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Density perturbations in generalized Einstein scenarios and constraints on nonminimal coupling
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We study cosmological perturbations in generalized Einstein scenarios and show the equivalence of infla-
tionary observables both in the Jordan frame and the Einstein frame. In particular the consistency relation
relating the tensor-to-scalar ratio with the spectral index of tensor perturbations coincides with the one in
Einstein gravity, which leads to the same likelihood results in terms of inflationary observables. We apply this
formalism to nonminimally coupled chaotic inflationary scenarios with the potentialV5cfp and place con-
straints on the strength of the nonminimal couplings using a compilation of the latest observational data. In the
case of the quadratic potential (p52), the nonminimal coupling is constrained to bej.27.031023 for
negativej from the 1s observational contour bound. Although the quartic potential (p54) is under strong
observational pressure forj50, this property is relaxed by taking into account negative nonminimal couplings.
We find that inflationary observables are within the 1s contour bound as long asj,21.731023. We also
show that thep>6 cases are disfavored even in the presence of nonminimal couplings.
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I. INTRODUCTION

The inflationary paradigm has been the backbone of h
energy cosmology over the past 20 years@1#. The striking
feature of the inflationary cosmology is that it predicts nea
scale-invariant, Gaussian, adiabatic density perturbation
its simplest form. This prediction shows an excellent agr
ment with all existing and accumulated data within obser
tional errors. In particular the recent measurement of
Wilkinson Microwave Anisotropy Probe~WMAP! @2# pro-
vided the high-precision dataset from which inflationa
models can be seriously constrained@3–8#.

The prediction of inflationary observables exhibits so
difference depending on the models of inflation. It is imp
tant to pick up this slight difference in order to discrimina
between a host of inflationary scenarios. Conventionally
flationary models can be classified in three clas
@9#—‘‘large-field,’’ ‘‘small-field,’’ and ‘‘hybrid’’ models—
depending upon the shape of the inflaton potential. The la
field model is characterized by the potential

V~f!5cfp, ~1.1!

which includes only one free parameter for a fixed value
p. Therefore it is not generally difficult to place strong co
straints on the potential~1.1! compared to small-field and
hybrid models that involve additional model parameters.
fact it was recently shown in Refs.@4–8# that the quartic
potential (p54) is under a strong observational pressure d
to the deviation of a scale-invariant spectrum in addition t
high tensor-to-scalar ratio. This situation does not cha
much in the context of the Randall-Sundrum II branewo
scenario@10,11#. Note that the quadratic potential (p52) is
0556-2821/2004/69~12!/123523~11!/$22.50 69 1235
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within observational contour bounds due to the flatness
the potential relative to the quartic case.

When we try to construct models of inflation based
particle physics, we do not need to restrict ourselves to
standard Einstein gravity. For example, low-energy effect
string theory gives rise to a coupling between the scalar c
vature and the dilaton field, which leads to an inflationa
solution in the string frame@12#. The Jordan-Brans-Dicke
~JBD!-like theories can be viewed as the low-energy limit
superstring theory if the Brans-Dicke scalar plays the role
the dilaton@13,14#. In this sense the proposal of the extend
inflation scenario@15# stimulated a further study of mor
generic classes of inflation models in non-Einstein theo
@16,17#, in spite of the fact that the first version of the e
tended inflation resulted in failure due to the graceful e
problem@18#.

From the viewpoint of quantum field theory in curve
spacetime, the nonminimal couplings naturally arise due
their own nontrivial renormalization-group flows. The ultr
violet fixed point of these flows is often divergent, implyin
that the nonminimal couplings can be important in the ea
universe. In this respect Futamase and Maeda@19# studied
the effect of nonminimal couplings on the dynamics of ch
otic inflation and estimated the strength of the couplingj
from the requirement of a sufficient inflation. Whileuju is
required to be much smaller than unity in the quadratic
tential, such a constraint is absent in the quadratic poten
for negativej. Fakir and Unruh@20# showed that the fine-
tuning problem of the self-couplingc in Eq. ~1.1! is relaxed
for large negative values ofj by evaluating the amplitude o
scalar metric perturbations. A number of authors further
vestigated the spectra of scalar and tensor perturbations
erated in inflation@21–28# and particle productions in rehea
©2004 The American Physical Society23-1
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ing @29#.1 See, e.g., Refs.@31# for other interesting aspects o
nonminimally coupled scalar fields.

In this work we do not restrict ourselves to the Fakir a
Unruh scenario, but will place constraints on the strength
nonminimal coupling for the general potential~1.1! by using
a compilation of recent observational datasets. We shall
vide a general formalism for scalar and tensor perturbati
in generalized Einstein theories including dilaton grav
JBD theory, and a nonminimally coupled scalar field. T
analysis explicitly shows the equivalence of inflationary o
servables in both the Jordan frame and the Einstein fra
which results in the fact that a separate likelihood analysi
terms of observational quantities is not needed compare
the Einstein gravity. Making use of the two-dimensional o
servational constraints of the scalar spectral indexnS and the
tensor-to-scalar ratioR, we shall carry out a detailed analys
about the constraint on the nonminimally coupled inflat
field for the potential~1.1!. This provides us an interestin
possibility to place strong constraints on the strength of n
minimal couplings from the recent high-precision obser
tions. In fact we will show that even small nonminimal co
plings with uju!1 can alter the standard prediction of th
Einstein gravity.

II. GENERAL FORMALISM FOR PERTURBATION
SPECTRA

We start with a generalized action@32#

S5E d4xA2gF1

2
F~f!R2

1

2
v~f!~¹f!22V~f!G ,

~2.1!

whereR is the Ricci scalar.F(f), v(f) andV(f) are gen-
eral functions of a scalar fieldf. The action~2.1! includes a
variety of gravity theories such as the Einstein gravity, sca
tensor theories, and low-energy effective string theories.
example, we haveF(f)51/k2 andv(f)51 in the Einstein
gravity, F(f)5(12jk2f2)/k2 and v(f)51 for a non-
minimally coupled scalar field,F(f)5e2f and v(f)5
2e2f for low-energy effective string theories. Hereafter w
basically use the unitk2[8p/mpl

2 51, but we restore the
Planck massmpl when it is needed.

In a flat Friedmann-Lemaitre-Robertson-Walker~FLRW!
background with a scale factora, the background equation
are

H2[S ȧ

a
D 2

5
1

6F
~vḟ212V26HḞ !, ~2.2!

Ḣ5
1

2F
~2vḟ21HḞ2F̈ !, ~2.3!

1The presence of negative nonminimal couplings also leads to
strong variation of curvature perturbations in the context of mu
field inflation. See Refs.@30# for details.
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f̈13Hḟ1
1

2v
~vfḟ22FfR12Vf!50, ~2.4!

whereH is the Hubble expansion rate and a dot denotes
derivative with respect to a cosmic timet.

A. Perturbations in Jordan frame

We consider a general perturbed metric for scalar per
bations,

ds252~112A!dt212a~ t !B,idxidt

1a2~ t !@~112w!d i j 12E,i , j #dxidxj , ~2.5!

where a comma denotes a flat-space coordinate derivativ
is convenient to introduce comoving curvature perturbatio
R, defined by

R5w2
H

ḟ
df, ~2.6!

wheredf is the perturbation of the fieldf. The equation of
motion for the Lagrangian~2.1! was derived in Refs.@32#
and is simply given by

1

a3QS

~a3QSṘ!•1
k2

a2
R50, with QS5

vḟ213Ḟ2/2F

~H1Ḟ/2F !2
,

~2.7!

where k is a comoving wave number. Note that a simil
form of equation is derived even in the presence of m
complicated terms such as the Gauss-Bonnet term and
(¹f)4 term @33#. If we neglect the contribution of the de
caying mode, the curvature perturbation is conserved in
large-scale limit (k→0). Introducing new variables,z
5aAQS andv5aR, the above equation reduces to

v91~k22z9/z!v50, ~2.8!

where a prime denotes a derivative with respect to a con
mal timeh5*a21dt.

The gravity termz9/z can be written as

z9

z
5~aH!2F ~11dS!~21dS1e!1

dS8

aHG , ~2.9!

where

e5
Ḣ

H2
, dS5

Q̇S

2HQS
. ~2.10!

In the context of slow-roll inflation, it is a good approxima
tion to neglect the variations ofe and dS. Since h5
21/@(11e)aH# in this case, we have

z9

z
5

gS

h2
, with gS5

~11dS!~21dS1e!

~11e!2
. ~2.11!
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Then the solution for Eq.~2.8! is expressed by the combina
tion of the Hankel functions:

v5~Apuhu/2!@c1HnS

(1)~kuhu!1c2HnS

(2)~kuhu!#, ~2.12!

where nS[AgS11/4. We choose the coefficients to bec1
50 and c251, so that positive frequency solutions
a Minkowski vacuum are recovered in an asympto
past. Making use of the relation HnS

(2)(kuhu)
→( i /p)G(nS)(kuhu/2)2nS for long-wavelength perturbation
(k→0), one gets the spectrum of curvature perturbatio
PS[(k3/2p2)uRu2, as

PS5
1

QS
S H

2p D 2S 1

aHuhu D
2S G~nS!

G~3/2! D
2S kuhu

2 D 322nS

[AS
2S kuhu

2 D 322nS

. ~2.13!

Whenn50, we have an additional ln(kuhu) factor @33#.
Then the spectral index,nS[11d ln PS/d ln k, is given

by

nS215322nS532A4gS11, ~2.14!

wheregS is given in Eq.~2.11!.
Let us next consider the spectrum of tensor perturbatio

hi j . Sincehi
j satisfies the same form of equation as in E

~2.7! with replacementQS→QT5F, we get the power spec
trum to be

PT5
8

QT
S H

2p D 2S 1

aHuhu D
2S G~nT!

G~3/2! D
2S kuhu

2 D 322nT

[AT
2S kuhu

2 D 322nT

, ~2.15!

where

nT5AgT11/4, with

gT5
~11dT!~21dT1e!

~11e!2
with dT5

Q̇T

2HQT
.

~2.16!

Note that we take into account the polarization states
gravitational waves. The spectral index of tensor pertur
tions is given by

nT532A4gT11. ~2.17!

The difference of scalar and tensor perturbations comes f
the fact thatQS differs from QT .

The tensor-to-scalar ratio is defined as

R[
AT

2

AS
2

58
QS

QT
S G~nT!

G~nS! D
2

58
vḟ213Ḟ2/2F

F~H1Ḟ/2F !2 S G~nT!

G~nS! D
2

.

~2.18!
12352
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B. Einstein frame and the equivalence of perturbation spectra

The discussion in the previous subsection correspond
the analysis in the Jordan frame. It is not obvious whet
the same property holds in the Einstein frame. Let us m
the conformal transformation for the action~2.1!,

ĝmn5Vgmn , with V5F. ~2.19!

Then we get the action in the Einstein frame@34,35#,

SE5E d4x̂A2ĝF1

2
R̂2H 3

4 S Ff

F D 2

1
v

2FJ ~¹̂f!22V̂~f!G ,
with V̂~f!5

V~f!

F2
. ~2.20!

If we introduce a new scalar fieldf̂, so that

df̂[G~f!df, with G~f!5A3

2 S Ff

F D 2

1
v

F
,

~2.21!

the action~2.20! can be written in the canonical form

SE5E d4x̂A2ĝF1

2
R̂2

1

2
~¹f̂!22V̂~f!G . ~2.22!

We shall consider a perturbed metric in the Einste
frame,

dŝ25Vds2 ~2.23!

52~112Â!d t̂212â~ t̂ !B̂,idx̂id t̂

1â2~ t̂ !@~112ŵ !d i j 12Ê,i , j #dx̂idx̂j , ~2.24!

and decompose the conformal factor into the background
the perturbed part as

V~x,t !5V̄~ t !S 11
dV~x,t !

V̄~ t !
D . ~2.25!

In what follows we drop a ‘‘bar’’ when we expressV̄(t).
Then we get the following relations:

â5aAV, d t̂5AVdt, Ĥ5
1

AV
S H1

V̇

2V
D ,

Â5A1
dV

2V
, ŵ5w1

dV

2V
. ~2.26!

Making use of these relations, it is easy to show th
curvature perturbations in the Einstein frame exactly co
cide with those in the Jordan frame:
3-3
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R̂[ŵ2
Ĥ

df̂/d t̂
df̂ ~2.27!

5w2
H

ḟ
df5R. ~2.28!

Since tensor perturbations are also invariant under a con
mal transformation, we have the following relations:

P̂S5PS, P̂T5PT . ~2.29!

Introducing the following quantities:

ĝS5
~11 d̂S!~21 d̂S1 ê !

~11 ê !2
, ê5

dĤ/d t̂

Ĥ2
,

d̂S5
dQ̂S/d t̂

2ĤQ̂S

, Q̂S5S df̂/d t̂

Ĥ
D 2

5QS/F, ~2.30!

the spectral index of scalar perturbations in the Einst
frame is given by

n̂S21532A4ĝS11. ~2.31!

The two quantitiesê and d̂S can be written as

ê5
e2b

11b
1

ḃ

H~11b!2
, d̂S5

d2b

11b
, with b5

Ḟ

2HF
.

~2.32!

When the variation ofb is negligible (ḃ.0), which is valid
in the context of slow-roll inflation, one can easily show th
ĝS5gS. Therefore the spectral index~2.31! in the Einstein
frame coincides with the one in the Jordan frame (n̂S5nS).
The spectral index of tensor perturbations is also the sam
both frames (n̂T5nT), and is simply given as

n̂T532A4ĝT11, with ĝT5
21 ê

~11 ê !2
, ~2.33!

where we usedQ̂T5QT /F51 andd̂T50.
The tensor-to-scalar ratio is unchanged by a confor

transformation and is given by

R̂5
ÂT

2

ÂS
2

58
Q̂S

Q̂T
S G~n̂T!

G~ n̂S!
D 2

58
QS

QT
S G~nT!

G~nS! D
2

5R,

~2.34!

where we usedQ̂S5QS/F, Q̂T5QT /F, n̂S5nS, and n̂T

5nT . Making use of the background equation, 2dĤ/d t̂5

2(df̂/d t̂)2, we get

R̂58S df̂/d t̂

Ĥ
D 2S G~n̂T!

G~ n̂S!
D 2

5216
dĤ/d t̂

Ĥ2 S G~n̂T!

G~ n̂S!
D 2

.

~2.35!
12352
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Hereafter we shall drop a ‘‘hat’’ for the quantitiesn̂S, n̂T , R̂.

C. Slow-roll analysis

If the slow-roll approximation is employed (ueu!1, udSu
!1, udTu!1, andubu!1), we get the following relations:

nS5112e22dS5112ê22d̂S, ~2.36!

nT52e22dT52ê, ~2.37!

R528nT . ~2.38!

Here we usedG(nS).G(nT).G(3/2), since the spectra o
scalar and tensor perturbations are close to scale invar
The consistency relation~2.38! is the same as in the case
the standard Einstein gravity.2 This means that a separa
likelihood analysis of observational data is not needed e
for the generalized action~2.1!, when we vary four observa
tional quantitiesnS, nT , R, andAS

2 . This situation is similar
to the perturbations in Randall-Sundrum II braneworld s
nario in which the same consistency relation~2.38! holds
@37#. Thus we can exploit the observational constraints
the values ofnS andR which were recently derived in Ref
@11#.

On the other hand, when we constrain the inflation mod
which belong to the generalized action~2.1!, the difference is
seen compared to the Einstein gravity. This comes from
fact that the potential in the Einstein frame includes the c
formal factor 1/F2 and that the fieldf̂ is different from the
inflaton f @see Eq.~2.21!#. Under the slow-roll approxima-
tion, the background equations in the Einstein frame can
written as

3Ĥ2.k2V̂, 3Ĥ
df̂

d t̂
.2V̂f̂ . ~2.39!

Thenê andd̂S are written in terms of the slope of the pote
tial

ê.2
1

2k2 S V̂f̂

V̂
D 2

, d̂S.
1

k2 F S V̂f̂

V̂
D 2

2
V̂f̂f̂

V̂
G .

~2.40!

Then we can evaluate the theoretical valuesnS, nT , R and
constrain model parameters by comparing with observatio
data.

2Note that the consistency relation is different in the context
multifield inflation due to the correlation between adiabatic a
isocurvature perturbations. See Refs.@36# for details.
3-4
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III. NONMINIMALLY COUPLED INFLATON FIELD

In this section we wish to apply the formalism in th
previous section to a nonminimally coupled inflaton field.
this case we have

F~f!5~12jk2f2!/k2, v~f!51, ~3.1!

for the action~2.1!. Here we used the notation where th
conformal coupling corresponds toj51/6, which is the
same notation as Futamase and Maeda@19# but different
from Fakir and Unruh@20#.

A. Background equations

In the case~3.1! the background equations~2.2!–~2.4! are
written in the form

H25
k2

6~12jk2f2!
@ḟ212V112Hjfḟ#, ~3.2!

f̈13Hḟ2
j~126j!k2fḟ2

12~126j!jk2f2
1

4jk2fV1~12jk2f2!Vf

12~126j!jk2f2

50, ~3.3!

where we usedR56(2H21Ḣ).
Hereafter we shall consider the large-field potential~1.1!.

Under the slow-roll approximations,uf̈u!u3Hḟu and
u3Hḟu!uVfu, one has

3Hḟ.2
cfp21@p1c~42p!#

12~126j!c
, ~3.4!

H2.
k2cfp

3~12c! F12
2j$p1c~42p!%

12~126j!c G , ~3.5!

where

c[jk2f2. ~3.6!

We get the following equation from Eqs.~3.4! and ~3.5!:

ċ

H
52

2j~c21!@~p24!c2p#

~2jp22j21!c1122jp
. ~3.7!

The number ofe folds is defined as

N[E
t

t f
Hdt5E

c

c f H

ċ
dc, ~3.8!

where the subscript ‘‘f’’ denotes the values at the end
inflation. Making use of Eq.~3.7!, we have

N52
1

4j
lnU~p24!c f2p

~p24!c2pU
(3jp22)/(p24)Uc f21

c21U
j

,

for pÞ4, ~3.9!
12352
f

N52
126j

8j
~c f2c!2

1

4
lnUc f21

c21U, for p54.

~3.10!

Later we shall use this relation to expressc in terms ofN.

B. Potential in the Einstein frame

The potential in the Einstein frame and the effecti
gravitational constant are given, respectively, by

V̂5
cfp

~12jk2f2!2
, Geff5

G

12jk2f2
. ~3.11!

When j is positive, we need the conditionf2,fc
2

[mpl
2 /(8pj) in order to reproduce the present value of t

gravitational constant. Futamase and Maeda obtained
constraint j&1023 from the requirement that the initia
value of the inflaton (f i;5mpl) is smaller thanfc @19#.
They also pointed out that this constraint becomes m
stringent whenf i is larger.

We do not have the singularities of the potentialV̂ and the
effective gravitational constant for negative values ofj. Fu-
tamase and Maeda found that the negative values ofj are
generically allowed forp54, while the nonminimal coupling
is constrained to beuju&1023 for p52 from the requirement
of a sufficient inflation. In particular Fakir and Unruh@20#
showed that the fine tuning of the coupling constantc is
avoided forp54 by considering large negative values ofj
satisfyinguju@1. Hereafter we shall concentrate on the ca
of negativej for the general potential~1.1!. We wish to
constrain the strength of the nonminimal couplings by e
ploiting latest observational data. While Komatsu and Fu
mase @25,26# focused on large negative nonminimal co
plings for p54, we shall consider general values ofj with
the generic potential~1.1!.

In Fig. 1 we plot the potentialV̂ in the Einstein frame for
p52, p54, andp56 whenj is negative. From Eq.~3.11!
the potential has a local maximum at

fM5A p

8p~42p!uju
mpl , ~3.12!

as long asp,4. Therefore we havefM5mpl /A8puju for
p52. Naively we expect thatfM is required to be larger than
3mpl in order to lead to a sufficient number ofe folds (N
*60), which givesuju&4.431023. Note, however, that one
can get a large number ofe folds if the initial value off is
close tofM . Therefore the nonminimal couplings satisfyin
uju*4.431023 may not be excluded.3 In this work we will
place complete constraints on the strength ofj by comparing
the perturbation spectra with observations.

When p54 the potentialV̂ monotonically increases to
ward a constant value,V̂→c/j2k4, asf→`. Since the po-

3In Ref. @27# it was shown that the constraint onj is relaxed by
considering topological inflation.
3-5



tiv
e

rs

gs

r

a

n-
e

res-

tur-
g

al

ith
t
a

S. TSUJIKAWA AND B. GUMJUDPAI PHYSICAL REVIEW D69, 123523 ~2004!
tential becomes flatter by taking into account the nega
nonminimal couplings, the amount of inflation gets larg
compared to the case ofj50. For ucu@1, we obtain the
following background solution from Eqs.~3.4! and ~3.5!:

f5f02
4Ac

~126j!A23jk2
t,

a5a0 expFA c

23jS f0t2
2Ac

~126j!A23jk2
t2D G ,

~3.13!

wheref0 anda0 are constants. This means that the unive
expands quasiexponentially for large negative values ofj.

In the case ofp.4, the steepness of the potentialV̂ is
relaxed by taking into account negativej. If ucu is much
smaller than unity, the effect of the nonminimal couplin
helps to lead to a larger number ofe folds. Whenucu@1, we
have the following analytic solution:

f5F ~p22!~p24!Ac

12A2j~p21!
t1f0G 2/(22p)

,

a5a0F t2
6jf0

c~42p!G
4(p21)/(p22)(p24)

. ~3.14!

This explicitly shows that the fieldf decreases with time fo
p.4. We also find that the solution~3.14! does not corre-
spond to an inflationary solution forp.51A13.

The slow-roll parameter in the Einstein frame is given

u êu5
1

2k2G2~f!
S V̂f

V̂
D 2

5
j

2c

@p1~42p!c#2

12~126j!c
,

~3.15!

FIG. 1. The potential of the inflaton in the Einstein frame w
j520.05 for p52, p54, and p56. It has a local maximum a
fM5mpl /A8puju for p52. Whenp54 the potential approaches

constant valueV̂5c/j2k4 asf→`.
12352
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where we usedG2(f)5@12(126j)c#/(12c)2. Therefore
one hasu êu5(p24)2/12 for ucu@1 anduju@1, which means
that u êu is larger than unity forp.412A3. This again
shows that inflationary solutions are not obtained forp*8.
Since we cannot keep the 1/G2(f) term to be small in Eq.
~3.15! for ucu@1, the slow-roll parameter exceeds unity u
less p is small. Hereafter we shall mainly investigate th
cases ofp52, p54, andp56. This is sufficient to under-
stand what happens for the perturbation spectra in the p
ence of the nonminimal couplings.

C. Perturbation spectra and the tensor-to-scalar ratio

We are now in the stage to evaluate the spectra of per
bations for the nonminimally coupled inflaton field. Makin
use of the results~2.36! and~2.38! with slow-roll parameters
~2.40!, we get the values ofnS andR as

nS215
j

c

p1~42p!c

12~126j!c F23p1~3p28!c

1
2~126j!c~12c!

12~126j!c

12
~12c!2p~p21!14c$11p1~12p!c%

p1~42p!c G ,
~3.16!

R5
8j

c

@p1~42p!c#2

12~126j!c
, ~3.17!

which are written in terms of the functions ofj andc for a
fixed value ofp.

The end of inflation is characterized byu êu51, thereby
yielding

c f5
12jp~42p!2A~122pj!~126pj!

j~42p!212~126j!
, ~3.18!

which we choose the negative sign ofc f , since we are con-
sidering the case ofj,0. Whenuju!1, Eqs.~3.9! and~3.10!
give the following relation:

u~p24!c2pu.u~p24!c f2puexp@22jN~p24!#,

for pÞ4, ~3.19!

c.c f1
8j

126j
N, for p54.

~3.20!

Making use of Eqs.~3.19! and~3.20!, one can expressnS and
R in terms ofj andN. Fixing thee fold at the cosmologically
relevant scaleN555, nS and R are the function ofj only.
Therefore we can constrain the strength of the nonminim
couplings by comparing the theoretical predictions~3.16!
and ~3.17! with the observational data.
3-6
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Before proceeding the constraint onj, we shall investi-
gate the effect of nonminimal couplings under the appro
mations ofuju!1 anducu!1. In this case we have

nS21.2
jp~p12!

c F12
p228p18

p~p12!
cG , ~3.21!

R.
8p2j

c S 11
82p

p
c D . ~3.22!

In what follows we shall investigate the cases ofp52, p
54, andp56 separately.

1. Case of pÄ2

In this case one has the following relation from Eq
~3.18! and ~3.19!:

c5U3
2

2
1

2
A1212j

124j
Ue4jN21.e4jN21, ~3.23!

which is valid foruju!1. Then Eqs.~3.21! and~3.22! reduce
to

nS21.24j
e4jN11

e4jN21
.2

2

N S 11
4

3
j2N2D , ~3.24!

R.32j
3e4jN22

e4jN21
.

8

N
~1110jN!. ~3.25!

In the minimally coupled case (j50), we havenS51
22/N and R58/N, corresponding tonS50.964 and R
50.145 for N555. If we take into account negative non
minimal couplings, we find the increase ofunS21u and the
decrease ofR compared to the case ofj50. This behavior is
clearly seen in Figs. 2 and 3 that are obtained without us
the approximation above. The rapid decrease ofR for uju
*1023 reflects the fact thatf approaches the valuefM for

FIG. 2. The spectral indexnS as a function ofuju for p52, p
54, andp56. Note that we are considering negative values ofj.
See the text for the interpretation of this figure.
12352
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larger uju, which works to decreaseu êu toward zero. On the
other hand, the second derivative of the potential gets la
on the right-hand side ofd̂S with the growth ofuju. This is
the reason whynS departs from 1 for largeruju in spite of the
fact thatê gets smaller toward zero.

2. Case of pÄ4

In the case of the quartic potential, Eqs.~3.18! and~3.20!
give the following relation:

c5
12A~128j!~1224j!116jN

2~126j!
. ~3.26!

Note that this is valid for general values ofj, since the
second term on the right-hand side of Eq.~3.10! is always
subdominant relative to the first term. When the conditio
uju!1, is satisfied, one hasc.8jN from Eq.~3.26!. If ucu is
smaller than of order unity, we find

nS21.2
24j

c S 11
1

3
c D.2

3

N S 11
8

3
jND , ~3.27!

R.
128j

c
~11c!.

16

N
~118jN!. ~3.28!

Then we havenS5123/N and R516/N for j→0, corre-
sponding tonS50.945 andR50.291 forN555. Inclusion of
the nonminimal couplings leads to the decrease of bothunS
21u and R, as seen in Figs. 2 and 3. This comes from t
fact that the potential becomes flatter in the presence of n
tive nonminimal couplings.

It is worth mentioning the case of large negative nonmi
mal couplings (uju@1). Since ê.8j/(126j)c2 and
V̂f̂f̂ /k2V̂.28j/(126j)c in this case, we find

nS21.2
16j

126j

1

c
, R.

2128j

126j

1

c2
. ~3.29!

FIG. 3. The tensor-to-scalar ratioR as a function ofuju for p
52, p54, andp56 with negativej.
3-7
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From Eq.~3.26! one obtainsc.24N/3 for uju@1. Then we
get the following results:

nS21.22/N, R.12/N2. ~3.30!

Note that the spectral indexnS is the same as in the mini
mally coupled case with the quadratic potential (j50 and
p52). One hasnS50.964 andR50.003 97 for N555.4

Therefore the Fakir and Unruh scenario withuju@1 predicts
a much smaller value ofR compared to the minimally
coupled case.

3. Case of pÄ6

For p56 and uju!1, one obtains the following relation
from Eq. ~3.19!:

c532u32c fue24jN, ~3.31!

wherec f is approximately given asc f.18j by Eq. ~3.18!.
Then we findc.12jN and

nS21.2
48j

c S 11
1

12
c D.2

4

N
~11jN!, ~3.32!

R.
288j

c S 11
1

3
c D.2

24

N
~114jN!. ~3.33!

This indicates that the negative nonminimal couplings le
to the decrease ofunS21u andR for uju!1.

From Figs. 2 and 3 we find thatunS21u and R begin to
increase foruju*1022. This can be understood as follow
WhenpÞ4 anducu is larger than of order unity, we obtain

nS21.
4j

126j
~p24!2, ~3.34!

R.
216j

126j
~p24!2, ~3.35!

which are independent ofN. In the case ofp56, this yields
nS21516j/(126j) and R5264j/(126j). Therefore
both unS21u and R grow with the increase ofuju. The
asymptotic values correspond tonS21→28/3 and R
→32/3 asuju→`.

D. Observational constraints on nonminimal couplings

Lets us now place observational constraints on
strength of the nonminimal couplings. As shown in Sec.
the inflationary observablesPS, R, nS, andnT are equivalent
both in the Jordan frame and the Einstein frame. This co
spondence indicates that a separate likelihood analysis o
servational data is not required compared to the Eins
gravity. Recently one of the present authors carried ou
likelihood analysis@11# in the context of braneworld inflation
using a compilation of data including WMAP@38–40#, the

4Komatsu and Futamase@26# obtained the valuesnS50.97 and
R50.002, since they chose thee fold N570.
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2 Degree Field System~2dF! @41#, and latest Sloan Digita
Sky Survey~SDSS! galaxy redshift surveys@42#. Since the
same correspondence holds for inflationary observable
this case as well, we can exploit the observational constra
derived in Ref.@11#. Note that we used theCOSMOMC ~Cos-
mological Monte Carlo! code @43# with the CAMB program
@44#, and varied four inflationary variables in ad
dition to four cosmological parameters (Vbh2, Vch

2,
Z5e22t, H0).

In Fig. 4 we plot the 2D posterior constraints in thenS-R
plane and also show the 1s and 2s contour bounds. In the
previous subsection we obtainednS and R in terms of the
function ofj by fixing thee fold to beN555. Therefore one
can constrain the strength of nonminimal couplings by pl
ting theoretical predictions ofnS andR in the same figure.

1. Case of pÄ2

In the case of the quadratic potential, the theoretical po
is within the 1s contour bound forj50, as is seen in Fig. 4
Taking into account the negative nonminimal couplings lea
to the decrease of bothnS and R ~see Figs. 2 and 3!. From
Fig. 4 we obtain the observational constraint on negat
nonminimal couplings:

j.27.031023 ~1s bound!, ~3.36!

j.21.131022 ~2s bound!. ~3.37!

FIG. 4. 2D posterior constraints in thenS-R plane with the 1s
and 2s contour bounds. We also show the theoretical predictio
for ~a! p52, ~b! p54, and~c! p56 with a fixede fold, N555.
Each case corresponds to, from top to bottom,~a! j50,20.003,
20.007,20.011, and ~b! j50,20.0003,20.0017,20.005. The
point denoted by ‘‘FU’’ is the Fakir and Unruh scenario withuju
@1. The plot ~c! shows the cases ofj50,20.001,20.0035
from the left top to bottom, and another point correspon
to j520.01.
3-8
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If j is less than of order 1022, the curvature of the potentia
around f5fM is too steep to generate a nearly sca
invariant spectrum.

2. Case of pÄ4

It is now well known that the quartic potential is under
strong observational pressure in the minimally coupled c
@4–8#. In fact thej50 point is outside of the 2s contour
bound in Fig. 4. In the presence of the negative nonminim
couplings, we have the increase ofnS and the decrease ofR,
which is favored observationally. Figure 4 indicates thatj is
constrained to be

j,21.731023 ~1s bound!, ~3.38!

j,23.031024 ~2s bound!.
~3.39!

Thus nonminimal couplings of orderj521023 make it pos-
sible to generate observational preferred power spectra
Fig. 4 we also plot the theoretical point in the limit ofuju
→` ~denoted by ‘‘FU’’!. This corresponds to the value
given in Eq. ~3.30! which is deep inside the 1s contour
bound. Thus the Fakir and Unruh scenario withuju@1 is
favored observationally relative to the minimally coupl
case. In addition this scenario can relax the fine tuning pr
lem of the coupling constantc @20#.

3. Case of pÄ6

The p56 case is far away from the 2s bound forj50.
Negative nonminimal couplings lead to the increase ofnS
and the decrease ofR when uju is much smaller than unity
However this behavior is altered with the growth ofuju, as
we showed in the previous section. The tensor-to-scalar r
R is minimum aroundj523.531023, whose point is out-
side of the 2s contour bound. Since one has the decreas
nS and the increase ofR for j,23.531023, this regime is
also away from the 2s bound. Therefore thep56 case is
disfavored observationally even in the presence of nonm
mal couplings. This situation does not change forp.6, since
the theoretical points tend to be away from the observat
ally allowed region for largerp. In fact we numerically
checked that thep58 case is outside of the 3s bound for
any values ofj.

IV. CONCLUSIONS AND DISCUSSIONS

In this work we studied cosmological perturbations
generalized gravity theories based on the action~2.1!. We
showed that curvature perturbations in the Jordan frame
incide with those in the Einstein frame. Since tensor per
bations are also invariant under a conformal transformat
the inflationary observables (nS, nT , R, and AS) are the
same in both frames. This property indicates that the sa
likelihood can be employed as for the standard Einstein g
ity. This is similar to what happens for the Randall-Sundru
II braneworld scenario in which the degeneracy of the c
sistency relation does not explicitly give rise to the signat
of the braneworld@37#, although the constraints of mode
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parameters in terms of underlying potentials are differ
@11#. Remarkably the consistency relation~2.38! holds even
for the generalized action~2.1! that includes dilaton gravity,
JBD theory, and a nonminimally coupled scalar field.

We then apply our general formalism to the nonminima
coupled inflaton field with potential~1.1!. Our main aim is to
place strong constraints on the strength of nonminimal c
plings using the latest observational data including WMA
the 2dF, and SDSS galaxy redshift surveys. We focused
the case of the negative nonminimal couplings, since
positive couplingj was already severely constrained fro
the requirement of a sufficient inflation@19# (j is at least
smaller than 1023 and is even much smaller depending
the initial condition of the inflaton!.

For the quadratic potential (p52), inclusion of the nega-
tive nonminimal couplings leads to the decrease of the sp
tral indexnS and the tensor-to-scalar ratioR ~see Figs. 2 and
3!. While the minimally coupled case (j50) is within the
1s contour bound, the theoretical points of largeruju tend to
be away from the observational bounds due to the depar
from the scale invariance of the spectral index~see Fig. 4!.
We found the constraintsj.27.031023 at the 1s level
andj.21.131022 at the 2s level.

The quartic potential (p54) suffers from a strong obser
vational pressure forj50, since thej50 case is outside o
the 2s contour bound. However, this situation is easily im
proved by taking into account negative nonminimal co
plings, as seen in Fig. 4. The strength of the coupling
constrained to bej,21.731023 at the 1s level andj,
23.031024 at the 2s level. Note that the Fakir and Unru
scenario with large negativej (uju@1) is deep inside the 1s
bound, thus preferred observationally. We also found that
p>6 cases are outside of the 2s bound even in the presenc
of negative nonminimal couplings~see Fig. 4!.

While we mainly concentrated on slow-roll inflation, th
formula ~2.31!, ~2.33!, and~2.35! can be used in more gen
eral theories if the termsė, ḋ, and ḃ vanish. Actually this
happens for the dilaton gravity (F5e2f and v52e2f)
with an exponential potential. Let us consider a negative
ponential potential,V̂52V0 exp(2A2/af̂), which appears
in the Ekpyrotic scenario@45#. Note that this potential is the
one in the Einstein frame and the dilatonf is related with
the separation of two parallel branesf̂ through the relation
f52A2f̂ @46#. In this case the background evolution
characterized by

Ĥ5
a

t̂
,

df̂

d t̂
52

A2a

t̂
~4.1!

in the Einstein frame and

H52
Aa

t
, f52

2Aa

12Aa
ln@2~12Aa!t# ~4.2!

in the string frame @46#. Then we have e51/Aa,
ê521/a, dS5dT5b521/(12Aa), and d̂S5 d̂T50,
which are all constant. Therefore Eqs.~2.31!, ~2.33!, and
3-9
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~2.35! can beexactlyemployed in spite of the fact that th
background evolution is not slow roll. The spectral indic
nS, nT , and the tensor-to-scalar ratioR are invariant under a
conformal transformation, and simply given by

n̂S5nS511
2

12a
, n̂T5nT5

2

12a
, R̂5R5

16

a
,

~4.3!

which are highly blue-tilted spectra for 0,a!1 @47#. Note
that these are the spectra generated during the contra
phase and may be affected by the physics around the bo
@48#. We simply presented this example in order to show
validity of the formula~2.31!, ~2.33!, and~2.35! rather than
working on the detailed evolution of perturbations in t
bouncing cosmology. We note that the formula~2.31!, ~2.33!,
and~2.35! are automatically valid in slow-roll inflation, sinc
the variation of the termse, d, andb are negligibly small.

There exist other generalized gravity theories where
function F in the action~2.1! depends upon not onlyf but
also the Ricci scalarR. The R2 inflationary scenario pro-
.

.

ys

c
.

.
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posed by Starobinsky@49# belongs to this class, in which th
spectrum of density perturbations was derived in Refs.@50–
52#. In particular Hwang and Noh@52# showed that the spec
tra of both scalar and tensor perturbations are invariant un
a conformal transformation as in our action~2.1!. These facts
imply that the degeneracy of the consistency relation pers
in a wide variety of gravity theories including the highe
curvature gravity theory and the Randall-Sundrum II bra
world.
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