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a b s t r a c t

We investigate non-linear Schrödinger-type formulation of cosmology of which our cosmological system
is a general relativistic FRLW universe containing canonical scalar field under arbitrary potential and a
barotropic fluid with arbitrary spatial curvatures. We extend the formulation to include phantom field
case and we have found that Schrödinger wave function in this formulation is generally non-normaliz-
able. Assuming power-law expansion, a � tq, we obtain scalar field potential as function of time. The cor-
responding quantities in Schrödinger-type formulation such as Schrödinger total energy, Schrödinger
potential and wave function are also presented.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Canonical scalar field plays important role in inflationary phase
in the early universe as well as acceleration in the late universe ob-
served and confirmed by cosmic microwave background [1], large
scale structure surveys [2] and supernovae type Ia [3]. The scalar
field is considered as inflaton field in inflationary models [4]. It
could also be considered as dark energy that drives the late accel-
eration described in review literatures [5] and references therein.
In standard cosmology with Friedmann–Lemaître–Robertson–
Walker (FLRW) background, major components of the late universe
are mixture of dark matter which is a type of barotropic fliud and
dark energy in form of scalar field. When assuming pure scalar
fluid in flat universe, one can obtain analytical solutions otherwise
the problem can also be solved numerically. However, considering
arbitrary types of barotropic fluid and a non-flat universe, it is not
always possible to solve the system analytically.

Apart from standard cosmological equations, there are few
alternative mathematical formulations which are also equivalent
to the scalar field cosmology with barotropic fluid. One is in form
of non-linear Ermakov-attemping equation [6] and another idea
proposed recently is in form of non-Ermakov–Milne–Pinney
(non-EMP) equation. Cosmological equations in the latter proposal
can be written in form of a non-linear Schrödinger-type equation
when imposing relations between quantities in standard cosmo-
logical equations and Schrödinger-type equation [7]. In case of
ll rights reserved.
Bianchi I scalar field cosmology, recent work shows that it is pos-
sible to construct a corresponding linear Schrödinger-type equa-
tion by redefining cosmological quantities [8]. With the new
representation, scalar field cosmology is reinterpreted in new
way which might be able to give new methods of approaching
mathematical problems in scalar field cosmology.

There are various observations allowing scalar field equation of
state coefficient, w/ to be less than �1 [9]. Recent data such as a
combined WMAP, LSS and SN type Ia without assuming flat uni-
verse, puts a strong constraint, w/ ¼ �1:06þ0:13

�0:08 [10]. Also the first
result from ESSENCE Supernova Survey Ia combined with Super-
Nova Legacy Survey Ia assuming flat universe, gives a constraint
of w/ ¼ �1:07� 0:09 [11]. Therefore, it is possible that the scalar
field dark energy could be phantom, i.e w/ < �1 [12]. The phantom
behavior, w/ < �1 can be attained by negative kinetic energy term
of the scalar field density and pressure. In FLRW standard cosmol-
ogy, the field can yield big rip singularity, i.e. a;q; jpj ! 1 at finite
time [13] with attempts of singularity avoidance in several ways
[14].

In this work, we investigate connection between standard cos-
mological equations and non-linear Schrödinger-type equation
with a comment on normalization of the wave function. We mod-
ify the work of [7] to include phantom field case. A case of power-
law expansion with scalar field and dark matter is considered as a
toy model. We begin from Section 2 where we introduce our cos-
mological system. Afterward in Section 3, we discuss how non-lin-
ear Schrödinger-type formulation quantities are related to
quantities in standard scalar field cosmology. In non-linear Schrö-
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dinger-type equation, one important quantity is wave function. We
comment on normalization properties of the wave function in Sec-
tion 4. We consider a case of power-law expansion in Section 5 be-
fore deriving scalar field potential, Schrödinger potential and
Schrödinger wave function. At last we conclude this work in Sec-
tion 6.

2. Cosmological equations

In a Friedmann–Lemaître–Robertson–Walker universe, the Ein-
stein field equations are

H2 ¼ j2qt

3
� k

a2 ; ð1Þ

€a
a
¼ �j2

6
ðqt þ 3ptÞ; ð2Þ

where j2 � 8pG ¼ 1=M2
P;G is Newton’s gravitational constant, MP is

reduced Planck mass, k is spatial curvature, qt and pt are total den-
sity and total pressure, i.e. qt ¼ qc þ q/ and pt ¼ pc þ p/. The baro-
tropic component is denoted by c, while for scalar field, by /.
Equations of state for barotropic fluid and scalar field are
pc ¼ wcqc and p/ ¼ w/q/. We consider minimally couple scalar
field with Lagrangian density,

L ¼ 1
2
� _/2 � Vð/Þ; ð3Þ

where � ¼ 1 for non-phantom case and �1 for phantom case. Den-
sity and pressure of the field are given as

q/ ¼
1
2
� _/2 þ Vð/Þ; ð4Þ

p/ ¼
1
2
� _/2 � Vð/Þ; ð5Þ

therefore,

w/ ¼
� _/2 � 2Vð/Þ
� _/2 þ 2Vð/Þ

: ð6Þ

The field obeys conservation equation

� €/þ 3H _/
h i

þ dV
d/
¼ 0: ð7Þ

For the barotropic fluid, we set wc � ðn� 3Þ=3 so that
n ¼ 3ð1þwcÞ. Hence, for cosmological constant n ¼ 0, for fluid at
acceleration bound ðwc ¼ �1=3Þn ¼ 2, for dust n ¼ 3, for radiation
n ¼ 4, and for stiff fluid n ¼ 6. Solution of conservation equation for
a barotropic fluid can be obtained directly by solving the conserva-
tion equation. The solution is

qc ¼
D

a3ð1þwcÞ
¼ D

an ; ð8Þ

then

pc ¼ wc
D
an
¼ ðn� 3Þ

3
D
an
; ð9Þ

where a proportional constant D P 0. Using Eqs. (1), (4), (5), (7) and
(8), it is straightforward to show that

� _/ðtÞ2 ¼ � 2
j2

_H � k
a2

� �
� nD

3an ; ð10Þ

Vð/Þ ¼ 3
j2 H2 þ

_H
3
þ 2k

3a2

" #
þ n� 6

6

� �
D
an
: ð11Þ

Therefore, if one knows how the scale factor evolves with time,
the scalar field velocity and potential can always be expressed as a
function of time explicitly.
3. Non-linear Schrödinger-type equation

Non-linear Schrödinger-type equation corresponding to canon-
ical scalar field cosmology with barotropic fluid is given by [7]

d2

dx2 uðxÞ þ E� PðxÞ½ �uðxÞ ¼ �nk
2

uðxÞð4�nÞ=n
: ð12Þ

Quantities in the Schrödinger-type equation above, e.g. wave
function uðxÞ, total energy E and Schrödinger potential PðxÞ are re-
lated to the standard cosmology quantities as

uðxÞ � aðtÞ�n=2
; ð13Þ

E � �j2n2

12
D; ð14Þ

PðxÞ � j2n
4

aðtÞn� _/ðtÞ2: ð15Þ

The mapping from cosmic time t to the variable x is via

x ¼ rðtÞ; ð16Þ
such that

_rðtÞ ¼ uðxÞ; ð17Þ
/ðtÞ ¼ wðxÞ: ð18Þ

We notice that relation

w0ðxÞ2 ¼ 4
j2n

PðxÞ ð19Þ

in Ref. [7] which gives wðxÞ ¼ �ð2=j
ffiffiffi
n
p
Þ
R ffiffiffiffiffiffiffiffiffi

PðxÞ
p

dx does not include
phantom field case. In order to include the phantom field case, we
modify relation _/ðtÞ ¼ _xw0ðxÞ in [7] to � _/ðtÞ2 ¼ _x2� w0ðxÞ2 of which
the field kinetic term ð _/2Þ is considered instead of the field velocity
ð _/Þ so that the parameter � can be included. Therefore, to include
the phantom field case, corrected relation to Eq. (19) is

�w0ðxÞ2 ¼ 4
j2n

PðxÞ; ð20Þ

and wðxÞ should read

wðxÞ ¼ � 2
j
ffiffiffi
n
p

Z ffiffiffiffiffiffiffiffiffi
PðxÞ
�

r
dx: ð21Þ

Inverse function of wðxÞ exists if PðxÞ–0 and n–0. It is important
for w�1ðxÞ to exist as a function since existence of the relation
x ¼ rðtÞ (Eq. (16)) needs a condition,

x ¼ w�1 � /ðtÞ ¼ rðtÞ: ð22Þ
In case that PðxÞ ¼ 0 and n–0, then w ¼ C, hence inverse of w is

not a function since one x gives infinite values of w�1. In this case
the relation (22) is invalid. If the inverse function, w�1 exists (i.e.
PðxÞ–0 and n–0), then the scalar field potential, V � r�1ðxÞ can be
expressed as a function of time,

VðtÞ ¼ 12
j2n2

du
dx

� �2

� 2u2

j2n
PðxÞ þ 12u2

j2n2 Eþ 3ku4=n

j2 : ð23Þ

Although the potential obtained is not expressed as function of
/, however if one can integrate Eq. (10) to obtain /ðtÞ, the obtained
solution can be inserted into a known function Vð/Þ motivated
from fundamental physics. Then one can check which fundamental
theories give a matched potential to VðtÞ. The Eqs. (11) and (23) are
indeed equivalent. Both require only the knowledge of aðtÞ;D and k
which can be constrained by observation. Therefore, VðtÞ in both
Eqs. (11) and (23) can be constructed if knowing these observed
parameters. To construct VðtÞ in Eq. (23), one needs to know aðtÞ
as a function of time in order to find uðxÞ and PðxÞ. However, in con-
structing VðtÞ in Eq. (11), if knowing aðtÞ;D and k, one can directly
use these quantities without employing Schrödinger-type
quantities.



Fig. 1. Potential VðtÞ plots from non-linear Schrödinger-type formulation assuming
a � tq ; q ¼ 2:3 in flat universe ðk ¼ 0Þ. The thickest line is when there is no
barotropic fluid D ¼ 0. The middle line is when there is dust fluid together with
scalar field, i.e. D–0 and n ¼ 3. The small line is when the universe has scalar field
with radiation fluid, i.e. D–0 and n ¼ 4. We set j ¼ 1 and in the last two plots, we
set D ¼ 1. All plots match results obtained from standard cosmological equations.
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4. Normalization condition of wave function

Normalization condition for a wave function uðxÞ in quantum
mechanics isZ 1

�1
juðxÞj2dx ¼ 1: ð24Þ

The wave function here expressed as uðxÞ � a�n=2 ¼ _xðtÞ, when
applying to the normalization condition, readsZ 1

�1
_x2dx ¼ 1: ð25Þ

In order to satisfy the condition, x must be constant and so is t.
Since the form of the wave function must be uðxÞ ¼ _xðtÞ in order to
connect equations of cosmology to the Schrödinger-type
formulation, therefore uðxÞ as defined is, in general, non-
normalizable.

5. Power-law expansion

Here in this section, we apply the method above to the power-
law expansion in scalar field cosmology with barotropic fluid in a
non-flat universe. The power-law expansion of the universe during
inflation era,

aðtÞ ¼ tq; ð26Þ

with q > 1 was proposed by Lucchin and Matarrese [15] to give
exponential potential

Vð/Þ ¼ qð3q� 1Þ
j2t2

0

" #
exp �j

ffiffiffi
2
q

s
/ðtÞ � /ðt0Þ½ �

( )
; ð27Þ

assuming domination of scalar field, negligible radiation density
and negligible spatial curvature. Recent results from X-ray gas of
galaxy clusters put a constraint of q � 2:3 for k ¼ 0; q � 1:14 for
k ¼ �1 and q � 0:95 for k ¼ 1 [16]. Considering mixture of both flu-
ids, we use effective equation of state, weff ¼ ðq/w/ þ qcwcÞ=qt. For
a flat universe, the power law expansion, a ¼ tq, is attained when
�1 < weff < �1=3 where q ¼ 2=½3ð1þweff Þ�. If using q ¼ 2:3 as men-
tioned above, it gives weff ¼ �0:71.

5.1. Relating Schrödinger quantities to standard cosmological
quantities

Assuming power-law expansion and using Eqs. (13) and (17),
Schrödinger wave function is related to standard cosmological
quantity as

uðxÞ ¼ _rðtÞ ¼ t�qn=2: ð28Þ

We can integrate the equation above so that the Schrödinger
scale, x is related to cosmic time scale, t as

x ¼ rðtÞ ¼ � t�b

b
þ s; ð29Þ

where b � ðqn� 2Þ=2 and s is an integrating constant. The parame-
ters x and t have the same dimension since b is only a number.
Using Eq. (26), we can find � _/ðtÞ2 from Eq. (10):

� _/ðtÞ2 ¼ 2q
j2t2 þ

2k
j2t2q �

nD
3tqn : ð30Þ

We use Eqs. (26) and (30) in Eq. (15), therefore the Schrödinger
potential is found to be

PðxÞ ¼ qn
2

tqn�2 þ kn
2

tqðn�2Þ � j2n2D
12

: ð31Þ
With E ¼ �j2n2D=12, the Schrödinger kinetic energy is

T ¼ � qn
2

tqn�2 � kn
2

tqðn�2Þ: ð32Þ
5.2. Scalar field potential VðtÞ

In order to obtain VðtÞ in Eq. (23), we need to know derivative of
uðxÞ:

d
dx

uðxÞ ¼ � qn
2t
: ð33Þ

At this step, using Eqs. (13), (14), (15) and (33) in Eq. (23), we
finally obtain

VðtÞ ¼ qð3q� 1Þ
j2t2 þ 2k

j2t2q þ
n� 6

6

� �
D
tqn : ð34Þ

Assuming flat universe ðk ¼ 0Þ and q ¼ 2:3, we show VðtÞ in
Fig. 1. Thickest line on top is of the case scalar field without baro-
tropic fluid. The middle line is the case when the dust is presented
with scalar field ðD–0;n ¼ 3Þ. The bottom line is the case of radia-
tion ðD–0;n ¼ 4Þ. The VðtÞ plots from the Schrödinger-type formu-
lation matches the plots from standard cosmological equations.
The result is independent of � values. The solution /ðtÞ of Eq.
(30) cannot be integrated if � ¼ �1 or if the integrand of Eq. (30)
is imaginary. When � ¼ 1 with dust ðD–0;n ¼ 3Þ and q ¼ 2:3, the
integrand is imaginary. We therefore assume q ¼ 2 to show
numerical integrations in Fig. 2 for the case D ¼ 0; k ¼ 0 and the
case D–0;n ¼ 3; k ¼ 0. In the pure scalar field case D ¼ 0; k ¼ 0,
numerical solution matches the analytical solution
/ðtÞ ¼ ð

ffiffiffiffiffiffi
2q

p
=jÞ lnðtÞ. This solution can be substituted into Eq.

(34) to obtain Eq. (27) as in [15] (setting t0 ¼ 1 and /ðt0Þ ¼ 0).
When considering cases of closed, flat and open universe contain-
ing dust matter, VðtÞ of each case is presented in Fig. 3 where q ¼ 2
is assumed in all cases so that we can see how the plots change
their shapes when k is varied.



Fig. 2. /ðtÞ for power-law expansion a � tq; q ¼ 2 in flat universe ðk ¼ 0Þ. The red
line is of the when the barotropic fluid density is negligible. The green line is in the
presence of scalar field with dust ðD–0 and n ¼ 3Þ. In the figure, j ¼ 1 and D ¼ 1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. VðtÞ obtained from non-linear Schrödinger-type formulation for closed, flat
and open universe in presence of dust and scalar field.

Fig. 4. PðxÞ plotted versus x for power-law expansion. We set q ¼ 2;j ¼ 1;D ¼ 1
and s ¼ 0. The scalar field dominant case can not be plotted because even tough we
set a condition D ¼ 0, the coefficient n of the barotropic fluid equation of state still
appears in the first and second terms of the Eq. (36). There is only a real-value PðxÞ
for the cases k ¼ �1 with n ¼ 4 because, when x > 0; PðxÞ becomes imaginary in
these cases.
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5.3. Schrödinger potential PðxÞ

We can find Schrödinger potential PðxÞ from Eqs. (29) and (31)
where time is expressed as a function of x as

tðxÞ ¼ 1

�bðx� sÞ½ �1=b
: ð35Þ

Therefore,

PðxÞ ¼ 2qn

ðqn� 2Þ2
1

ðx� sÞ2
þ kn

2
�2

ðqn� 2Þðx� sÞ

� �2qðn�2Þ=ðqn�2Þ

� j2n2D
12

: ð36Þ

As in Eq. (32), the Schrödinger kinetic energy is

TðxÞ ¼ � 2qn

ðqn� 2Þ2
1

ðx� sÞ2

� kn
2

�2
ðqn� 2Þðx� sÞ

� �2qðn�2Þ=ðqn�2Þ

: ð37Þ
The kinetic term has contribution only from the power q and
spatial curvature k. A disadvantage of Eq. (36) is that we can not
use it in the case of scalar field domination as in inflationary era.
Dropping D term in Eq. (36) can not be considered as scalar field
domination case since the barotropic fluid coefficient n still ap-
pears in the other terms. The non-linear Schrödinger-type formula-
tion is therefore suitable when there are both scalar field and a
barotropic fluid together such as the situation when dark matter
and scalar field dark energy live together in the late universe.
The Schrödinger potentials PðxÞ plotted with x for power-law
expansion with q ¼ 2 in closed, flat and open universe are shown
in Fig. 4. In the figure, the dust cases are shown on the right and
radiation cases are on the left. We set j ¼ 1;D ¼ 1 and s ¼ 0.

5.4. Schrödinger wave function uðxÞ

The quantity analogous to Schrödinger wave function can be di-
rectly found from Eqs. (28) and (35) as

uðxÞ ¼ �1
2

qnþ 1
� �

ðx� sÞ
� �qn=ðqn�2Þ

; ð38Þ

which is independent of the spatial curvature k or the initial density
D. However, coefficient n of the barotropic fluid equation of state
and q must be expressed. Wave functions for a range of barotropic
fluids are presented in Fig. 5. The result is confirmed by substituting
Eq. (38) into Eq. (12).



Fig. 5. uðxÞ plotted versus x for power-law expansion with q ¼ 2. We set s ¼ 0. The
wave function is plotted for n ¼ 0 (cosmological constant), n ¼ 2;n ¼ 3 (dust), n ¼ 4
(radiation) and n ¼ 6 (stiff fluid). There is no real-value wave function for
n ¼ 3;n ¼ 4 and n ¼ 6 unless x < 0.
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6. Conclusions and comments

We consider Schrödinger-type formulation for a system of
canonical scalar field and a barotropic fluid in standard FLRW cos-
mology with zero or non-zero spatial curvature. In the Schröding-
er-type formulation, all quantities in cosmology are represented in
Schrödinger-like quantities and the equation relating these Schrö-
dinger-like quantities is written as a non-linear Schrödinger-type
equation. If aðtÞ is known as an exact function of time, a connection
of two scale quantities, x and t can be found and then other Schrö-
dinger-like quantities can be determined. We modified the formu-
lation to include the phantom field case. The equation can be
simplified to linear type if we consider the flat universe case
k ¼ 0 or the cases n ¼ 2 or n ¼ 4 [7]. However, even if the equation
is linear, it can not be considered as an analog to non-relativistic
time-independent quantum mechanics because in this work, the
wave function of Schrödinger-type formulation is found to be, in
general, non-normalizable. Afterward, we consider a particular
case of power-law expansion of scale factor. We show relations be-
tween cosmological quantities in conventional form and in Schrö-
dinger-like form for power-law expansion. We obtain scalar field
potential VðtÞ, Schrödinger potential PðxÞ and wave function uðxÞ.
In the case of a scalar field dominant in flat universe, our analytical
results Vð/Þ and _/ agree well with the well-known results in [15].
A range of plots in various cases of closed, flat or open geometries
is presented. Wave functions for the power-law expansion case
(seen in the Fig. 5) are found to be all non-normalizable as
conjectured.

Without knowledge of aðtÞ, one might wonder if we could start
the calculation procedure from solving the Schrödinger-type Eq.
(12) for example, the linear case as done in basic quantum
mechanics. However, in order to do this, we must know the Schrö-
dinger potential PðxÞ (Eq. (15)) which depends explicitly on aðtÞ
and _/. Nevertheless, _/ (Eq. (10)) also depends on aðtÞ. Therefore,
we need to know the law of expansion aðtÞ before proceeding the
calculation. Knowing aðtÞ enables us to know uðxÞ directly (see
Eq. (28)). Hence, in Schrödinger-type formulation, we do not work
as in basic quantum mechanics in which major task is to solve the
Schrödinger equation for uðxÞ. There could be many solutions of a
Schrödinger-type equation. In quantum mechanics valid solutions
uðxÞ must be only normalizable type. Here, unlike in quantum
mechanics, our uðxÞ must be non-normalizable.

At late time the scalar field dark energy and cold dark matter
(dust) are two major components of the universe while the others
are negligible. For power-law expansion, the procedure is suitable
for studying the system of scalar field dark energy and dark matter
because it gives all real-value of PðxÞ for any k. We need to know
aðtÞ; k and D which are observable in order to find VðtÞ. Information
of Vð/Þ is important because it is a link to fundamental physics. If
one starts from fundamental physics with a particular potential
Vð/Þ and if also knowing how / evolves with t, then V could be ex-
pressed as function of t. Finally, the potential VðtÞ obtained from
observation and another VðtÞ proposed by fundamental physics
can be compared. The non-linear Schrödinger-type formulation
might provide an alternative mathematical approach to problem
solving in scalar field cosmology.
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