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We consider a dynamical system of phantom scalar field under exponential potential in the background
of loop quantum cosmology. In our analysis, there is neither stable node nor repeller unstable node but
only two saddle points, hence no big rip singularity. Physical solutions always possess potential energy
greater than the magnitude of the negative kinetic energy. We found that the universe bounces after
accelerating even in the domination of the phantom field. After bouncing, the universe finally enters the
oscillatory regime.
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I. INTRODUCTION

Recently, present accelerating expansion of the universe
has been confirmed with observations via cosmic micro-
wave background anisotropies [1,2], large scale galaxy
surveys [3], and type Ia supernovae [4,5]. However, the
problem is that the acceleration can not be understood in
standard cosmology. This motivates many groups of cos-
mologists to find out the answers. Proposals to explain this
acceleration made previously could be, in general, catego-
rized into three ways of approach [6]. In the first approach,
in order to achieve acceleration, we need some form of
scalar fluid called dark energy with equation of state p �
w�, where w<�1=3. Various types of models in this
category have been proposed and classified (for a recent
review, see Refs. [7,8]). The other two ways are that
accelerating expansion is an effect of backreaction of
cosmological perturbations [9] or late acceleration is an
effect of modification in the action of general relativity.
This modified gravity approach includes braneworld mod-
els (for review, see [10]). Until today, there has not yet been
a true satisfactory explanation of the present acceleration
expansion.

Considering dark energy models, a previous first-year
WMAP data analysis combined with 2dF galaxy survey
and SN-Ia data and even a previous SN-Ia analysis alone
favor w<�1 more than cosmological constant or quin-
tessence [11,12]. A precise observational data analysis
(combining CMB, Hubble Space Telescope, type Ia
Supernovae, and 2dF data sets) allows the equation of state
p � w� with a constant w value between �1:38 and
�0:82 at the 95% confident level [13]. The recent
WMAP three-year results combined with Supernova
Legacy Survey (SNLS) data when assuming flat universe
yields�1:06<w<�0:90. However, without assumption
of flat universe but only combined WMAP, large scale
structure and supernova data implies a strong constraint,

w � �1:06�0:13
�0:08 [14]. While assuming a flat universe, the

first result from ESSENCE Supernova Survey Ia combined
with SuperNova Legacy Survey Ia gives a constraint of
w � �1:07� 0:09 [15]. Interpretation of various data
brings about a possibility that dark energy could be in a
form of phantom field—a fluid with w<�1 (which vio-
lates dominant energy condition, � � jpj) rather than
quintessence field [16–18]. The phantom equation of state
p <�� can be attained by the negative kinetic energy
term of the phantom field. However, there are some types
of braneworld model [19] as well as Brans-Dicke scalar-
tensor theory [20] and gravitational theory with higher
derivatives of scalar field [21] that can also yield phantom
energy. There has been investigation on dynamical prop-
erties of the phantom field in the standard Friedmann-
Robertson-Walker (FRW) background with exponential
and inverse power law potentials by [22–25] and with
other forms of potential by [25–27]. These studies describe
fates of the phantom dominated universe with different
steepness of the potentials.

A problem for phantom field dark energy in standard
FRW cosmology is that it leads to singularity. Fluid with w
less than �1 can end up with future singularity called the
big rip [28], which is of type I singularity according to
classification by [29,30]. The big rip singularity corre-
sponds to a! 1, �! 1, and jpj ! 1 at finite time t!
ts in the future. Choosing a particular class of potential for
the phantom field enables us to avoid future singularity.
However, the avoidance does not cover general classes of
potential [26]. In addition, an alternative model, in which
two scalar fields appear with inverse power law and ex-
ponential potentials, can as well avoid the big rip singu-
larity [31]. The higher-order string curvature correction
terms can also show the possibility that the big rip singu-
larity can be absent [32].

Since the phantom dominated FRW universe possesses a
singularity problem as stated above, in this work, instead of
using standard FRW cosmology, the fundamental back-
ground theory in which we are interested is loop quantum
gravity (LQG). This theory is a nonperturbative type of
quantization of gravity and is background independent
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[33,34]. It has been applied in a cosmological context as
seen in various literature where it is known as loop quan-
tum cosmology (LQC) (for a review, see Ref. [35]). The
effective loop quantum modifies the standard Friedmann
equation by adding a correction term ��2=�lc into the
Friedmann equation [36–40]. When this term becomes
dominant, the universe begins to bounce and then expands
backwards. LQG can resolve the singularity problem in
various situations [34,37,41,42]. However, derivation of
the modified term is under a condition that there is no
matter potential otherwise; in the presence of a potential,
quantum correction would be more complicated [43]. A
nice feature of LQC is avoidance of the future singularity
from the correction quadratic term ��2=�lc in the modi-
fied LQC Friedmann equation [44] as well as the singu-
larity avoidance at the semiclassical regime [45]. The
early-universe inflation has also been studied in the context
of LQC at the semiclassical limit [40,46–50]. We aim to
investigate the dynamics of the phantom field and its late
time behavior in the loop quantum cosmological context,
and to check if the loop quantum effect could remove big
rip singularity from the phantom dominated universe. The
study could also reveal some other interesting features of
the model.

We organize this article as follows: in Sec. II, we in-
troduce the LQC Friedmann equation; after that we briefly
present relevant features of the phantom scalar field in
Sec. III. Section IV contains dynamical analysis of the
phantom field in LQC background with exponential poten-
tial. The potential is a simplest case due to constancy of its
steepness variable �. Two real fixed points are found in this
section. Stability analysis yields that both fixed points are
saddle points. Numerical results and analysis of solutions
can be seen in Sec. V where we give conditions for physical
solutions. Finally, the conclusion is in Sec. VI.

II. LOOP QUANTUM COSMOLOGY

LQC naturally gives rise to the inflationary phase of the
early universe with graceful exit; however, the same
mechanism leads to a prediction that present-day accelera-
tion must be very small [46]. At late time and at large scale,
the semiclassical approximation in LQC formalisms can be
validly used [51]. The effective Friedmann equation can be
obtained by using an effective Hamiltonian with loop
quantum modifications [38,44,52]:

 C eff � �
3M2

P

�2 ��2 asin2� ��c� � Cm: (1)

The effective constraint (1) is valid for the isotropic model,
and if there is scalar field, the field must be a free, massless
scalar field. Equation (1), when including field potential,
must have some additional correction terms [43]. In this
scenario, Hamilton’s equation is

 

_p � fp; Ceffg � �
�

3M2
P

@Ceff

@c
; (2)

where c and p are, respectively, conjugate connection and
triad satisfying fc; pg � �=3M2

P. The dot symbol denotes
time derivative. These are two variables in the simplified
phase space structure under FRW symmetries [35]. Here
M2

P � �8�G�
�1 is the square of reduced Planck mass, G is

Newton’s gravitational constant, and � is the Barbero-
Immirzi dimensionless parameter. There are relations be-
tween the two variables to scale factor as p � a2 and c �
� _a. The parameter �� is inferred as kinematical length of
the square loop since its order of magnitude is similar to
that of length. The area of the loop is given by the mini-
mum eigenvalue of the LQG area operator. Cm is the
corresponding matter Hamiltonian. Using Eq. (2) with
the constraint from realization that the loop quantum cor-
rection of the effective Hamiltonian Ceff is small at a large
scale, Ceff � 0 [35,38,39,44], one can obtain the (effective)
modified Friedmann equation in a flat universe:

 H2 �
�t

3M2
P

�
1�

�t

�lc

�
; (3)

where �lc �
���
3
p
=�16��3G2

@� is the critical loop quantum
density, @ is the Planck constant, and �t is the total density.

III. PHANTOM SCALAR FIELD

The energy density � and the pressure p of the phantom
field contain a negative kinetic term. They are given as [16]

 � � �1
2

_�2 � V���; (4)

 p � �1
2

_�2 � V���: (5)

The conservation law is

 _�� 3H��� p� � 0: (6)

Using Eqs. (4)–(6), we obtain the Klein-Gordon equation:

 

��� 3H _�� V 0 � 0; (7)

where V0 	 dV=d� and the negative sign comes from the
negative kinetic terms. The phantom equation of state is
therefore given by

 w �
p
�
�

_�2 � 2V
_�2 � 2V

: (8)

From Eq. (8), when the field is slowly rolling, as long as the
approximation, _�2 
 0 holds, the approximated value of w
is �1. When the bound, _�2 < 2V holds, w is always less
than �1.

As mentioned previously in Secs. I and II, there has not
yet been a derivation of the effective LQC Friedmann
equation consistent with a presence of potential. Even
though, the Friedmann background is valid only in the
absence of the field potential, however, investigation of a
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phantom field evolving under a potential is a challenged
task. Here we also neglect the loop quantum correction
effect in the classical expression of Eqs. (4) and (5) (see
Refs. [43,53] for discussion).

IV. DYNAMICAL ANALYSIS

Differentiating Eq. (3) and using the fluid Eq. (6), we
obtain

 

_H � �
��� p�

2M2
P

�
1�

2�
�lc

�
: (9)

Equations (3), (6), and (9), in domination of the phantom
field, become

 H2 �
1

3M2
P

�
�

_�2

2
� V

��
1�

�
�lc

�
; (10)

 _� � �3H�
�
1�

_�2 � 2V
_�2 � 2V

�
; (11)

 

_H �
_�2

2M2
P

�
1�

2�
�lc

�
: (12)

We define dimensionless variables following the style of
[54]

 X 	
_����

6
p
MPH

; Y 	

����
V
p

���
3
p
MPH

; Z 	
�
�lc

; (13)

 � 	 �
MPV

0

V
; � 	

VV 00

�V 0�2
;

d

dN
	

1

H
d

dt
; (14)

where N 	 lna is the e-folding number. Using new varia-
bles in Eqs. (8) and (10), the equation of state is rewritten
as1

 w �
X2 � Y2

X2 � Y2 ; (15)

where jXj � jYj and the Friedmann constraint is reex-
pressed as

 ��X2 � Y2��1� Z� � 1: (16)

Clearly, if jXj � jYj, following Eq. (16), then Z � 1.
Using the new defined variables above, Eq. (12) becomes

 

_H

H2
� 3X2�1� 2Z�: (17)

The acceleration condition,

 

�a
a
� _H �H2 > 0; (18)

in expression of the new variables, is therefore

 3X2�2Z� 1�< 1: (19)

Divided by Eq. (16), the acceleration condition under the
constraint is

 

3

1� �Y2=X2�

�
1� 2Z
1� Z

�
< 1; (20)

where the conditions jXj � jYj and Z � 1 must hold. As
we consider Z � �=�lc with � � �� _�2=2� � V, we can
write

 

�lcZ

3M2
PH

2 � �X
2 � Y2: (21)

With the condition jXj � jYj, clearly from Eq. (21), we
have one additional condition, Z � 0.

A. Autonomous system

Differential equations in the autonomous system are

 

dX
dN
� �3X�

���
3

2

s
�Y2 � 3X3�1� 2Z�; (22)

 

dY
dN
� �

���
3

2

s
�XY � 3X2Y�1� 2Z�; (23)

 

dZ
dN
� �3Z

�
1�

X2 � Y2

X2 � Y2

�
; (24)

 

d�
dN
� �

���
6
p
��� 1��2X: (25)

Here we will apply the exponential potential,

 V��� � V0 exp
�
�

�
MP

�
�
; (26)

to this system. The potential is known to yield power-law
inflation in standard cosmology with a canonical scalar
field. Its slow-roll parameters are related as � � �=2 �

1=P, where � �
���������
2=P

p
and P> 1 [55,56]. Although the

potential has been applied to the quintessence scalar field
with tracking behavior in standard cosmology [57], the
quintessence field cannot dominate the universe due to
constancy of the ratio between densities of matter and
quintessence field (see the discussion in Ref. [7]). In the
case of a phantom field in standard cosmology under this
potential, a stable node is a scalar-field dominated solution
with the equation of state, w � �1� �2=3 [24,27,58]. In
our LQC phantom domination context, from Eq. (25), we
can see that for the exponential potential, � � 1. This
yields a trivial value of d�=dN and therefore � is a nonzero
constant; otherwise the potential is flat.

1The relation �� � �=3H2M2
P � �X

2 � Y2 � 1 cannot be
applied here since it is valid only for standard cosmology with
flat geometry.
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B. Fixed points

Let f 	 dX=dN, g 	 dY=dN, and h 	 dZ=dN. We can
find fixed points of the autonomous system under condition

 �f; g; h� j�Xc;Yc;Zc�
� 0: (27)

There are two real fixed points of this system:2

 � Point �a�:
�
�����

6
p ;

���������������
1�

�2

6

s
; 0
�
; (28)

 � Point �b�:
�
�����

6
p ;�

���������������
1�

�2

6

s
; 0
�
: (29)

C. Stability analysis

Suppose that there is a small perturbation 	X, 	Y, and
	Z about the fixed point �Xc; Yc; Zc�, i.e.,

 X � Xc � 	X; Y � Yc � 	Y; Z � Zc � 	Z:

(30)

From Eqs. (22)–(24), neglecting higher-order terms in the
perturbations, we obtain first-order differential equations:

 

d

dN

	X
	Y
	Z

0
@

1
A �M

	X
	Y
	Z

0
@

1
A: (31)

The matrix M defined at a fixed point (Xc; Yc; Zc) is given
by

 M �

@f
@X

@f
@Y

@f
@Z

@g
@X

@g
@Y

@g
@Z

@h
@X

@h
@Y

@h
@Z

0
B@

1
CA
�X�Xc;Y�Yc;Z�Zc�

: (32)

We find eigenvalues of the matrix M for each fixed point:
(1) At point (a):

 �1 � �2; �2 � ��2; �3 � �3�
�2

2
:

(33)

(2) At point (b):

 �1 � �2; �2 � ��
2; �3 � �3�

�2

2
:

(34)

From the above analysis, each point possesses eigenvalues
with opposite signs; therefore both point (a) and point (b)
are saddle. Results from our analysis are concluded in
Table I. Location of the points depends only on � and the
points exist for all values of �. Both points correspond to
the equation of state �1� �2=3, that is to say, it has a
phantom equation of state for all values of � � 0. Since
there is not any attractor in the system, a phase trajectory is
very sensitive to initial conditions given to the system. The
stable node (the big rip) of the standard general relativistic
case in the presence of a phantom field and a barotropic
fluid disappears here (see [23]).

V. NUMERICAL RESULTS

Numerical results from the autonomous set (22)–(24)
are presented in Figs. 1 and 2 where we set � � 1.
Locations of the two saddle points are: point (a) (Xc �
�0:408 25, Yc � 1:0801, Zc � 0) and point (b) (Xc �
�0:408 25, Yc � �1:0801, Zc � 0), which match our ana-
lytical results. In Fig. 3, we present a trajectory solution of
a phantom field evolving in standard cosmological back-
ground for comparing with the trajectories in Fig. 2 when
including loop quantum effects. The standard case has only
two simple trajectories corresponding to a constraint
�X2 � Y2 � 1. This is attained when taking the classical
limit, Z � 0. In the loop quantum case, since there is not
any stable node and the solutions are sensitive to initial
conditions, we need to classify solutions according to each
domain region separated by separatrices jXj � jYj, Z � 0,
and Z � 1, so that we can analyze them separately. Note
that the condition, Z > 0 must hold for physical solutions
since the density cannot be negative or zero, i.e. � > 0. The
blue lines and red lines in Figs. 1 and 2 are solutions in the
region Z < 0 hence are not physical and will no longer be
of our interest. From now on, we consider only the region
Z > 0. In regions with jXj> jYj, the solutions therein are
green lines (hereafter classified as class I). The other
regions with jYj> jXj contain solutions seen as black lines
(classified as class II). Note that all solutions cannot cross
the separatrices due to conditions in Eqs. (16), (20), and
(21).

TABLE I. Properties of fixed points of phantom field dynamics in LQC background under the exponential potential.

Name X Y Z Existence Stability w Acceleration

(a) � ���
6
p

�������������
1� �2

6

q
0 All � Saddle point for all � �1� �2

3 For all � (i.e. �2 >�2)

(b) � ���
6
p �

�������������
1� �2

6

q
0 All � Saddle point for all � �1� �2

3 For all � (i.e. �2 >�2)

2The other two imaginary fixed points �i; 0; 0� and ��i; 0; 0�
also exist. However, they are not interesting here since we do not
consider the model that includes a complex scalar field.
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A. Class I solutions

Consider the Friedmann equation (10); the Hubble pa-
rameter H takes real value only if

 

1

3M2
P

�
�

_�2

2
� V

��
1�

�
�lc

�
� 0: (35)

Divided by H2 on both sides, the expression above be-
comes

 ��X2 � Y2��1� Z� � 0: (36)

It is clear from (36) that, in order to obtain a real value of
H, class I solutions (green line) must obey both conditions
jXj> jYj and Z > 1 together. However, when imposing
jXj> jYj to Eq. (21), we obtain Z < 0 instead. This contra-
dicts the required range Z > 1. Therefore this class of
solutions does not possess any real values of H and hence
not physical solutions.

B. Class II solutions

Proceeding with the same analysis done for class I, we
found that in order for H to be real, class II solutions must
obey both jYj> jXj and 0< Z< 1 together. Moreover,
when imposing jYj> jXj into Eq. (21), we obtain Z > 0.
Therefore, as we combine both results, it can be concluded
that class II solutions can possess realH value in the region
jYj> jXj and 0< Z< 1, i.e. 0< �< �lc. The bound is
slightly different from the case of canonical scalar field in
LQC (see Ref. [59]) of which the bound is 0 � � � �lc.
Class II is therefore the only class of physical solutions.

FIG. 3 (color online). Phase space of the kinetic part X and
potential part Y in standard general relativistic case. The location
of points (a) and (b) in Fig. 2 is on the trajectory solutions here.
This plot shows the dynamics of a phantom field in standard
cosmological background without any other fluids. In the pres-
ence of a barotropic fluid with any equation of state, points (a)
and (b) correspond to the big rip [23,25].

–2

–1

0

1

2

Y

–1 –0.5 .50 0 1 1.5
X

class II solutions
(black lines-aphysical solutions)

FIG. 2 (color online). Phase space of the kinetic part X and
potential part Y (top view). The saddle points (a) (� 0:40825,
1.0801) and (b) (� 0:40825,�1:0801) are shown here. The blue
lines and red lines are in the region Z < 0 which is nonphysical.
Green lines are of class I solutions which yield imaginary H.
Only class II solutions shown as black lines are physical with a
real H value.

–1

0

1

X
–2–1012 Y

–6

–4

–2

0

2

4

6

Z

FIG. 1 (color online). Three-dimensional phase space of X, Y,
and Z. The saddle points (a) (� 0:40825, 1.0801, 0) and
(b) (� 0:40825, �1:0801, 0) appear in the figure. � is set to
1. In region Z < 0, the solutions (red and blue lines) are non-
physical. In this region, Z! �1 when �X; Y� ! �0; 0�. The
green lines (class I) are in region jXj> jYj and Z > 1 but they
are also nonphysical since they correspond to imaginary H
values. The only set of physical solutions (class II) is presented
with black lines. They are in region jYj> jXj and range from
0< Z< 1. This is the region above (a) and (b) of which H takes
real value. There are separatrices jXj � jYj, Z � 0, and Z � 1 in
the system (see Sec. V B).
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For class II solutions, we consider another set of autono-
mous equations from which the evolution of cosmological
variables is conveniently obtained by using the numerical
approach. In the new autonomous set, instead of using N,
which could decrease after the bounce from LQC effect,
time is taken as an independent variable. We define the new
variable as

 

_� � S: (37)

Equations (7) and (12) are therefore rewritten as

 

_H �
S2

2M2
P

�
1�

2

�lc

�
�
S2

2
� V���

��
; (38)

 

_S � �3HS� V 0: (39)

Equations (37)–(39) form another closed autonomous sys-
tem. Numerical integrations from the new system yield the
result plotted in Figs. 4 and 5 in which the set values are
� � 1, �lc � 1:5, V0 � 1, and MP � 2. From Eq. (3) the
slope of H with respect to �, dH=d�, is flat when � �
�lc=2 [59]. Another fact is

 

�
d2H

d�2

�
���lc=2

�
�2

MP

���������
3�3

lc

q < 0; (40)

hence, as � � �lc=2, H takes the maximum value, Hmax �

���������������������
�lc=12M2

P

q
. This result is valid in the LQC scenario re-

gardless of types of fluid. In Figs. 4 and 5, with set
parameters given above, as � � �lc=2 � 0:75, H is maxi-
mum, Hmax � 0:176 78. When H � 0, i.e. � is approxi-
mately �lc � 1:5, the expansion halts and then bounces. At
this bouncing point, the dynamics enters the loop quantum
regime which is a quantum gravity limit. Beyond the
bounce, H turns negative, i.e. contracting of scale factor.
The universe undergoes accelerating contraction until
reaching Hmin. After that it contracts, decelerating until

2

1

0

- 1

- 2

121086420

lc lc<~,

FIG. 5 (color online). Time evolution of potential energy den-
sity (P.E.), kinetic energy density (K.E.), and � � K:E:� P:E: of
the field for a class II solution. K.E. is always negative and, at
late time, it goes to �1 while P.E. is always positive. � is
maximum when � � �lc � 1:5. Other features are discussed as
in Fig. 4.

6420

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

12108

<~

FIG. 4 (color online). Evolution of H with time of a class II
solution. Set values are � � 1, �lc � 1:5, V0 � 1, and MP � 2.
The universe undergoes acceleration from the beginning until
reaching a turning point at � � �lc=2 � 0:75, where H �
Hmax � 0:176 78. Beyond this point, the universe expands with
deceleration until halting (H � 0) at � � �lc � 1:5. After halt-
ing, it undergoes contraction until H bounces. The oscillating in
H goes on forever.

FIG. 6. Oscillation in kinetic energy density (K.E.) that con-
tributes to oscillation in �. This is a zoomed-in portion of Fig. 5.
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bouncing at H � 0. The universe goes on faster bouncing
forward and backward. The faster bounce in H is an effect
from the faster bounce in � as illustrated in Fig. 5 where the
red line represents potential energy density V���, the black
line represents kinetic energy density� _�2=2, and the blue
line is total energy density �. Oscillation in � is from
oscillation in the field speed _� and therefore oscillation
in K.E. as shown in Fig. 6. This hence contributes to
oscillation in �. The negative magnitude of kinetic energy
density becomes larger and larger as the field rolling faster
and faster up the potential. The exponential potential en-
ergy density therefore becomes larger and larger. This
results in oscillation of � and affects in oscillation of H
about the bounce H � 0. With a different approach, re-
cently a similar result in H oscillation is also obtained by
Naskar and Ward [60].

VI. CONCLUSION

A dynamical system of phantom canonical scalar field
evolving in a background of loop quantum cosmology is
considered and analyzed in this work. The exponential
potential is used in this system. The dynamical analysis
of the autonomous system renders two real fixed points

���=
���
6
p
;
��������������������
1� �2=6

p
; 0� and ���=

���
6
p
;�

��������������������
1� �2=6

p
; 0�,

both of which are saddle points corresponding to an equa-
tion of state, w � �1� �2=3. Note that, in the case of
standard cosmology, the fixed point �Xc; Yc� �

���=
���
6
p
;
��������������������
1� �2=6

p
� is the big rip attractor with the

same equation of state, w � �1� �2=3 [24]. Because of
the absence of a stable node, the late time behavior depends
on the initial conditions given. Therefore we do numerical
plots to investigate solutions of the system and then clas-
sify the solutions. Separatrix conditions jXj � jYj, Z � 1,
and Z � 0 arise from the equation of state (15), Friedmann
constraint (16), and definition of Z in Eq. (21). At first, we
consider solutions in region Z > 0, i.e. � > 0 for physical
solutions. Second, within this Z > 0 region, we classify
solutions into class I and class II. Solutions in region jXj>

jYj and Z > 1 are of class I. However, in order to obtain a
real value of H in class I, Z must be negative which
contradicts Z > 1. Therefore the class I solutions are non-
physical. The class II set is identified by jYj> jXj and 0<
Z< 1. It is the only set of physical solutions since it yields
a real value ofH. In the class II set, the universe undergoes
an accelerating expansion from the beginning until � �

�lc=2, where H � Hmax �
���������������������
�lc=12M2

P

q
. After that the uni-

verse expands, decelerating until it bounces, i.e. stops
expansion H � 0 at � � �lc. At the bounce the universe
enters the quantum gravity regime. Contraction with back-
ward acceleration happens right after the bounce; however,
the contraction does not go on forever. When the universe
reaches a minimum value of negative H, the contraction
decelerates, i.e. contracts slower and slower down. The
universe, after undergoing contraction to a minimum spa-
tial size, bounces again and starts to expand, accelerating.
Our numerical results yield that oscillation in H becomes
faster as time passes.

ACKNOWLEDGMENTS

We thank Anne-Christine Davis, Roy Maartens, M.
Sami, and Shinji Tsujikawa for discussion. B. G. thanks
Nattapong Yongram for comments to the plot in Fig. 6.
D. S. is supported by the Studentship of the Promotion of
Science and Mathematics Talented Teachers Programme
of the Institute for the Promotion of Teaching Science and
Technology (IPST). B. G. expresses his gratitude to the
ICTP, Faculty of Science of Naresuan University, and
Suthat Yoksan for the opportunity of the ICTP Federation
Scheme to the Abdus Salam ICTP Summer School in
Cosmology and Astroparticle Physics 2006, where partial
work was completed. B. G. is supported by Faculty of
Science of Naresuan University and a TRF-CHE
Research Career Development Grant of the Thailand
Research Fund. Finally, B. G. gives special thanks to the
referee for fruitful comments.

[1] C. L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1
(2003); D. N. Spergel et al. (WMAP Collaboration),
Astrophys. J. Suppl. Ser. 148, 175 (2003).

[2] S. Masi et al., Prog. Part. Nucl. Phys. 48, 243 (2002).
[3] R. Scranton et al. (SDSS Collaboration), arXiv:astro-ph/

0307335.
[4] A. G. Riess et al. (Supernova Search Team Collaboration),

Astron. J. 116, 1009 (1998); A. G. Riess, arXiv:astro-ph/
9908237; J. L. Tonry et al. (Supernova Search Team
Collaboration), Astrophys. J. 594, 1 (2003).

[5] S. Perlmutter et al. (Supernova Cosmology Project
Collaboration), Astrophys. J. 517, 565 (1999); G.

Goldhaber et al. (The Supernova Cosmology Project
Collaboration), arXiv:astro-ph/0104382.

[6] N. Straumann, Mod. Phys. Lett. A 21, 1083 (2006).
[7] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).
[8] T. Padmanabhan, Curr. Sci. 88, 1057 (2005); AIP Conf.

Proc. 861, 179 (2006).
[9] E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto,

arXiv:hep-th/0503117; E. W. Kolb, S. Matarrese, and A.
Riotto, New J. Phys. 8, 322 (2006).

[10] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.
Phys. 4, 115 (2007).

PHANTOM FIELD DYNAMICS IN . . . PHYSICAL REVIEW D 76, 043514 (2007)

043514-7



[11] P. S. Corasaniti, M. Kunz, D. Parkinson, E. J. Copeland,
and B. A. Bassett, Phys. Rev. D 70, 083006 (2004).

[12] U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky,
Mon. Not. R. Astron. Soc. 354, 275 (2004).

[13] A. Melchiorri, L. Mersini-Houghton, C. J. Odman, and M.
Trodden, Phys. Rev. D 68, 043509 (2003).

[14] D. N. Spergel et al., arXiv:astro-ph/0603449.
[15] W. M. Wood-Vasey et al., arXiv:astro-ph/0701041.
[16] R. R. Caldwell, Phys. Lett. B 545, 23 (2002).
[17] G. W. Gibbons, arXiv:hep-th/0302199.
[18] S. Nojiri and S. D. Odintsov, Phys. Lett. B 562, 147

(2003).
[19] V. Sahni and Y. Shtanov, J. Cosmol. Astropart. Phys. 11

(2003) 014; Int. J. Mod. Phys. D 11, 1515 (2002).
[20] E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 70,

043539 (2004).
[21] A. Anisimov, E. Babichev, and A. Vikman, J. Cosmol.

Astropart. Phys. 06 (2005) 006.
[22] X. z. Li and J. g. Hao, Phys. Rev. D 69, 107303 (2004);

J. g. Hao and X. z. Li, Phys. Rev. D 67, 107303 (2003).
[23] L. A. Urena-Lopez, J. Cosmol. Astropart. Phys. 09 (2005)

013.
[24] J. G. Hao and X. z. Li, Phys. Rev. D 70, 043529 (2004).
[25] B. Gumjudpai, T. Naskar, M. Sami, and S. Tsujikawa, J.

Cosmol. Astropart. Phys. 06 (2005) 007.
[26] P. Singh, M. Sami, and N. Dadhich, Phys. Rev. D 68,

023522 (2003).
[27] M. Sami and A. Toporensky, Mod. Phys. Lett. A 19, 1509

(2004).
[28] R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg,

Phys. Rev. Lett. 91, 071301 (2003); S. Nesseris and L.
Perivolaropoulos, Phys. Rev. D 70, 123529 (2004).

[29] J. D. Barrow, Classical Quantum Gravity 21, L79 (2004).
[30] S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D

71, 063004 (2005).
[31] H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005).
[32] S. Nojiri, S. D. Odintsov, and M. Sasaki, Phys. Rev. D 71,

123509 (2005); M. Sami, A. Toporensky, P. V. Tretjakov,
and S. Tsujikawa, Phys. Lett. B 619, 193 (2005); G.
Calcagni, S. Tsujikawa, and M. Sami, Classical
Quantum Gravity 22, 3977 (2005); B. M. Leith and I. P.
Neupane, J. Cosmol. Astropart. Phys. 05 (2007) 019.

[33] T. Thiemann, Lect. Notes Phys. 631, 41 (2003); A. Perez,
arXiv:gr-qc/0409061.

[34] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv.
Theor. Math. Phys. 7, 233 (2003).

[35] M. Bojowald, Living Rev. Relativity 8, 11 (2005).
[36] G. Date and G. M. Hossain, Classical Quantum Gravity

21, 4941 (2004).
[37] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 73,

124038 (2006).
[38] P. Singh, Phys. Rev. D 73, 063508 (2006).
[39] A. Ashtekar, AIP Conf. Proc. 861, 3 (2006).
[40] G. M. Hossain, Classical Quantum Gravity 21, 179 (2004);

K. Banerjee and G. Date, Classical Quantum Gravity 22,
2017 (2005).

[41] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001); M.
Bojowald, G. Date, and K. Vandersloot, Classical
Quantum Gravity 21, 1253 (2004); G. Date, Phys. Rev.
D 71, 127502 (2005).

[42] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. Lett.
96, 141301 (2006).

[43] M. Bojowald, Phys. Rev. D 75, 081301 (2007); 75, 123512
(2007).

[44] M. Sami, P. Singh, and S. Tsujikawa, Phys. Rev. D 74,
043514 (2006).

[45] P. Singh and A. Toporensky, Phys. Rev. D 69, 104008
(2004).

[46] M. Bojowald, Phys. Rev. Lett. 89, 261301 (2002).
[47] M. Bojowald and K. Vandersloot, Phys. Rev. D 67, 124023

(2003); G. Calcagni and M. Cortes, Classical Quantum
Gravity 24, 829 (2007).

[48] S. Tsujikawa, P. Singh, and R. Maartens, Classical
Quantum Gravity 21, 5767 (2004).

[49] E. J. Copeland, J. E. Lidsey, and S. Mizuno, Phys. Rev. D
73, 043503 (2006).

[50] M. Bojowald and M. Kagan, Phys. Rev. D 74, 044033
(2006).

[51] M. Bojowald, Classical Quantum Gravity 18, L109
(2001).

[52] K. Vandersloot, Phys. Rev. D 71, 103506 (2005); P. Singh
and K. Vandersloot, Phys. Rev. D 72, 084004 (2005).

[53] M. Bojowald, arXiv:0705.4398.
[54] E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D

57, 4686 (1998).
[55] F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316

(1985).
[56] A. R. Liddle, Phys. Lett. B 220, 502 (1989).
[57] T. Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D

61, 127301 (2000); S. C. C. Ng, N. J. Nunes, and F. Rosati,
Phys. Rev. D 64, 083510 (2001).

[58] J. Kujat, R. J. Scherrer, and A. A. Sen, Phys. Rev. D 74,
083501 (2006).

[59] P. Singh, K. Vandersloot, and G. V. Vereshchagin, Phys.
Rev. D 74, 043510 (2006).

[60] T. Naskar and J. Ward, arXiv:0704.3606.

DARIS SAMART AND BURIN GUMJUDPAI PHYSICAL REVIEW D 76, 043514 (2007)

043514-8


