs
c4s

(εs − ηs − 4δG3X − 12δG4X (3.2)

− 32δG4XX + 12δG5φ − 10δG5X − 8δG5XX) +O(ε3),

C2 = Fεs

(
1

c2s
− 1

)
+
Fεs
c2s

(εs + ηs − 2s+ 4δG4X + 2δG5X − 4δG5φ) +O(ε3), (3.3)

C3 =
Fεs
c2s

Mpl

H

(
1

c2s
− 1 − 2λ

Σ

)
+
Fεs
c2s

Mpl

H

{
1

c2s
(δG3X + 4δG4X + 3δG5X − δG4φ − 4δG5φ

+ 8δG4XX + 2δG5XX)− (3 + 2λ3X) δG3X − 8 (5 + 2λ4X) δG4XX − 4(4 + λ5X)δG5XX

+ δG4φ + 8δG5φ − 8δG4X − 9δG5X − 6
c2s
εs

[
(1 + λ3X)δ2G3X + ξ(δ2)

]}
+O(ε3), (3.4)

C4 = −2εs
c2s

+O(ε2) , (3.5)

C5 =
1

4F
(εs − 4δG3X − 8δG4XX + 8δG5X + 4δG5XX) +O(ε2) , (3.6)

C6 = 2F

(
Mpl

H

)2

[(1 + λ3X)δG3X + 4(3 + 2λ4X)δG4XX + δG5X + (5 + 2λ5X)δG5XX ] +O(ε2),

(3.7)

C7 = −2

3
F

(
Mpl

H

)2

(δG3X + 6δG4XX + δG5X + δG5XX) +O(ε2), (3.8)

C8 = 2
Mpl

H
(δG3X + 4δG4XX) +O(ε2) , (3.9)

F1 = −
L1µ1 + 6Xφ̇G5,X

6w2
1

{(∂kR)(∂kX )− ∂−2∂i∂j [(∂iR)(∂jX )]} − L1

c2s
RṘ

+
L1(L1µ1 + 12Xφ̇G5,X)

12w1a2
{(∂R)2 − ∂−2∂i∂j [(∂iR)(∂jR)]} , (3.10)

where λ3X = XG3,XX/G3,X , λ4X = XG4,XXX/G4,XX , λ5X = XG5,XXX/G5,XX , µ1 =
3M2

plF − 24(XG4,X + X2G4,XX) − 6Hφ̇(5XG5,X + 2X2G5,XX) + 6X(3G5,φ + 2XG5,φX),
L1 = 2w1/w2, and

Σ =
w1(4w1w3 + 9w2

2)

12M4
pl

, (3.11)

λ =
F 2

3
[3X2P,XX + 2X3P,XXX + 3Hφ̇(XG3,X + 5X2G3,XX + 2X3G3,XXX)

− 2(2X2G3,φX +X3G3,φXX) + 6H2(9X2G4,XX + 16X3G4,XXX + 4X4G4,XXXX)

− 3Hφ̇(3XG4φ,X + 12X2G4,φXX + 4X3G4,φXXX)

+H3φ̇(3XG5,X + 27X2G5,XX + 24X3G5,XXX + 4X4G5,XXXX)

− 6H2(6X2G5,φX + 9X3G5,φXX + 2X4G5,φXXX)] . (3.12)
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The explicit form of the second-order term ξ(δ2) in eq. (3.4) is given in appendix of ref. [62].
The coefficient F1 involves the terms with the spatial and time derivatives of R and X .
These provide the corrections to the three-point correlation function higher than first order
in slow-variation parameters.3 Since we are interested in the bispectrum up to first order,
we neglect the contribution of the term F1(δL2/δR)|1 in the following discussion. We also
evaluated other boundary terms and found that they only lead to the contribution higher
than the order ε.

The vacuum expectation value ofR for the three-point operator in the asymptotic future
(τ → 0) is

〈R(k1)R(k2)R(k3)〉 = −i
∫ 0

−∞
dτ a 〈0| [R(0,k1)R(0,k2)R(0,k3),Hint(τ)] |0〉 . (3.13)

The interacting Hamiltonian Hint is related to the third-order Lagrangian L3 as Hint = −L3,
where S3 =

∫
dtL3. We write the three-point correlation function in the form

〈R(k1)R(k2)R(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)(PR)2FR(k1, k2, k3) , (3.14)

where

FR(k1, k2, k3) =
(2π)4∏3
i=1 k

3
i

AR(k1, k2, k3) . (3.15)

If we use the leading-order solution (2.23) for the mode function and neglect the variation
of the terms Ci’s for the integration of eq. (3.13) with the approximation a ' −1/(Hτ), the
resulting bispectrum is [61, 62]

AR ⊃
c2s

4εsF
C1S1 +

1

4εsF
C2S2 +

3c2s
2εsF

H

Mpl
C3S3 +

1

8
C4S4 +

εsF

4c2s
C5S5 +

3

εsF

(
H

Mpl

)2

C6S6

+
1

2εsFc2s

(
H

Mpl

)2

C7S7 +
1

8c2s

H

Mpl
C8S8 , (3.16)

where

S1 =
2

K

∑
i>j

k2i k
2
j −

1

K2

∑
i 6=j

k2i k
3
j , S2 =

1

2

∑
i

k3i +
2

K

∑
i>j

k2i k
2
j −

1

K2

∑
i 6=j

k2i k
3
j ,

S3 =
(k1k2k3)

2

K3
, S4 =

∑
i

k3i −
1

2

∑
i 6=j

kik
2
j −

2

K2

∑
i 6=j

k2i k
3
j ,

S5 =
1

K2

∑
i

k5i +
1

2

∑
i 6=j

kik
4
j −

3

2

∑
i 6=j

k2i k
3
j − k1k2k3

∑
i>j

kikj

 ,
S6 = S3, S7 =

1

K

1 +
1

K2

∑
i>j

kikj +
3k1k2k3
K3

3

4

∑
i

k4i −
3

2

∑
i>j

k2i k
2
j

 ,
S8 =

1

K2

3

2
k1k2k3

∑
i

k2i −
5

2
k1k2k3K

2 − 6
∑
i 6=j

k2i k
3
j −

∑
i

k5i +
7

2
K
∑
i

k4i

 , (3.17)

3Note that in ref. [12] the term R2 is present in the expression of F1, which gives rise to the first-order
contribution ηs. We absorb this term to other coefficients, so that the field definition in ref. [12] is unnecessary.
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and K = k1 + k2 + k3. The five shape functions Si’s (i = 1, · · · , 5) are present in the context
of k-inflation [18, 56]. In the Horndeski’s theories the additional functions S7 and S8 appear,
but they can be expressed by using other shape functions as [69]

S7 = −3

2
(3S1 − S2) + 18S3 , S8 = 3S1 − S2 + 3S4 . (3.18)

Since the three functions S6, S7, and S8 vanish in the limit k3 → 0, the last three terms in
eq. (3.16) do not contribute to the local non-Gaussianities.

The bispectrum AR coming from the contributions of C1, C2, C3, C6, C7 are 0-th order
of ε, while the bispectrum from C4 and C8 are first order. Since the term C5 leads to the
bispectrum at the order of ε2, we can neglect its contribution. In the case where the leading-
order terms of AR vanish (which occurs for local non-Gaussianities), we need to take into
account next-order corrections to the bispectrum coming from the integrals that involve the
terms C1, C2, C3, C6, C7 in eq. (3.1). Using the linear equation of motion δL2/δR|1 = 0, the
C6, C7, and C8 dependent terms can be absorbed into the first five terms in eq. (3.1) [69].
Then the third-order action (3.1) reads

S3 =

∫
dt d3x

{
a3C̃1M2

plRṘ2 + a C̃2M2
plR(∂R)2 + a3C̃3MplṘ3

+ a3C̃4Ṙ(∂iR)(∂iX ) + a3(C̃5/M2
pl)∂

2R(∂X )2
}
. (3.19)

The coefficients C̃i (i = 1, · · · , 5), which give rise to the corrections up to the order of ε
in AR, are [69]

C̃1 = C1 −
3H2

2c4sM
2
pl

(6 + 2ε+ 7ηsF − 5η7)C7 +
3HεsF

2c4sMpl
C8 , (3.20)

C̃2 = C2 +
3H2

2c2sM
2
pl

(2− 2ε+ ηsF + η7 − 4s)C7 −
HεsF

2c2sMpl
C8 , (3.21)

C̃3 = C3 +
H

3c2sMpl
(6 + 3ηsF − 4s− η6)C6 +

H

c4sMpl
(6 + 3ηsF − s− 2η7)C7 , (3.22)

C̃4 = C4 +
3H

c2sMpl
C8 , (3.23)

C̃5 = C5 , (3.24)

where ηi ≡ Ċi/(HCi), with i = 6, 7, 8. The three-point correlation function analogous to (3.16)
is given by

AR ⊃
c2s

4εsF
C̃1S1 +

1

4εsF
C̃2S2 +

3c2s
2εsF

H

Mpl
C̃3S3 +

1

8
C̃4S4 , (3.25)

where we dropped the C̃5-dependent term. The difference between eqs. (3.16) and (3.25)
is that the bispectrum (3.25) includes the corrections coming from the time-variations of
C6 and C7. However eqs. (3.16) and (3.25) are equivalent at leading order. The terms C̃i
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(i = 1, · · · , 4) can be expressed as

C̃1 = C̃lead1 +
F

c4s
[εsδC1 + (2ε+ 7ηsF − 5η7)δC7 + 3εsδC8] , (3.26)

C̃2 = C̃lead2 +
F

c2s
[εsδC2 + (2ε− ηsF − η7 + 4s)δC7 − εsδC8] , (3.27)

C̃3 = C̃lead3 +
FMpl

c2sH

[
εsδC3 +

2

3
(3ηsF − 4s− η6) δC6 −

2

3c2s
(3ηsF − s− 2η7)δC7

]
, (3.28)

C̃4 = −2εs
c2s

+
6

c2s
δC8 , (3.29)

where the leading-order terms are

C̃lead1 = −3F

c2s

(
1

c2s
− 1

)
εs +

6F

c4s
δC7 , (3.30)

C̃lead2 = F

(
1

c2s
− 1

)
εs −

2F

c2s
δC7 = −c

2
s

3
C̃lead1 , (3.31)

C̃lead3 =
FMpl

c2sH

[(
1

c2s
− 1− 2λ

Σ

)
εs + 4δC6 −

4

c2s
δC7
]
, (3.32)

and δCi’s are the first-order slow-variation terms given by

δC1 = εs − ηs − 4δG3X − 12δG4X − 32δG4XX + 12δG5φ − 10δG5X − 8δG5XX , (3.33)

δC2 = εs + ηs − 2s+ 4δG4X + 2δG5X − 4δG5φ , (3.34)

δC3 =
1

c2s
(δG3X + 4δG4X + 3δG5X − δG4φ − 4δG5φ + 8δG4XX + 2δG5XX) (3.35)

− (3 + 2λ3X) δG3X − 8 (5 + 2λ4X) δG4XX − 4(4 + λ5X)δG5XX

+δG4φ + 8δG5φ − 8δG4X − 9δG5X − 6
c2s
εs

[
(1 + λ3X)δ2G3X + ξ(δ2)

]
,

δC6 = (1 + λ3X)δG3X + 4(3 + 2λ4X)δG4XX + δG5X + (5 + 2λ5X)δG5XX , (3.36)

δC7 = δG3X + 6δG4XX + δG5X + δG5XX , (3.37)

δC8 = δG3X + 4δG4XX . (3.38)

In order to derive the full expression of AR to the order of ε, we need to compute the
corrections to the first three integrations in eq. (3.19). As studied in ref. [56] in the context
of k-inflation, there are several corrections to the bispectrum (3.25).

The first one comes from the variation of the coefficients C̃i (i = 1, 2, 3), i.e.,

C̃i(τ) = C̃i(τK)− dC̃i
dt

1

HK
ln

τ

τK
+O(ε2C̃i) . (3.39)

We evaluate all the physical variables at the time τK = −1/(KcsK), which corresponds to the
moment when the wave number K = k1 + k2 + k3 crosses the Hubble radius KcsK = aKHK .

The second one follows from the correction to the scale factor a ' −1/(Hτ), i.e.,

a = − 1

HKτ
− ε

HKτ
+

ε

HKτ
ln(τ/τK) +O(ε2) . (3.40)
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Thirdly, the mode function (2.23) is subject to change by taking into account the O(ε) terms
on the r.h.s. of eq. (2.21):

u(y) = −
√
π

2
√

2

1√
εsFcs

H

Mpl

y3/2

k3/2

(
1 +

1

2
ε+

1

2
s

)
ei
π
2
(ε+ 1

2
ηsF )H(1)

ν [(1 + ε+ s)y] , (3.41)

where y = csk/(aH), ν = 3/2 + ε + ηsF /2 + s/2, and H
(1)
ν (x) is the Hankel function of

the first kind. In the large-scale limit (y → 0) the Hankel function behaves as H
(1)
ν (x) →

−i/[sin(πν)Γ(1− ν)](x/2)−ν and hence the mode function approaches

u(0) =
i

2k3/2
1√

(εsF )k csk

Hk

Mpl

1

k3/2

[
1− (γ2 + 1)ε− γ2

2
ηsF −

(γ2
2

+ 1
)
s
]
ei
π
2
(ε+ 1

2
ηsF ) ,

(3.42)
where γ2 = γ1− 2 + ln 2 ' −0.7296 . . . and γ1 = 0.5772 . . . is the Euler-Mascheroni constant.
Note that the quantities with the subscript k in eq. (3.42) are evaluated at cskk/(akHk) = 1.
For the wave number ki there is the running from ki to K, as

1√
(εsF )ki cski

Hki

Mpl
=

1√
(εsF )K csK

HK

Mpl

[
1−

(
ε+

1

2
ηsF +

1

2
s

)
ln
ki
K

]
+O(ε2) . (3.43)

Writing the correction to the leading order solution (2.23) as ∆u∗(τ, k), it follows that

∆u∗(τ, ki) = − 1

2k
3/2
i

√
(εsF )K csK

HK

Mpl
e−i

π
2
(ε+ 1

2
ηsF )e−ix

[
(ε+ s)(x− i) + isx2

+

{(
ε+

1

2
ηsF +

1

2
s

)
(i− x)− isx2

}
ln

τ

τK

+

√
π

2
eix
(
ε+

1

2
ηsF +

1

2
s

)
x3/2

(
dH

(1)∗
ν

dν

)
ν=3/2

]
, (3.44)

d

dτ
∆u∗(τ, ki) =

1

2k
3/2
i

√
(εsF )K csK

HK

Mpl
e−i

π
2
(ε+ 1

2
ηsF )kicsK e

−ix
[
x(sx− iε)

+

(
ε+

1

2
ηsF +

1

2
s

)(
i

x
− 1

)
+ i

(
ε+

1

2
ηsF −

3

2
s+ isx

)
x ln

τ

τK

+

√
π

2
eix
(
ε+

1

2
ηsF +

1

2
s

)
d

dx

(
x3/2

(
dH

(1)∗
ν

dν

)
ν=3/2

)]
, (3.45)

where x ≡ −kicsK τ .

In appendix A we give the explicit forms of corrections to the first three terms in
eq. (3.25). Each correction can be expressed as

∆A(1)
R =

(
c2s

4εsF
C̃lead1

)
K

δQ1 ,∆A(2)
R = −

(
1

4εsF
C̃lead2

)
K

δQ2 ,∆A(3)
R =

(
3c2sH

4εsFMpl
C̃lead3

)
K

δQ3 ,

(3.46)
where δQ1, δQ2, and δQ3 are the O(ε) terms derived by summing up the contributions (A.1)–
(A.5), (A.6)–(A.9), and (A.10)–(A.13), respectively. On using eqs. (3.30)–(3.32), it fol-
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lows that

∆AR = ∆A(1)
R + ∆A(2)

R + ∆A(3)
R

= −1

4

(
1

c2s
− 1− 2

c2s

δC7
εs

)
(3δQ1 + δQ2) +

3

4

(
1

c2s
− 1− 2λ

Σ
+ 4

δC6
εs
− 4

c2s

δC7
εs

)
δQ3 .

(3.47)

The explicit forms of 3δQ1 + δQ2 and δQ3 are

3δQ1 + δQ2 =[
−2(7 + 2γ1 + 6γ2)ε+ 3(1− 2γ1 − 2γ2)ηsF − (21− 14γ1 + 6γ2)s− 2(1− 2γ1)η̃1

− 2(2ε+ ηsF + s) ln
k1k2k3
K3

]
× 1

K

∑
i>j

k2i k
2
j +

[
2(3 + γ1 + 3γ2)ε− 3(1− γ1 − γ2)ηsF

+

(
17− 35

2
γ1 + 3γ2

)
s+ 2(1− γ1)η̃1 + (2ε+ ηsF + s) ln

k1k2k3
K3

]
1

K2

∑
i 6=j

k2i k
3
j

+ 3(2γ1 − 1)s

[
1

K3

∑
i 6=j

k2i k
4
j +

2

K3

∑
i>j

k3i k
3
j − 3

(k1k2k3)
2

K3

]

− 1

4

[
22ε+ 9ηsF + 2η̃1 + (11 + 4γ1)s

]
k1k2k3 −

(
1

2
ε+

3

4
ηsF −

1

2
η̃1 −

1

4
s

)∑
i 6=j

kik
2
j

+

[
1

2
(3 + γ1 + 3γ2)ε−

3

4
(1− γ1 − γ2)ηsF +

1

2
(1− γ1)η̃1 +

1

4
(13− γ1 + 3γ2)s

+
1

4
(2ε+ ηsF + s) ln

k1k2k3
K3

]∑
i

k3i −
1

2
(1 + γ1)s

1

K

∑
i

k4i −
1

2
γ1s

1

K2

∑
i 6=j

kik
4
j

+
3

2
(2ε+ ηsF + s)

(
2
∑
i

k3i + 2
∑
i 6=j

kik
2
j − V

)
, (3.48)

δQ3 =[
−2(2 + 2γ1 + 3γ2)ε+ 3

(
3

2
− γ1 − γ2

)
ηsF +

(
3γ1 − 3γ2 −

29

2

)
s+ (2γ1 − 3)η̃3

− (2ε+ ηsF + s) ln
k1k2k3
K3

]
(k1k2k3)

2

K3

+

(
ε+

1

2
ηsF +

1

2
s

)(
1

K2

∑
i 6=j

k2i k
3
j −

2

K

∑
i>j

k2i k
2
j + U

)
, (3.49)
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where η̃i = (dC̃leadi /dt)/(H C̃leadi ), and

V ≡M− (k32 + k33)Re

[∫ ∞
0

dx1
e−iKx1/k1

x1

]
− k22k

2
3

k1
G − 1

3
N + perm.

= −k1Re

[∫ ∞
0

dx1
1

x1

(
k22 + k23 + ik2k3

k2 + k3
k1

x1

)
e
−i k2+k3

k1
x1 dh

∗(x1)

dx1

]
− (k32 + k33)Re

[∫ ∞
0

dx1
e−iKx1/k1

x1

]
+
k1
6

∑
i

k2i Re

[∫ ∞
0

dx1
1

x21
e
−ix1 k2+k3k1

(
1 + i

k2 + k3
k1

x1 −
k2k3
k21

x21

)
h∗(x1)

]
− k22k

2
3

k1
Re

[∫ ∞
0

dx1 h
∗(x1)e

−i k2+k3
k1

x1

]
+ perm. , (3.50)

U ≡ k22k
2
3

k1
Re

[∫ ∞
0

dx1 h
∗(x1)

(
1− ik2 + k3

k1
x1

)
e
−i k2+k3

k1
x1

]
+ perm. , (3.51)

h(x) ≡
√
π

2
x3/2

[
dH

(1)
ν (x)

dν

]
ν=3/2

= −2ieix + ie−ix(1 + ix) [Ci(2x) + i Si(2x)]− iπ sinx+ iπx cosx . (3.52)

The definition ofM, G, and N is given in appendix A. In eq. (3.50), we have used the relation
between the variables xK = −KcsKτ and xi = −kicsKτ (i = 1, 2, 3), as xK = (K/ki)xi
(without summation over i). The variable xK = −KcsKτ is related to xi = −kicsKτ (i =
1, 2, 3), as xK = (K/ki)xi. The symbol “perm.” stands for cyclic permutations with respect
to k1, k2, and k3. In eq. (3.48) we also used the relation η̃2 = η̃1 + 2s to eliminate η̃2 (which
follows from C̃lead2 = −(c2s/3)C̃lead1 ). In appendix B we evaluate the values of V and U as
functions of r2 ≡ k2/k1 and r3 ≡ k3/k1.

The total bispectrum AR is the sum of eqs. (3.25) and (3.47), which can be written as

AR = Alead
R +Acorre

R , (3.53)

where

Alead
R =

[
1

4

(
1− 1

c2s

)
+

1

2c2s

δC7
εs

]
(3S1 − S2) (3.54)

+

[
3

2

(
1

c2s
− 1

)
− 3λ

Σ
+

6δC6
εs
− 6

c2s

δC7
εs

]
S3 ,

Acorre
R =

1

4c2s

[
δC1 + (2ε+ 7ηsF − 5η7)

δC7
εs

+ 3δC8
]
S1 (3.55)

+
1

4c2s

[
δC2 + (2ε− ηsF − η7 + 4s)

δC7
εs
− δC8

]
S2

+

[
3

2
δC3 + (3ηsF − η6 − 4s)

δC6
εs
− 1

c2s
(3ηsF − 2η7 − s)

δC7
εs

]
S3 −

1

4c2s
(εs − 3δC8)S4

−1

4

(
1

c2s
− 1− 2

c2s

δC7
εs

)
(3δQ1 + δQ2) +

3

4

(
1

c2s
− 1− 2λ

Σ
+ 4

δC6
εs
− 4

c2s

δC7
εs

)
δQ3 .

The leading-order bispectrum Alead
R (given already in refs. [61, 62]) and the correction Acorre

R
are of the orders of O(ε0) and O(ε), respectively.
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4 Local, equilateral, and enfolded non-Gaussianities

The non-linear parameter characterizing the strength of non-Gaussianities is defined by

fNL =
10

3

AR∑3
i=1 k

3
i

. (4.1)

In the following we estimate fNL for three different shapes of non-Gaussianities.

4.1 Local non-Gaussianities

The local shape corresponds to k3 → 0 and k2 → k1 ≡ k, in which case f localNL = (5/3)AR/k3.
Since S1 = k3/2, S2 = 3k3/2 = 3S1, and S3 = S4 = 0, the leading-order bispectrum (3.54)
vanishes. In the limit that k3 → 0 the function U given by eq. (3.51) approaches k3/2 [56] (see
also appendix B), so that the term δQ3 in eq. (3.49) vanishes. Then the bispectrum (3.55)
reduces to

Acorre
R =

k3

8c2s
(δC1 + 3δC2)−

1

4

(
1

c2s
− 1

)
(3δQ1 + δQ2)

+
δC7

8c2sεs

[
4(2ε+ ηsF − 2η7 + 3s)k3 + 4(3δQ1 + δQ2)

]
. (4.2)

Using eqs. (3.33) and (3.34) together with the relations (2.9), (2.17), and (2.22), we have
δC1 + 3δC2 = 4ε+ 2ηsF − 6s. In the limit k3 → 0 the function V behaves as V → 20k3/3 [56]
(see also appendix B), so that eq. (3.48) reduces to 3δQ1 + δQ2 → (2ε− ηsF + 5s+ 2η̃1)k

3.
Then eq. (4.2) reads

Acorre
R =

k3

4
(2ε− ηsF + 5s+ 2η̃1) +

k3

2c2s
(ηsF − 4s− η̃1) + k3

δC7
c2sεs

(2ε+ 4s+ η̃1 − η7) . (4.3)

Taking the time-derivatives of C̃lead1 and C7, we obtain the following relation

δC7
c2sεs

(2ε+ 4s+ η̃1 − η7) =
1

2
(ηsF − η̃1 − 2s)− 1

2c2s
(ηsF − 4s− η̃1) . (4.4)

Substituting eq. (4.4) into eq. (4.3), it follows that

Acorre
R =

k3

4
(2ε+ ηsF + s) . (4.5)

Using the spectral index nR given in eq. (2.25), the non-linear parameter is expressed as

f localNL =
5

12
(1− nR) . (4.6)

This matches with the Maldacena’s result [12] derived for a canonical scalar field (see also
refs. [50, 53, 56] for the derivation of the same relation in other single field models). Creminelli
and Zaldarriaga [47] pointed out that the consistency relation (4.6) should hold for any slow-
variation single-field inflation. In fact we have shown that this holds for most general single-
field scalar-tensor theories with second-order equations of motion by explicitly computing the
slow-variation corrections to the bispectrum (3.25). Since |f localNL | is much smaller than 1 in
such models, the observational detection of local non-Gaussianities with |f localNL | & 1 implies
that we need to go beyond the slow-variation single-field scenario.
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In the limit that k3 → 0 the shape functions S6, S7, and S8 vanish. This means that
the functions C6, C7, C8 on the r.h.s. of eqs. (3.20)–(3.23) do not contribute to the local
non-Gaussianities. In fact, we can derive the consistency relation (4.6) by setting δC7 = 0 in
eqs. (4.2) and (4.4). In this sense the situation is analogous to that in k-inflation.

Let us consider the not-so squeezed case in which the ratio r3 = k3/k1 is non-vanishing,
i.e., 0 < r3 � 1 and k1 = k2. The leading-order non-linear parameter following from eq. (3.54)
is given by

f leadNL =
5r23
[
α1(22 + 4r3 − 4r23 − r33)(2 + r3) + 2α2

]
3(2 + r3)3(2 + r33)

, (4.7)

where

α1 =
1

4

(
1− 1

c2s

)
+

1

2c2s

δC7
εs

, α2 =
3

2

(
1

c2s
− 1

)
− 3λ

Σ
+

6δC6
εs
− 6

c2s

δC7
εs

. (4.8)

In the regime r3 � 1 we have f leadNL ' 5(22α1 +α2)r
2
3/24. The values of α1 and α2 depend on

the models, but for c2s � 1 they are at most of the order of 1/c2s. In this case the leading-order
non-linear parameter can be estimated as∣∣∣f leadNL

∣∣∣ ≈ r23
c2s
. (4.9)

Then the transition from the value (4.6) to the value (4.9) occurs at

r3 ≈ cs
√

1− nR . (4.10)

The effect of the term 1/c2s in eq. (4.9) becomes important for r3 > cs
√

1− nR. When
nR = 0.96 this condition translates into r3 > 0.2 cs. If cs = 0.1 and r3 > 0.1, for example,
the non-linear parameter (4.9) can be larger than the order of 1. However, for cs = 0.1,
we also expect the dominant contribution to fNL to come from other shapes (equilateral,
orthogonal, etc.)

For the models in which c2s is close to 1, α1 and α2 are of the order of unity. Hence
the leading-order non-linear parameter can be estimated as

∣∣f leadNL

∣∣ ≈ r23 � 1 in the regime
r3 � 1. By increasing the value of r3 from 0, we can observationally discriminate between
the models with c2s � 1 and c2s ≈ 1.

4.2 Equilateral non-Gaussianities

The equilateral shape is characterized by k1 = k2 = k3 ≡ k, in which case the non-linear
parameter is f equilNL = (10/9)(AR/k3). Since S1 = 4k3/3, S2 = 17k3/6, and S3 = k3/27, the
bispectrum (3.54) gives the leading-order non-linear parameter

f equil,leadNL =
85

324

(
1− 1

c2s

)
− 10

81

λ

Σ
+

20

81εs
[(1 + λ3X)δG3X + 4(3 + 2λ4X)δG4XX

+δG5X + (5 + 2λ5X)δG5XX ] +
65

162c2sεs
(δG3X + 6δG4XX + δG5X + δG5XX) .

(4.11)

If c2s � 1, then we have |f equil,leadNL | � 1.
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In the equilateral limit the functions V and U are given by V = 15[1 + (1/2) ln(2/3)]k3

and U = [6 ln(3/2)−1]k3, respectively (see appendix B). Then the functions δQ̃12 ≡ (3δQ1 +
δQ2)/k

3 and δQ̃3 ≡ δQ3/k
3 reduce to

δQ̃12 = ε[6− 78 ln(2/3)− 14γ1]/3− ηsF [7γ1 + 26 ln(2/3)]/2

+s[16− 39 ln(2/3)]/3 + η̃1(7γ1 + 20)/6 , (4.12)

δQ̃3 = −ε[10γ1 + 55 + 168 ln(2/3)]/27− ηsF [2γ1 + 7 + 28 ln(2/3)]/9

−4s[10 + 21 ln(2/3)]/27 + η̃3(2γ1 − 3)/27. (4.13)

The correction to f equil,leadNL coming from eq. (4.3) is given by

f equil,correNL =
5

972c2sεs

[
3εs(24δC1 + 51δC2 + 4c2sδC3) + 8c2s(3ηsF − 4s− η6)δC6 (4.14)

+ (450ε+ 327ηsF + 620s− 497η7)δC7 − 153εsδC8 + 72ε2s

]
− 5

18

(
1

c2s
− 1− 2δC7

c2sεs

)
δQ̃12 +

5

6

(
1

c2s
− 1− 2λ

Σ
+

4δC6
εs
− 4δC7
c2sεs

)
δQ̃3.

For the theories in which f equil,leadNL vanishes, the next-order correction f equil,correNL is the domi-
nant contribution. In the case of a canonical scalar field with the Lagrangian P = X−V (φ),

G3 = 0, G4 = 0, G5 = 0, for example, it follows that f equil,leadNL = 0 and f equil,correNL =
55εs/36 + 5ηs/12.

For the theories with c2s 6= 1 the non-linear parameters (4.11) and (4.14) reproduce
the results known in literature for specific models of inflation. For example, this is the
case for k-inflation [18, 56], k-inflation with the Galileon terms [62, 63], potential-driven
Galileon inflation [73], and inflation with a field derivative coupling to the Einstein tensor [53].
Generally we require that c2s � 1 to realize the large equilateral non-linear parameter.

4.3 Enfolded non-Gaussianities

The enfolded shape is characterized by k2 + k3 = k1. Taking the momenta k1 = k and
k2 → k3 = k/2, the non-linear parameter4 is f enfoldNL = 8AR/(3k3). Since S1 = 23k3/64,
S2 = 63k3/64, and S3 = k3/128 in this case, the leading-order non-linear parameter is
given by

f enfold,leadNL =
1

32

(
1− 1

c2s

)
− 1

16

λ

Σ
(4.15)

+
1

8εs
[(1 + λ3X)δG3X + 4(3 + 2λ4X)δG4XX + δG5X + (5 + 2λ5X)δG5XX ] ,

where, unlike the equilateral case, the δC7-dependent term in eq. (3.54) disappears.

4At the point k1 = k and k2 → k3 = k/2, the equilateral shape gives no contribution. However, the
contribution from the orthogonal shape will be of the same order of the enfolded one, since, by definition, in
this case we have fortho

NL → −2fenfold
NL .
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In the enfolded limit one has V = [315/64− ln(2)/2]k3 and U = [5/24 + ln(2)/4]k3 (see
appendix B). The functions δQ̃12 and δQ̃3 are

δQ̃12 = ε[45− 24γ1 + 108 ln(2)]/64− ηsF [87 + 36γ1 − 108 ln(2)]/128

+s[333 + 108 ln(2)]/128 + η̃1(39 + 3γ1)/32 , (4.16)

δQ̃3 = −ε[15γ1 + 17− 54 ln(2)]/192− ηsF [36γ1 − 5− 108 ln(2)]/768

−s[109− 108 ln(2)]/768 + η̃3(2γ1 − 3)/128 . (4.17)

The correction to f enfold,leadNL is

f enfold,correNL =
1

96c2sεs
[εs(23δC1 + 63δC2 + 3c2sδC3)− 2c2s(η6 + 4s− 3ηsF )δC6 (4.18)

+(172ε+ 254s+ 92ηsF − 174η7)δC7

+2ε2s]−
2

3

(
1

c2s
− 1− 2δC7

c2sεs

)
δQ̃12 + 2

(
1

c2s
− 1− 2λ

Σ
+

4δC6
εs
− 4δC7
c2sεs

)
δQ̃3 .

For a canonical scalar field we have that f enfold,leadNL = 0 and f enfold,correNL = 7εs/8 + 5ηs/12.

5 Shapes of non-Gaussianities

The leading-order bispectrum (3.16) can be written in terms of the sum of each component,

as AR =
∑8

i=1A
(i)
R . Then the function FR(k1, k2, k3) in eq. (3.15) is decomposed into eight

components

F (i)
R = (2π)4

A(i)
R∏3

i=1 k
3
i

=
(2π)4

(k1k2k3)3
BiSi , (5.1)

where Bi’s are the coefficients appearing in front of each shape function Si in eq. (3.16), say,
B1 = c2sC1/(4εsF ).

In order to estimate the correlation between two different shapes, we define the following
quantity [42]

C(F (i)
R ,F (j)

R ) =
I(F (i)

R ,F (j)
R )√

I(F (i)
R ,F (i)

R ) I(F (j)
R ,F (j)

R )

, (5.2)

where

I(F (i)
R ,F (j)

R ) =

∫
dVk F

(i)
R (k1, k2, k3)F (j)

R (k1, k2, k3)
(k1k2k3)

4

(k1 + k2 + k3)3
. (5.3)

The integration should be done in the region 0 ≤ k1 < ∞, 0 < k2/k1 < 1, and 1 − k2/k1 ≤
k3/k1 ≤ 1. Note that the above integral can be expressed in terms of r2 = k2/k1 and

r3 = k3/k1 with the integral of k1 factorized out. For |C(F (i)
R ,F (j)

R )| close to 1 the correlation

is large, whereas for |C(F (i)
R ,F (j)

R )| close to 0 the two shapes are almost orthogonal with a
small correlation.

The CMB data analysis of non-Gaussianities has been carried out by using the factor-
izable shape functions which are written as the sums of monomials of k1, k2, and k3. There
are a number of templates FR which resemble model predictions of the bispectrum. The
templates corresponding to local and equilateral non-Gaussianities are given, respectively,
by [37, 41]

F local
R (k1, k2, k3) = (2π)4

(
3

10
f localNL

)(
1

k31k
3
2

+
1

k32k
3
3

+
1

k33k
3
1

)
, (5.4)
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Fequil
R Fortho

R Fenfold
R F (3)

R F (4)
R F (5)

R F (7equil)
R F (8)

R F (7ortho)
R 3F (1)

R −F
(2)
R

Fequil
R 1 0.0254062 0.511911 0.936177 -0.998757 -0.994234 0.999892 -0.999994 -0.00693357 0.986954

Fortho
R 1 -0.845755 -0.290742 0.0177139 -0.117961 0.0353534 -0.0277283 0.904843 -0.116557

Fenfold
R 1 0.749518 -0.548302 -0.4293 0.503306 -0.509913 -0.781246 0.626939

F (3)
R 1 -0.952469 -0.893224 0.933797 -0.935615 -0.357802 0.980504

F (4)
R 1 0.987653 -0.998384 0.998686 0.056402 -0.993745

F (5)
R 1 -0.994696 0.99437 -0.0995524 -0.964012

F (7equil)
R 1 -0.999936 0 0.9859

F (8)
R 1 0.00524865 -0.986715

F (7ortho)
R 1 -0.167335

Table 1. The correlation (5.2) between two different shape functions. F (7equil)
R is the normalized

shape of F (7)
R , whereas F (7ortho)

R is the shape function orthogonal to F (7equil)
R (or, equivalently, to

F (7)
R ).

and

Fequil
R (k1, k2, k3)=(2π)4

(
9

10
f equilNL

)[
− 1

k31k
3
2

− 1

k32k
3
3

− 1

k33k
3
1

− 2

k21k
2
2k

2
3

+

(
1

k1k22k
3
3

+5 perm.

)]
.

(5.5)
Since the local non-Gaussianities are small in the Horndeski’s theories, we do not consider
the correlation with the local template.

The orthogonal template, which has a small correlation with the equilateral one, is given
by [43]

Fortho
R (k1, k2, k3)=(2π)4

(
9

10
forthoNL

)[
− 3

k31k
3
2

− 3

k32k
3
3

− 3

k33k
3
1

− 8

k21k
2
2k

2
3

+

(
3

k1k22k
3
3

+5 perm.

)]
.

(5.6)
The enfolded template, which is a linear combination of the orthogonal and equilateral tem-
plates, is defined by [44]

Fenfold
R (k1, k2, k3)=(2π)4

(
9

10
f enfNL

)[
1

k31k
3
2

+
1

k32k
3
3

+
1

k33k
3
1

+
3

k21k
2
2k

2
3

−
(

1

k1k22k
3
3

+5 perm.

)]
.

(5.7)

In table 1 we show the correlation between F (i)
R (i = 3, 4, 5, 7, 8) and the three templates

given above. Since the correlations between F (i)
R (i = 4, 5, 7, 8) and Fequil

R are close to 1,

F (i)
R (i = 4, 5, 7, 8) are well approximated by the equilateral shape. In particular, both

C(F (7)
R ,Fortho

R ) and C(F (8)
R ,Fortho

R ) are close to 0 with the same level of correlation between

Fequil
R and Fortho

R . Hence the shape functions S7 and S8 highly mimic the equilateral template.
They also vanish in the local limit (k3 → 0) and in the enfolded limit (k2 + k3 → k1). Note

that both |C(F (7)
R ,Fenfold

R )| and |C(F (8)
R ,Fenfold

R )| are close to 0.5 (which is similar to the value

|C(Fequil
R ,Fenfold

R )| = 0.511911). Since there is the relation Fenfold
R = (Fequil

R − Fortho
R )/2, we

have |C(F (i)
R ,Fenfold

R )| ' 0.5 for the shape function F (i)
R very close to the equilateral one.

We recall that the functions 3S1−S2 and S3 are related with S7 [see eq. (3.18)]. We can
use this property in order to rewrite the leading-order part of the bispectrum in a convenient
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basis. We introduce the following shape

Sequil
7 = −12

13
S7 , (5.8)

whose minus sign has been chosen so that F (7equil)
R has a positive high correlation with the

equilateral profile. Furthermore, we can analytically show that the following shape is exactly
orthogonal to Sequil

7 :

Sortho
7 =

12

14− 13β
(βS7 + 3S1 − S2) , (5.9)

where

β =
16

3

248041− 25200π2

1986713− 201600π2
= 1.1967996 . . . (5.10)

The normalizations of Sequil
7 and Sortho

7 have been done such that, at the equilateral config-

uration (k1 = k2 = k3 = k), we have Sequil
7 = k3 = Sortho

7 . This normalization follows from
the standard definition of the previous templates introduced in the literature.

We note here that the leading-order bispectrum (3.54) includes the term 3S1 − S2, so

that we also consider the correlation between the combination 3F (1)
R −F

(2)
R and other shapes

in table I. The shape 3F (1)
R − F

(2)
R has a high correlation with Fequil

R . Compared to F (7)
R

and F (8)
R , however, it is not very close to the equilateral shape. Moreover F (3)

R has some

correlation with the orthogonal shape, i.e., C(F (3)
R ,Fortho

R ) = −0.290742.

As we see in table 1, the correlation between F (7ortho)
R and Fequil

R is very small. In terms

of Sequil
7 and Sortho

7 , the functions 3S1 − S2 and S3 are expressed as

3S1 − S2 =
13

12
β Sequil

7 +
14− 13β

12
Sortho
7 , S3 =

13

432
(3β − 2)Sequil

7 +
14− 13β

144
Sortho
7 .

(5.11)
Using these relations, the leading-order bispectrum (3.54) can be written in terms of the

equilateral basis Sequil
7 and the orthogonal basis Sortho

7 , as

Alead
R = c1S

equil
7 + c2S

ortho
7 , (5.12)

where

c1 =
13

12

[
1

24

(
1− 1

c2s

)
(2 + 3β) +

λ

12Σ
(2− 3β)− δC6

6εs
(2− 3β) +

δC7
3εsc2s

]
, (5.13)

c2 =
14− 13β

12

[
1

8

(
1− 1

c2s

)
− λ

4Σ
+
δC6
2εs

]
. (5.14)

The coefficients c1 and c2 characterize the magnitudes of the three-point correlation function
coming from equilateral and orthogonal contributions, respectively. Finally, we also introduce
the enfolded shape function

Senfold
7 = (Sequil

7 − Sortho
7 )/2 , (5.15)

which has a maximum at k1 → 2k2, k2 → k3. Note that Senfold
7 vanishes at the equilateral

configuration.
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Figure 1. The shape functions F (7equil)
R (1, k2/k1, k3/k1)(k2/k1)2(k3/k1)2 (top left),

F (7ortho)
R (1, k2/k1, k3/k1)(k2/k1)2(k3/k1)2 (top right), and F (7enfold)

R (1, k2/k1, k3/k1)(k2/k1)2(k3/k1)2

(bottom).

In figure 1 we plot the three shape functions F (7equil)
R , F (7ortho)

R and F (7enfold)
R multiplied

by the functions (k2/k1)
2(k3/k1)

2. The correlations of F lead
R = (2π)4Alead

R /
∏3
i=1 k

3
i with the

shape functions Fequil
R , Fortho

R , and Fenfold
R can be evaluated as

Cequil ≡ C(F lead
R ,Fequil

R ) =
8.25104

(
1.44717× 10−2c1 − 1.70045× 10−4c2

)√
1.42610× 10−2c21 + 4.09480× 10−2c22

, (5.16)

Cortho ≡ C(F lead
R ,Fortho

R ) =
5.12494

(
8.23792× 10−4c1 + 3.57273× 10−2c2

)√
1.42610× 10−2c21 + 4.09480× 10−2c22

, (5.17)

Cenfold ≡ C(F lead
R ,Fenfold

R ) =
8.80788

(
6.82395× 10−3c1 − 1.79487× 10−2c2

)√
1.42610× 10−2c21 + 4.09480× 10−2c22

, (5.18)

which depend on the coefficients c1 and c2. In particular, we find C(F (7enfold)
R ,Fenfold

R ) =
0.928621.
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6 Shapes of non-Gaussianities in concrete models

Let us study the non-Gaussianities of concrete models of inflation in which the bispec-
trum (5.12) can be large due to the small scalar propagation speed cs. As we will see below,
there are some models where the orthogonal shape provides an important contribution to the
bispectrum.

6.1 Power-law k-inflation

We first consider k-inflation characterized by

P (φ,X) = K(φ)(−X +X2) , G3 = 0 , G4 = 0 , G5 = 0 , (6.1)

where K(φ) is a function in terms of φ. From the background equations (2.5) and (2.6) it
follows that

K(φ) =
3M2

plH
2

X(3X − 1)
,

Ḣ

H2
= −3(2X − 1)

3X − 1
. (6.2)

As an example, we study power-law inflation characterized by a ∝ t1/γ and H = 1/(γt),
where γ (� 1) is constant. Substituting the Hubble parameter into the second of eq. (6.2),
we obtain X = (3− γ)/[3(2− γ)] and φ = φ0 +

√
(3− γ)/[3(2− γ)] t (φ0 is the initial value

of the field). From the first of eq. (6.2) we find that power-law inflation is realized for the
choice [54]

K(φ) =
6(2− γ)M2

pl

γ2(φ− φ0)2
. (6.3)

In this case c2s and λ/Σ in eq. (5.13) are given by

c2s =
γ

3(4− γ)
,

λ

Σ
=

1

2
(1− c2s) . (6.4)

For γ � 1 we have that 1/c2s ' 12/γ � 1.
In this model (dubbed Model A) the leading-order bispectrum (5.12) reduces to

Alead
R =

13

12

[
−2 + 3β

24c2s
+

1

6
− 1

24
(2− 3β)c2s

]
Sequil
7 − 14− 13β

96

(
1

c2s
− c2s

)
Sortho
7 . (6.5)

In the limit c2s � 1 it follows that Alead
R ' (−0.252/c2s)S

equil
7 + (0.016/c2s)S

ortho
7 . Since in

this limit the non-linear parameters (4.11) and (4.15) are given by f equil,leadNL ' −85/(324c2s)

and f enfold,leadNL ' −1/(32c2s) respectively, the WMAP9 year constraint (1.2) of the equilateral
shape gives the bound c2s > 1.2× 10−3 (95 % CL).

The scalar spectral index (2.25) and the tensor-to-scalar ratio (2.27) can be expressed
in terms of cs, as

nR = 1− 24c2s
1 + 3c2s

, r =
192c3s

1 + 3c2s
. (6.6)

For the ΛCDM model without the running scalar spectral index, the bounds on ns and r from
the WMAP9 data alone are nR = 0.992 ± 0.019 (68 % CL) and r < 0.38 (95 % CL), respec-
tively. If we combine the WMAP9 data with the measurements of high-l CMB anisotropies,
baryon acoustic oscillations, and the Hubble constant, the constraints are nR = 0.9636 ±
0.0084 (68 % CL) and r < 0.13 (95 % CL). If we employ the bound 0.95 < nR < 1 then the
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scalar propagation is constrained to be c2s < 2.1 × 10−3. Since in this case r < 0.018 from
eq. (6.6), the observational constraint on r is satisfied. Combining the bound of c2s with that
of the scalar non-Gaussianity, it follows that 1.2× 10−3 < c2s < 2.1× 10−3.

In figure 2 we plot the shape function F lead
R (1, k2/k1, k3/k1)(k2/k1)

2(k3/k1)
2 for c2s =

2.0×10−3 (labelled as “A” in the figure), where F lead
R = (2π)4Alead

R /
∏3
i=1 k

3
i . When c2s = 2.0×

10−3, the correlations (5.16)–(5.18) are Cequil = −0.99474, Cortho = 0.06305, and Cenfold =
−0.58511, respectively. Hence the shape of non-Gaussianities is close to the equilateral one
illustrated in figure 1, whose property is is independent of the choice of c2s.

6.2 k-inflation with the term G3(X)

We study k-inflation in the presence of the covariant Galileon term G3(X) characterized
by [63, 71]

P (X) = −X +
X2

2M4
, G3(X) =

µX

M4
, (6.7)

where M and µ are constants having a dimension of mass. In this model (dubbed Model
B) the de Sitter solution is present when ε = δPX + 3δG3X = 0. Using eq. (2.5) as well, we
obtain

H2 =
M4

18µ2
(1− x)2

x
,

µ

Mpl
=

1− x
x
√

3(2− x)
, (6.8)

where x = X/M4. As long as inflation is realized in the regime µ/Mpl � 1, x is close to 1.
In what follows we replace x for 1 except for the terms including 1− x.

Along the de Sitter solution we have that λ/Σ = 6c2s/εs, δC6 = δC7 = δG3X = 2(1− x).
Since εs = 2(1− x) and c2s = (1− x)/6, the bispectrum (5.12) reads

Alead
R =

13

12

[
1

4c2s

(
1− β

2

)
− 1

6
(1− 3β)

]
Sequil
7 − 14− 13β

12

(
1

8c2s
− 1

2

)
Sortho
7 . (6.9)

If c2s � 1, we obtain Alead
R ' (0.109/c2s)S

equil
7 + (0.016/c2s)S

ortho
7 together with the non-

linear parameters f equil,leadNL ' 5/(36c2s) and f enfold,leadNL ' −1/(32c2s). Notice that the sign of

f equil,leadNL is opposite to that in Model A. From the WMAP 9 year bound (1.2) it follows that
c2s > 4.3 × 10−4 (95 % CL). In Model B the scalar spectral index is nR = 1, whereas r is
related to c2s via

c2s =
31/3

48
r2/3 . (6.10)

The WMAP9 bound r < 0.38 gives the constraint c2s < 1.6× 10−2. Using the severer bound
r < 0.13, it follows that c2s < 7.7 × 10−3. In both cases there are viable parameter spaces
compatible with the constraint from the scalar non-Gaussainity. When c2s = 2.0× 10−3, for
example, we have Cequil = 0.96865, Cortho = 0.25272, and Cenfold = 0.29984. As we see in
figure 2, the shape of non-Gaussianities for c2s = 2.0 × 10−3 is approximately close to the
equilateral one.

For potential-driven inflation (P = X−V (φ)) with the term G3(X) = µX/M4 [72], the
non-Gaussianities are small because c2s is not much smaller than 1 [73]. In such models, if the
Galileon self-interaction dominates over the standard kinetic term even after inflation, there
is an instability associated with the appearance of the negative c2s after the field velocity φ̇
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Figure 2. The leading-order shape function F lead
R (1, k2/k1, k3/k1)(k2/k1)2(k3/k1)2 for c2s = 2.0 ×

10−3 normalized to 1 at the equilateral configuration. Each panel corresponds to the models A, B,
C, D.

changes its sign [74].5 In the model B discussed above, reheating needs to occur gravita-
tionally [71], so the situation should be different from that in Galileon inflation driven by a
potential with a minimum.

6.3 k-inflation with the term G4(X)

The next model (dubbed Model C) is k-inflation with the covariant Galileon term
G4(X) [62], i.e.,

P (X) = −X +
X2

2M4
, G4(X) =

µX2

M7
. (6.11)

Similar to the case (6.7), there is a de Sitter solution satisfying the conditions

H2 =
M3

36µ

1− x
x

,
µM

M2
pl

=
1− x

6x2(3− 2x)
. (6.12)

5In the framework of the effective field theory the Lagrangian is valid at the energy scale of inflation, but
some higher dimensional operators can appear during the reheating stage. There may be a possibility that
the Laplacian instability can be avoided by such operators.

– 23 –



J
C
A
P
0
3
(
2
0
1
3
)
0
3
0

Inflation occurs in the regime where x = X/M4 is close to 1. Employing the similar
approximation to that used previously, we have δC6 = 2δC7 = 12δG4XX , εs = 8δG4XX ,
δG4XX = (1−x)/3, c2s = 2(1−x)/9, and λ/Σ = 1/2. Hence the bispectrum (5.12) reduces to

Alead
R =

13

12

[
1

24c2s
(4− 3β)− 1

12
(4− 9β)

]
Sequil
7 − 14− 13β

12

(
1

8c2s
− 3

4

)
Sortho
7 . (6.13)

In the limit c2s � 1, we have Alead
R ' (0.018/c2s)S

equil
7 +(0.016/c2s)S

ortho
7 . The equilateral

and orthogonal non-linear parameters in this limit are given by f equil,leadNL ' 25/(648c2s) and

f enfold,leadNL ' −1/(32c2s), respectively. The tighter constraint on c2s comes from the enfolded
bound (1.4) rather than the equilateral bound (1.2), i.e., c2s > 3.6 × 10−4. Note that the
scalar spectral index is nR = 1 and that the same relation as eq. (6.10) holds in Model C.
Hence the upper bound of c2s coming from the observational constraint of r is the same as
that of Model B, i.e., c2s < 1.6× 10−2 for r < 0.38 and c2s < 7.7× 10−3 for r = 0.13.

In figure 2 we plot the shape of non-Gaussianities for c2s = 2.0 × 10−3, in which case
the shape is between the equilateral and orthogonal ones shown in figure 1. In fact, we
have Cequil = 0.58145, Cortho = 0.75322, and Cenfold = −0.33691 for c2s = 2.0 × 10−3. The
orthogonal contribution tends to be less important for the values of c2s larger than the order
of 10−2.

6.4 k-inflation with the term G5(X)

Finally we study the following model (dubbed Model D) [62]

P (X) = −X +
X2

2M4
, G5(X) =

µX2

M10
. (6.14)

In this case, for x = X/M4 close to 1, there is a de Sitter solution satisfying the conditions
H2 = M4/(6M2

pl) and µ2M4/M6
pl = 27(1 − x)2/25. Since δC6 = 3δC7 = 36(1 − x)/5,

εs = 18(1− x)/5, c2s = 3(1− x)/10, and λ/Σ = 1/2, the bispectrum is given by

Alead
R =

13

12

[
− 1

c2s

(
β

8
− 5

36

)
− 1

2
+ β

]
Sequil
7 − 14− 13β

12

(
1

8c2s
− 1

)
Sortho
7 . (6.15)

In the limit c2s � 1 we have Alead
R ' (−0.012/c2s)S

equil
7 + (0.016/c2s)S

ortho
7 = −(0.023/c2s)

Senfold
7 + (0.005/c2s)S

ortho
7 , in which case the sign in front of the shape Sequil

7 in eq. (6.15)
is opposite to those in the models B and C. In the same limit the equilateral and enfolded
non-linear parameters are f equil,leadNL ' 5/(972c2s) and f enfold,leadNL ' −1/(32c2s), respectively.

In this case f equil,leadNL is smaller than |f enfold,leadNL | by one order of magnitude. The WMAP
9 year enfolded bound (1.4) gives the constraint c2s > 3.6 × 10−4. In model D we have that
nR = 1 and that the relation between r and c2s is the same as eq. (6.10). Hence the upper
bound on c2s is the same as that of Models B and C.

The shape of non-Gaussianities for c2s = 2.0×10−3 is plotted in figure 2. When c2s = 2.0×
10−3 the correlations (5.16)–(5.18) are Cequil = −0.35587, Cortho = 0.83546, and Cenfold =
−0.90787, respectively, in which case the shape has quite high (anti)-correlations with both
the orthogonal and enfolded templates. In figure 3 we show the correlations Cequil, Cortho,
and Cenfold versus c2s. For c2s & 0.04 the correlation with the equilateral template is larger
than those with other templates. For c2s . 0.04 the contributions of the orthogonal and
enfolded shapes tend to be important. In the limit that c2s � 1, |Cenfold| is largest among
other correlations. Model D is an explicit example where the orthogonal (or enfolded) shape
provides a significant contribution to the bispectrum.
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Figure 3. The correlations (5.16)–(5.18) versus c2s for Model D. In the limit that c2s � 1, |Cenfold|
and |Cortho| are larger than |Cequil|. On the other hand, for c2s & 0.04, |Cequil| is largest.

7 Conclusions

In the Horndeski’s most general scalar-tensor theories we derived the three-point correlation
function of primordial curvature perturbations generated during inflation in the presence of
slow-variation corrections to the leading-order bispectrum. Unlike previous works [61, 62],
the bispectrum (3.53) is valid for any shape of non-Gaussianities at first order of ε.

In the squeezed limit (k3 → 0, k1 → k2) the leading-order bispectrum (3.54) vanishes, so
that the correction (3.55) is the dominant contribution to AR. By using eq. (3.55), we showed
that the non-linear parameter in this limit is given by f localNL = (5/12)(1 − nR). This agrees
with the result of refs. [12, 47] in which the three-point correlation function was derived by
dealing with the long-wavelength curvature perturbation (mode k3) as a classical background.
As demonstrated in ref. [47], this result should be valid for any single-field inflation in which
the decaying mode of R is neglected relative to the growing mode. Our direct computation of
the three-point correlation function in the presence of all possible slow-variation corrections
is another independent proof that the non-Gaussianity consistency relation holds for most
general single-field theories with second-order equations of motion.

The result of the local non-Gaussianities shows that |f localNL | is much smaller than 1, e.g.,
f localNL = 0.0125 for nR = 0.97. In the case where the shape of non-Gaussianities is not exactly
the squeezed one (0 < r3 = k3/k1 � 1), the leading-order bispectrum gives the non-linear
parameter |f leadNL | ≈ r23/c

2
s. Hence the leading-order term dominates over the correction for

r3 > cs
√

1− nR. For the models with c2s � 1 the non-linear parameter can be as large as
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|fNL| > 1 with the growth of r3. By measuring the shape which is not so squeezed, it should
be possible to discriminate the models with different values of c2s. The leading-order non-
linear parameters in the equilateral and enfolded limits are given by eqs. (4.11) and (4.15),
respectively, whose magnitudes can be larger than 1 for the models with c2s � 1. These results
will be useful to constrain concrete models of inflation in future high-precision observations.

We also showed that the leading-order bispectrum can be expressed in terms of the
sum of the two bases Sequil

7 and Sortho
7 . The shape Sequil

7 is very highly correlated with the
equilateral template (5.5). It also vanishes in both local and enfolded limits. The shape Sortho

7 ,

which is defined by (5.9), is exactly orthogonal to Sequil
7 . The coefficients c1 and c2 in front

of Sequil
7 and Sortho

7 in eq. (5.12) characterize the equilateral and orthogonal contributions,
respectively.

In section 6 we presented concrete models in which the orthogonal shape can pro-
vide important contributions to the bispectrum. In power-law k-inflation the shape of non-
Gaussianities is well approximated by the equilateral type. However, in k-inflation described
by the Lagrangian P (X) = −X +X2/(2M4) with a number of different Galileon terms like
G4(X) = µX2/M7 and G5(X) = µX2/M10, we found that the orthogonal contribution is
crucially important for c2s � 1. In the presence of the term G5(X) = µX2/M10, the correla-
tions with the orthogonal and enfolded templates in the regime c2s � 1 are higher than that
with the equilateral template.

It will be interesting to see how the observations such as Planck [75] provide the con-
straints on the scalar non-Gaussianities as well as the scalar spectral index and the tensor-
to-scalar ratio. In particular, if future observations confirm the value |f localNL | > 1 at more
than 95 % CL, this implies that we need to go beyond the slow-variation single-field infla-
tionary scenario (including the Horndeski’s theories). The information of other shapes of
non-Gaussianities (including the not so squeezed one) will be useful to discriminate between
many different models.
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A Corrections to the bispectrum

Following the calculations of ref. [56] we present the explicit forms of the corrections to the
bispectrum (3.25). They come from the first three integrals in the action (3.19). We write

each O(ε) contribution to the bispectrum as ∆A(i)
R (i = 1, 2, 3). Note that similar calculations

were also carried out in ref. [31].
(i)
∫
dt d3x a3C̃1M2

plRṘ2

• (a) The correction from the variation of C̃1 in eq. (3.39)

∆A(1)
R ⊃ −

(
c2s

4εsF

1

H

dC̃lead1

dt

)
K

[
(1− 2γ1)

1

K

∑
i>j

k2i k
2
j − (1− γ1)

1

K2

∑
i 6=j

k2i k
3
j

]
. (A.1)
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• (b) The correction from the scale factor a in eq. (3.40)

∆A(1)
R ⊃

(
c2s ε

2εsF
C̃lead1

)
K

[
(1 + 2γ1)

1

K

∑
i>j

k2i k
2
j − γ1

1

K2

∑
i 6=j

k2i k
3
j

]
. (A.2)

• (c) The contribution from the correction to u(0, ki) in eq. (3.42)

∆A(1)
R ⊃−

(
c2s

4εsF
C̃lead1

)
K

[
3(1+γ2)ε+

3γ2
2
ηsF +3

(
1+

γ2
2

)
s+
(
ε+

ηsF
2

+
s

2

)
ln
k1k2k3
K3

]
×
(

2

K

∑
i>j

k2i k
2
j −

1

K2

∑
i 6=j

k2i k
3
j

)
. (A.3)

• (d) The contribution from the correction to u∗(τ, ki) in eq. (3.44)

∆A(1)
R ⊃

(
c2s

4εsF
C̃lead1

)
K

[
3(1− 2γ1)s

(k1k2k3)
2

K3
−
{

(1 + 2γ1)ε+

(
γ1−

1

2

)
ηsF +

(
3

2
+γ1

)
s

}
× 1

K

∑
i>j

k2i k
2
j +

{
γ1ε−

1

2
(1−γ1)ηsF +

1

2
(1+γ1)s

}
1

K2

∑
i 6=j

k2i k
3
j

+
(
ε+

ηsF
2

+
s

2

)(k22k23
k1
G + perm.

)]
, (A.4)

where

G(k1, k2, k3) ≡ Re

[∫ ∞
0

dx1 h
∗(x1)e

− k2+k3
k1

x1

]
,

and x1 = −k1csKτ .

• (e) The contribution from the correction to d
dτ u
∗(τ, ki) in eq. (3.45)

∆A(1)
R ⊃ −

(
c2s

4εsF
C̃lead1

)
K

[
{2(1 + 2γ1)ε+ (2γ1 − 1)(ηsF − 3s)} 1

K

∑
i>j

k2i k
2
j

+(2ε+ ηsF + s)k1k2k3 − {2γ1ε+ (γ1 − 1)ηsF + (4− 6γ1)s}
1

K2

∑
i 6=j

k2i k
3
j

+(1− 2γ1)s

(
1

K3

∑
i 6=j

k2i k
4
j +

2

K3

∑
i>j

k3i k
3
j

)
− (2ε+ ηsF + s)

×
{∑

i

k3i +
∑
i 6=j

kik
2
j +

∑
i

k3i Re

∫ ∞
0

dxK
e−ixK

xK
− 1

2
(M+ perm.)

}]
, (A.5)

where xK = −KcsKτ , and

M(k1, k2, k3) ≡ −k1Re

[∫ ∞
0

dx1
1

x1

(
k22 + k23 + ik2k3

k2 + k3
k1

x1

)
e
−i k2+k3

k1
x1 dh

∗(x1)

dx1

]
.

(ii)
∫
dt d3x a C̃2M2

plR(∂R)2
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• (a) The correction from the variation of C̃2

∆A(2)
R ⊃ −

(
1

4εsF

1

H

dC̃lead2

dt

)
K

[
(1− γ1)

(
1

2

∑
i

k3i −
1

K2

∑
i 6=j

k2i k
3
j

)
− 1

2
k1k2k3

+
1− 2γ1
K

∑
i>j

k2i k
2
j +

1

2

∑
i 6=j

kik
2
j

]
. (A.6)

• (b) The correction from the scale factor a

∆A(2)
R ⊃

(
ε

2εsF
C̃lead2

)
K

[
γ1

(
1

2

∑
i

k3i −
1

K2

∑
i 6=j

k2i k
3
j

)
+

1

2
k1k2k3

+
1 + 2γ1
K

∑
i>j

k2i k
2
j −

1

2

∑
i 6=j

kik
2
j

]
. (A.7)

• (c) The contribution from the correction to u(0, ki)

∆A(2)
R ⊃−

(
1

4εsF
C̃lead2

)
K

[
3(1+γ2)ε+

3γ2
2
ηsF +3

(
1+

γ2
2

)
s+
(
ε+

ηsF
2

+
s

2

)
ln
k1k2k3
K3

]
×
(

1

2

∑
i

k3i +
2

K

∑
i>j

k2i k
2
j −

1

K2

∑
i 6=j

k2i k
3
j

)
. (A.8)

• (d) The contribution from the correction to u∗(τ, ki)

∆A(2)
R ⊃

−
(

1

8εsF
C̃lead2

)
K

[{
3γ1ε+

3

2
(γ1 − 1)ηsF +

3

2
(1 + γ1)s

}∑
i

k3i

−3
(
ε+

ηsF
2

+
s

2

)∑
i 6=j

kik
2
j +

{
3ε+

3

2
ηsF +

(
5

2
−2γ1

)
s

}
k1k2k3

+ {6(1 + 2γ1)ε− 3(1− 2γ1)ηsF + (5 + 6γ1)s}
1

K

∑
i>j

k2i k
2
j

−{6γ1ε+3(γ1−1)ηsF +(1+6γ1)s}
1

K2

∑
i 6=j

k2i k
3
j−(1+γ1)s

1

K

∑
i

k4i

− γ1s
1

K2

∑
i 6=j

kik
4
j + (2ε+ ηsF + s)(N + perm.)

]
, (A.9)

where

N (k1, k2, k3)≡
k1
2

∑
i

k2i Re

[∫ ∞
0
dx1

1

x21
e
−ix1 k2+k3k1

(
−1− ik2 + k3

k1
x1+

k2k3
k21

x21

)
h∗(x1)

]
.

Note that the coefficient C̃lead2 is related to C̃lead1 via C̃lead2 = −(c2s/3)C̃lead1 .

(iii)
∫
dt d3x a3C̃3MplṘ3
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• (a) The correction from the variation of C̃3

∆A(3)
R ⊃

(
3(2γ1 − 3)c2s

4εsFMpl

dC̃lead3

dt

)
K

(k1k2k3)
2

K3
. (A.10)

• (b) The correction from the scale factor a

∆A(3)
R ⊃

(
3(2γ1 − 1)c2s εH

4εsFMpl
C̃lead3

)
K

(k1k2k3)
2

K3
. (A.11)

• (c) The contribution from the correction to u(0, ki)

∆A(3)
R ⊃−

(
3Hc2s

2εsFMpl
C̃lead3

)
K

[
3(1 + γ2)ε+

3

2
γ2ηsF + 3

(
1 +

γ2
2

)
s

+
(
ε+

ηsF
2

+
s

2

)
ln
k1k2k3
K3

]
(k1k2k3)

2

K3
. (A.12)

• (d) The contribution from the correction to d
dτ u
∗(τ, ki)

∆A(3)
R ⊃

(
3Hc2s

4εsFMpl
C̃lead3

)
K

[{
3(1− 2γ1)ε+ 3

(
3

2
− γ1

)
ηsF +

(
3γ1 −

17

2

)
s

}
(k1k2k3)

2

K3

+
(
ε+

ηsF
2

+
s

2

){( 1

K2

∑
i 6=j

k2i k
3
j −

2

K

∑
i>j

k2i k
2
j

)
+ U

}]
,

(A.13)

where U is defined in eq. (3.51).

B Expressions for U and V

We evaluate the integrals U and V defined in eqs. (3.51) and (3.50) for general values of
r2 = k2/k1, r3 = k3/k1, and in three different limits: local shapes (r3 → 0, r2 = 1), equilateral
(r3 = 1, r2 = 1), and enfolded (r3 → 1/2, r2 → 1/2) shapes. In doing so, we need to use the
following relations

h∗(x) = 2 sin(x) + [sin(x)− x cos(x)]Ci(2x)− [cos(x) + x sin(x)]Si(2x)

+i {2 cos(x) + π sin(x)− πx cos(x)− [cos(x) + x sin(x)]Ci(2x)

−[sin(x)− x cos(x)]Si(2x)} , (B.1)

dh∗(x)

dx
= cos(x)− sin(x)/x+ x sin(x)Ci(2x)− x cos(x)Si(2x)

+i [πx sin(x)− sin(x)− cos(x)/x− x cos(x)Ci(2x)− x sin(x)Si(2x)] . (B.2)

The U integral

Let us first evaluate the integral U . We employ a few different procedures of regularizations,
but they lead to the same final results. One possibility is to solve directly the integral, as

U =

∫ ∞
0

fU (x1) dx1 + perm. = lim
y→∞

∫ y

0
fU (x1) dx1 + perm. , (B.3)
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where fU is the integrand in eq. (3.51). We can either neglect the terms which rapidly oscillate
around 0, or we can, equivalently, shift y in the complex domain for the oscillating terms
like e±iky → e±ikρ

2(1±i/ρ) → 0 (Method I). Another possible method (Method II) consists of
solving the following limit

U =

∫ ∞
0

fU (x1) dx1 + perm. = lim
c→0

∫ ∞
0

e−cx1 fU (x1) dx1 + perm. . (B.4)

We need to check whether both methods lead to the same results, and we can — at least
for some values of r2, r3 this proves to be possible — check the result against numerical
integrations.

By employing the Method I mentioned above, the result of the integration is

U(r2, r3) = k31

[
4r22r

3
3

(
3r22 − 6r2 + r23 + 3

)
(r2 − r3 − 1) 3 (r2 + r3 − 1) 3

− 2r22r
2
3

(r2 − r3 + 1) 3

]
ln 2

+
k31

(r2 + r3 + 1) 2

{
[(r2 + 1)3 − 6r23 (r2 + 1) + r33]r22

(r2 − r3 + 1)2

+
r23[r32 + 3r3r

2
2 + 3(r23 − 2)r2 + r33 − 6r3 + 1]r22

(r2 + r3 − 1)2

+
r23[r32 − 6 (r3 + 1) r22 + (r3 + 1)3]

(1− r2 + r3) 2
+

2r23 (r2 + r3 + 1) 2r22
(r2 − r3 + 1) 3

ln

(
r2 + r3 + 1

r3

)
+

2r23 (r2 + r3 + 1) 2r22
(1− r2 + r3) 3

ln

(
r2 + r3 + 1

r2

)
+

2r23 (r2 + r3 + 1) 2r22
(r2 + r3 − 1) 3

ln(r2 + r3 + 1)

}
,

(B.5)

where U(r1, r2) = U(r2, r1), that is U is symmetric under the exchange r1 ↔ r2.
Let us consider this general expression in several different cases. Some of these cases

look — only apparently — singular: this behavior takes place as the triangle of the momenta
ki degenerates into a line.

• Equilateral case, r2 = r3 = 1. In this case we find

U(1, 1) = Uequil = [6 ln(3/2)− 1] k31 ≈ 1.43279 k31 . (B.6)

Since there is no apparent singular behavior for U , this result can also be confirmed
numerically.6

• Local case, r2 = 1, r3 → 0 (or r2 → 0, r3 = 1). In this case, the limit exists and gives

lim
r3→0

U(1, r3) = Ulocal =
1

2
k31 . (B.7)

The result in the local case matches with that derived by Chen et al. [56].

• Singular line, r3 = limε→0(1− r2 + ε), with 0 < r2 < 1. In this case we find

lim
ε→0
U=

r2{(r2−1)r2[20 (r2−1) r2+9]+6}(r2−1)−6(r2 − 1)3 ln(1− r2) + 6r32 ln r2
24 (r2 − 1) r2

k31 .

(B.8)
The limits r2 → 0, 1 give again the local result, as expected.

6Mathematica, working in high precision, returns this same numerical value. The same value can also be
found by applying the Method II mentioned above.
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• Enfolded case, r2 = 1/2, r3 = limε→0(1/2 + ε). This is a particular case of the previous
one. Then we find

lim
ε→0
U = Uenfold =

1

24
(5 + 6 ln 2)k31 ≈ 0.38162 k31 . (B.9)

• Singular line, r3 = limε→0(r2 − 1 + ε), with r2 > 1. In this case we obtain

lim
ε→0
U=

(r2 − 1) {r2[r2
(
6r22 − 9r2 + 29

)
− 40] + 20}+6r32

[
(r2 − 1)3 ln

(
r2
r2−1

)
+ ln r2

]
24 (r2 − 1) r2

k31.

(B.10)
In the limit r2 → 1+, this reproduces the local limit result, as expected.

• Singular line, r3 = limε→0(1 + r2 − ε). In this case we find

lim
ε→0
U =

r2
{
r2{r2[3r2(2r2+5)+38]+15}+6

}
+6r32(r2+1)3 ln

(
1
r2

+1
)

+6(r2+1)3 ln(r2 + 1)

24r2 (r2 + 1)
k31 ,

(B.11)

which recovers the local limit as r2 = ε→ 0.

Therefore, we have shown that the physical limits are all finite.

The V integral

The next step is to compute the integral (3.50). It is convenient to solve the integral by
studying the limit

V = lim
ε→0

lim
y→∞

∫ y

ε
fV(x1)dx1 + perm. , (B.12)

where fV is the integrand in eq. (3.50). As for the y →∞ limit, we set the rapidly oscillating
functions to vanish by regularizing e±iky as in the Method I of the integral U . After taking
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the limit ε→ 0, we finally obtain

V =

k31
3(r2 − r3 − 1)(r2 + r3 − 1)(r2 + r3 + 1)

[3r62 + 6r3r
5
2 + r42(r23 − 9r3 − 3)

+ r3r
3
2(6r23 − 13r3 + 3) + 3r43r

2
2 + 3− 15r33r

2
2 − 4r23r

2
2 + 3r22(r3 − 1)

− 12r53(r2 + 1)− r2r3(19r33 + 15r23 + 13r3 + 9)− 7r63 + 3r43 + 6r33 + r23 + 6r3]

+
k31

6(r2 − r3 + 1)(r2 + r3 + 1)
(7r52 + 5r3r

4
2 + 19r42 − 6r23r

3
2 + 5r3r

3
2 + 14r32 − 6r33r

2
2+6r23r

2
2

+ 4r3r
2
2 + 14r22 − r33r2 + 6r23r2 + 5r3r2 + 19r2 + r53 − r43 − 6r33 − 6r23 + 5r3 + 7− r43r2)

− k31 ln 2

3(r2 − r3 − 1)2(r2 + r3 − 1)2
r33 (5r42 − 20r32 − 6r23r

2
2+22r22+4r23r2−20r2+r43−6r23+5)

+
k31 ln(r2 + r3 + 1)

6 (r2 + r3 − 1) 2
(r52 + 2r3r

4
2 − 2r42 − 3r23r

3
2 − 2r3r

3
2 − 3r32 − 3r33r

2
2+8r23r

2
2−8r3r

2
2+3r22

+ 2r43r2 − 2r33r2 − 8r23r2 − 2r3r2 + 2r2 + r53 − 2r43 − 3r33 + 3r23 + 2r3 − 1)

−
k31 ln

(
r2+r3+1

r2

)
6 (r2 − r3 − 1) 2

(r52 − 2r3r
4
2 − 2r42 − 3r23r

3
2 + 2r3r

3
2 − 3r32 + 3r33r

2
2 + 8r23r

2
2 + 8r3r

2
2 + 3r22

+ 2r43r2 + 2r33r2 − 8r23r2 + 2r3r2 + 2r2 − r53 − 2r43 + 3r33 + 3r23 − 2r3 − 1)

+
k31 ln

(
r2+r3+1

2r3

)
6 (r2 − r3 + 1) 2

(r52 − 2r3r
4
2 + 2r42 − 3r23r

3
2 − 2r3r

3
2 − 3r32 + 3r33r

2
2 − 8r23r

2
2 + 8r3r

2
2 − 3r22

+ 2r43r2 − 2r33r2 − 8r23r2 − 2r3r2 + 2r2 − r53 + 2r43 + 3r33 − 3r23 − 2r3 + 1) , (B.13)

where V(r1, r2) = V(r2, r1). Let us now analyze this expression, on the lines/points of physical
interest.

• Equilateral case, r2 = r3 = 1. In this case we find

V(1, 1) = Vequil =
15

2
[2 + ln(2/3)] k31 ≈ 11.959 k31 . (B.14)

• Local case, r2 = 1, r3 → 0 (or r2 → 0, r3 = 1). In this case, the limit exists and gives

lim
r3→0+

V(1, r3) = Vlocal =
20

3
k31 , (B.15)

where this value of Vlocal matches with the one derived by Chen et al. [56].

• Singular line, r3 = limε→0(1− r2 + ε), with 0 < r2 < 1. In this case we obtain

lim
ε→0
V=
{(r2 − 1)r2[11(r2 − 1)r2−105]−86}r2(1− r2)+6(r2 − 1)3 ln(1−r2)−6r32 ln r2

12 (r2−1) r2
k31 .

(B.16)
The limits r2 → 0, 1 again give the result (B.15).

• Enfolded case, r2 = 1/2, r3 = limε→0(1/2 + ε). This is a particular case of the previous
one. Then we find

lim
ε→0
V = Venfold =

(
315

64
− 1

2
ln 2

)
k31 ≈ 4.5753 k31 . (B.17)
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• Singular line, r3 = limε→0(r2 − 1 + ε), with r2 > 1. In this case we find

lim
ε→0
V =

(r2−1)
[
{r2[r2(86r2−105)+94]+22}r2−6(r2 − 1)2r32 ln

(
r2
r2−1

)
− 11

]
− 6r32 ln r2

12 (r2 − 1) r2
k31 .

(B.18)

Taking the limit r2 → 1+, we recover the result (B.15).

• Singular line, r3 = limε→0(1 + r2 − ε). In this case we obtain

lim
ε→0
V =

r2
(
r2{r2[r2(86r2+239)+295]+239}+86

)
−6r32(r2+1)3 ln

(
1
r2

+1
)
−6(r2+1)3 ln(r2+1)

12r2 (r2+1)
k31 ,

(B.19)

which again reproduces the value (B.15) as r2 = ε→ 0.

Therefore, the integral V remains finite in the physical parameter space of r2 and r3.
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