A quintessentially geometric model

Burin Gumjudpai ${ }^{1}$, Tapan Naskar ${ }^{2}$ and John Ward ${ }^{3}$
${ }^{1}$ Fundamental Physics and Cosmology Research Unit, The Tah Poe Academia Institute (TPTP), Department of Physics, Naresuan University, Phitsanulok 65000, Thailand
${ }^{2}$ IUCAA, Post bag 4, Ganeshkhind, Pune 411007, India
${ }^{3}$ Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
E-mail: buring@nu.ac.th, tapan@iucaa.ernet.in and j.ward@qmul.ac.uk

Received 11 August 2006
Accepted 18 October 2006
Published 10 November 2006
Online at stacks.iop.org/JCAP $/ 2006 / \mathrm{i}=11 / \mathrm{a}=006$
doi:10.1088/1475-7516/2006/11/006

Abstract

We consider string inspired cosmology on a solitary D3 brane moving in the background of a ring of branes located on a circle of radius R. The motion of the D3 brane transverse to the plane of the ring gives rise to a radion field which can be mapped to a massive non-BPS Born-Infeld type field with a cosh potential. For certain bounds of the brane tension we find an inflationary phase is possible, with the string scale relatively close to the Planck scale. The relevant perturbations and spectral indices are all well within the expected observational bounds. The evolution of the universe eventually comes to be dominated by dark energy, which we show is a late time attractor of the model. However we also find that the equation of state is time dependent, and will lead to late time quintessence.

Keywords: dark energy theory, string theory and cosmology, inflation, cosmology of theories beyond the SM

ArXiv ePrint: hep-ph/0603210

Contents

1. Introduction 2
2. Geometrical scalar field and coupling to gravity 4
3. Inflationary constraints 8
4. Reheating 10
5. Dark energy 12
6. Conclusion 16
Acknowledgments 18
References 18

1. Introduction

It was recently suggested that the rolling open string tachyon, inspired by a class of string theories, can have important cosmological implications. The decay of a non-BPS D3 brane filling four-dimensional space time leads to a pressureless dust phase which we identify with the closed string vacuum. The rolling tachyon has an interesting equation of state whose parameter ranges from 0 to -1 . It was therefore thought to be an inflation and dark matter candidate, or a model of transient dark energy [1]. However if we rigorously stick to string theory, the effective tachyon potential contains no free parameter. A viable inflationary scenario should lead to enough numbers of e folds, and the correct level of density perturbations. The latter requires a free parameter in the effective potential which could be tuned to give rise to an adequate amount of primordial density perturbations. One also requires an adjustable free parameter in the effective potential to account for the late time acceleration.

Recently a time dependent configuration in a string theory was investigated and was shown to have interesting cosmological application [12]. In this scenario a BPS D3 brane is placed in the background of several coincident, static NS5 branes which are extremely heavy compared to the D3 brane and form an infinite throat in the space time. This system is inherently non-supersymmetric because the two different kinds of branes preserve different halves of the bulk supersymmetries. As a result the D3 brane can be regarded as a probe of the warped background and is gravitationally attracted toward the NS5 branes. Furthermore there exists an exact conformal field theory description of this background where the number of 5 -branes determines the level of the WZW current algebra [13], which allows for exact string based calculations. Despite the fact that the string coupling diverges as we approach the 5 -branes, it was shown that we can trust our effective Dirac-Born-Infeld (DBI) action to late times in the evolution provided that the energy of the probe brane is sufficiently high. In any event, as the probe D3 brane approaches the background branes the spatial components of the energy-momentum tensor tend to zero in exactly the same way as in the effective action description of the open string tachyon. Thus it was anticipated that the dynamics of branes in these backgrounds had remarkably
similar properties to rolling tachyon solutions. This relationship was further developed by Kutasov who showed that it was possible to mimic the open string tachyon potential by considering brane motion in a specific kind of 10D geometry. In order to do this one must take the action of the BPS probe brane in the gravitational background and map it to a non-trivial scalar field solution described by the non-BPS action [2]. The new field is essentially a holographic field living on the world-volume of the brane, but encodes all the physics of the bulk background. This is known as the geometrical tachyon construction. Another particularly interesting solution considered the background branes distributed around a ring of radius R, which was analysed in $[15,16]$, and whose geometry is described by a coset model [14], again potentially opening the way for an exact string calculation.

It seems natural to enquire as to whether these geometrical tachyon solutions have any relevance for cosmology, since they neatly avoid the problems associated with open string tachyon inflation [4] by having a significantly different mass scale. This change in scale is due to the motion of the probe brane in a gravitationally warped background, provided by the branes in the bulk geometry. In essence, this is an alternative formulation of the simple Randall-Sundrum model [32]. More recently, flux compactification has opened up the possibility of realizing these models in a purely four-dimensional string theory context [9]. The fluxes form a throat which is glued onto a compact manifold in the UV end of the geometry. The warp factor in the metric has explicit dependence on the fluxes, and so provides us with a varying energy scale. The recent approaches to brane cosmology [7] are based on the motion of D3 branes in these compactifications. Typically we find $\overline{\mathrm{D}} 3$ branes located at some point in the IR end of the throat, which provide a potential for a solitary probe brane, with the inflaton being the inter-brane distance. In this context we can obtain slow roll inflation, and also the so-called DBI inflation [10], which relies heavily on the red-shifting of energy scales. However flux compactification models have an unacceptably large number of vacua, characterized by the string landscape. They are also low energy models, where the string scale is significantly lower than the Planck scale and so there is no attempt to deal with the initial singularity. In addition, we require multiple throats attached to the compact manifold where the standard model is supposed to live; however there is no explanation for the decoupling of the inflaton sector. These problems need to be addressed if we are to fully understand early universe cosmology in a string theory context. The alternative approach is to consider cosmology in the full ten-dimensional string theory. Although these models are plagued by their own problems there is a definite sense of where the standard model is assumed to live, and a natural realization of inflation. Furthermore we can invoke a Brandenberger-Vafa type mechanism to explain the origin of our D3 brane, arising from the mutual cascade annihilation of a gas of D9- $\overline{\mathrm{D}} 9$ branes [37].

An alternative approach is compactifying our theory on a compact manifold, where some mechanism is employed to stabilize the various moduli fields. This will naturally induce an Einstein-Hilbert term into the four-dimensional action [30]. However this is a highly non-trivial problem whose precise details remain unknown. Despite being unable to embed this into string theory, we can still learn a great deal about the physics of the model-as emphasized by recent works [18].

A specific case of interest has been studying inflation in the ring solution [19]. Due to the unusual nature of the harmonic function we find decoupled scalar modes, one
transverse to the ring plane and the other inside the ring. The cosmology of modes inside the ring have been studied in [17]. In this note we will consider the situation in which the D3 brane moves in the direction transverse to the ring. Performing the tachyon map in this instance yields a cosh type potential implying that the resulting scalar field in the dual picture is massive. It is interesting that in this setting we do not have to worry about the continuity condition around the ring. And unlike for the longitudinal motion, we have an analytic expression for the effective potential every where in the transverse directions. We study the cosmological application of the resulting scenario and show that the model leads to an ever accelerating universe. We study the autonomous form of field evolution equation in the presence of matter and radiation and show that the de Sitter solution is a late time attractor of the model. We also demonstrate the viability of the geometrical tachyon for dark energy in the setting under consideration, arising in a natural way due to the non-linearity of the DBI action. In the next section we will introduce the string theory inspired model, and discuss how we an relate it to fourdimensional cosmology. In section 3 we will consider the more phenomenological aspects of our model by comparing our results with experimental observation. Section 4 shows how we have a natural realization of reheating in our model, whilst section 5 discusses the final stage of dark energy domination. Our model predicts that the equation of state parameter will tend to $\omega \sim-1$, but on even larger timescales we expect it to increase toward zero as in models of quintessence [41]. We will conclude with some remarks and a discussion of possible future directions.

2. Geometrical scalar field and coupling to gravity

We begin with the string frame CHS solution for k parallel, static NS5 branes in type IIB string theory $[20,21]$. The metric is given by

$$
\begin{equation*}
\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+F\left(x^{n}\right) \mathrm{d} x^{m} \mathrm{~d} x^{m}, \tag{1}
\end{equation*}
$$

where χ is the dilaton field defined as $\mathrm{e}^{2\left(\chi-\chi_{0}\right)}=F\left(x^{n}\right)$, and there exists a 3 -form field strength of the NS B-field $H_{m n p}=-\varepsilon_{m n p}^{q} \partial_{q} \phi$. Here $F\left(x^{n}\right)$ is the harmonic function describing the position of the branes. For a large number of branes we can consider the throat approximation, which amounts to dropping the factor of unity in the function. Inherently we are decoupling Minkowski space time from the theory, and therefore only interested in the region around the NS5 branes. The harmonic function is given by

$$
\begin{align*}
F & =1+\frac{k l_{\mathrm{s}}^{2} \sinh (k y)}{2 R \rho \sinh (k y)(\cosh (k y)-\cos (k \theta))} \\
& \approx \frac{k l_{\mathrm{s}}^{2} \sinh (k y)}{2 R \rho \sinh (k y)(\cosh (k y)-\cos (k \theta))}, \tag{2}
\end{align*}
$$

where ρ, θ parametrize polar coordinates in the ring plane, and the factor y is given by

$$
\begin{equation*}
\cosh (y)=\frac{R^{2}+\rho^{2}}{2 R \rho} \tag{3}
\end{equation*}
$$

We put a probe D3 brane at the centre of NS5 branes, as mention in the introduction this brane will move toward the circumference due to gravitational interaction if it shifted a little from the centre keeping the brane in the plane of the ring; the cosmology in
this case is described elsewhere. We consider the case where the probe brane lies in the centre of the ring but shifted a little from the plane. In this case the probe brane shows transverse motion. Note that because of the form of the DBI action, the configuration here is actually S-dual to the D5 brane ring solution. The only difference is the shift of $k \rightarrow 2 g_{\mathrm{s}} k$ in the harmonic function. The physics however is very different, as we know that F-strings cannot end on the NS5 branes, but can end on the D5 branes. This implies that in the case of the D5 brane ring we can have additional open string tachyonic modes once the probe brane starts to resolve distances of order of the string scale. The cosmological implications for this extra field were discussed in [18].

For the brane at the centre $(\rho=0)$ moving transverse to the ring $(\dot{\rho}=0)$, the harmonic function is given by

$$
\begin{equation*}
F(\sigma)=\frac{k l_{\mathrm{s}}^{2}}{R^{2}+\sigma^{2}} \tag{4}
\end{equation*}
$$

and the DBI action for the probe brane can be written in the following form, in the static gauge:

$$
\begin{equation*}
S=-\tau_{3} \int \mathrm{~d}^{4} \xi \sqrt{F^{-1}-\dot{\sigma}^{2}} . \tag{5}
\end{equation*}
$$

The tachyon map in this instance arises via field redefinition. We define the following scalar field, which has dimensions of length:

$$
\begin{equation*}
\phi(\sigma)=\int \sqrt{F} \mathrm{~d} \sigma, \tag{6}
\end{equation*}
$$

which maps the BPS action to a form commonly used in the non-BPS case [2]:

$$
\begin{equation*}
S=-\int \mathrm{d}^{4} \xi V(\phi) \sqrt{1-\dot{\phi}^{2}} \tag{7}
\end{equation*}
$$

where $V(\phi)$ is the potential for the scalar field which describes the changing tension of the D3 brane.

From the above mapping we get the solution of field as

$$
\begin{align*}
\phi(\sigma) & =\int_{0}^{\sigma} \sqrt{F\left(\sigma^{\prime}\right)} \mathrm{d} \sigma^{\prime} \\
& =\sqrt{k l_{\mathrm{s}}^{2}} \ln \left(\frac{\sigma}{R}+\sqrt{1+\frac{\sigma^{2}}{R^{2}}}\right) \\
& =\sqrt{k l_{\mathrm{s}}^{2}} \operatorname{arcsinh}\left(\frac{\sigma}{R}\right) \tag{8}\\
V(\phi) & =\frac{\tau_{3}}{\sqrt{F}} \\
& =\frac{\tau_{3} R}{\sqrt{k l_{\mathrm{s}}^{2}}} \cosh \left(\frac{\phi}{\sqrt{k l_{\mathrm{s}}^{2}}}\right) . \tag{9}
\end{align*}
$$

Clearly we see that $\phi \rightarrow \pm \infty$ as $\sigma \rightarrow \pm \infty$, and that at the minimum of the potential we have $\phi=0 .^{4}$ The potential of the field suggests that the mass is given by $1 / k l_{\mathrm{s}}^{2}$,

[^0]corresponding to a massive scalar fluctuation. One may ask whether there is a known string mode exhibiting this profile. In fact the fluctuations of a massive scalar were computed in [29] using a similar approach to the construction of the open string tachyon mode in boundary conformal field theory [1]. This field was then used in $[8,31]$ as a candidate for the inflaton living on a $\overline{\mathrm{D}} 3$ brane in the KKLT scenario [34]. The potential for the scalar is known to fourth order and was assumed to be exponential in profile, although globally it may be hyperbolic.

In order to discuss the cosmological evolution of our scalar field we need to couple our effective action to four-dimensional Einstein gravity. There are several ways we can accomplish this. Firstly we can consider the mirage cosmology scenario [33]. This requires us to rewrite the induced metric on the D3 brane world-volume in a Friedmann-Robertson-Walker (FRW) form. The universe will automatically be flat, or closed if we imagine the D brane to be spherical. The problem here is that there is no natural way to couple gravity to the brane action and therefore we must insert it by hand; however the cosmological dynamics is expected to be reliable virtually all the way to the string scale. The second option is a slight modification of the first. We imagine that the bulk is infinite in extent, and that the D3 brane is again coupled to gravity through some unknown mechanism. However rather than writing the induced metric in FRW form, we switch to holographic theory. Now, the tachyon mapping in this case is only concerned with time dependent quantities, and in particular only with the temporal component of the Minkowski metric. Therefore we choose to include a scale factor component in the spatial directions. This means that we have a cosmological coupling for the holographic scalar field, and the universe lives on the D3 brane world-volume. The final approach would be to compactify the theory down to four dimensions. In order to do this we need to truncate the background to ensure the space is compact [9]. In our case the ring can naturally impose a cut-off in the planar direction; however we must still impose some constraint in the transverse direction to the ring plane. Our solution simplifies somewhat if we can consider the $R \rightarrow 0$ limit, or equivalently the $\sigma \gg 1$ limit, as the background will appear point like. Smoothly gluing the truncated space to a proper compact manifold will now automatically include an Einstein-Hilbert term in the effective action [30]. However, although we now have a natural coupling to gravity, the compactification itself is far from trivial as we also need to wrap two of the world-volume directions of the NS5 branes on a compact cycle. In order to proceed we must first uplift the full solution to Mtheory ${ }^{5}$, where we now have a ring of M5 branes magnetically charged under the 3 -form $C_{(3)}$. Compactification demands that the magnetic directions of the 3-form are wrapped on toroidal cycles, which is further complicated by the ring geometry and will generally result in large corrections to the potential once reduced down to four dimensions. So, although we have a natural gravitational coupling we may have large corrections to the theory. The complete description of this compactification is interesting, but well beyond the scope of this note and should be tackled as a future problem. However we could also assume a large volume toroidal compactification, where again all the relevant moduli have been stabilized. Provided we introduce some 'sink' for the 5 -brane charge, located at the some distant point in the compact space, and also only concentrate on the region close to the branes so that the harmonic function remains valid, we will have an induced

[^1]gravitational coupling in the low energy theory. The corrections to the scalar potential in this region of moduli space may well be sub-leading with respect to the scalar field dynamics and thus we can treat our model as the leading order behaviour.

Recent work in this direction has been concerned with the compactification approach $[18,19]$, where it was assumed all the relevant moduli are fixed along the lines of the KKLT model [34] and that all corrections to the potential are sub-dominant. We will tentatively assume that this will also hold in our toy model.

We can now analyse our four-dimensional minimally coupled action, where we find the following solutions to the Einstein equations:

$$
\begin{align*}
& H^{2}=\frac{V(\phi)}{3 M_{\mathrm{p}}^{2} \sqrt{1-\dot{\phi}^{2}}} \tag{10}\\
& \frac{\ddot{a}}{a}=\frac{V(\phi)}{3 M_{\mathrm{p}}^{2} \sqrt{1-\dot{\phi}^{2}}}\left(1-\frac{3 \dot{\phi}^{2}}{2}\right) . \tag{11}
\end{align*}
$$

These expressions are different to those associated with a traditional canonical scalar field. In particular we see that inflation will automatically end once $\dot{\phi}^{2} \sim 2 / 3$ as in the tachyon cosmology models $[3,5,11]$. For completeness we write the equation of motion for the inflaton derived from the non-BPS action as follows:

$$
\begin{equation*}
\frac{V(\phi) \ddot{\phi}}{1-\dot{\phi}^{2}}+3 H V(\phi) \dot{\phi}+V^{\prime}(\phi)=0 \tag{12}
\end{equation*}
$$

where dots are derivatives with respect to time and primes are derivatives with respect to the field. Note that we are suppressing all delta functions in the expressions. We can now proceed with the analysis of our theory in the usual manner. It must be noted that this model corresponds to large field inflation, where the initial value of the scalar field must satisfy the following condition:

$$
\begin{equation*}
\phi_{0} \ll \sqrt{k l_{\mathrm{s}}^{2}} \operatorname{arccosh}\left(\frac{\sqrt{k l_{\mathrm{s}}^{2}}}{R}\right) \tag{13}
\end{equation*}
$$

according to our truncation of the harmonic function.
Note that in what follows we will frequently switch between the field theory and the bulk geometry. The latter is more geometrical and so provides us with extra intuition about the physics of the solution, however both are equivalent - at least in this simplified model.

Using the slow roll approximation, $H^{2} \simeq V(\phi) / 3 M_{\mathrm{p}}^{2}$ and $3 H \dot{\phi} \simeq-V_{\phi} / V$, the e folding

$$
\begin{align*}
N & =\int_{t}^{t_{f}} H \mathrm{~d} t \\
& =\frac{\tau_{3} R \sqrt{k l_{\mathrm{s}}^{2}}}{M_{\mathrm{p}}^{2}} \int_{x\left(\phi_{f}\right)}^{x(\phi)} \frac{\cosh ^{2} x}{\sinh x} \mathrm{~d} x \\
& =s\left[-\cosh \left(x_{f}\right)+\cosh (x)-\ln \left(\frac{\tanh \left(x_{f} / 2\right)}{\tanh (x / 2)}\right)\right] \tag{14}
\end{align*}
$$

where we have introduced the dimensionless quantities $x=\phi / \sqrt{k l_{\mathrm{s}}^{2}}$ and $s=\tau_{3} R \sqrt{k l_{\mathrm{s}}^{2}} / M_{\mathrm{p}}^{2}$.

Further defining the new quantity $y \equiv \cosh x$, we can write the number of e folds as follows:

$$
\begin{equation*}
N=s\left[-y_{f}+y-\frac{1}{2} \ln \left(\frac{\left(y_{f}-1\right)(y+1)}{\left(y_{f}+1\right)(y-1)}\right)\right] . \tag{15}
\end{equation*}
$$

Now, the relevant slow roll parameter is defined as $\epsilon \equiv-\dot{H} / H$ which in our solution reduces to

$$
\begin{equation*}
\epsilon=\frac{y^{2}-1}{2 s y^{3}} . \tag{16}
\end{equation*}
$$

Note that our model is explicitly non-supersymmetric, and therefore we do not need to calculate the second slow roll parameter η since we anticipate that this will be trivially satisfied if ϵ is. At the end of inflation $\epsilon=1$; then $y_{f} \equiv f(s)$ is given by the root of above equation, setting $\epsilon=1$:

$$
\begin{equation*}
f(s)=\frac{1}{6 s}\left[g(s)+\frac{1}{g(s)}+1\right] \tag{17}
\end{equation*}
$$

where $g(s)=\left(-54 s^{2}+1+6 s \sqrt{3\left(27 s^{2}-1\right)}\right)^{1 / 3}$. From equation (15) the equation for y is

$$
\begin{equation*}
\ln \left(\frac{y+1}{y-1}\right)-2 y=-\frac{2 N}{s}-2 f(s)-\ln \left(\frac{f(s)-1}{f(s)+1}\right) . \tag{18}
\end{equation*}
$$

For $s>1$ and as $y_{\text {min }}=1, \epsilon$ always remains less than one leading to an ever accelerating universe. Thus, in this case the geometrical scalar field in the present setting is not suitable for describing inflation but can become a possible candidate of dark energy. However if τ_{3} is small enough that $s<1$, then we will find that inflation is possible as the slow roll parameter will naturally tend toward unity. There is a critical bound $s \leq 1 /(3 \sqrt{3})$, which must be satisfied if we are to consider inflation in this context.

3. Inflationary constraints

To know the observational constraint on s we have to calculate the density perturbations. In the slow roll approximation, the power spectrum of curvature perturbation is given by [22]-[24]

$$
\begin{align*}
P_{\mathrm{S}} & =\frac{1}{12 \pi^{2} M_{\mathrm{p}}^{6}}\left(\frac{V^{2}}{V_{\phi}}\right)^{2} \\
& =\frac{\tau_{3}^{2} R^{2}}{12 \pi^{2} M_{\mathrm{p}}^{6}}\left(\frac{\cosh ^{2}\left(\phi / \sqrt{k l_{\mathrm{s}}^{2}}\right)}{\sinh \left(\phi / \sqrt{k l_{\mathrm{s}}^{2}}\right)}\right)^{2} . \tag{19}
\end{align*}
$$

The COBE normalization corresponds to $P_{\mathrm{S}} \simeq 2 \times 10^{-9}$ for modes which crossed $N=60$ before the end of inflation [6] which gives the following constraint:

$$
\begin{equation*}
k\left(l_{\mathrm{s}} M_{\mathrm{p}}\right)^{2} \simeq \frac{10^{9}}{12 \pi^{2}} \frac{s^{2} \cosh ^{4}\left(\phi / \sqrt{k l_{\mathrm{s}}^{2}}\right)}{\cosh ^{2}\left(\phi / \sqrt{k l_{\mathrm{s}}^{2}}\right)-1} \tag{20}
\end{equation*}
$$

From the numerics using equations (18) and (19), we find that

$$
\begin{equation*}
k\left(l_{\mathrm{s}} M_{\mathrm{p}}\right)^{2} \geq 3 \times 10^{10} \tag{21}
\end{equation*}
$$

which corresponds to $s \sim 10^{-3}$ when we impose the constraints $\tau_{3}=10^{-10} M_{\mathrm{p}}^{4}$ and $R=10^{2} / M_{\mathrm{p}}$ which we regard as being typical values. The constraint on the tension in fact implies the following relationship:

$$
\begin{equation*}
\frac{M_{\mathrm{p}}}{M_{\mathrm{s}}} \sim \frac{10^{2}}{g_{\mathrm{s}}^{1 / 4}}, \tag{22}
\end{equation*}
$$

which we need to be consistently satisfied. However, note that because of our basic assumptions about the theory we will generally obtain the bound

$$
\begin{equation*}
\frac{\tau_{3} R}{M_{\mathrm{p}}^{3}} \leq \frac{1}{9 \times 10^{5}} \tag{23}
\end{equation*}
$$

If we write the tension of the brane in terms of fundamental parameters we can estimate the relationship between the string and Planck scales using the fact that we require $R>M_{\mathrm{s}}^{-1}$ for the action to be valid,

$$
\begin{equation*}
\frac{M_{\mathrm{p}}}{M_{\mathrm{s}}} \geq \frac{15}{g_{\mathrm{s}}^{1 / 3}} \tag{24}
\end{equation*}
$$

where g_{s} is the string coupling constant. Note that this potentially constrains the string scale to be close to the Planck scale, as even if we demand weak coupling with $g_{\mathrm{s}}=0.001$ this gives us $M_{\mathrm{p}} \geq 10^{2} M_{\mathrm{s}}$. Of course this is only a bound, and in our model we are treating this as a free parameter. In any event our typical values are consistent and thus we feel free to proceed. We should note that from a string theoretic point of view we should not take s as being a variable in this model. However our earlier analysis has shown that if we wish to consider non-eternal inflation, there exists a maximum bound on this parameter which is quite small. Thus we can make the assumption that s will always be small, with appropriate tuning of the ratio of the string and Planck scales. In the following analysis we will always be assuming that this is satisfied so as to avoid en eternal inflation scenario. Of course, in the string theory picture we have a probe brane moving in a non-trivial background geometry, and we would expect that the RR charge on the brane will be radiated away in the form of closed string modes. This effectively means that there is an additional decay constant in the definition of the field ϕ, which we have neglected in this note. Thus what we have here is a first-order approximation to the behaviour of the solution. It remains an open question whether we can define a tachyon map in this instance - and how this changes the inflationary scenario described here.

At leading order in our solutions, where s is assumed to be small and making sure our effective action remains valid, we obtain

$$
\begin{equation*}
k\left(l_{\mathrm{s}} M_{\mathrm{p}}^{2}\right)^{2} \simeq \frac{10^{9}}{48 \pi^{2}}(2 N+1)^{2} \tag{25}
\end{equation*}
$$

which corresponds to $s \sim 10^{-5}(2 N+1)$ and $y \sim(2 N+1) / 2 s$, when $\tau_{3}=10^{-10} M_{\mathrm{p}}^{4}$ and $R=10^{2} / M_{\mathrm{p}}$. Again, more generally we would find the following upper limit on the solution:

$$
\begin{equation*}
s \leq 10^{-3}(2 N+1) \tag{26}
\end{equation*}
$$

which is easily satisfied by our typical values. In fact our results remain robust when compared to the WMAPII and SDSS results combined [27]. The new data constrain $n_{\mathrm{s}}=0.98 \pm 0.02$ at the 68% confidence level, and $r<0.24$ at the 95% confidence level.

The spectral index of scalar perturbations is defined as [22]-[24]

$$
\begin{align*}
n_{\mathrm{S}}-1 & \equiv-4 \frac{M_{\mathrm{p}}^{2} V_{\phi}^{2}}{V^{3}}+2 \frac{M_{\mathrm{p}}^{2} V_{\phi \phi}}{V^{2}} \\
& =\frac{2}{s}\left(\frac{2-y^{2}}{y^{3}}\right) . \tag{27}
\end{align*}
$$

The spectral index of tensor perturbations is defined as

$$
\begin{align*}
n_{\mathrm{T}} & =-\frac{M_{\mathrm{p}}^{2} V_{\phi}}{V^{3}} \\
& =-\frac{1}{s}\left(\frac{y^{2}-1}{y^{3}}\right) . \tag{28}
\end{align*}
$$

The tensor-to-scalar ratio is

$$
\begin{align*}
r & \equiv 8 \frac{M_{\mathrm{p}}^{2} V_{\phi}^{2}}{V^{3}} \\
& =\frac{8}{s}\left(\frac{y^{2}-1}{y^{3}}\right) . \tag{29}
\end{align*}
$$

With the limit $s \rightarrow 0$ we get

$$
\begin{equation*}
n_{\mathrm{S}}=1-\frac{4}{(2 N+1)}, \quad n_{\mathrm{T}}=-\frac{2}{(2 N+1)}, \quad r=\frac{16}{(2 N+1)} . \tag{30}
\end{equation*}
$$

For $N=60$, we get $n_{\mathrm{S}}=0.96694$ and $r=0.13223$; for $N=50$, we get $n_{\mathrm{S}}=0.96040$ and $r=0.15842$. We know from observations that the constraint on the tensor-to-scalar ratio is $r<0.36[25,26]$, and so our model appears to be well within this bound.

4. Reheating

We see that the potential is a symmetric potential with a minima. In terms of the bulk field σ it can be written as

$$
\begin{equation*}
V(\sigma)=\frac{\tau_{3} R}{2 \sqrt{k l_{\mathrm{s}}^{2}}}\left[\left(\frac{\sigma}{R}+\sqrt{1+\frac{\sigma^{2}}{R^{2}}}\right)+\left(\frac{\sigma}{R}+\sqrt{1+\frac{\sigma^{2}}{R^{2}}}\right)^{-1}\right] \tag{31}
\end{equation*}
$$

Now the question is would the brane oscillate back and forth through the ring, and if so what are the necessary conditions for oscillation? In the bulk picture we would naturally anticipate oscillation with a decaying amplitude due to $R R$ emission. Moreover the minimum of the potential in this case is actually metastable. However this has not been verified as we need to calculate the energy emission in the coset model description [14], which we leave as future work. This will alter the dynamics of the inflaton field as discussed in the previous section.

In any event we may also expect similar behaviour once our field is coupled to gravity, with the damping being provided by the Hubble term. This is particularly important
because we may find inflation occurring in the phase space region beyond $s \geq s_{\text {crit }}$, once enough damping has occurred. The relevant dynamical equations are the inflaton field equation (12) and the Friedmann equation. We repeat them below for convenience.

$$
\begin{align*}
& \ddot{\phi}+3 H \dot{\phi}\left(1-\dot{\phi}^{2}\right)+\frac{V_{\phi}}{V}\left(1-\dot{\phi}^{2}\right)=0 \tag{32}\\
& H^{2}=\frac{1}{3 M_{\mathrm{p}}^{2}}\left(\frac{V}{\sqrt{1-\dot{\phi}^{2}}}+\rho_{\mathrm{B}}\right) \tag{33}
\end{align*}
$$

where the terms inside the curly brackets cause damping. For an easy treatment let us first consider the slow roll approximation; then in the damping equation only the $\dot{\phi}$ term remains and all other powers of $\dot{\phi}$ can be ignored. That is to say we are considering the case near the stable point. Then $H^{2} \sim\left(\tau_{3} R / 3 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}\right)+\left(\rho_{\mathrm{B}} / 3 M_{\mathrm{p}}^{3}\right)$ is constant and $\left(V_{\phi} / V\right) \sim\left(2 / k l_{\mathrm{s}}^{2}\right) \phi$. The equation of motion is then

$$
\begin{equation*}
\ddot{\phi}+3 \dot{\phi} \sqrt{\left(\frac{\tau_{3} R}{3 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}}+\frac{\rho_{\mathrm{B}}}{3 M_{\mathrm{p}}^{2}}\right)}+\frac{2}{k l_{\mathrm{s}}^{2}} \phi=0 \tag{34}
\end{equation*}
$$

and for critically damped motion we need

$$
\begin{equation*}
\left(\frac{\tau_{3} R}{3 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}}+\frac{\rho_{\mathrm{B}}}{3 M_{\mathrm{p}}^{2}}\right)=\frac{8}{9 k l_{\mathrm{s}}^{2}} . \tag{35}
\end{equation*}
$$

If the RHS of (35) is greater than the LHS we will find oscillations, but it is reduced by damping which depends on the size of the damping factor $\left.\left(=(3 / 2) \sqrt{\left(\left(\tau_{3} R / 3 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}\right)+\left(\rho_{\mathrm{B}} / 3 M_{\mathrm{p}}^{2}\right)\right.}\right)\right)$, compared to the oscillation frequency $\left.\left(=\sqrt{\left(8 / k l_{\mathrm{s}}^{2}\right)-9\left(\left(\tau_{3} R\right) /\left(3 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}+\rho_{\mathrm{B}} / 3 M_{\mathrm{p}}^{2}\right)\right.}\right)\right)$.

From the definition of Ω_{B}, setting it to 0.3 , we get $\rho_{\mathrm{B}}=3 \tau_{3} R / 7 \sqrt{k l_{\mathrm{s}}^{2}}$, and then from equation (35) we obtain

$$
\begin{array}{rlrl}
s & >\frac{168}{90} & & \text { Over damped } \\
=\frac{168}{90} & & \text { Critically damped } \\
<\frac{168}{90} & & \text { Oscillatory with a decaying amplitude. } \tag{36}
\end{array}
$$

Recall from the previous section that for us to have non-eternal inflation there is a maximal bound for s, and so only the last solution can be considered physical. From the constraint we get $\sqrt{k l_{\mathrm{s}}^{2}} \sim 10^{5} M_{\mathrm{p}}^{-1}, \tau_{3} \sim 10^{-10} M_{\mathrm{p}}^{4}$ and $R \sim 10^{2} M_{\mathrm{p}}^{-1}$. Hence it is oscillatory near the critical point. The energy of the decaying scalar field is used in expansion and particle production. If the rate of expansion of the universe is much less than the decaying rate of the amplitude of the field then most of the energy released by the scalar field goes to reheating. The explicit solution of equation (34) is
$\phi(t)=\phi_{0} \exp \left(\left[-\frac{3}{2} t \sqrt{\frac{10 \tau_{3} R}{21 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}}}\right]\right) \exp \left(\left[\pm \stackrel{\Omega}{\mathrm{g}} \sqrt{\frac{2}{k l_{\mathrm{s}}^{2}}-\frac{15 \tau_{3} R}{14 M_{\mathrm{p}}^{2} \sqrt{k l_{\mathrm{s}}^{2}}}}\right]\right)$.

The ratio of rate of field decay to the rate of expansion of universe is defined to be

$$
\begin{equation*}
\Theta \equiv\left|\frac{\dot{\phi}}{H \phi}\right| . \tag{38}
\end{equation*}
$$

For this case we find:

$$
\begin{equation*}
\Theta=\sqrt{\frac{21 M_{\mathrm{p}}^{2}}{5 \tau_{3} R \sqrt{k l_{\mathrm{s}}^{2}}}} \tag{39}
\end{equation*}
$$

The above quantity can be made to be less than one by adjusting the various parameters.
Using equation (25) we obtain

$$
\begin{equation*}
\Theta \sim \sqrt{\frac{21 \times 10^{5}}{5(2 N+1)}} \tag{40}
\end{equation*}
$$

which allows us to write the parameter as a function of the number of e foldings, provided we can trust our small s expansion. We know that reheating ends when $\Theta=1$; thus the minimal number of e foldings we require for this to be satisfied is

$$
\begin{equation*}
N_{\mathrm{end}} \sim 10^{5} \tag{41}
\end{equation*}
$$

Clearly this is a large number of e foldings, and this should motivate us to do a more thorough analysis. For now it would appear that unless there is a large amount of finetuning, reheating would not end in this scenario. The difficulty is that we cannot use the WKB approximation in this case due to rapid fluctuations in the variation of the potential. Moreover, the analysis will be incomplete without specifying the exact form the gravitational coupling - as there will be corrections to the effective action arising from any compactification. For these reasons we will postpone the analysis and return to it in a later publication.

5. Dark energy

What are the implications of our model for dark energy ${ }^{6}$? It is well known that the non-linear form of the DBI action admits an unusual equation of state, which is of the form

$$
\begin{align*}
\omega & =\frac{P}{\rho} \\
& =\dot{\phi}^{2}-1 \tag{42}
\end{align*}
$$

where P and ρ are the pressure and energy densities respectively. In tachyon models the field is moving relativistically near the vacuum and the equation of state will tend to $\omega \sim 0$, which is problematic for reheating. However our model has significantly different late time behaviour because our scalar field will oscillate about the minimum of its potential, eventually coming to a halt at the minimum. Therefore we expect the equation of state to become $\omega \sim-1$, corresponding to the vacuum energy of the universe. This motivates us to analyse our system as a potential dark matter candidate. One problem, however, is that

[^2]the reheating phase does not seem to have a natural termination point. Rather, reheating of the universe continues whilst the brane oscillates around the minimum of the potential, and then terminates in what appears to be a dark energy dominated phase. From the perspective of model building this is obviously a difficult problem. For now let us assume that there is some ad hoc mechanism which ends inflation, and look at the evolution of the system in this dark matter dominated phase. The corresponding evolution equations of interest are
\[

$$
\begin{align*}
& \frac{\ddot{\phi}}{1-\dot{\phi}^{2}}+3 H \dot{\phi}+\frac{V_{\phi}}{V}=0 \tag{43}\\
& \dot{H}+\frac{V(\phi) \dot{\phi}^{2}}{2 M_{\mathrm{p}}^{2} \sqrt{1-\dot{\phi}^{2}}}+\frac{\gamma \rho_{\mathrm{B}}}{2 M_{\mathrm{p}}^{2}}=0 \tag{44}
\end{align*}
$$
\]

where we have included contribution from a barotropic fluid in the second equation. Defining the following dimensionless quantities:

$$
\begin{align*}
& Y_{1}=\frac{\phi}{\sqrt{k l_{\mathrm{s}}^{2}}} \tag{45}\\
& Y_{2}=\dot{\phi}
\end{align*}
$$

and using equations (43) and (45) we get the autonomous equations

$$
\begin{align*}
& Y_{1}^{\prime}=\frac{1}{\sqrt{k l_{\mathrm{s}}^{2}} H} Y_{2} \tag{46}\\
& Y_{2}^{\prime}=-\left(1-Y_{2}^{2}\right)\left(3 Y_{2}+\frac{1}{H} \frac{\mathrm{~d} Y_{3}}{\mathrm{~d} Y_{1}}\right) \tag{47}
\end{align*}
$$

where we have switched to using the number of e folds as the time parameter, and now primes denote derivatives with respect to N. The final expressions we require can be read off as

$$
\begin{align*}
& Y_{3}=\ln \left(\frac{V(\phi)}{3 M_{\mathrm{p}}^{2}}\right) . \\
& H^{2}=\frac{\mathrm{e}^{Y_{3}}}{\sqrt{1-Y_{2}^{2}}}+\frac{\rho_{\mathrm{B}}}{3 M_{\mathrm{p}}^{2}} . \tag{48}
\end{align*}
$$

Simple analysis shows us that critical point is at $Y_{1}=0$ and $Y_{2}=0$ which is a global attractor as shown in figure 1. This agrees with our physical intuition since it implies the probe brane will slow down, eventually coming to rest at the origin of the transverse space. In terms of our critical ratios we find

$$
\begin{align*}
\Omega_{\phi} & =\frac{\mathrm{e}^{Y_{3}}}{\mathrm{e}^{Y_{3}}+\left(\rho_{\mathrm{B}} / 3 M_{\mathrm{p}}^{2}\right) \sqrt{1-Y_{2}^{2}}} \tag{49}\\
\Omega_{\mathrm{B}} & =\frac{\rho_{\mathrm{B}}}{\left(3 M_{\mathrm{p}}^{2} \mathrm{e}^{Y_{3}} / \sqrt{1-Y_{2}^{2}}\right)+\rho_{\mathrm{B}}} \tag{50}
\end{align*}
$$

Note that they are constrained by $\Omega_{\phi}+\Omega_{\mathrm{B}}=1$. We also have $\Omega_{\mathrm{B}}=\Omega_{M}+\Omega_{R}$, where M and R denote matter and radiation respectively, whilst ϕ is associated with our scalar field.

Figure 1. Plot of the phase space solution with a variety of initial conditions. Here we see the presence of a global attractor at $(\phi=0, \dot{\phi}=0)$.

Figure 2. Illustration of the various behaviours for Ω_{i}. Here we have taken $\rho_{m}^{0}=4.58 \times 10^{6}, \rho_{R}^{0}=10^{10}$ and $V_{0}=10^{-6}$. The dark line is for Ω_{R}, the dotted line is for Ω_{ϕ} and the light line is for Ω_{m}.

From the plots of figure 2 we see that Ω_{ϕ} goes to $0.7, \Omega_{M}$ goes to 0.3 and Ω_{R} goes to 0 in the presence epoch. We see that at late times, the field settles at the potential minimum leading to a de Sitter solution with energy scale $V_{0}=\tau_{3} R / \sqrt{k l_{\mathrm{s}}^{2}}$. Using the numerical data from the preceding sections we can write this an upper bound on the energy density as follows:

$$
\begin{equation*}
V_{0} \leq 10^{-12} M_{\mathrm{p}}^{4} \tag{51}
\end{equation*}
$$

Figure 3. Evolution of the equation of state parameter with the number of e folds. Note that ω rapidly approaches -1 as expected.

Although this is several orders of magnitude higher than the observed value, we note that this value is heavily dependent on the scales in the theory, and with appropriate tuning could be substantially smaller. Since there exists no realistic scaling solution (which could mimic matter/radiation), the model also requires the fine-tuning of the initial value of the scalar field. The field should remain sub-dominant for most of the cosmic evolution and become comparable to the background at late times. It would then evolve to dominate the background energy density ultimately settling down in the de Sitter phase. Figure 3 shows the variation of the equation of state as a function of the number of e-folds.

However, recall from the bulk picture that the point $\sigma=0, \rho=0$ will be gravitationally unstable and the probe brane will eventually be attracted toward the ring. In terms of our cosmological theory we see that this de Sitter point will actually be only quasi-stable and that a tachyonic field will eventually condense forcing the vacuum energy down toward zero. This suggests that the vacuum energy will not be constant, but will be slowly varying. Furthermore our equation of state should be modified to incorporate the dynamics of this additional field. It is trivially apparent that the inflationary phase will terminate and give way to a dark energy phase where $\omega \sim-1$. Once the tachyon field starts to roll, ω will increase toward zero from below giving rise to a phase of quintessence [41]. Eventually we will begin to probe the strong coupling regime and our effective action will break down.

Let us return to the bulk picture to understand this in more detail. We introduce a complex field $\xi=\rho+\mathrm{i} \sigma$ which can actually be globally defined in the target space. The harmonic function factorizes in this coordinate system into holomorphic and antiholomorphic parts $F(\xi, \bar{\xi})=f(\xi) f(\bar{\xi})$. Thus the tachyon map will also split accordingly:

$$
\begin{equation*}
\partial_{t} \phi=f(\xi) \partial_{t} \xi, \quad \partial_{t} \bar{\phi}=f(\bar{\xi}) \partial_{t} \bar{\xi} . \tag{52}
\end{equation*}
$$

These expressions are exactly solvable provided we continue them into the complex plane. If we now reconstruct the potential for these fields in terms of our holographic theory we
obtain the general solution

$$
\begin{equation*}
V(\phi, \bar{\phi})=\frac{R \tau_{3}}{\sqrt{k l_{\mathrm{s}}^{2}}}\left[\cos \left(\frac{\phi}{\sqrt{k l_{\mathrm{s}}^{2}}}\right) \cos \left(\frac{\bar{\phi}}{k l_{\mathrm{s}}^{2}}\right)\right]^{1 / 2} \tag{53}
\end{equation*}
$$

Clearly when ϕ is real we recover our cosine potential, whilst if it is purely imaginary we recover the cosh solution. These correspond to motion inside the ring and motion transverse to the ring respectively. The tachyonic instability forces the field from the false vacuum state toward the true ground state. Therefore we expect the dark energy potential to be

$$
\begin{equation*}
V(\phi, \bar{\phi}) \sim \frac{R \tau_{3}}{\sqrt{k l_{\mathrm{s}}^{2}}} \cos \left(\frac{\phi}{\sqrt{k l_{\mathrm{s}}^{2}}}\right) \tag{54}
\end{equation*}
$$

and so the true minimum will occur when $V \sim 0$ at $\phi= \pm \pi \sqrt{k l_{\mathrm{s}}^{2}} / 2$, corresponding to the location of the ring in the bulk picture. The cosmological dynamics in this particular phase are well described by $[17,19]$, where it was shown to be possible for the true vacuum to be non-zero, provided the trajectory of the probe brane is sufficiently fine-tuned.

We finally comment on the instability for the field fluctuations for potential with a minimum [28]. In a flat FRW background each Fourier mode of ϕ satisfies the following equation:

$$
\begin{equation*}
\frac{\delta \ddot{\phi}_{\tilde{k}}}{1-\dot{\phi}^{2}}+\left[3 H+\frac{2 \dot{\phi} \ddot{\phi}}{\left(1-\dot{\phi}^{2}\right)^{2}}\right] \delta \dot{\phi}_{\tilde{k}}+\left[\frac{\tilde{k}^{2}}{a^{2}}+(\ln V)_{\phi, \phi}\right] \delta \phi_{\tilde{k}}=0 \tag{55}
\end{equation*}
$$

where \tilde{k} is the comoving wavenumber. We now compute the second derivatives of the potential and obtain

$$
\begin{equation*}
(\ln V)_{\phi, \phi}=\frac{1}{k l_{\mathrm{s}}^{2}}\left(1-\tanh \left[\frac{\phi}{\sqrt{k l_{\mathrm{s}}^{2}}}\right]\right) \tag{56}
\end{equation*}
$$

Here we see that $(\ln V)_{\phi, \phi}$ is never divergent for any value of ϕ, and is always non-negative, i.e. that $(\ln V)_{\phi, \phi} \in[0,1]$. Thus we do not have any instability associated with the perturbation $\delta \phi_{k}$ with our potential (9). This is to be contrasted with the result obtained for the open string tachyon which has rapid fluctuations and instabilities associated with its evolution.

6. Conclusion

In this note we have examined the time dependent configuration of a single D 3 brane in the background of NS5 branes distributed on a ring of radius R, taking the near horizon approximation. We then studied the cosmological implications of the effective potential which arises due to the transverse motion of D3 with respect to the plane of the ring. The model appears to describe an inflationary phase giving way to a natural reheating mechanism, and then a further phase of dark energy driven expansion. Although we cannot accurately predict the scale of the energy density at this point, we do obtain an upper bound. In this case the dark energy phase is a late time attractor of our model, and we predict that the vacuum energy will eventually decay to zero-although on extremely
large timescales ${ }^{7}$. In fact our results will be dramatically improved by keeping the full structure of the harmonic function, because at large distances the potential is even flatter, yielding even more e foldings of inflation. Due to the absence of scaling solutions in our field theory, we need to tune the initial value of the scalar field such that it can become relevant only at late times. With these described fine-tunings, the geometrical field is a potential dark energy candidate. The model is free from tachyon instabilities, and the field perturbations behave in a similar manner to those of the canonical scalar field.

With the model we have several potential problems. Firstly there is our assumption about the coupling of the DBI to four-dimensional gravity, although as we have pointed out this can be resolved by a full string theory compactification. However there will generally be large corrections, potentially destroying the simplicity of the solution. Secondly the trajectory of the brane in the bulk space is particularly special. In the most generic case we would anticipate a general spiralling trajectory toward the ring. In this case there would be no simple decoupling of the modes and we would need to consider the full form of the potential. This amounts to a certain amount of fine-tuning of the initial conditions. Another problem is that we have not turned on any standard model fields which would be expected to couple to the inflaton on the world-volume. However the inclusion of $U(1)$ gauge fields on the brane will act to reduce the velocity of the field by a factor of $\sqrt{1-E^{2}}$, where E is our dimensionless electric field. More important however is that we have neglected the induced 2 -form field strength, which can have important applications in cosmology as seen in the recent paper [40]. Despite these problems, we know there is a coset model describing the background which opens the way for exact string theory calculations. Furthermore the relationship between the two energy scales in the theory means it is possible to talk about long-standing problems such as the trans-Planckian issue [38]. One further problem is the termination of reheating in this model. We have emphasized that this is indeed difficult to tackle in this model due to its analytic simplicity. One may hope that a careful analysis of the tachyon mapping will lead to more realistic behaviour for the inflaton field, and thus a possible exit from reheating. In fact this may also be possible by considering more general trajectories of the probe brane in the bulk picture. We hope to return to this issue in a future publication.

One thing that emerges though is the relationship between a dark energy dominated phase and the 'fast rolling' DBI action [10]. Although our proposal is far from rigorous, it does capture the majority of the same physics as in the flux compactification scenario. We know that D3 branes moving in non-trivial backgrounds have sub-luminal velocities as measured by observers in the far UV of the geometry, due to the gravitational red-shifting. In fact the branes are decelerating and for late times will have negligible velocities. This in turn implies that the equation of state parameter will tend to $\omega \sim-1$ at late times. A concrete example where this could be examined is in the case of the warped deformed conifold [39]. The RR flux will wrap the S^{3} in the IR end of the geometry, and we can imagine a solitary D3 brane probing this part of the conifold after an inflationary phase. To an observer in the compact space the brane will slow down as it reaches the origin of the S^{3} yielding a dark matter dominated phase [36].

[^3]However our model opens up the possibility that non-trivial background configurations may have important implications for brane cosmology, as we have seen how to combine inflation, reheating and dark energy in a single model. Furthermore this is not subject to the same landscape problems as the flux compactification models, and we can try and tackle higher energy issues in a clear formalism [9]. Although we acknowledge the simplicity of our solution we hope that this will encourage more research in this direction.

Acknowledgments

We thank M Sami, S Tsujikawa, S Thomas for discussion and critical comments. BG thanks D Samart and S Pantian for rechecking numerical plots and calculation. BG is supported by the Thailand Research Fund. Tapan Naskar thanks Jamia for hospitality. JW is supported by a Queen Mary studentship.

References

[1] Sen A, 2004 Preprint hep-th/0410103
[2] Sen A, 1999 J. High Energy Phys. JHEP10(1999)008 [SPIRES]
Garousi M R, 2000 Nucl. Phys. B 584284 [SPIRES]
Garousi M R, 2002 Nucl. Phys. B 647117 [SPIRES]
Garousi M R, 2003 J. High Energy Phys. JHEP05(2003)058 [SPIRES]
Bergshoeff E A, de Roo M, de Wit T C, Eyras E and Panda S, 2000 J. High Energy Phys. JHEP05(2000)009 [SPIRES]
Kluson J, 2000 Phys. Rev. D 62126003 [SPIRES]
Kutasov D and Niarchos V, 2003 Nucl. Phys. B 66656 [SPIRES]
[3] Mazumdar A, Panda S and Perez-Lorenzana A, 2001 Nucl. Phys. B 614101 [SPIRES]
Fairbairn M and Tytgat M H G, 2002 Phys. Lett. B 5461 [SPIRES]
Feinstein A, 2002 Phys. Rev. D 66063511 [SPIRES]
Sami M, Chingangbam P and Qureshi T, 2002 Phys. Rev. D 66043530 [SPIRES]
Sami M, 2003 Mod. Phys. Lett. A 18691 [SPIRES]
Piao Y S, Cai R G, Zhang X M and Zhang Y Z, 2002 Phys. Rev. D 66121301 [SPIRES]
[4] Kofman L and Linde A, 2002 J. High Energy Phys. JHEP07(2002)004 [SPIRES]
[5] Gibbons G W, 2002 Phys. Lett. B 5371 [SPIRES]
Mukohyama S, 2002 Phys. Rev. D 66024009 [SPIRES]
Mukohyama S, 2002 Phys. Rev. D 66123512 [SPIRES]
Choudhury D, Ghoshal D, Jatkar D P and Panda S, 2002 Phys. Lett. B 544231 [SPIRES]
Shiu G and Wasserman I, 2002 Phys. Lett. B 5416 [SPIRES]
Padmanabhan T, 2002 Phys. Rev. D 66021301 [SPIRES]
Bagla J S, Jassal H K and Padmanabhan T, 2003 Phys. Rev. D 67063504 [SPIRES]
Felder G N, Kofman L and Starobinsky A, 2002 J. High Energy Phys. JHEP09(2002)026 [SPIRES]
Cline J M, Firouzjahi H and Martineau P, 2002 J. High Energy Phys. JHEP11(2002)041 [SPIRES]
Bento M C, Bertolami O and Sen A A, 2003 Phys. Rev. D 67063511 [SPIRES]
Hao J G and Li X Z, 2002 Phys. Rev. D 66087301 [SPIRES]
Kim C J, Kim H B and Kim Y B, 2003 Phys. Lett. B 552111 [SPIRES]
Matsuda T, 2003 Phys. Rev. D 67083519 [SPIRES]
Das A and DeBenedictis A, 2003 Preprint gr-qc/0304017
Guo Z K, Piao Y S, Cai R G and Zhang Y Z, 2003 Phys. Rev. D 68043508 [SPIRES]
Abramo L R W and Finelli F, 2003 Phys. Lett. B 575165 [SPIRES]
Gibbons G W, 2003 Class. Quantum Grav. 20 S321 [SPIRES]
Majumdar M and Davis A C, 2003 Preprint hep-th/0304226
Nojiri S and Odintsov S D, 2003 Phys. Lett. B 5711 [SPIRES]
Elizalde E, Lidsey J E, Nojiri S and Odintsov S D, 2003 Phys. Lett. B 5741 [SPIRES]
Steer D A and Vernizzi F, 2004 Phys. Rev. D 70043527 [SPIRES]

Gorini V, Kamenshchik A Y, Moschella U and Pasquier V, 2004 Phys. Rev. D 69123512 [SPIRES]
Chimento L P, 2004 Phys. Rev. D 69123517 [SPIRES]
Aguirregabiria J M and Lazkoz R, 2004 Phys. Rev. D 69123502 [SPIRES]
Causse M B, 2003 Preprint astro-ph/0312206
Paul B C and Sami M, 2004 Phys. Rev. D 70027301 [SPIRES]
Felder G N and Kofman L, 2004 Phys. Rev. D 70046004 [SPIRES]
Aguirregabiria J M and Lazkoz R, 2004 Mod. Phys. Lett. A 19927 [SPIRES]
Abramo L R, Finelli F and Pereira T S, 2004 Phys. Rev. D 70063517 [SPIRES]
Calcagni G, 2004 Phys. Rev. D 70103525 [SPIRES]
Calcagni G and Tsujikawa S, 2004 Phys. Rev. D 70103514 [SPIRES]
Gonzalez-Diaz P F, 2004 Phys. Rev. D 70063530 [SPIRES]
Srivastava S K, 2004 Preprint gr-qc/0409074
Srivastava S K, 2004 Preprint gr-qc/0411088
Chingangbam P and Qureshi T, 2004 Preprint hep-th/0409015
Tsujikawa S and Sami M, 2004 Phys. Lett. B 603113 [SPIRES]
Garousi M R, Sami M and Tsujikawa S, 2005 Phys. Lett. B 6061 [SPIRES]
Garousi M R, Sami M and Tsujikawa S, 2005 Phys. Rev. D 71083005 [SPIRES]
Barnaby N and Cline J M, 2004 Int. J. Mod. Phys. A 195455 [SPIRES]
Copeland E J, Garousi M R, Sami M and Tsujikawa S, 2005 Phys. Rev. D 71043003 [SPIRES]
Gumjudpai B, Naskar T, Sami M and Tsujikawa S, 2005 J. Cosmol. Astropart. Phys. JCAP06(2005)007 [SPIRES]
Novello M, Makler M, Werneck L S and Romero C A, 2005 Phys. Rev. D 71043515 [SPIRES]
Das A, Gupta S, Saini T D and Kar S, 2005 Phys. Rev. D 72043528 [SPIRES]
Singh H, 2005 Preprint hep-th/0505012
Tsujikawa S, 2005 Preprint astro-ph/0508542
Calcagni G, 2005 Preprint hep-th/0512259
Alberghi G L and Tronconi A, 2005 Preprint hep-ph/0509044
Alberghi G L, Casadio R and Tronconi A, 2004 J. High Energy Phys. JHEP06(2004)040 [SPIRES]
Aref'eva I Ya, Koshelev A S and Vernov S Yu, 2005 Phys. Rev. D 720604017 [SPIRES]
Aref'eva I Ya, 2004 Preprint astro-ph/0410443
Aref'eva I Ya and Joukovskaya L V, 2005 J. High Energy Phys. JHEP10(2005)087 [SPIRES]
[6] Linde A, 1990 Particle Physics and Inflationary Cosmology (Chur: Harwood) [hep-th/0503203]
Lyth D H and Riotto A, 1999 Phys. Rep. 3141 [SPIRES]
Liddle A R and Lyth D H, 2000 Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press)
[7] Burgess C P, Majumdar M, Nolte D, Quevedo F, Rajesh G and Zhang R J, 2001 J. High Energy Phys. JHEP07(2001)047 [SPIRES]
Burgess C P, Martineau P, Quevedo F, Rajesh G and Zhang R J, 2002 J. High Energy Phys. JHEP03(2002)052 [SPIRES]
Choudhury D, Ghoshal D, Jatkar D P and Panda S, 2003 J. Cosmol. Astropart. Phys. JCAP07(2003)009 [SPIRES]
Dvali G R and Tye S H H, 1999 Phys. Lett. B 45072 [SPIRES]
Dvali G R, Shafi Q and Solganik S, 2001 Preprint hep-th/0105203
Garcia-Bellido J, Rabadan R and Zamora F, 2002 J. High Energy Phys. JHEP01(2002)036 [SPIRES]
Jones N, Stoica H and Tye S H H, 2002 J. High Energy Phys. JHEP07(2002)051 [SPIRES]
Gomez-Reino M and Zavala I, 2002 J. High Energy Phys. JHEP09(2002)020 [SPIRES]
Herdeiro C, Hirano S and Kallosh R, 2001 J. High Energy Phys. JHEP12(2001)027 [SPIRES]
[8] Garousi M R, Sami M and Tsujikawa S, 2004 Phys. Rev. D 70043536 [SPIRES]
[9] Raemaekers J, 2004 J. High Energy Phys. JHEP10(2004)057 [SPIRES]
Chingangbam P, Deshamukhya A and Panda S, 2005 J. High Energy Phys. JHEP02(2005)052 [SPIRES]
Cremades D, Quevedo F and Sinha A, 2005 Preprint hep-th/0505252
Cremades D, 2005 Preprint hep-th/0512294
Shandera S E and Henry Tye S H, 2006 Preprint hep-th/0601099
Chen X, 2005 J. High Energy Phys. JHEP08(2005)045 [SPIRES]
Buchel A, 2006 Preprint hep-th/0601013
Barnaby N, Burgess C P and Cline J M, 2005 J. Cosmol. Astropart. Phys. JCAP04(2005)007 [SPIRES]
Buchel A and Roiban R, 2004 Phys. Lett. B 590284 [SPIRES]
Iizuka N and Trivedi S P, 2004 Phys. Rev. D 70043519 [SPIRES]
[10] Silverstein E and Tong D, 2004 Phys. Rev. D 70103505 [SPIRES]
Alishahiha M, Silverstein E and Tong D, 2004 Phys. Rev. D 70123505 [SPIRES]
Ganjali M A, 2005 J. High Energy Phys. JHEP09(2005)004 [SPIRES]
[11] Sen A, 2002 J. High Energy Phys. JHEP04(2002)048 [SPIRES] Sen A, 2002 J. High Energy Phys. JHEP07(2002)065 [SPIRES] Sen A, 2002 Mod. Phys. Lett. A 171797 [SPIRES] [hep-th/0312153]
[12] Kutasov D, 2004 Preprint hep-th/0405058 Kutasov D, 2004 Preprint hep-th/0408073
[13] Sahakyan D, 2004 J. High Energy Phys. JHEP10(2004)008 [SPIRES]
[14] Israel D, Pakman A and Troost J, 2005 Nucl. Phys. B 7223 [SPIRES]
[15] Thomas S and Ward J, 2005 J. High Energy Phys. JHEP02(2005)015 [SPIRES]
[16] Thomas S and Ward J, 2005 J. High Energy Phys. JHEP10(2005)098 [SPIRES]
[17] Panda S, Sami M and Tsujikawa S, 2005 Preprint hep-th/0510112
[18] Yavartanoo H, 2004 Preprint hep-th/0407079
Ghodsi A and Mosaffa A E, 2005 Nucl. Phys. B 71430 [SPIRES]
Panda S, Sami M, Tsujikawa S and Ward J, 2006 Preprint hep-th/0601037
[19] Thomas S and Ward J, 2005 Phys. Rev. D 72083519 [SPIRES]
[20] Callan C G, Harvey J A and Strominger A, 1991 Nucl. Phys. B 36760 [SPIRES] [hep-th/9112030]
[21] Sfetsos K, 1999 Preprint hep-th/9903201
[22] Mukhanov V F, Feldman H A and Brandenberger R H, 1992 Phys. Rep. 215203 [SPIRES]
Kodama H and Sasaki M, 1984 Prog. Theor. Phys. Suppl. 781
Bassett B A, Tsujikawa S and Wands D, 2005 Preprint astro-ph/0507632
[23] Hwang J C and Noh H, 2002 Phys. Rev. D 66084009 [SPIRES]
[24] Steer D A and Vernizzi F, 2004 Phys. Rev. D 70043527 [SPIRES]
[25] Peiris H V et al, 2003 Astrophys. J. Suppl. 148213
Barger V, Lee H S and Marfatia D, 2003 Phys. Lett. B 56533 [SPIRES]
Kinney W H, Kolb E W, Melchiorri A and Riotto A, 2004 Phys. Rev. D 69103516 [SPIRES]
Leach S M and Liddle A R, 2003 Phys. Rev. D 68123508 [SPIRES]
Tegmark M et al, 2004 Phys. Rev. D 69103501 [SPIRES]
Tsujikawa S and Liddle A R, 2004 J. Cosmol. Astropart. Phys. JCAP03(2004)001 [SPIRES]
Tsujikawa S and Gumjudpai B, 2004 Phys. Rev. D 69123523 [SPIRES]
Spergel D N et al, 2006 Preprint astro-ph/0603449
[26] Seljak U et al, 2005 Phys. Rev. D 71103515 [SPIRES]
[27] Hinshaw G et al, 2006 Preprint astro-ph/0603451
Page L et al, 2006 Preprint astro-ph/0603450
Spergel D N et al, 2006 Preprint astro-ph/0603449
Peiris H V and Easther R, 2006 Preprint astro-ph/0609003
[28] Frolov A V, Kofman L and Starobinsky A A, 2002 Phys. Lett. B 5458 [SPIRES]
[29] Garousi M R, 2003 J. High Energy Phys. JHEP04(2003)027 [SPIRES]
[30] Verlinde H, 2000 Nucl. Phys. B 580264 [SPIRES]
[31] Garousi M R, Sami M and Tsujikawa S, 2005 Phys. Lett. B 6061 [SPIRES]
Chingangbam P and Qureshi T, 2005 Int. J. Mod. Phys. A 206083 [SPIRES]
[32] Randall L and Sundrum R, 1999 Phys. Rev. Lett. 833370 [SPIRES] Randall L and Sundrum R, 1999 Phys. Rev. Lett. 834690 [SPIRES]
[33] Kehagias A and Kiritsis E, 1999 J. High Energy Phys. JHEP11(1999)022 [SPIRES] Papantonopoulos E, Pappa I and Zamarias V, 2006 Preprint hep-th/0601152
[34] Kachru S, Kallosh R, Lindei A and Trivedi S P, 2003 Phys. Rev. D 68046005 [SPIRES] Kachru S, Kallosh R, Linde A, Maldacena J, McAllister L and Trivedi S P, 2003 J. Cosmol. Astropart. Phys. JCAP10(2003)013 [SPIRES]
[35] Kutasov D, Trieste, 2001 Superstrings and Related Matters (Trieste: ICTP) pp 165-209 [SPIRES]
[36] Piao Y-S, 2005 Phys. Rev. D 71107301 [SPIRES] Mukohyama S, 2005 Phys. Rev. D 72061901 [SPIRES]
[37] Brandenberger R and Vafa C, 1989 Nucl. Phys. B 316391 [SPIRES] Boehm T and Brandenberger R, 2002 Preprint hep-th/0208188
Quevedo F, 2002 Class. Quantum Grav. 195721 [SPIRES]
[38] Danielsson U H, 2002 Phys. Rev. D 66023511 [SPIRES]
[39] Klebanov I R and Strassler M J, 2000 J. High Energy Phys. JHEP08(2000)052 [SPIRES]
[40] Cho I, Chun E J, Kim H B and Kim Y, 2006 Preprint hep-th/0601147
[41] Peebles P J E and Vilenkin A, 1999 Phys. Rev. D 59063505 [SPIRES]
Peloso M and Rosati F, 1999 J. High Energy Phys. JHEP12(1999)026 [SPIRES]
Dimopoulos K, 2003 Phys. Rev. D 68123506 [SPIRES]
Rosenfeld R and Frieman J A, 2005 J. Cosmol. Astropart. Phys. JCAP09(2005)003 [SPIRES]
[42] Copeland E J, Sami M and Tsujikawa S, 2006 Preprint hep-th/0603057

[^0]: ${ }^{4}$ We must bear in mind that our approximation of the harmonic function prevents us from taking the $\sigma \rightarrow \infty$ limit.

[^1]: ${ }^{5}$ This was discussed by Ghodsi et al in [18]. We refer the interested reader there for more details.

[^2]: ${ }^{6}$ See [42] for an excellent review.

[^3]: ${ }^{7}$ However we must be careful since the DBI action will not be valid once it coalesces with the NS5 branes so we must assume that it passes between the branes. This requires fine-tuning of the initial trajectory which is not realistic. This problem may be resolved by switching to the description of the model in terms of the little string theory [35].

