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We study cosmological perturbations in generalized Einstein scenarios and show the equivalence of infla-
tionary observables both in the Jordan frame and the Einstein frame. In particular the consistency relation
relating the tensor-to-scalar ratio with the spectral index of tensor perturbations coincides with the one in
Einstein gravity, which leads to the same likelihood results in terms of inflationary observables. We apply this
formalism to nonminimally coupled chaotic inflationary scenarios with the potevitiat#P and place con-
straints on the strength of the nonminimal couplings using a compilation of the latest observational data. In the
case of the quadratic potentiagb€2), the nonminimal coupling is constrained to kg —7.0x 10 2 for
negative¢ from the 1o observational contour bound. Although the quartic potentiet 4) is under strong
observational pressure fgre= 0, this property is relaxed by taking into account negative nonminimal couplings.
We find that inflationary observables are within the &ontour bound as long as< —1.7x10 3. We also
show that thgg=6 cases are disfavored even in the presence of nonminimal couplings.
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[. INTRODUCTION within observational contour bounds due to the flatness of
the potential relative to the quartic case.

The inflationary paradigm has been the backbone of high- When we try to construct models of inflation based on
energy cosmology over the past 20 yept$ The striking  particle physics, we do not need to restrict ourselves to the
feature of the inflationary cosmology is that it predicts nearlystandard Einstein gravity. For example, low-energy effective
scale-invariant, Gaussian, adiabatic density perturbations Igtrmg theory gives rise to a Coup”ng between the scalar cur-
its simplest form. This prediction shows an excellent agreeyatyre and the dilaton field, which leads to an inflationary
ment with all existing and accumulated data within observasgution in the string framg12). The Jordan-Brans-Dicke
tional errors. In particular the recent measurement of the;gp).jike theories can be viewed as the low-energy limit of
Wilkinson Microwave Anisotropy Prob@VMAP) [2] pro-  gherstring theory if the Brans-Dicke scalar plays the role of
vided the high-precision dataset from which inflationary e gjjaton[13,14). In this sense the proposal of the extended
mogﬁls Ca'?j.b? senogsly qonstran{&:i-S]. . inflation scenario[15] stimulated a further study of more

_The prediction .Of inflationary observgbles_ eXh'p'tS. Somegeneric classes of inflation models in non-Einstein theories
difference depending on the models of inflation. It is |mpor-[16 17, in spite of the fact that the first version of the ex-
tant to pick up this slight difference in order to discriminatet d d1' f P ited in fail q h ful exi
between a host of inflationary scenarios. Conventionally iniended Inflation resulted in failure due to the graceful exit
flationary models can be classified in three classe®robleml18]. _ _ _
[9]—“large-field,” “small-field,” and “hybrid” models— From the wewpomt _of quantum field theory in curved
depending upon the shape of the inflaton potential. The largéPacetime, the nonminimal couplings naturally arise due to
field model is characterized by the potential their own nontrivial renormalization-group flows. The ultra-

violet fixed point of these flows is often divergent, implying
b that the nonminimal couplings can be important in the early
V(g)=ceP, (1.1 universe. In this respect Futamase and Mad] studied
the effect of nonminimal couplings on the dynamics of cha-
which includes only one free parameter for a fixed value ofotic inflation and estimated the strength of the couplig
p. Therefore it is not generally difficult to place strong con-from the requirement of a sufficient inflation. Whilég| is
straints on the potentiall.1) compared to small-field and required to be much smaller than unity in the quadratic po-
hybrid models that involve additional model parameters. Intential, such a constraint is absent in the quadratic potential
fact it was recently shown in Ref$4—8] that the quartic for negativeé. Fakir and Unruh20] showed that the fine-
potential 0=4) is under a strong observational pressure duduning problem of the self-couplingin Eq. (1.1) is relaxed
to the deviation of a scale-invariant spectrum in addition to &or large negative values &f by evaluating the amplitude of
high tensor-to-scalar ratio. This situation does not changscalar metric perturbations. A number of authors further in-
much in the context of the Randall-Sundrum Il braneworldvestigated the spectra of scalar and tensor perturbations gen-
scenarig 10,11]. Note that the quadratic potentigh€2) is  erated in inflatiorj21-28 and particle productions in reheat-
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ing [29].* See, e.g., Ref$31] for other interesting aspects of . o1 -
nonminimally coupled scalar fields. ¢+3Hop+ %(wd,cﬁ —-F4R+2V,)=0, (2.9
In this work we do not restrict ourselves to the Fakir and

Unruh scenario, but will place constraints on the strength ofyhereH is the Hubble expansion rate and a dot denotes the
nonminimal coupling for the general potentidll) by using  gerivative with respect to a cosmic tinte
a compilation of recent observational datasets. We shall pro-

vide a general formalism for scalar and tensor perturbations
in generalized Einstein theories including dilaton gravity,
JBD theory, and a nonminimally coupled scalar field. This We consider a general perturbed metric for scalar pertur-
analysis explicitly shows the equivalence of inflationary ob-bations,

servables in both the Jordan frame and the Einstein frame, 5 i

which results in the fact that a separate likelihood analysis in ds’=—(1+2A)dt?+2a(t)B ;dx dt

terms of observational quantities is not needed compared to 2 . RN

the Einstein gravity. Making use of the two-dimensional ob- Ta(Ol(1+2¢)9;+2E, Jdxdx, (2.9

servational constraints of the scalar spectral inigand the  \yhere a comma denotes a flat-space coordinate derivative. It

tensor-to-scalar rati&, we shall carry out a detailed analysis s convenient to introduce comoving curvature perturbations
about the constraint on the nonminimally coupled inflatony = gefined by

field for the potential(1.1). This provides us an interesting

possibility to place strong constraints on the strength of non- H

minimal couplings from the recent high-precision observa- R=¢— — 059, (2.6
tions. In fact we will show that even small nonminimal cou-

plings with |¢]|<1 can alter the standard prediction of the ) ) _ _
Einstein gravity. where ¢ is the perturbation of the fieleh. The equation of

motion for the Lagrangiari2.1) was derived in Refs[32]
and is simply given by

A. Perturbations in Jordan frame

Il. GENERAL FORMALISM FOR PERTURBATION

We start with a generalized acti¢82] a3QS(a QsR) a2 " Qs™ (H+F/2F)%
(2.7
1 1 . . i
Szf d“x\/—g{EF(d;)R— Ew(q&)(VqS)Z—V(qS)}, wherek is a comoving wave number. Note that a similar

form of equation is derived even in the presence of more
complicated terms such as the Gauss-Bonnet term and the
] o (V¢)* term [33]. If we neglect the contribution of the de-
whereRis the Ricci scalait(¢), w(¢) andV(¢) are gen-  caying mode, the curvature perturbation is conserved in the
eral functions of a scalar fielg. The action(2.1) includes @  |arge-scale limit k—0). Introducing new variablesz

variety of gravity theories such as the Einstein gravity, scalar_ a\Qs andv=aR, the above equation reduces to
tensor theories, and low-energy effective string theories. For s '

(2.9

example, we have (¢)=1/x? andw(¢)=1 in the Einstein "+ (K2—2"12)v =0, 2.9
gravity, F(¢)=(1—¢éx?¢?)/«? and w(¢p)=1 for a non-
minimally coupled scalar fieldF(¢)=e ¢ and w(#)=  where a prime denotes a derivative with respect to a confor-

—e~ ¢ for low-energy effective string theories. Hereafter we mal time n=/a ldt.
basically use the unikZESTr/mgl:l, but we restore the The gravity termz”/z can be written as
Planck massny, when it is needed.

In a flat Friedmann-Lemaitre-Robertson-WalkELRW) z’

!

S
background with a scale factar the background equations — =(aH)? (1+85)(2+ Sst €) + anl (2.9
are
where
t\ 2
2__ a 1 42 - . -
H?=| ] =cE(0g?+2V—6HF), (2.2 R G 210
H2' s 2HQs’ ’
. 1 ) S
H= ﬁ(_“’"ﬁz"" HF-F), (2.3 In the context of slow-roll inflation, it is a good approxima-

tion to neglect the variations ot and 5. Since n=
—1/[(1+ €)aH] in this case, we have

1 . P .

The presence of negative nonmlnlm_al coypllngs also leads to t_he " e . (14 69 (2+ 6+ €)
strong variation of curvature perturbations in the context of multi- —==, with yg= . (2.1
field inflation. See Refd:30] for details. z g2 (1+¢€)?
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Then the solution for Eq2.8) is expressed by the combina- B. Einstein frame and the equivalence of perturbation spectra

tion of the Hankel functions: The discussion in the previous subsection corresponds to

the analysis in the Jordan frame. It is not obvious whether

— (. (1) (2)

o=l 7li2leH, (K 7))+ cH(KmD], (212 e same property holds in the Einstein frame. Let us make
the conformal transformation for the acti¢®.1),

where vs= \yst 1/4. We choose the coefficients to be

=0 and c,=1, so that positive frequency solutions in @MV:QgMW with Q=F. (2.19

a Minkowski vacuum are recovered in an asymptotic

past. Making wuse of the relation H(VZS)(k| 71)  Then we get the action in the Einstein frafiga,35),

—(ilm)T'(vs) (K| 5|/2)~*s for long-wavelength perturbations

(k—0), one gets the spectrum of curvature perturbations, _ 22 1. [3(Fy 2w . P
Ps=(K*[2m%)|R|?, as Se= | dxV=g|5R— 17| | T 5[ (VH ~V(e)|,
1(H\? 1 \? (v \?Knl\32?s
Pl i (sl () 0 =22
Qs\ 27/ \aH|y|/ \T'(3/2) 2 with  V(¢)= I (2.20
k 3_2VS
EAé(M (2.13 . -
2 If we introduce a new scalar field, so that
Whenv=0, we have an additional lk(7|) factor[33]. A 3 F 2 o
Then the spectral indexs=1+dInPs/dInk, is given dp=G(¢)d¢, with G(¢)= \/5(%’) + =,
by (2.21)
Ns=1=3-2vs=3—Varstl, (214 the action(2.20 can be written in the canonical form
where yg is given in Eq.(2.10). 1 1
Let_us nejxt cqns_|der the spectrum of tensor_perturb_atlons, SE:f d*x /—(:1] E@_ §(V$)2—V(¢) . (.22
hj; . Sinceh; satisfies the same form of equation as in Eq.
(2.7) with replacemenQs— Qt=F, we get the power spec- _ o . _
trum to be We shall consider a perturbed metric in the Einstein
frame,
8 [ H\Z 1\ T(vp)\?[Kklgl|>2
PT_Q_T 27) \aH|y|) \T(32)) \ 2 ds?=0Qds? (2.23
L S - e
=A7 - , (2.195 =—(1+2A)dt*+2a(t)B ;dx'dt
22(1 o) S E. .1dXdX
where +a“()[(1+2¢) §;+2E ; j]ldX'dX, (2.29
_ . and decompose the conformal factor into the background and
vr=+yr+1/4, with the perturbed part as
(1+on)(2+5rte) Qr
= = — OO (X,t
AT T mx,t)=9<t>(1+ 5((0 ). (2.29

(2.16

Note that we take into account the polarization states ofy what follows we drop a “bar” when we expres(g(t).
gravitational waves. The spectral index of tensor perturbaThen we get the following relations:

tions is given by

- - .1
=3— +1. . = = I P
nr=3-v4yr+1 (2.17 a=a\Q, di=Qdt, H—\/ﬁ H+ 55 ).
The difference of scalar and tensor perturbations comes from
the fact thatQg differs from Q- . ) 50 . 50
The tensor-to-scalar ratio is defined as A=A+ 20" o=@+ 20" (2.26

Making use of these relations, it is easy to show that
curvature perturbations in the Einstein frame exactly coin-
(2.18 cide with those in the Jordan frame:

R

AT QS(F(VT))Z wd?+3F2/2F ( F(VT))Z

" A2 QriT(v9)  F(H+F/2F)2\T(rg
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A . Hereafter we shall drop a “hat” for the quantities, ny, R.
=¢— —=——=0¢ (2.27)
de/dt
C. Slow-roll analysis
= o l._|—5¢=72. (2.29 If the slow-roll approximation is employedd| <1, |5
<1, |67/<1, and|B|<1), we get the following relations:
Since tensor perturbations are also invariant under a confor- Ng=1+2e—28s=1+2€e—23s, (2.36)

mal transformation, we have the following relations:

Ps=Ps, Pr=Pr. (2.29 Nr=2e—257= 2, (2.3

Introducing the following quantities:
R=-8ns. (2.38

.~ (1+389)(2+65te) . dH/t
- A =
s (1+e)2 TR

Here we used (vg)=I"(v1)=I'(3/2), since the spectra of
. dQS/dE ) (d;{)/df 2 scalar and tensor perturbations are close to scale invariant.
> 5=

= N = ) =Qs/F, (2.30  The consistency relatio(2.38 is the same as in the case of
S

the standard Einstein gravityThis means that a separate
the spectral index of scalar perturbations in the Einsteiffgr the generalized actiof2.1), when we vary four observa-

likelihood analysis of observational data is not needed even

frame is given by tional quantitiess, nr, R, andA2. This situation is similar
- = to the perturbations in RandaII-Sundrum [l braneworld sce-
Ng—1=3— Vayst (23D nario in which the same consistency relatith38 holds
A - ) [37]. Thus we can exploit the observational constraints on
The two quantities and 65 can be written as the values ohg and R which were recently derived in Ref.
_ . [11].
~ € P B s 0B with = —— F On the other hand, when we constrain the inflation models

1+ * H(1+p)% 9 1+B’ 2HF" which belong to the generalized acti¢hl), the difference is
(2.32 seen compared to the Einstein gravity. This comes from the

_ fact that the potential in the Einstein frame includes the con-

When the variation of3 is negligible (3=0), which is valid  formal factor 1F? and that the field} is different from the

in the context of slow-roll inflation, one can easily show thatinflaton ¢ [see Eq.(2.21)]. Under the slow-roll approxima-

:ysz vs. Therefore the spectral indg®.31) in the Einstein tion, the background equations in the Einstein frame can be

frame coincides with the one in the Jordan framg%ng).  Written as

The spectral index of tensor perturbations is also the same in

both frames fir=n+), and is simply given as A 4.
A=V, (2.39

. — . 2+e
nT:3_ 4’yT+ 1, with Y1 = y (233)
(1+¢€)?

Thene and 35 are written in terms of the slope of the poten-
where we use@;=Q;/F=1 andd;=

tia
The tensor-to-scalar ratio is unchanged by a conformal
transformation and is given by

- 1 p - 1 y \%5¥
2 2 _ |2 ~ || =2 -2
|”?=T;—8Q (F(VT)) 8Q—S(—F(VT)> =R, 2\ T v v
AL Qr\I'(vy Qr\l(vy) (2.40
(2.39
where we used}s Qs/F, QT Q+/F, Vs— vs, and ,,T Then we can evaluate the theoretical valags nt, R and
= 7. Making use of the background equatiord f2/dt= constrain model parameters by comparing with observational
A2 data.
—(dg¢/dt)“, we get
dg/dt\?(T(vp)|? dA/dt [T |2
ﬁ;g(#) <(_’ZT)) = _16A_t (_TT)) . Note that the consistency relation is different in the context of
H I'(vy) H2 \T'(vy) multifield inflation due to the correlation between adiabatic and

(2.35 isocurvature perturbations. See R¢®6] for details.
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IIl. NONMINIMALLY COUPLED INFLATON FIELD

In this section we wish to apply the formalism in the
previous section to a nonminimally coupled inflaton field. In

this case we have

F(¢)=(1-éx’¢?)Ix?  w(d)=1, 3.9

for the action(2.1). Here we used the notation where the

conformal coupling corresponds t§=1/6, which is the
same notation as Futamase and Ma¢td] but different
from Fakir and UnruH20].

A. Background equations

In the casd3.1) the background equationi.2)—(2.4) are
written in the form

2
H?2 )[¢2+ 2V+12HED P, (3.2

. K
6(1— £x2e?

E(1-6¢6)kPpdp?
1-(1—-6&)éx2p?

AP PV +(1— Ex% PPV
1-(1-6&)éx*?
(3.3

d+3Hp—

=0,

where we usedR=6(2H2+H).
Hereafter we shall consider the large-field potential).

Under the slow-roll approximations|g|<|3H¢| and
|3H | <|V|, one has

coP U p+y(4—p)]

3Hp=— =650 (3.9
24 4P _
o KCoP | 28{p+y(4—p)}
=31 p|' 1-a-6dy | 39
where
p=Ex2P. (3.6

We get the following equation from Eqé3.4) and(3.5):

v 26(4=1(p—4)y—p] 37
Ho (26p-2¢-1)y+1-2¢p '

The number of folds is defined as

IS ¥ H
NEJ Hdt:f —dy,
t AR/

(3.9

PHYSICAL REVIEW D59, 123523 (2004

1-6¢
N——g—g(lﬁf—lﬂ)—

1 |41
—In
4 | y—1

, for p=4.
(3.10

Later we shall use this relation to expregsn terms ofN.

B. Potential in the Einstein frame

The potential in the Einstein frame and the effective
gravitational constant are given, respectively, by

_ ¢t __ 6
(1-£x?¢?)?’ 1R

When ¢ is positive, we need the conditionp?< ¢?
Emf,|/(87r§) in order to reproduce the present value of the
gravitational constant. Futamase and Maeda obtained the
constraint <102 from the requirement that the initial
value of the inflaton ¢;~5m,) is smaller thang. [19].
They also pointed out that this constraint becomes more
stringent whengp, is larger.

We do not have the singularities of the potentiadnd the
effective gravitational constant for negative valuest ofu-
tamase and Maeda found that the negative value$ afe
generically allowed fop=4, while the nonminimal coupling
is constrained to bgg| <103 for p=2 from the requirement
of a sufficient inflation. In particular Fakir and Unrgg0]
showed that the fine tuning of the coupling constans
avoided forp=4 by considering large negative values &f
satisfying||> 1. Hereafter we shall concentrate on the case
of negative ¢ for the general potentiall.1). We wish to
constrain the strength of the nonminimal couplings by ex-
ploiting latest observational data. While Komatsu and Futa-
mase[25,26 focused on large negative nonminimal cou-
plings for p=4, we shall consider general values &€fvith
the generic potentigll.1).

In Fig. 1 we plot the potentiaﬁ/ in the Einstein frame for
p=2, p=4, andp=6 when¢ is negative. From Eq3.1])
the potential has a local maximum at

p
P Ngaa—pyg™"

as long asp<<4. Therefore we havepy=my,/\8|&| for
p= 2. Naively we expect thap), is required to be larger than
3my, in order to lead to a sufficient number effolds (N
=60), which giveg £|<4.4x 10 3. Note, however, that one
can get a large number effolds if the initial value of¢ is
close togy, . Therefore the nonminimal couplings satisfying
|€|=4.4x 102 may not be excludediIn this work we will
place complete constraints on the strengtl§ bly comparing

V= (3.12)

Geff

(3.12

where the subscript “f” denotes the values at the end ofthe perturbation spectra with observations.

inflation. Making use of Eq(3.7), we have

1 [(p—4)g—p| P72 CD) gy —1/¢
N=——In———""— -,
4¢ | (p—Hy—p y—1
for p#4, (3.9

When p=4 the potentialV monotonically increases to-
ward a constant valud/—c/&«*, as— . Since the po-

3In Ref.[27] it was shown that the constraint gnis relaxed by
considering topological inflation.
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T ' ; ; where we use®?(¢)=[1—(1—6&)y]/(1— ¢)?. Therefore
p=6 . one hage|=(p—4)%12 for||>1 and|&|>1, which means

. that |e| is larger than unity forp>4+23. This again
shows that inflationary solutions are not obtained et 8.
Since we cannot keep the@?(¢) term to be small in Eq.
(3.19 for ||>1, the slow-roll parameter exceeds unity un-
lessp is small. Hereafter we shall mainly investigate the
cases ofp=2, p=4, andp=6. This is sufficient to under-
stand what happens for the perturbation spectra in the pres-
ence of the nonminimal couplings.

C. Perturbation spectra and the tensor-to-scalar ratio

We are now in the stage to evaluate the spectra of pertur-
bations for the nonminimally coupled inflaton field. Making
¢/ Mo use of the result&2.36) and(2.38 with slow-roll parameters

(2.40, we get the values aig andR as
FIG. 1. The potential of the inflaton in the Einstein frame with

&£=-0.05 forp=2, p=4, andp=6. It has a local maximum at E p+t(4—p)y
éu=my /87| for p=2. Whenp=4 the potential approaches a ~ Ns~1= v1-(1-68)¢ —3p+(3p—8)¢
constant valud/=c/£k* as ¢p— .

2(1-68)y(1—4)

tential becomes flatter by taking into account the negative 1-(1-6&€) ¢
nonminimal couplings, the amount of inflation gets larger
compared to the case @f=0. For ||>1, we obtain the (1 $)’p(p—1)+4y{1+p+(1—p)y}
following background solution from Eq$3.4) and (3.5): p+(4—p)y '
oo 4\/6 t (3.19
= 0_ T T/ oL
(1-6£)V—3¢x? R 8¢ [p+(4—p)y]? (317
g 1-(1-68)¢’ '

which are written in terms of the functions éfand ¢ for a

N D T O
R exp[ =38 " (1mee V3 K2t> o
fixed value ofp.

3.13 The end of inflation is characterized thy|=1, thereby
g/ielding

where ¢, andag are constants. This means that the univers

expands quasiexponentially for large negative value§. .of 1- p(4—p)— (1—2pE)(1—6pd)
In the case ofp>4, the steepness of the potentialis U= >

relaxed by taking into account negative If |¢| is much §(4—p)°+2(1-69)

smaller than unity, the effect of the nonminimal couplings ) ) )

helps to lead to a larger number @folds. When|#|> 1, we which we choose the negative signy, since we are con-

, (318

have the following analytic solution: sidering the case @f<0. When|¢|<1, Egs.(3.9) and(3.10
give the following relation:
2/(2—p)
(p=2)(p—4)\Cc,
[ o—ip=1) P : [(p=4)¢—pl=|(p—4) s~ plexd —2éN(p—4)],
6Epy |4 P D(P-2)(P—4) for p+4, (3.19
a=ag t_C(4_p):| (314)

=i+ iN, for p=4.
This explicitly shows that the fielgh decreases with time for 1-6¢
p>4. We also find that the solutio(8.14) does not corre- (320
spond to an inflationary solution fgr>5+ \/13.

The slow-roll parameter in the Einstein frame is given aSMakmg use of Eqsi3.19 and(3.20, one can expresss and

Rin terms of¢ andN. Fixing thee fold at the cosmologically

~ o\ 2 _ 2 relevant scaldN=55, ng andR are the function of only.
le|= I - £ w Therefore we can constrain the strength of the nonminimal
2Kk%°G?(¢p) 2¢ 1-(1-65) ¢ couplings by comparing the theoretical predictiof316

(3.15 and (3.17) with the observational data.
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1.0 T T 1.0
0.95
0.90 | SN ] 0.10

= 085 [ LN 2
0.80 | N 0.010
; p=6\\
075 | g
p=2 p=2
0.70 . . 0.0010 . ,
0.0001 0.001 0.01 0.1 0.0001 0.001 £ 0.01 0.1

=4, andp=6. Note that we are considering negative valueg.of =2,P=4, andp=6 with negative.
See the text for the interpretation of this figure.
larger|£|, which works to decrease| toward zero. On the
Before proceeding the constraint @n we shall investi- other hand, the second derivative of the potential gets larger
gate the effect of nonminimal couplings under the approxi- the right-hand side os with the growth of|£|. This is
mations of[¢|<1 and|¢|<1. In this case we have the reason whyig departs from 1 for largdi| in spite of the

fact thate gets smaller toward zero.

+2 2-8p+8
g 1 — ép(p+2)[ p°—8p 14, 3.21
Y p(p+2) 2. Case of p=4
8p2¢ 8—p In the case of the quartic potential, E43.18 and(3.20
R= 7 (1+ Tw . (3.22  give the following relation:
In what follows we shall investigate the casespf 2, p y= 1-(1-8¢)(1—24¢) +16¢N (3.26
=4, andp=6 separately. 2(1-6¢) '
1. Case of p=2 Note that this is valid for general values gf since the
In thi h he followi lation f E _second term on the nght-han_d side of £8.10 is alway_s_
3 1%) ta:lsd (csaig).one as the following refation from Eqs subdominant relative to the first term. When the condition,
' o |€|<1, is satisfied, one hag=8¢N from Eq.(3.26). If |4 is
3 1 1-1 smaller than of order unity, we find
p=|>-5 % ettN_1=eMN—1 (3.23
2 2V 1-4¢ 24¢ 1 8
Ng—l=——|1+z¢|=—— 1+—§N>, (3.27
which is valid for|£|< 1. Then Eqs(3.21) and(3.22 reduce ¥ 3 N 3
to
R —1285 1 16 1+8¢N 3.2
eHNy 1 ==y HP=gA+8N). (3.28

4 N2
ng—1= 4§m——ﬁ 1+ §§ N ), (3.29
Then we haveng=1-3/N and R=16N for £—0, corre-
3MN_o g sponding tang= 0.945 ancR=0.291 forN=55. Inclusion of
R=32¢— ~ —(1+10¢N). (3.25 the nonminimal coup_lmgg leads to the dc—;crease of hogh
et N —1| andR, as seen in Figs. 2 and 3. This comes from the
fact that the potential becomes flatter in the presence of nega-
In the minimally coupled caseé{E0), we haveng=1  tive nonminimal couplings.
—2/N and R=8/N, corresponding tong=0.964 andR It is worth mentioning the case of large negative nonmini-
=0.145 forN=55. If we take into account negative non- mal couplings [£>1). Since e=8&/(1—6¢&)y? and
minimal couplings, we find the increase ofs— 1| and the . - 1= —8¢I(1—6€) ¢ in this case, we find
decrease oR compared to the case §&=0. This behavior is oo '
clearly seen in Figs. 2 and 3 that are obtained without using 166 1 108 1
the approximation above. The rapid decreaseRdbr |¢| Ng—1l=———"— == " (329
=102 reflects the fact tha# approaches the valug,, for 1-6¢y 1-6¢ y?
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From Eq.(3.26) one obtainsy=—4N/3 for | £|> 1. Then we
get the following results:

ng—1=—2/N, R=12N?2 (3.30

Note that the spectral indexg is the same as in the mini-
mally coupled case with the quadratic potentig=0 and
p=2). One hasng=0.964 andR=0.00397 forN=55.1
Therefore the Fakir and Unruh scenario wjighs>1 predicts
a much smaller value oR compared to the minimally
coupled case.

3. Case of p=6

For p=6 and|&|<1, one obtains the following relation
from Eq.(3.19:

(3.3)

where i; is approximately given ag;=18¢ by Eq. (3.18.
Then we findy=12¢N and

=33~ yyle 4N,

48¢ 1 4
ns—12—7(1+1—2¢)2—ﬁ(1+§N), (3.32

~288§( 1 >~ 24
R—T 1+§lﬂ ——W(1+4§N). (3.33
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0.7

061

1.05 1.1
FIG. 4. 2D posterior constraints in the-R plane with the b
and 2o contour bounds. We also show the theoretical predictions
for (&) p=2, (b) p=4, and(c) p=6 with a fixede fold, N=55.
ach case corresponds to, from top to bottda), ¢=0,—0.003,

This indicates that the negative nonminimal couplings 'eadEo.oo7—0.011 and (b) £=0,—0.0003-0.0017.0.005. The

to the decrease ghs—1| andR for |&|<1.

From Figs. 2 and 3 we find thaing— 1| and R begin to
increase for&|=10 2. This can be understood as follows.
Whenp#4 and|¢| is larger than of order unity, we obtain

ng—1= i(p—4)2,

et (3.34
Rzl_—6§(p—4)2, (335)

which are independent . In the case op =6, this yields
Ng—1=16£/(1-6¢) and R=-—64¢/(1-6¢). Therefore
both [ng—1| and R grow with the increase ofé|. The
asymptotic values correspond tos—1——8/3 and R
—32/3 as|é|—o.

D. Observational constraints on nonminimal couplings

point denoted by “FU” is the Fakir and Unruh scenario witf

>1. The plot (c) shows the cases o&=0,—0.001-0.0035
from the left top to bottom, and another point corresponds
to £&=—0.01.

2 Degree Field SystertRdF) [41], and latest Sloan Digital
Sky Survey(SDSS galaxy redshift surveyf42]. Since the
same correspondence holds for inflationary observables in
this case as well, we can exploit the observational constraints
derived in Ref[11]. Note that we used theosmomc (Cos-
mological Monte Carlp code[43] with the cAMB program
[44], and varied four inflationary variables in ad-
dition to four cosmological parametersQfh?, Q.h?,

Z=e 27, Hy).

In Fig. 4 we plot the 2D posterior constraints in theR
plane and also show thesland 20 contour bounds. In the
previous subsection we obtained and R in terms of the
function of ¢ by fixing thee fold to beN=>55. Therefore one
can constrain the strength of nonminimal couplings by plot-

Lets us now place observational constraints on theing theoretical predictions aig andR in the same figure.
strength of the nonminimal couplings. As shown in Sec. I,
the inflationary observabld3g, R, ng, andny are equivalent
both in the :]or(.jan frame and the Emstem frame. Th|§ COITe" 11y the case of the guadratic potential, the theoretical point
spondence indicates that a separate likelihood analysis of ot?s—

rvational data is not required compared to the Einstei within the 1o contour bound fo€=0, as is seen in Fig. 4.
servalional data 1S not required compared 1o the Sepraking into account the negative nonminimal couplings leads

gravity. Recently one of the present authors carried out a :
A : . : . o the decrease of boths andR (see Figs. 2 and)3From
likelihood analysig11] in the context of braneworld inflation Fig. 4 we obtain the observational constraint on negative

using a compilation of data including WMARB8-40Q, the nonminimal couplings:

1. Case of =2

£>-7.0x10"% (10 bound, (3.36

(3.37

“Komatsu and Futamag@6] obtained the valuesas=0.97 and

R=0.002, since they chose tlesfold N=70. £&>-1.1x10"? (20 bound.
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If ¢is less than of order 1T, the curvature of the potential parameters in terms of underlying potentials are different
around ¢= ¢, is too steep to generate a nearly scale-{11]. Remarkably the consistency relatith38 holds even
invariant spectrum. for the generalized actiof2.1) that includes dilaton gravity,
JBD theory, and a nonminimally coupled scalar field.
2. Case of p=4 We then apply our general formalism to the nonminimally

It is now well known that the quartic potential is under a coupled inflaton field with potentidll.1). Our main aim is to

strong observational pressure in the minimally coupled casBlaC€ Strong constraints on the strength of nonminimal cou-
[4—g]. In fact the£=0 point is outside of the @ contour plings using the latest observational data including WMAP,
bound in Fig. 4. In the presence of the negative nonminimaji€ 2dF, and SDSS galaxy redshift surveys. We focused on

couplings, we have the increaserafand the decrease & the_qase of the negative nonminimal couplings: since the
which is favored observationally. Figure 4 indicates tha ~ POSitive coupling¢ was already severely constrained from

constrained to be the requirement of a sufficient inflatidi9] (¢ is at least
smaller than 10% and is even much smaller depending on
£<—1.7x10"% (1o bound, (3.39 the initial condition of the inflaton
For the quadratic potentiapE& 2), inclusion of the nega-
£<—3.0x10°* (20 bound. tive nonminimal couplings leads to the decrease of the spec-

(3.39 tral indexng and the tensor-to-scalar rati®d(see Figs. 2 and
3). While the minimally coupled case£€0) is within the

Thus nonminimal couplings of ordér= —10"° make it pos- 14 contour bound, the theoretical points of larggrtend to
sible to generate observational preferred power spectra. Ipe away from the observational bounds due to the departure
Fig. 4 we also plot the theoretical point in the limit |  from the scale invariance of the spectral indege Fig. 4
— (denoted by “FU”). This corresponds to the values we found the constraint§>—7.0x10"° at the 1o level
given in Eq.(3.30 which is deep inside thed contour and¢>—1.1x102 at the 2r level.
bound. Thus the Fakir and Unruh scenario wfig>1 is The quartic potentialf=4) suffers from a strong obser-
favored observationally relative to the minimally coupled vational pressure fog=0, since theé=0 case is outside of
case. In addition this scenario can relax the fine tUning prObthe 20 contour bound. However, this situation is eas”y im-

lem of the coupling constart[20]. proved by taking into account negative nonminimal cou-
plings, as seen in Fig. 4. The strength of the coupling is
3. Case of p=6 constrained to be&< —1.7x1072 at the 1r level andé<
The p=6 case is far away from thes2bound for&=0. —3.0x 10 * at the 2r level. Note that the Fakir and Unruh

Negative nonminimal couplings lead to the increasengf ~ scenario with large negativie(|¢[>1) is deep inside thed

and the decrease & when |¢| is much smaller than unity. bound, thus preferred observationally. We also found that the
However this behavior is altered with the growth|gf, as P=6 cases are outside of thezbound even in the presence
we showed in the previous section. The tensor-to-scalar ratief negative nonminimal couplingsee Fig. 4.

R is minimum aroundé= —3.5x 103, whose point is out- While we mainly concentrated on slow-roll inflation, the
side of the 2r contour bound. Since one has the decrease dformula (2.31), (2.33, and(2.39 can be used in more gen-
ns and the increase @& for £<—3.5x10 3, this regime is  eral theories if the terms, &, and 8 vanish. Actually this
also away from the & bound. Therefore thp=6 case is happens for the dilaton gravityFce ¢ and w=—e" %)
disfavored observationally even in the presence of nonminiwith an exponential potential. Let us consider a negative ex-

mal couplings. Th@s situation does not changefdor6, since' ponential potentialy/=—V, exp(—v2/ad), which appears
the theoretical points tend to be away from the observationin the Ekpyrotic scenarip45]. Note that this potential is the
ally allowed region for largem. In fact we numerically one in the Einstein frame and the dilatgnis related with

checked that thg=8 case is outside of theo3bound for the separation of two parallel brané:sthrough the relation

I . - ) o
any values of é=—/2¢ [46]. In this case the background evolution is

characterized by
IV. CONCLUSIONS AND DISCUSSIONS

In this work we studied cosmological perturbations in
generalized gravity theories based on the acti®ri). We
showed that curvature perturbations in the Jordan frame co-
incide with those in the Einstein frame. Since tensor perturip the Einstein frame and
bations are also invariant under a conformal transformation,
the inflationary observablesn§, ny, R, and Ag) are the Ja 2\a
same in both frames. This property indicates that the same H=——, ¢=———=In[—(1- \/E)t] (4.2
likelihood can be employed as for the standard Einstein grav- t 1-Va
ity. This is similar to what happens for the Randall-Sundrum
II' braneworld scenario in which the degeneracy of the conin the string frame [46]. Then we have 6:}/‘/;’
sistency relation does not explicitly give rise to the signaturee= — 1/a, s=6r=B=—1/(1—a), and J&s=;=0,
of the braneworld37], although the constraints of model which are all constant. Therefore Eq®.31), (2.33, and

qoo 99 Nea .0
dt t

¢—r)| Q
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(2.35 can beexactlyemployed in spite of the fact that the posed by Starobinskyt9] belongs to this class, in which the
background evolution is not slow roll. The spectral indicesspectrum of density perturbations was derived in R~
ns, Ny, and the tensor-to-scalar rafare invariant under a 52]. In particular Hwang and Nof52] showed that the spec-

conformal transformation, and simply given by tra of both scalar and tensor perturbations are invariant under
a conformal transformation as in our acti¢hl). These facts
2 R=R= E imply that the degeneracy of the consistency relation persists

Ns=Ns=1+7—, Nr=nr=1—_, o in a wide variety of gravity theories including the higher-
4.3 curvature gravity theory and the Randall-Sundrum Il brane-

world.
which are highly blue-tilted spectra for<0v<1 [47]. Note

that these are the spectra generated during the contracting
phase and may be affected by the physics around the bounce
[48]. We simply presented this example in order to show the
validity of the formula(2.31), (2.33, and(2.35 rather than We are grateful to Sam Leach for providing the latest
working on the detailed evolution of perturbations in the SDSS code and for his kind help in implementing the likeli-
bouncing cosmology. We note that the form(2a31), (2.33), hood analysis. We also thank Antony Lewis and David Par-
and(2.35 are automatically valid in slow-roll inflation, since kinson for their support in technical details of numerics. The
the variation of the terms, &, andB are negligibly small.  research of S.T. was financially supported by JSRS®.

There exist other generalized gravity theories where th@4942. S.T. thanks all members of IUCAA for their warm
function F in the action(2.1) depends upon not only but  hospitality during which this work was completed and espe-
also the Ricci scalaR. The R? inflationary scenario pro- cially to Rita Sinha for her kind support in numerics.
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