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Abstract 

Coherent states are quantum states which are importance for both theoretical and 

experimental sides. Their theoretical constructions in quantum harmonic oscillator are 

simple, but they possess many important properties. In this work, we study coherent states 

for Newton-equivalent quantum harmonic oscillator, which are models of a one-parameter 

family of Hamiltonians alternative to the standard quantum harmonic oscillator. When the 

value of the parameter tends to zero, one recovers the standard quantum harmonic 

oscillator. The coherent states are perturbatively constructed up to the second order in the 

parameter. Then the uncertainty relations for some of the states are considered. In 

particular, we consider the case || < 2, where  is the complex number characterising the 

coherent states. The results suggest that the product of the uncertainty in measuring the 

position and the momentum takes, to a good approximation, the minimal value. This 

behaviour agrees with that of the coherent states for the standard quantum harmonic 

oscillator. 
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 perturbation, uncertainty relation

Introduction 

Coherent states are quantum states of 

theoretical importance and with wide range of 

applications in physics. The simplest examples 

of coherent states are those coming from 

quantum harmonic oscillator (QHO). By  

 

 

 
 

definition, a coherent state is an eigenstate of 

the lowering operator. The corresponding 

eigenvalue is a complex number. This kind  

of states has various important properties.  

For example, they can be thought of as being a 
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ground state which is shifted in the phase space 

in such a way that the real part of the 

eigenvalue is proportional to the displacement 

along the x-direction, whereas the imaginary 

part is proportional to the displacement along 

the p-direction. Another example is that the 

measurements of position and momentum in 

these states satisfy the minimal value of 

uncertainty. So these states can be thought to 

be the most classical. 

Coherent states also arise in the context 

of quantum optics. The quantisation of the 

oscillation of electromagnetic wave gives  
rise to operators which create or destroy  
one photon in a photon number state. In  
this context, coherent states are certain 

superpositions of photon number states in such 

a way that they are eigenstates to the 

annihilation operators. The probability of 

detecting a number of photons in a coherent 

state satisfies Poisson distribution. As for 

applications of coherent states, the basic 

example is that a laser beam is a coherent state. 

Laser beams are stable thanks to the property 

of coherent states. This is in the sense that even 

after one photon is detected (theoretically, this 

is by acting on the coherent state with an 

annihilation operator), the coherent state 

remains the same. 

For more details on theoretical 

importance and applications of coherent states, 

see for example (Glauber, 1963; Klauder and 

Skagerstam, 1985; Gazeau, 2009; Combescure 

and Robert, 2012). For us, however, we will 

focus on the issue closely related to QHO 

coherent states and their uncertainty relations. 

In Hamiltonian mechanics, one considers 

a Hamiltonian which is a classical function  
of position and momentum. The Hamilton's 

equations of the Hamiltonian govern the 

dynamics of the classical system. For a particle 

moving in one-dimension, one may derive 

Newton’s equations from an appropriately 

given Hamiltonian. It turns out however  
that different Hamiltonians can give rise to  
the same Newton’s equations. This poses  
no problem in classical physics. After 

quantisation, however, these Hamiltonians 

may lead to different physics from one another.  

 

It is therefore important to be able to 

distinguish different physical phenomena 

corresponding to these Hamiltonians. 

For quantum harmonic oscillator, the 

reference (Degasperis and Ruijsenaars, 2001) 

gives a one-parameter family of Hamiltonians 

all of whose classical version give rise to the 

same Newton’s equation for simple harmonic 

oscillator. The energy spectrum and the 

corresponding eigenstates are derived. This is 

a first step to study physical phenomena 

relating to these Hamiltonians. It turns out, 

however, that not much has been done along 

this direction. As far as we are aware, there has 

only been several related works. For example, 

a mathematical extension to this work is given 

in (Odake and Sasaki, 2011), the explanations 

of related systems are given in (Calogero and 

Degasperis, 2004; Tita and Vanichchapongjaroen, 

2018; Janaun and Vanichchapongjaroen, 

2019). 

To distinguish from the quantum 

harmonic oscillator with standard Hamiltonian 

and those with the one-parameter family in 

(Degasperis and Ruijsenaars, 2001), let us 

keep labelling the quantum harmonic oscillator 

with standard Hamiltonian as QHO. But for the 

quantum harmonic oscillator with the one-

parameter family of Hamiltonians, we will call 

them as Newton-equivalent quantum harmonic 

oscillator (NEQHO). We will give more 

details about the NEQHO in the main sections. 

In this paper, we present our investigation 

of coherent states corresponding to NEQHO 

Hamiltonians. In particular, we attempt to 

work out the uncertainty relations of these 

coherent states and argue whether it is possible 

to distinguish them from the coherent states 

corresponding to QHO Hamiltonians. 

Theoretical Background 

Coherent States of Quantum Harmonic 

Oscillator 

The Hamiltonian of one-dimensional 

QHO is given by 
 

𝐻̂ =
𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2,  (1) 
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where 𝑥̂  and 𝑝̂  are position and momentum 

operators respectively. These operators can be 

given in coordinate space representation as 

𝑥̂ = 𝑥  and 𝑝̂ = −𝑖ℏ𝜕𝑥  respectively. The time 

independent Schrödinger’s equation 

 

𝐻̂𝜙𝑛(𝑦) = 𝐸𝑛𝜙𝑛(𝑦),  (2) 

 

can be solved by using lowering and raising 

operators 
 

𝑎̂ =
1

√2
(𝑦̂ + 𝑖𝑝̂𝑦), (3) 

 

𝑎̂† =
1

√2
(𝑦̂ − 𝑖𝑝̂𝑦), (4) 

 

where 𝑦 = √𝑚𝜔/ℏ 𝑥, and correspondingly, 

 

𝑦̂ = √
𝑚𝜔

ℏ
𝑥̂,  𝑝̂𝑦 =

1

√𝑚𝜔ℏ
𝑝̂. (5) 

 

By following the standard procedure, this 

gives the eigenenergies  
 

𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
), for 𝑛 = 1,2,3, …, (6) 

 

and the corresponding normalised eigenstates 
 

𝜙𝑛(𝑦) = (
𝑚𝜔

𝜋ℏ
)

1

4 (−1)𝑛𝑒
𝑦2

2

√2𝑛𝑛!

𝑑𝑛𝑒−𝑦2

𝑑𝑦𝑛
. (7) 

 

Coherent states are eigenstates to the 

annihilation operator. The eigenvalues are 

complex numbers labelled as α. Therefore, the 

corresponding eigenvalue equation is given by 
 

𝑎̂ 𝜓𝛼(𝑦) = 𝛼 𝜓𝛼(𝑦), (8) 
 

whose normalised eigenfunction is 
 

𝜓𝛼(𝑦) = 𝑒−
|𝛼|2

2 ∑
𝛼𝑛

√𝑛!
𝜙𝑛(𝑦)∞

𝑛=0 . (9) 

 

One of the special features of coherent 

states is that the measurements of position and 

momentum satisfies the minimal value of 

uncertainty. That is, the coherent state wave 

functions in Equation (9) all satisfy 
 

(𝛥𝑦)𝛼(𝛥𝑝𝑦)𝛼 =
1

2
, (10) 

 

where 

 

(𝛥𝑦)𝛼 = √⟨𝑦̂2⟩𝛼 − ⟨𝑦̂⟩𝛼
2 , (11) 

 

(𝛥𝑝𝑦)𝛼 = √⟨𝑝̂𝑦
2⟩

𝛼
− ⟨𝑝̂𝑦⟩

𝛼

2
, (12) 

 

with 

 

⟨𝑂̂⟩
𝛼

≡ √
ℏ

𝑚𝜔
∫ 𝑑𝑦𝜓𝛼

∗∞

−∞
(𝑦)𝑂̂𝜓𝛼(𝑦). (13) 

 

Newton-Equivalent Hamiltonians for 

Quantum Harmonic Oscillator 

In the study of Hamiltonian mechanics, 

one starts with a Hamiltonian of the system of 

interest, then one uses Hamilton’s equations to 

obtain the equations of motion. Conversely, 

given the equations of motion, one may ask for 

the Hamiltonian which gives rise to these 

equations. In general, the Hamiltonians are not 

unique. This non-uniqueness poses no problem 

in classical mechanics. This is because, it is the 

equations of motion that determines the 

physics of the system. 

The situation is different in the case of 

quantum mechanics. The existence of multiple 

possible Hamiltonians for a single system 

would lead to a problem. After all, physics in 

quantum mechanical systems heavily rely on 

Hamiltonians. In principle, different Hamiltonians 

would lead to different eigenenergies and the 

corresponding eigenstate wave functions. 

The reference (Degasperis and Ruijsenaars, 

2001) starts by giving alternative forms of 

Hamiltonian for a particle of mass m moving 

in one dimension under a potential V(x). By 

substituting Hamilton’s equations 

 

𝑥̇ =
𝜕𝐻

𝜕𝑝
, 𝑝̇ = −

𝜕𝐻

𝜕𝑥
 (14) 

 

into the Newton’s equation 

 

𝑚𝑥̈ + 𝑉′(𝑥) = 0, (15) 

 

they obtained 

 
𝜕2𝐻

𝜕𝑥𝜕𝑝

𝜕𝐻

𝜕𝑝
−

𝜕2𝐻

𝜕𝑝2

𝜕𝐻

𝜕𝑥
+

1

𝑚

𝑑𝑉

𝑑𝑥
= 0. (16) 
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One of the important forms of the 

Hamiltonians satisfying Equation (16) is given 

by 

 

𝐻𝛽 =
1

𝑚𝛽2
𝑐𝑜𝑠ℎ(𝛽𝑝) (1 + 2𝑚𝛽2𝑉(𝑥))

1

2 −
1

𝑚𝛽2
, 

𝛽 ∈ (−∞, ∞). (17) 

 
In the limit β → 0, one recovers the standard 

form of the Hamiltonian: 

 

𝑙𝑖𝑚
𝛽→0

 𝐻𝛽 =
𝑝2

2𝑚
+ 𝑉(𝑥) (18) 

 
The quantum version of Equation (17) for 

the case of simple harmonic oscillator are also 

constructed in (Degasperis and Ruijsenaars, 

2001). In our notation and after appropriate 

shift, the Hamiltonians are given in the 

coordinate space representation as 

 

𝐻̂𝜆 =
ℏ𝜔

2𝜆2
((1 + 𝑖𝜆𝑦)

1

2 𝑒𝑥𝑝(−𝑖𝜆𝜕𝑦) (1 − 𝑖𝜆𝑦)
1

2 +

𝑐. 𝑐. ) −
ℏ𝜔

𝜆2 +
1

2
ℏ𝜔, (19) 

 

where 

 

m  =
. (20) 

 
Let us call these Hamiltonians as NEQHO 

Hamiltonians. The energy spectrum and the 

corresponding eigenstate wavefunctions are 

obtained by using ladder operators. These 

operators no longer take the same form as  

their counterparts in the standard QHO 

Hamiltonian. Instead, the lowering operator is 

given by 

 

𝐴̂𝜆 =
1

√2
(𝑦 +

𝑖

2𝜆
((1 + 𝑖𝜆𝑦)

1

2 𝑒𝑥𝑝(−𝑖𝜆𝜕𝑦) (1 −

𝑖𝜆𝑦)
1

2 − 𝑐. 𝑐. )),  (21) 

 
and the raising operator is 

 

𝐴̂𝜆
† =

1

√2
(𝑦 −

𝑖

2𝜆
((1 + 𝑖𝜆𝑦)

1

2 𝑒𝑥𝑝(−𝑖𝜆𝜕𝑦) (1 −

𝑖𝜆𝑦)
1

2 − 𝑐. 𝑐. )). (22) 

To justify that they are indeed ladder operators, 

it can be checked that 

 

[𝐻̂𝜆, 𝐴̂𝜆] = −ℏ𝜔𝐴̂𝜆, [𝐻̂𝜆, 𝐴̂𝜆
†] = ℏ𝜔𝐴̂𝜆

†
. (23) 

 

The eigenvalue equation for NEQHO 

Hamiltonian is given by 

 

𝐻̂𝜆𝛷𝑛
(𝜆)

(𝑦) = 𝐸𝑛
(𝜆)

𝛷𝑛
(𝜆)

(𝑦). (24) 

 

By using ladder operators, it can be shown that 

the eigenenergies are 

 

𝐸𝑛
(𝜆)

= (𝑛 +
1

2
) ℏ𝜔, 𝑛 = 0,1,2, …, (25) 

 

which agree with the results from standard 

QHO Hamiltonian. As for the eigenstate wave 

functions, however, they do not agree with 

their counterparts from the standard QHO 

Hamiltonian. The wave functions can be 

obtained by first solving the equation 

𝐴̂𝜆𝛷0
(𝜆)

= 0  to obtain the ground state wave 

function, then repeatedly applying the raising 

operator on 𝛷0
(𝜆)(𝑥)  to obtain the nth state 

wave function. Let us however not quote the 

form of 𝛷𝑛
(𝜆)(𝑥) as it is too complicated for our 

purpose. 

An alternative way to obtain the 

eigenenergies and eigenstate wave functions is 

by using perturbation theory. This way of 

study is carried out in (Janaun and 

Vanichchapongjaroen, 2019). This method is 

particularly useful when one wishes to study 

NEQHO Hamiltonians with small values of  

. Furthermore, it is explicitly checked up to 

order 10 that the result agrees with that of the 

reference (Degasperis and Ruijsenaars, 2001). 

Coherent State Wave Functions for 

NEQHO with Small  

The fact that NEQHO Hamiltonian tends to the 

standard QHO Hamiltonian in the limit 𝜆 → 0 

gives rise to a natural question. The standard 

QHO Hamiltonian has been extensively used 

in order to describe phenomena relating to 

quantum harmonic oscillators. We would like 
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to investigate whether it would be possible that 

these phenomena are in fact described by 

NEQHO Hamiltonian with small . In 

particular, we would like to investigate the 

uncertainty relation of coherent states 

corresponding to NEQHO Hamiltonian with 

small . 

Therefore, the first task is to obtain 

coherent state wave functions. One may argue 

that based on the commutation relations in 

Equation (23) the relationship between the 

ladder operators and the Hamiltonian are the 

same as their counterparts in the standard 

QHO. So one expects that the coherent state 

wave function should be of the form 

 

𝛹𝛼
(𝜆)

(𝑦) =
?

𝑒−
|𝛼|2

2 ∑
𝛼𝑛

√𝑛!
𝛷𝑛

(𝜆)
(𝑦)∞

𝑛=0 . (26) 

 
It turns out, however, that this is not the case. 

Even perturbatively, the equation 

ÂλΨα
(λ)(𝑦) = αΨα

(λ)(y)  is not satisfied by 

Equation (26). 

Let us propose a way to obtain the 

coherent state wave function. We first write the 

lowering operator to the second order in . 

This gives 

 

𝐴̂𝜆 = 𝑎̂ +
𝑖𝜆2

6√2
(𝑝̂3 − 3𝑝̂ − 3𝑖𝑦̂ + 3𝑦̂2𝑝̂) + 𝛰(𝜆3). (27) 

 

Let us express 𝛹𝛼
(𝜆)(𝑦) as a linear combination 

of 𝜙𝑛(𝑦) as 

 
𝛹𝛼

(𝜆)
(𝑦) = ∑ 𝑐𝑛

(𝜆)
(𝛼)𝜙𝑛(𝑦)∞

𝑛=0 . (28) 

 
In practice, it is useful to truncate the linear 

combination up to n = N and see if the result 

converges as N increases. So let us consider 

 

𝛹𝛼
(𝜆,𝑁)

(𝑦) = ∑ 𝑐𝑛
(𝜆,𝑁)

(𝛼)𝜙𝑛(𝑦) ,𝑁
𝑛=0  (29) 

 
where we expect that 

 

𝑙𝑖𝑚
𝑁→∞

𝛹𝛼
(𝜆,𝑁)

(𝑦) → 𝛹𝛼
(𝜆)

(𝑦). (30) 

 
It can be seen that 

 

𝐴̂𝜆𝛹𝛼
(𝜆,𝑁)

(𝑦) − 𝛼𝛹𝛼
(𝜆,𝑁)

(𝑦) =
∑ 𝐵𝑛(𝛼)𝜙𝑛(𝑦)𝑁+3

𝑛=0 + 𝑂(𝜆3). (31) 

 

If we demand the right-hand side to 

vanish, this would give rise to N+4 conditions: 

Bn() = 0, n = 0,1,2,…, N+3. But we only have 

N+1 unknowns: 𝑐𝑛
(𝜆,𝑁)

, n = 0,1,2,…, N. So, let 

us relax the conditions to Bn() = 0, n = 

0,1,2,…, N-1, which gives rise to 𝑁 conditions 

for N+1 unknowns. The other condition will 

come from normalisation requirement. 

The removal of 4 conditions as explained 

above might seem arbitrary. But we expect that 

as 𝑁 increases, our method would not lead to 

any problem. Instead, Equation (30) should be 

satisfied. We will verify this by presenting the 

result in the next section. 

After obtaining the truncated wave 

function, the next step is to compute 

 

(𝛥𝑦)𝛼
(𝜆,𝑁)

= √⟨𝑦̂2⟩𝛼
(𝜆,𝑁)

− (⟨𝑦̂⟩𝛼
(𝜆,𝑁)

)
2
,  (32) 

 

(𝛥𝑝𝑦)
𝛼

(𝜆,𝑁)
= √⟨𝑝̂𝑦

2⟩
𝛼

(𝜆,𝑁)
− (⟨𝑝̂𝑦⟩

𝛼

(𝜆,𝑁)
)

2

, (33) 

 

with 
 

⟨𝑂̂⟩
𝛼

≡ √
ℏ

𝑚𝜔
∫ 𝑑𝑦

∞

−∞
𝛹𝛼

(𝜆,𝑁)∗(𝑦)𝑂̂𝛹𝛼
(𝜆,𝑁)

(𝑦). (34) 

 

Then we may compute (𝛥𝑦)𝛼
(𝜆,𝑁)

(𝛥𝑝𝑦)
𝛼

(𝜆,𝑁)
, and 

see to what value it converges as N increases. 

Then compare with the result from the 

standard QHO. 

Results and Discussions 

By following the algorithm outlined in the 

previous section, we have computed 

(𝛥𝑦)𝛼
(𝜆,𝑁)

,  (𝛥𝑝𝑦)𝛼
(𝜆,𝑁)

, and (𝛥𝑦)𝛼
(𝜆,𝑁)

(𝛥𝑝𝑦)𝛼
(𝜆,𝑁)

 for 

various  and N. For any fixed N, these 

quantities are expressible as Taylor series 

expansion in  up to the order of 2 such that 

each coefficient is a function of . These 

coefficients, however, are too lengthy to be of 

use. So we do not present them. Instead, it is  
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better to demonstrate the results numerically. 

After substituting in a numerical value for , 

these coefficients are given by some numerical 

values. Since these coefficients are mathematical 

functions, their values can be given precisely 

(i.e. up to any significant figures), as long as 

we give a precise value of . Correspondingly, 

the programming language that we have used in 

the calculation allows arbitrary precision, and 

we have made the full use of this capability. 

As an example result, consider the case 

where N = 2 and  = 0.5+0.7i. We obtain, 

presenting up to 4 significant figures, 

 
(𝛥𝑦)0.5+0.7𝑖

(𝜆,2)
= 0.8043 − 0.02622λ2 + 𝑂(λ3), (35) 

 
(𝛥𝑝𝑦)

0.5+0.7𝑖

(𝜆,2)
= 0.7259 − 0.04001λ2 + 𝑂(λ3). (36) 

 

Let us also present the results for  = 0.5+0.7i. 

with N = 4,6,…,20. These results can be read 

off from Table 1 by starting from the values 

when N = 20, which are 

 
(𝛥𝑦)0.5+0.7𝑖

(𝜆,20)
= 0.70710678118654752440 +

0.26162950903902257180λ2 + 𝑂(λ3), (37) 

 

(𝛥𝑝𝑦)
0.5+0.7𝑖

(𝜆,20)
= 0.70710678118654752440 −

0.26162950903902257557λ2 + 𝑂(λ3), (38) 

 

then work out from the bottom of the table to 

the top. From the results, it can also be seen 

that the values of (𝛥𝑦)0.5+0.7𝑖
(𝜆,𝑁)

 and (𝛥𝑝𝑦)
0.5+0.7𝑖

(𝜆,𝑁)
 

converge as N is increased. Furthermore, using 

the results read off from Table 1, the values of 

(𝛥𝑦)0.5+0.7𝑖
(𝜆,𝑁)

(𝛥𝑝𝑦)0.5+0.7𝑖
(𝜆,𝑁)  can be worked out, and 

are presented in Table 2. 

We have checked that for other values  

of  with || < 1, the behaviours are also 

qualitatively the same. That is, when N is large  

enough the values of (𝛥𝑦)𝛼
(𝜆,𝑁)

 and (𝛥𝑝𝑦)𝛼
(𝜆,𝑁)

 

converge. We suppose that other values of  

also share this behaviour. 

We therefore choose the value of N 

sufficiently large enough. In particular, we 

choose N = 25 which is useful to study 

coherent state wave functions with || < 2 . 

Larger values of  can also be studied 

accurately, provided that we increase N to an 

appropriate value. It is a well-known result that 

coherent states for standard QHO has the 

minimal value of uncertainty. See Equation 

(10). As for the coherent states of NEQHO, 

however, it is non-trivial whether these states 

give the minimal value of uncertainty. So we 

study the values (𝛥𝑦)𝛼
(𝜆,𝑁)

(𝛥𝑝𝑦)𝛼
(𝜆,𝑁)

 for N = 25, 

|| < 2, and compare with the minimal value of 

uncertainty, which is 0.5. In particular, Table 3 

demonstrates the difference in each of the 

cases where  = 0,0.2,0.4,…2. 

The differences for other cases with || < 

2 (recall that 𝛼  is a complex number) also 

share the same feature as those presented in 

Table 3. That is, the coefficients of the 0th and 

2nd order of  are very small. 

Conclusions 

We may conclude that up to the second order 

in , the uncertainties of NEQHO coherent 

states with || < 2 are approximately equal to 

the minimal value. So by using this 

consideration, it is not a simple matter to 

Table 1.  The values of (𝜟𝒚)𝜶
(𝝀,𝑵)

− (𝜟𝒚)𝜶
(𝝀,𝑵−𝟐)

 and (𝜟𝒑𝒚)𝜶
(𝝀,𝑵)

− (𝜟𝒑𝒚)𝜶
(𝝀,𝑵−𝟐)

 for 𝛼 = 0.5 + 0.7𝑖 

 with various values of N 
 

N (𝜟𝒚)𝜶
(𝝀,𝑵)

− (𝜟𝒚)𝜶
(𝝀,𝑵−𝟐)

 (𝜟𝒑𝒚)𝜶
(𝝀,𝑵)

− (𝜟𝒑𝒚)𝜶
(𝝀,𝑵−𝟐)

 

4 −8.97 × 10−2 + 1.65 × 10−1𝜆2 + 𝑂(𝜆3) −2.02 × 10−2 − 1.41 × 10−1𝜆2 + 𝑂(𝜆3) 

6 −7.34 × 10−3 + 1.14 × 10−1𝜆2 + 𝑂(𝜆3) 1.29 × 10−3 − 7.66 × 10−2𝜆2 + 𝑂(𝜆3) 

8 −1.86 × 10−4 + 8.58 × 10−3𝜆2 + 𝑂(𝜆3) 7.31 × 10−5 − 4.30 × 10−3𝜆2 + 𝑂(𝜆3) 

10 −2.31 × 10−6 + 2.62 × 10−4𝜆2 + 𝑂(𝜆3) 1.20 × 10−6 − 1.08 × 10−4𝜆2 + 𝑂(𝜆3) 

12 −1.71 × 10−8 + 4.41 × 10−6𝜆2 + 𝑂(𝜆3) 1.03 × 10−8 − 1.86 × 10−6𝜆2 + 𝑂(𝜆3) 

14 −8.31 × 10−11 + 4.54 × 10−8𝜆2 + 𝑂(𝜆3) 5.51 × 10−11 − 2.18 × 10−8𝜆2 + 𝑂(𝜆3) 

16 −2.87 × 10−13 + 3.05 × 10−10𝜆2 + 𝑂(𝜆3) 2.03 × 10−13 − 1.66 × 10−10𝜆2 + 𝑂(𝜆3) 

18 −7.40 × 10−16 + 1.42 × 10−12𝜆2 + 𝑂(𝜆3) 5.48 × 10−16 − 8.56 × 10−13𝜆2 + 𝑂(𝜆3) 

20 −1.48 × 10−18 + 4.79 × 10−15𝜆2 + 𝑂(𝜆3) 1.13 × 10−18 − 3.12 × 10−15𝜆2 + 𝑂(𝜆3) 
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distinguish them from the coherent states for 

QHO. 

We expect that even for || > 2, the 

uncertainties of NEQHO coherent states  

 

are still approximately equal to the minimal 

value. Nevertheless, this should be still be 

investigated. We leave this verification to 

future works. 

It is also interesting to go beyond the 

second order in  to see whether the 

uncertainties of NEQHO coherent states still 

have the minimal value. 

 

 

 

 

 

 

 

 

 

Furthermore, other physical phenomena 

relating to coherent states should also be 

investigated to see whether it is possible to  

distinguish NEQHO coherent states from their 

QHO counterparts. One of the phenomena to  

be checked is the noise in the time evolution of 

coherent states. 
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Table 2.  The values of (𝛥𝑦)𝛼
(𝜆,𝑁)

(𝛥𝑝𝑦)𝛼
(𝜆,𝑁)

 for  

  = 0.5 + 0.7i with various values of N 
 

N (𝜟𝒚)𝜶
(𝝀,𝑵)

(𝜟𝒑𝒚)𝜶
(𝝀,𝑵)

 

2 0.584 − 5.12 × 10−2𝜆2 + 𝑂(λ3) 

4 0.504 − 3.10 × 10−2𝜆2+ 𝑂(λ3) 

6 0.500 − 3.20 × 10−3𝜆2  + 𝑂(λ3) 

8 0.500 − 1.12 × 10−4𝜆2 + 𝑂(λ3) 

10 0.500 − 1.83 × 10−6𝜆2 + 𝑂(λ3) 

12 0.500 − 1.68 × 10−8𝜆2 + 𝑂(λ3) 

14 0.500 − 9.88 × 10−11𝜆2 + 𝑂(λ3) 

16 0.500 − 4.00 × 10−13𝜆2 + 𝑂(λ3) 

18 0.500 − 1.18 × 10−15𝜆2 + 𝑂(λ3) 

20 0.500 − 2.67 × 10−18𝜆2 + 𝑂(λ3) 

 

Table 3.  The difference between the uncertainty 

 (𝜟𝒚)𝜶
(𝝀,𝑵)

(𝜟𝒑𝒚)𝜶
(𝝀,𝑵)

 with N = 25,  = 

 0,0.2,0.4,…,2, and the minimal value 

 0.5 of uncertainty 
 

 (𝜟𝒚)𝜶
(𝝀,𝟐𝟓)

(𝜟𝒑𝒚)𝜶
(𝝀,𝟐𝟓)

− 𝟎. 𝟓 

0.0 0 

0.2 2.79 × 10−62 + 2.22 × 10−55𝜆2 + 𝑂(λ3) 

0.4 1.11 × 10−46 + 5.66 × 10−41𝜆2 + 𝑂(λ3) 

0.6 1.31 × 10−37 + 1.36 × 10−32𝜆2 + 𝑂(λ3) 

0.8 3.11 × 10−31 + 1.07 × 10−26𝜆2 + 𝑂(λ3) 

1.0 2.37 × 10−26 + 3.51 × 10−22𝜆2 + 𝑂(λ3) 

1.2 2.00 × 10−22 + 1.51 × 10−18𝜆2 + 𝑂(λ3) 

1.4 3.60 × 10−19 + 1.56 × 10−15𝜆2 + 𝑂(λ3) 

1.6 2.05 × 10−16 + 5.52 × 10−13𝜆2 + 𝑂(λ3) 

1.8 4.75 × 10−14 + 8.43 × 10−11𝜆2 + 𝑂(λ3) 

2.0 5.32 × 10−12 + 6.51 × 10−9𝜆2 + 𝑂(λ3) 

 


