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We investigate the phase space of a quintessence theory governed by a generalized version of the DBI

action, using a combination of numeric and analytic methods. The additional degrees of freedom lead to a

vastly richer phase-space structure, where the field covers the full equation of state parameter space:

�1 � ! � 1. We find many nontrivial solution curves to the equations of motion which indicate that DBI

quintessence is an interesting candidate for a viable k-essence model.
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I. INTRODUCTION

The dark energy problem continues to be a sticking point
for theoretical physicists. The simplest solution to this
problem is to postulate the existence of a vacuum energy
or cosmological constant which agrees with all the current
observational bounds [1–4]. However, we are then left with
a secondary problem, namely, explaining why the vacuum
energy is tuned to such a small value without some obvious
symmetry to protect it. For many years we have hoped that
UV complete theories of gravity would shed light on this
issue, which is in effect an extremely embarrassing IR
problem from this perspective. However, despite much
effort, neither string theory nor loop quantum gravity has
shed any compelling light on this issue—although there
have been many interesting proposals.

An alternative approach is to assume that the cosmo-
logical constant is exactly zero, since supersymmetry can
then be invoked as the regulating symmetry in this case.
However, one then has to account for the fact that low
energy supersymmetry must be broken and an alternative
explanation for the current expansion, and for the vanish-
ing of the cosmological constant, must be sought. One way
to deal with the latter problem is to assume that the dark
energy phase is driven by a dynamical field, implying that
the equation of state is an explicit function of time [5,6].
Currently this cannot be ruled out by our best observations
and therefore remains a possible solution to the dark en-
ergy problem. However, one cannot just consider ad hoc
scalar fields coupling to gravity, since the low energy
theory will still be sensitive to high energy physics. In
particular, we must ensure that any additional scalars are
neutral under all the standard model symmetries, and that
they do not introduce additional fifth forces. Therefore, one

must search for viable models of dynamical dark energy
within UV sensitive theories.
Phenomenological models of our Universe have proven

difficult to construct within string theory, due to technical
difficulties arising from moduli stabilization, whereby we
assume that the extra dimensions of the theory are com-
pactified on manifolds with SUð3Þ � SUð3Þ structure (in
the type IIB case) [7], and orientifolded to preserve the
minimal amount of supersymmetry in four dimensions.
Most of the work in this area assumes that the compact
space is a Calabi-Yau threefold, which is a special limit of
the SUð3Þ structure manifold class.
As a result, embedding realistic cosmology into string

theory has proven difficult. One area which has been well
explored in recent years is inflation driven by the open
string sector through dynamical Dp-branes. This is the so-
called Dirac-Born-Infeld action (DBI) inflation [8,9]—
which lies in a special class of K-inflation models. It was
originally thought that such models yielded large levels of
non-Gaussian perturbations which could be used as a
falsifiable signature of string theory [10]. However, sub-
sequent work has shown that this may not be the case, and
that the simplest DBI models are essentially indistinguish-
able from standard field theoretic slow roll models [11–
13].1 The problem is that the WMAP 5 yr data set [2]
imposes very tight constraints on the allowed tuning of the
free parameters in the theory. We are then left with the
choice of either having large non-Gaussianities but with
vanishing tensors, or assume that the tensor spectrum will
be visible—in which case there is no non-Gaussian signa-
ture. The models are only falsifiable once these conditions
are relaxed. One can get around these conditions by con-
sidering more complicated models such as multiple fields
[15,16], multiple branes [17–19], wrapped branes [20], or
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1Note, however, that the models proposed in [13,14] evade
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monodromies [21]—but even here there are still problems
with fine-tuning, backreaction, and the apparent break-
down of perturbation theory in the inflationary regime [22].

In models of dynamical dark energy, on the other hand
[5,6,23], the WMAP constraints can be relaxed and there-
fore DBI models may still have some use as an explanation
for a dynamical equation of state. Moreover, this fits in
nicely with several intuitive ideas from string theory.
Namely, that inflation can still occur, albeit only through
the closed string sector—where one (or more) of the geo-
metric pseudomoduli are actually responsible for the initial
inflationary epoch (see [24] for the phenomenologically
most viable proposals). After inflation the universe lives on
branes that wrap various cycles within the compact space
and are extended along the large Minkowski directions. In
this sense we see that a grand unified theory or electroweak
(EW) phase transition can manifest through a geometric
fashion—namely, the Higgsing of branes in the compact
bulk space. This suggests that dark energy may well be a
dynamical process, and moreover, in the light of these open
string constructions, it retains a sense of being geometric in
nature.

With this in mind, various authors have begun to explore
the phase space of DBI-driven dark energy [25,26]. The
initial works have dealt with the dynamics of a solitary
D3-brane moving through a particular warped compactifi-
cation of type IIB. In this paper we wish to generalize this
further to a more phenomenological class of models that
include multiple and partially wrapped branes. We believe
that this may be a more generic situation to consider, since
typically one should expect branes of varying degrees to be
wrapped on nontrivial cycles of the compact space. Our
work is a first step into considerations of a more general
setup for quintessence in IIB (open) string theory, and we
hope it will be a valuable starting point for further
endeavours.

II. DYNAMICS OF THE EFFECTIVE THEORY

To begin let us assume that the universe at such late
times can be adequately described by a flat Friedmann-
Robertson-Walker (FRW) metric and that the matter sector
consists of a dynamical scalar field and a perfect fluid,
which are both separately conserved. The usual cosmo-
logical equations of motion are therefore independent of
any particular model and can be written as

H2 ¼ ð�þ ��Þ
3M2

p

; _�i ¼ �3HðPi þ �iÞ; (2.1)

where i runs over the contributing components. The equa-
tion of state is given by !i ¼ Pi=�i; however, if ! of the
fluid component is assumed to be constant, then we can
integrate the appropriate conservation equation exactly to
obtain

� / a�3ð1þ!Þ; (2.2)

where the scale factor varies as a function of time such that

aðtÞ � t2=ð3½1þ!�Þ.
The model dependence arises in the parametrization of

the scalar field sector. In our case we are assuming that the
dark energy is driven by open string modes, which at low
energies are described by fluctuations of aDp-brane whose
dynamics are governed by the DBI—which is a general-
ization of nonlinear electrodynamics [8,9]. Typically one
assumes that the standard model is localized on an inter-
secting brane stack, in one of the many warped throats that
are attached to the internal space. For consistency reasons,
in the simplest cases, these are taken to be either D3-
or D7-branes. In this paper we will consider a bottom-up
approach; therefore, we shall not worry too much about the
geometric deformations of the compact space, nor about
any constraints imposed by orientifolded Op-planes—
aside from those that ensure that all tadpoles are consis-
tently canceled so that we can trust the low energy super-
gravity theory.
The action we consider is a generalized form of the DBI

one coupled to Einstein-Hilbert gravity, which can be
embedded into this background and takes the following
generalized form2:

S ¼ �
Z

d4xa3ðtÞ
�
Tð�ÞWð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

_�2

Tð�Þ

s

� Tð�Þ þ ~Vð�Þ
�
þ SM; (2.3)

where Tð�Þ is the warped tension of the brane and SM is
the action for matter localized in the standard model (SM)
sector. Thus our assumption here is that our dynamical
open string sector is coupled only gravitationally to the SM
sector, and so we do not have to worry about additional
forces or particle production. There are two potential
terms for the scalar field, which are denoted by Wð�Þ
and ~Vð�Þ. The first of these terms can arise in different
places within the theory. First, if the brane is actually a
non-Bogomol’nyi-Prasad-Sommerfield (BPS) one [28],
then the scalar field mode is actually tachyonic and the
potential is therefore of the usual runaway form. If there
are N multiple coincident branes, then the world-volume
field theory is a UðNÞ non-Abelian gauge theory and the
potential term is simply a reflection of the additional
degrees of freedom [29]. Through the dielectric effect,
one can also see that this configuration is related to a
D5-brane wrapping a two-cycle within the compact space
and carrying a nonzero magnetic flux along this cycle.
Both of these configurations lead to an additional potential
multiplying the usual DBI kinetic term.

2We refer the more interested readers to [19] for more details
on the precise structure and origin of this action. The important
thing to note is that � is a matrix valued field. For recent work in
a related direction see [27].
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The origin of the ~Vð�Þ term is less explicit—but is a sum
of terms. One expects open or closed string interactions to
generate a scalar potential Vð�Þ; however, the precise form
of such an interaction depends upon many factors such as
the number of additional branes and geometric moduli, the
number of nontrivial cycles in the compact space, and the
choice of embedding for branes on these cycles. Typically
one can only compute this in special cases in the full string
theory. There are also additional terms coming from cou-
pling of the brane to any background Ramond-Ramond
form fields. The action above is assumed to be that of a
D3-brane(s) filling the space-time directions, which natu-

rally couples to the field Cð4Þ through the Chern-Simons
part of the action. However, for wrappedD5-branes there is

also the possibility of a coupling Cð4Þ ^ F, where F is the
magnetic field through the two-cycle. For example, in the

warped deformed conifold, one can see that dCð6Þ ¼
?dCð2Þ, and therefore there is an additional term in the
DBI action,

S�
Z

d4xa3ðtÞg�1
s M�0Tð�Þ; (2.4)

up to a normalization factor of order 1. Terms such as this
have been added to the interaction potential to define the
full scalar potential ~Vð�Þ. Recent extensions to standard
DBI inflation have included the contribution from higher
dimensional bulk forms, with the remarkable result that
they cancel one another up to third order in the action and
therefore do not affect the leading order perturbations [30].
Extending this work to higher orders is therefore extremely
interesting.

The corresponding equations for the energy density and
pressure of the DBI can then be written succinctly as

P� ¼ Tð�Þ
�

½��Wð�Þ� � ~Vð�Þ;

�� ¼ Tð�Þ½Wð�Þ�� 1� þ ~Vð�Þ;
(2.5)

where � ¼ ½1� _�2=Tð�Þ��1=2 is the usual generalization
of the relativistic factor. The subscript� denotes the scalar
field component here. We can also immediately define the
equation of state parameter for the quintessence field to be

!� ¼ Tð�Þ½��Wð�Þ� � ~Vð�Þ�
Tð�Þ�½Wð�Þ�� 1� þ ~Vð�Þ� ; (2.6)

from which one clearly sees that it is dynamically sensitive
and can take a wide range of values. For instance, we only
recover !� ��1 in the limit that the field is nonrelativ-

istic and the entire solution is dominated by the ~Vð�Þ
terms—which will clearly require large amounts of fine-
tuning to accomplish. There are clearly several regions of
parameter space that are of interest. First let us assume that
the potential term is zero, either because it is suppressed or
there is an unlikely cancellation between the contributing
terms. The more general case with nonzero ~V leads to a

wide variety of complex behavior. We can therefore iden-
tify several limits of interest—focusing on the behavior of
W:
(i) Wð�Þ ¼ 1—which reduces the action back to the

usual DBI case which has !� ¼ 1=� as discussed in

[25].
(ii) Wð�Þ ¼ ��—which leads to constant � if � is

constant, since the two are related via �2!�� ¼
1� �þ!�. Moreover, this again means that _� /
t�ð1þ!�Þ=ð1þ!Þ, as in the case where W ¼ 1.

(iii) Wð�Þ ! 0—as could occur in the case of a ta-
chyonic theory, which mimics a dark energy domi-
nated phase with !� ¼ �1. However, one must be

careful if this is to be representative of non-BPS
D-brane actions, since the coupling to the form
field is noncanonical in this instance. In fact, the
coupling term will typically be of the form d� ^ C.
This means that there is no solitary Tð�Þ term in the
action, and therefore the equation of state in this
instance will vary like �1=�2.

(iv) Wð�Þ � �—which can occur in the multibrane/
wrapped brane case and yields !� ��1=�2.

Note that in all cases the equation of state parameter
remains bounded in the range �1 � !� � 1.

One can combine the expressions for the energy-
momentum tensor components, and together with the con-
tinuity equation, we obtain the following equation of mo-
tion (assuming that the scalar field follows a monotonic
path):

€�þ 3H _�

�2
þ 3T�

2�2
þ 1

W�3
ð ~V� � T�Þ �

T�

2
þ TW�

W�2
¼ 0;

(2.7)

which is a generalization of the Klein-Gordon equation for
the DBI Lagrangian. The subscript � of T, W, and ~V
denotes a derivative with respect to the field value. The
other dynamical equation of motion for the Hubble pa-
rameter can be written as

_H ¼ � 1

2M2
p

½�ð1þ!Þ þ �Wð�Þ _�2�; (2.8)

where we have defined the pressure of the noninteracting
barotropic fluid to beP ¼ !�. We leave the interesting
case of interacting pressure for future endeavours.
Let us consider, as an example solution, the case where

there is a scaling solution with W ¼ 1, which has been
reviewed elsewhere [26]. We will find it convenient to
define the quantity

X ¼ 1þ!�

1þ!
; (2.9)

in which case we see that _�� t�X. This allows us to
reconstruct the tension of the brane as follows:
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Tð�Þ ¼ M4e���; X ¼ 1;

Tð�Þ ¼ M4þ����; X � 1;
(2.10)

whereM is a dimensionful mass scale, � is a constant, and
� ¼ 2X=ð1� XÞ. Using the fact that !� ¼ 1=�, we can

then see that for X � 1 the solution is physically valid only
when !> 2=� since we define � to be the positive root.
Let us now consider the phase-space dynamics of the
theory in more detail, following along the lines of [5]. It
is initially convenient to define the following new varia-
bles:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð�ÞWð�Þ�

3

s
1

HMp

; �1 ¼
ffiffiffiffi
T

p
Mp

~V�

~V3=2
;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð�Þ�

q _�

HMp

; �2 ¼ �
ffiffiffiffi
T

p
MpT�

~V3=2
;

z ¼
ffiffiffiffi
~V

3

s
1

HMp

; �3 ¼
W�Mp

W3=2�5=2
;

(2.11)

in terms of which we can see that � ¼ ½1� y2=ð3x2Þ��1=2,
and the fluid density parameter can be written as

� ¼ 1��� ¼ 1�
�
z2 þ x2

�
1� 1

Wð�Þ�
��

; (2.12)

while the equation of state in dimensionless variables will
become

!� ¼ 1

�

�
x2½��Wð�Þ� � z2Wð�Þ�2

x2½Wð�Þ�� 1� þ z2Wð�Þ�
�
: (2.13)

As is customary we will now switch to dimensionless
derivatives, denoted by a prime, replacing time derivatives
by derivatives with respect to the e-folding number N .
Therefore we can easily determine

H0

H
¼ � y2

2
� 3ð1þ!Þ

2

�
1� z2 � x2

�
1� 1

Wð�Þ�
��

:

(2.14)

A useful quantity to calculate is the variation of the kinetic
function, which we can write in the following manner
using the equation of motion,

_�

�
¼ � 3H _�2

T
�W�

_�

W
� T�

_�

T
�

_�

�WT
ð ~V� � T�Þ:

(2.15)

We can then determine the dynamical equations for the
dimensionless fields as derivatives with respect to N ,

x0 ¼ � 1

2
ð�1 þ�2Þ yz

3

x2
� y2

2x
� x

H0

H
;

y0 ¼ �3y

�
1� y2

6x2

��
1þ z3

xy
½�1 þ�2�

�

þ 3�2z
3W

�x
� 3x2�3 � y

H0

H
;

z0 ¼ z2y�1

2x
� z

H0

H
;

(2.16)

and the remaining parametric solutions are

�0
1 ¼

�2
1yz

x

�
� 3

2
þ

~V��
~V

~V2
�

þ T�
~V

~V ~V�

�
;

�0
2 ¼

�1�2yz

x

�
� 3

2
þ T�

~V

2T ~V�

þ T��
~V

T�
~V�

�
;

�0
3 ¼ y�2

3�
3=2

�
1þW��W

W2
�

þ 5T�W

2TW�

þ 5

2T�W�

½ ~V� � T��
�
þ 5�3y

2

2x2
:

(2.17)

Note that if the �i are constants, then the previous three
equations form an autonomous set and should uniquely
specify the dynamics of the quintessence field. We will
consider this case as the simplest (canonical) example. If
we wish to appeal to string theoretic constructions, then we
restrict the parameter space of solutions. It is more inter-
esting to consider the above equations in the context of a
phenomenological model and see what kind of functions
yield the correct behavior. Explicit constructions of string
backgrounds are typically difficult, and there are only a few
well-known examples that are ritually invoked; however, if
we take string theory seriously, then there are undoubtedly
other nontrivial backgrounds that are cosmologically inter-
esting but not yet constructed. Since an analytic analysis of
this generalized system is highly complicated, it is conve-
nient to use a combination of analytic and numerical
methods to understand the dynamics of the system. For a
numeric analysis it is necessary to rewrite the fluid equa-
tion in terms of more useful variables. It turns out that the
simplest variables to use are the following:

�0 ¼ �; (2.18)

�0 ¼ � 3�

�2
þ 3Mpz

3

x

� ffiffiffiffiffiffiffiffi
W�

p
�2

2

�
3

�2
� 1

�
� ð�1 þ�2Þffiffiffiffiffi

W
p

�5=2

�

� 3Mpx
2�3ffiffiffiffiffiffiffiffi

W�
p ��

H0

H
; (2.19)

which are easily derivable from the terms written above.
Equations (2.14), (2.16), (2.17), (2.18), and (2.19), together
with the barotropic fluid equation �0 ¼ �3�ðN Þð1þ wÞ,
hence form a closed ten-dimensional autonomous system if

BURIN GUMJUDPAI AND JOHN WARD PHYSICAL REVIEW D 80, 023528 (2009)

023528-4



T, W, or ~V is given as an explicit function of � or as a
constant.

A. Case I

Let us take the canonical string theoretic example aris-
ing when the local geometry can be approximated by an
anti-de Sitter space. This geometry typically arises in the
near horizon limit of coincidentD3-branes (or flux). In this
case we see that (at leading order)

Tð�Þ ¼ �4

�4
; ~Vð�Þ ¼ m2�2

2
; Wð�Þ ¼ W;

(2.20)

where we have also included an effective �2 potential for
the system. This means that �3 ¼ 0, and we also have a
constant �1 which allows us to write the remaining �
terms as

�1 ¼
2

ffiffiffi
2

p
Mp

m�2
; �2 ¼ � 2x2�1

W�z2
; (2.21)

and therefore the dynamical equations reduce to

x0 ¼ ��1yz
3

2x2

�
1� 2x2

W�z2

�
� y2

2x
� xH0

H
;

y0 ¼ �3y

�
1� y2

6x2

��
1þ z3�1

xy

�
1� 2x2

W�z2

��

� 6�1zx

�2
� yH0

H
;

z0 ¼ z2y�1

2x
� zH0

H
:

(2.22)

The simplest way to proceed with the analysis is to con-
sider the final equation above, since this splits the solution
space neatly into two components. Thus we search for
solutions where either z ¼ 0 or z ¼ ð2x=y�1ÞH0=H as
initial conditions.

The first subset of solutions admits (0, 0, 0) as a (trivial)
fixed point, which is a fluid dominated solution since� ¼
1 in this instance. Let us remark here that this fixed point
solution will occur for all the cases we consider; however,
since this implies a vanishing of the action, causality
implies that this fixed point must be unstable—i.e. phase-
space trajectories will flow away from it. By making this
field a phantom scalar, one can evade this causal bound and
the point can become a stable fixed point. This behavior
arises in many places in the literature, so we will not
discuss it further here.

There is also a critical point at ð1; ffiffiffi
3

p
; 0Þ which is a

kinetic dominated solution. This solution actually exists
as solutions to the quadratic expression y2 ¼ 3x2 which
corresponds to the limit � ! 1. In terms of the density
parameter, a quick calculation shows that along the general
curve (parametrized by y0 and x0), we find � ¼ 1� x20.
Thus at the trivial fixed point we see � ! 1; however, for

x0 ! 1 we see that � ! 0, corresponding to nonrelativis-

tic matter, i.e. dust. In this instance we also find aðtÞ � t2=3

as expected from the cosmological evolution equations.
Again due to the special algebraic properties of the DBI
action, we anticipate that this solution will also be found
for the other cases of interest.
The second subset of solutions is more interesting, as

initially one can solve the system by slicing the phase
space at y ¼ 0.3 One can use the condition on H0 to fix z
through z2 ¼ 1� x2ðW � 1Þ=W. Combining this with the
equations of motion gives us the following fixed point
(taking positive signs of all roots for simplicity):

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

1�W

s
; y ¼ 0; z ¼ 1; (2.23)

which is valid for all W < 1 in order for these points to be
real, and at finite distance in phase space. If we then
compute the density of the fluid, we find � ¼ 0 since
�� ¼ 1, which corresponds to a purely dustlike solution.

Note that this class of solutions does not exist for the
simple D3-brane analysis as in [26], since it arises from
additional degrees of freedom which are neglected in these
models. The remaining solutions in this subset are difficult
to find analytically.
More generally, we can see that the above solution is a

special case of the more general case I behavior, which we
parametrize by

Tð�Þ ¼ ��

�� ; ~Vð�Þ ¼ m���

�
; Wð�Þ ¼ W;

(2.24)

where we can then explicitly write

�1 ¼ A

�
x

z�1=2

�ð����2Þ=ð���Þ
; �2 ¼ ��

�

�1

W�

x2

z2
;

�3 ¼ 0; (2.25)

where A is a (real, positive) constant provided that �> 0,

A ¼ Mp�
3=2

��=2m�=2

�
��m�

�W

�ð����2Þ=2ð���Þ
; (2.26)

but which simplifies in the limit � ¼ �þ 2. As before, the
solution space splits into two disconnected subsets; there-
fore, in the first instance where we take slices through
z ¼ 0, we find the following bound:

2

ð�� �Þ > 0; (2.27)

which implies that �> � and so the brane tension should
dominate the dynamics (in the large field regime). Let us
therefore assume that �, � are chosen such that this

3Note that one cannot do this for x ¼ 0 since the action
becomes singular and ill defined.
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condition is satisfied—then we find the solution branch is
governed again by the relation y2 ¼ 3x2 as expected—
which contains the solution (0, 0, 0) as a special case.
Moreover, this is valid for all values of �, � satisfying
the above constraint. The secondary solution branch occurs
when we find solutions to

zy�1

2x
¼ H0

H
; (2.28)

which is generally very complicated. A simple set of
solutions does arise when we consider slices at y ¼ 0,
since the fixed points are localized along the curve

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�W

ð�� �Þð1�WÞ

s
; y ¼ 0;

z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ð�� �Þ
s

;

(2.29)

which corresponds to a dustlike solution: � ¼ 0 8 �, �.
The reality constraint here demands that �> �, which in
turn fixes W < 1. However there are also additional solu-
tions where�< 0 and� is positive—provided thatW > 1.
Explicit realizations of this scenario within a string theory
context can arise through potentials arising from brane/
antibrane interactions and it is therefore a nontrivial and
interesting solution.

Figures 1 and 2 show the numerical solutions in phase
space. For the W ¼ 1 case, the numerical constants are
given as Mp ¼ 1, m ¼ 1, � ¼ 1, and w ¼ 0 (dust case).

Other parameters are � ¼ 4, � ¼ 2, and A ¼ 2
ffiffiffi
2

p
. As

expected, the (five) fixed points all lie along the curve y2 ¼
3x2. We also plot the evolution of each parameter ðx; y; zÞ

as a function of the e-folding number in Fig. 3, where each
of the coordinates tends to its critical value. As expected
the phase-space dynamics are Z2 symmetric about the
origin. Note that in the case of yðNÞ one can keep y sup-
pressed for a few e-foldings with enough tuning, before it

eventually evolves towards the points � ffiffiffi
3

p
at late times.

The full numerical solution of the caseW < 1 is illustrated
in Fig. 4 whereW ¼ 0:95, which uniquely fixes the critical

points to be x ¼ � ffiffiffiffiffiffi
20

p
, y ¼ 0, z ¼ 1. As one can see from

the resulting plot, this is an unstable node because the
general behavior is divergent. Note that x ! 1 in this
regime effectively solves all the dynamical equations
trivially.

B. Case II

Analogous to the first case, let us now consider another
branch of solutions where this time the tension of the brane
is taken to be constant. This dramatically alters the rela-
tivistic rolling of the scalar field since the � factor is no
longer warped. Initially, let us consider the ansatz

~Vð�Þ ¼ m2�2

2
; Tð�Þ ¼ T; Wð�Þ ¼ �4

�4
;

(2.30)

which implies that

�1 ¼
�
4

ffiffiffiffiffiffiffiffi
2T3

p
Mp

�4m3

�
z2�

x2
; �2 ¼ 0; �3 ¼ 2z�1

�2x
;

(2.31)

and the corresponding field equations become

FIG. 1 (color online). Case I: 3D xyz phase-space trajectories
for Tð�Þ ¼ �4=�4, ~Vð�Þ ¼ m2�2=2, and Wð�Þ ¼ W. Here we
have set Mp ¼ 1, W ¼ 1, m ¼ 1, � ¼ 1, and w ¼ 0 (dust case).

FIG. 2 (color online). Case I: Phase-space trajectories in the xy
plane. Four attractors ð�1;� ffiffiffi

3
p

; 0Þ and one unstable node (0, 0,
0) can be seen here. z is bounded within the ð�1; 1Þ range.
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x0 ¼ ���yz5

x4
� y2

2x
� xH0

H
;

y0 ¼ �3y

�
1� y2

6x2

��
1þ ��z5

2x3y

�
� 6�z3

�x
� yH0

H
;

z0 ¼ ��z4

2x3
� zH0

H
;

(2.32)

where we have defined � as the constant prefactor in the
definition of �1.

As before we separate the solution space into two—first
finding solutions to z ¼ 0 and then solutions to H0=H ¼
��z3=ð2x3Þ. In the first case it is straightforward to see that
there are the usual fixed point solutions at (0, 0, 0) and

ð1; ffiffiffi
3

p
; 0Þ (with their respective partner solutions) respec-

tively coming from the usual condition that y2 ¼ 3x2. The
secondary branch of solutions also admits fixed points

FIG. 3 (color online). Case I: Evolution of x, y, z versus the e-
folding number, setting W ¼ 1.

FIG. 4 (color online). Case I: Evolution of x, y, z versus the e-
folding number, setting W ¼ 0:95. All solutions diverge from
the origin.
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when y ¼ 0; however, the condition on z is that z ¼ 0,
�4x2. Since wewant real solutions we are forced to set z ¼
0 as a secondary constraint. This forces W to diverge, and
therefore in the limit that z ! 0, we find that x2 ! �1
which is a unique solution. Again the density parameter
vanishes identically in this limit as one would expect. The
remaining solutions are actually extremely difficult to
solve analytically as they correspond to high order poly-
nomials. As a result we are forced to sketch their behavior
numerically.

Phenomenologically, we see that the ansatz presented
above is a special class of the more general solution

Tð�Þ ¼ T; ~Vð�Þ ¼ m���

�
; Wð�Þ ¼ ��

�� ;

(2.33)

which has the parametrization constraints

�1 ¼ A

�
z�1=2

x

�ð2þ�Þ=ð���Þ
; �2 ¼ 0;

�3 ¼ B�ð2�4�þ5�Þ=2ð���Þ
�
z

x

�ð2þ�Þ=ð���Þ
;

(2.34)

where A, B are both constants. One can see from the
dynamical equations that fixed points with z ¼ 0 can
only occur when the following condition is met:

2ð1þ �Þ � �

�� �
> 0; (2.35)

which is trivially satisfied for cases where �> � (which
we assume as an initial constraint).

More generically we see that, provided �>�2, we
recover the usual fixed point equation y2 ¼ 3x2.
However, we need to be careful here because if this con-
dition is satisfied, thenW becomes undefined. Since this is
the overall prefactor multiplying the DBI action, the action
is undefined in this limit and it should therefore correspond
to a point of instability in the phase space. In the limit
where� ¼ �2, which implies that�>�2, the fixed point
solution now lives on the zeros of the polynomial

3x4B��5ð2þ�Þ=2ð1þ�Þ þ 3x2y� y3 ¼ 0; (2.36)

which can be used to fix x ¼ xðyÞ or vice versa. This
solution is actually indicative of a more general branch
of physical solutions where we take �> 2ð1þ �Þ. The
resulting fixed point equation (provided � � 2) is trivially
calculated to be y2 ¼ 3x2 as before, but now we see thatW
vanishes identically. In turn this means that the kinetic
terms also vanish and the solution is dominated solely by
the potential interaction. One could imagine a situation
such as this occurring in the condensation of an open string
tachyon mode on a non-BPS brane, where the vanishing of
W indicates that we are living in the closed string vacuum.

For dynamic solutions it seems reasonable to consider this
particular case as the late-time attractor for the solution
z ! 0.
The second subset of solutions is again complicated, but

again we can analytically understand the plane at y ¼ 0,
which gives us the fixed point solutions

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
��z2

�

s
; y ¼ 0;

z ¼ �
�
1� �

�

�
1�

�
� �T

��m�

�
�=ð���Þ���1=2

:

(2.37)

Clearly, for the solution to be real we require that�,� have
opposite signs. This satisfies our primary constraint, and
therefore is a physical possibility. Moreover, in the limit
where we set � ¼ ��, we find that� ¼ 0, which is again
the dust solution. Illustrations of numerical solutions for
case II are shown in Figs. 5–7. Constants are set asMp ¼ 1,

T ¼ 1, m ¼ 1, � ¼ 1, and w ¼ 0 (dust case). Other pa-
rameters are � ¼ 4, � ¼ 2. From the numerical analysis
one sees that there are six saddle nodes, only two attractors,
and one repulsive point which is the origin (0, 0, 0) as
expected. The dynamical trajectories are particularly inter-
esting due to their apparent lack of monotonicity as a
function of e-fold number. The z term, in particular, ap-
pears to have a large variation in trajectory, diverging in
some instances while rapidly reaching zero in other instan-
ces. Conversely, the y variable displays very uniform
(physical) trajectory behavior, with several curves almost
on top of one another at y ¼ 0 and the remainder smoothly
driven to the (unstable) critical point yc � 1:8 in the ex-
ample given.

FIG. 5 (color online). Case II: 3D xyz phase-space trajectories
for Tð�Þ ¼ T, ~Vð�Þ ¼ m2�2=2, and Wð�Þ ¼ �4=�4. Here we
have set Mp ¼ 1, T ¼ 1, m ¼ 1, � ¼ 1, and w ¼ 0 (dust case).
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C. Case III

Let us now consider a new case where onlyW ¼ Wð�Þ,
with all the other terms being constant. We will take W ¼
��=�� for generality—which in turn should impose a
constraint on the allowed values of �. In this case we see
that

�1 ¼ 0; �2 ¼ 0; �3 ¼ �A

�
z

x

�ð�þ2Þ=� 1

�ð2��1Þ=� ;

(2.38)

where A is a function of the constant parameters A ¼
Mp=�ðT= ~VÞð�þ2Þ=2�. Because only �3 is nonzero, the re-

sulting dynamical expressions are considerably easy to
work with,

x0 ¼ � y2

2x
� xH0

H
;

y0 ¼ �3y

�
1� y2

6x2

�
� 3�Azð�þ2Þ=�xð��2Þ=� � yH0

H
;

z0 ¼ � zH0

H
: (2.39)

Considering the slice again through z ¼ 0, we see that the
solutions split into two types depending upon the integer�.
We recover the usual y2 ¼ 3x2 curve only when �> 0 or
when �<�2. If � ¼ �2 then the corresponding poly-
nomial equation becomes

y�9=2 ¼ 2Ax2 (2.40)

which is difficult to solve analytically due to the depen-
dence of � on both x, y. This expression does not admit
anything but the trivial solution if we set y to zero.4 Again
we see that there is a potential problem here since the

potential W goes like 1=z2, and is therefore divergent in
this limit. Solutions to this expression are possible, but
complicated. Interestingly there does exist a solution curve
given by

y2 ¼ ax2c; xc ¼ 81

2A

ffiffiffiffiffiffi
3a

p

ð9� 3aÞ9=4 (2.41)

where the parameter a factor must satisfy 0 � a < 3 for
this solution to be physical. Since a need not be integer,

FIG. 6 (color online). Case II: Trajectory slice through the yz
plane.

FIG. 7 (color online). Case II: Evolution of x, y, z versus the e-
folding number.

4By trivial we mean the point (0, 0, 0).
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there is essentially a continuum of curves giving rise to
fixed points in this theory.

The secondary branch of solutions again admits fixed
point behavior for y ¼ 0; however, things are more com-
plicated since the fixed points are now obtained by solving
more nonlinear expressions. There are two cases of imme-
diate interest though. First, if we have � ¼ 2 then we see
that z2 ¼ �1=ð2AÞ which is only real when A is negative.
Since we have chosen our parametrization such that this
quantity is positive, this particular branch of solutions is
ruled out. Interestingly, when � ¼ �2 there is a unique
fixed point located at

x ¼ � 1

2A
; y ¼ 0; z ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T= ~V � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2A
� 1

s
;

(2.42)

which corresponds to a positive definite equation of state
parameter

� ¼ 2T2AðA� 1Þ þ ~V2ðT= ~V � 1Þ
AT ~VðT= ~V � 1Þð2A� 1Þ : (2.43)

Note that we must require T > ~V for this solution to be
nonsingular, which means (again) that the tension term
dominates the energetics of the theory. What is also ob-
vious is that demanding A ¼ 1=2 leads to a novel fixed
point at ð�1; 0; 0Þ regardless of the ratio T= ~V. Using the
definition of A, this fixes � ¼ 2Mp, and therefore W is

vanishingly small unless the scalar is trans-Planckian. This
is manifest in a divergence in the equation of state parame-
ter and is therefore unphysical. Therefore we must ensure
that A < 1=2, implying that � > 2Mp. Since this is the

largest scale in our theory, one again expects this to be
unphysical.

The more general solutions can be found numerically
and correspond to x20 ¼ 1þ z20ðT= ~V � 1Þ, where z20 are the
characteristic solutions to the nonlinear equation

1þ �Azð2þ�Þ=2ð1þ z2ðT= ~V � 1ÞÞð��2Þ=2� ¼ 0: (2.44)

In this more general case we can set T ¼ ~V without the
solution diverging, and we therefore find the corresponding
fixed point solution is thus given by

x ¼ �1; y ¼ 0; z ¼
�
� 1

A�

�
2=ð2þ�Þ

(2.45)

which implies that� is negative. Moreover we see that� is
again zero here for all physical values of �, although there
is no additional constraint upon the magnitude of A. Now,
we see numerical solutions in Figs. 8–10. Constants are set
as Mp ¼ 1, T ¼ 1, ~V ¼ 1, � ¼ 1, and w ¼ 0 (dust case).

Other parameters are � ¼ 1 and A ¼ 1.

D. Case IV

Following on from the previous class of models, we can
find solutions where the scalar potential is now constant,

using the ansatz

~V ¼ V; Tð�Þ ¼
�
�

�

�
�
; Wð�Þ ¼

�
�

�

�
�

(2.46)

where �, � are terms of the requisite dimensionality. From
this expression we see that �1 is identically zero. It will be
convenient to define the following function, Q ¼ V����,
which in turn can be used in the definitions of the remain-
ing �i functions

�2 ¼ � �Mp

��=2V

�
Qx2

�z2

�
n1
;

�3 ¼
�Mp�

�=2

�4=2

�
��2�

�=2V3=2

�Mp

��n2
;

n1 ¼ 3�� 2

2ð�þ �Þ ; n2 ¼ 1þ �

3�� 2
;

(2.47)

and now the dynamical equations simplify to become

FIG. 8 (color online). Case III: 3D xyz phase-space trajectories
for Tð�Þ ¼ T, ~Vð�Þ ¼ V, and Wð�Þ ¼ ��=��. Here we set
Mp ¼ 1, T ¼ V ¼ 1, m ¼ 1, � ¼ 1, and w ¼ 0 (dust case),

� ¼ 1.

FIG. 9 (color online). Case III: Phase-space trajectories in the
xy plane.
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x0 ¼ ��2yz
3

2x2
� y2

2x
� xH0

H
;

y0 ¼ �3y

�
1� y2

6x2

��
1þ z3�2

xy

�

þ 3�2

�
z3�þ�

x����2�þ�

�
Q

�

�
�
�
1=ð�þ�Þ � 3x2�3 � yH0

H
;

z0 ¼ � zH0

H
: (2.48)

The resulting analysis is far more complicated than in the
previous cases. Let us again start with the simplest solution
slices at z ¼ 0. The expressions for x0 and z0 readily
simplify in this instance; however, the equation for y0
requires us to be more careful. We see that in order for
the z3�2 term to vanish in this limit, we require ð2þ
3�Þ=ð�þ �Þ> 0. The remaining �2 term only vanishes
if this condition is tightened to ð2þ �Þ=ð�þ �Þ> 0, and
the term coming from �3 only vanishes if ð1þ �Þ=ð�þ
�Þ> 0. If these inequalities are reversed, for example, then
these terms diverge in the z ! 0 limit. If we restrict
ourselves to well-behaved solutions such that �, � satisfy
the above bounds (either by both �, � � 0 or by � � 0,
� � 0 with j�j> j�j), then we obtain the solution curve
y2 ¼ 3x2 as usual. If the parameters �, � do not satisfy at

FIG. 10 (color online). Case III: Evolution of x, y, z versus the
e-folding number.

FIG. 11 (color online). Case IV: 3D xyz phase-space trajecto-
ries for Tð�Þ ¼ ð�=�Þ�, ~Vð�Þ ¼ V, andWð�Þ ¼ ð�=�Þ�. Here,
Mp ¼ 1, V ¼ 1, m ¼ 1, � ¼ 1, � ¼ 1, � ¼ 1, � ¼ 1, and w ¼
0 (dust case).

FIG. 12 (color online). Case IV: Phase-space trajectories in the
xy plane.
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least the minimal bound, then one can only solve these
expressions numerically.

The only other solution branch occurs when H0=H ¼ 0.
This is again a complicated solution; however, things
simplify somewhat when we slice through y ¼ 0, but
also tune the solution such that � ¼ �, which gives us

z ¼ x��

2
ffiffiffiffi
Q

p
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Qðx2 � 1Þ

x2�2�

s �
; (2.49)

and therefore the fixed point solution in this instance is
given by solutions of the polynomial

x

ffiffiffiffi
Q

�

s
þ

� ffiffiffiffi
Q

p
z

�
1=ð2�Þ xð1þ8�Þ=ð4�Þ

��=2��=2
¼ 1: (2.50)

This can actually be solved exactly when � ¼ �1, but
numerically for more general �. The exact case gives us
the following solution:

x0 ¼ Q�� 2
ffiffiffiffi
Q

p þ �2 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�; �Þp

2��4
;

Fð�; �Þ ¼ Q2 þ �2 � 4
ffiffiffiffiffiffiffiffiffi
Q3�

q
þ 6Q�� 4

ffiffiffiffiffiffiffiffiffi
Q�3

q

þ 16
ffiffiffiffiffiffiffiffiffiffiffi
Q3�7

q
� 4Q3�2 þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q5=2�5=2

q
� 24Q2�3 � 4Q�4 þ 4�6�; (2.51)

where z0 is given by the term written above. This is a
highly complicated solution, but one sees that, in principle,
there are many fixed points along the plane ðx0; 0; z0Þ
depending on the constants �, �. One also sees that there
is a simple solution when x ¼ 1, since this implies that
z0 ¼ ��=

ffiffiffiffi
Q

p
or z0 ¼ 0, the latter again giving rise to the

point (1, 0, 0) which corresponds to the nonpropagating
end point of the brane dynamics as shown in Figs. 11–13.

E. Case V

Finally let us comment on perhaps the most general form
of the solution one could obtain from this model, namely,
that corresponding to turning on all the relevant degrees of
freedom. One can therefore see that cases I–IVare actually
slices through the full phase space described in this section.
We will take the following parametrization for simplicity:

FIG. 13 (color online). Case IV: Evolution of x, y, z versus the
e-folding number.

FIG. 14 (color online). Case V: 3D xyz phase-space trajecto-
ries for Tð�Þ ¼ ð�=�Þ�, ~Vð�Þ ¼ ðm�Þ	=	, and Wð�Þ ¼
ð�=�Þ�. Here, Mp ¼ 1, V ¼ 1, m ¼ 1, � ¼ 1, � ¼ 1, � ¼ 1,

� ¼ 1, 	 ¼ 2, and w ¼ 0 (dust case).
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T ¼
�
�

�

�
�
; W ¼

�
�

�

�
�
; ~V ¼ m	�	

	
: (2.52)

In this case all three�i will be nonzero, which complicates
the analysis somewhat, and reality again imposes the con-
dition that 	 > 0. Let us initially search for the fixed points
around z ¼ 0. The primary constraint equation for this
becomes

�� 	þ 2ð1� �Þ
ð�þ �� 	Þ > 0: (2.53)

Let us initially assume that the denominator is positive
definite. Going through the same analysis as before yields
the usual solution curve y2 ¼ 3x2, provided that we tune
�> 0 and �þ �> 	. However, with reference to the
action, we see that this situation leads to both W, T
diverging, and therefore we should be wary of this part of
the solution. Returning to the constraint equation, let us
therefore assume that 	 > �þ � and redo the analysis. We
then find that the y2 ¼ 3x2 is perfectly valid, and moreover
the parameters W, T are not divergent, provided that the
parameters satisfy �þ �� 	 <�ð2þ �Þ. Furthermore,
we also see that � is bounded from above such that
�<�2=3—thus severely restricting the form of the vari-
able phase space.

If we search for solutions along the y ¼ 0 slicing, things
are again complicated. However, we can simplify things by
identifying � ¼ 	, since we can then solve explicitly for x
via

x2 ¼ 1þ z2
�

	2

�	m	
� 1

�
: (2.54)

The remaining equation coming from y0 ¼ 0 has
several solutions. The simplest ones are z2 ¼ 0,
ð��	m�		2 � 1Þ�1, which give rise to the points

x0 ¼ � ffiffiffi
2

p
; y0 ¼ 0; z0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��	m�		2 � 1
p ;

x0 ¼ �1; y0 ¼ 0; z0 ¼ 0: (2.55)

However, the first of these conditions also requires that

	2=	 > �m for the solution to be real. The maximal value

of 	2=	 is actually given by 	 ¼ e1, which imposes a tight

FIG. 15 (color online). Case V: Phase-space trajectories in the
xy plane.

FIG. 16 (color online). Case V: Evolution of x, y, z versus the
e-folding number.
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constraint on the background parameters which can only
be satisfied through substantial fine-tuning. Again, more
general solutions are only available through numeric meth-
ods as shown in Figs. 14–16.

III. PERTURBATIONS AND FIXED POINT
STABILITY

We now need to evaluate the stability of these fixed point
solutions. Clearly one may anticipate that solutions such as
(0, 0, 0) may well be unstable. We must perturb the field
equations about small values; therefore we need

x ! x0 þ �x; y ! y0 þ �y; z ! z0 þ �z:

(3.1)

Now the analysis is more complicated than in standard
models due to the complexity of the DBI action and the
general (unknown) phase-space dependence of the varia-
bles T, W, ~V. Since � is independent of any particular
parametrization, we can calculate the general result.

� ! �

�
1þ �2y0�y

3x20
� �2y20�x

3x30
þ . . .

�
: (3.2)

Using this we can write the perturbation in H0=H. In
general, we can Taylor expand the function W such that
we have Wðxi þ 
iÞ �Wðxi0Þ þ @iW
i, and therefore the

general result is true:

�

�
H0

H

�
¼ �y0�y� 3ð1þ!Þ

2

�
�
�2z0�z� 2x0�x

�
1� 1

W�

�

� x20
�W

�
��2y0�y

3x20
þ �2y20�x

3x30
� @iW
i

W

��
;

where all terms such as �,W are evaluated on the classical
solution and there is a summation over Latin indices.
The general equations, even for the linear perturbation,

are shown below for case V—which encompasses all the
other solutions in the relevant limit:

�x0 ¼ � yz3

2x2
ð�1 þ�2Þ

�
�y

y
þ 3

�z

z
� 2

�x

x

�
� yz3

2x
ð�1��1 þ�2��2Þ � y2

2x

�
2
�y

y
� �x

x

�
� �x

H0
0

H0

� x�

�
H0

H

�
;

�y0 ¼ � 3z3

x

�
�1��1 þ�2��2 þ ½�1 þ�2�

�
3
�z

z
� �x

x
� �y

y

��
� 3x2�3

�
2
�x

x
þ ��3

�
þ

�
1þ z3

xy
½�1 þ�2�

�

�
�
y3

x2

�
�y

y
� �x

x

�
� 3�y

�
� �y

H0
0

H0

� y�

�
H0

H

�

¼ 3z3�2W

�x

�
��2 þ 3

�z

z

�
1� 2�

3n

�
� �2y�y

3x2

�
1þ �

n
þ �x

x

�
2�

n
� 1þ �2y2

3x2

�
1þ �

n

����
;

�z0 ¼ z2y�1

2x

�
2
�z

z
þ �y

y
� �x

x
þ ��1

�
� �z

H0
0

H0

� z�

�
H0

H

�
;

(3.3)

where we have defined n ¼ �þ �� � for simplicity and also the following terms:

��1 ¼ � 2ð�� 2�Þ
n

�z

z
� ð�� 2� �Þ

2n

�2y�y

3x2
þ 2ð�� 2� �Þ

n

�x

x

�
1þ �2y2

12x2

�
;

��2 ¼ � 4ð�� 1� �Þ
n

�z

z
� ð3�� 3�� 2Þ

n

�2y�y

6x2
þ �x

nx

�
4ð�� 1� �Þ þ ð3�� 3�� 2Þ�2y2

6x2

�
;

��3 ¼ 2ð�þ 2þ 3�þ 2�Þ
n

�z

z
þ ð2�� 2� 10�þ �Þ�2y�y

6nx2
þ �x

nx

ð�2�þ 2þ 10�� �Þ�2y2

6x2

� �x

x

ð2�þ 4þ 6�þ 4�Þ
n

:

(3.4)

We will work through an explicit example to illustrate the formalism, namely, the case I solutions. First, we can calculate
the following expression,

�

�
H0

H

�
��y0�yþ 3ð1þ!Þ

2

�
2z0�zþ 2x0�x

�
1� 1

W�

�
þ x20�y0

3Wx20

�
�y� y�x

x0

��
; (3.5)

which will allow us to calculate the perturbed phase-space variables. The perturbed dynamic expressions then take the
following form:
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�
;
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�
1� y2

6x2

�
�x

�W�2

�
2
�x

x

�
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þ�x
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��y
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H
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��y
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�z0 ¼ z2y�1

2x

�
ð2� nÞ�z

z
þ�x

x

�
n� 1þn�2y2

6x2

�
þ�y

y

�
1� n�2y2

6x2

��
��z

H0
0

H0

� z�

�
H0

H

�
; (3.6)

where the notation H0
0=H0 implies that we take this func-

tion evaluated at the critical points, and we have defined
n ¼ ð�� �� 2Þ=ð�� �Þ for simplicity. Note that these
are the leading order solutions only, and that all terms
proportional to �2 have been neglected.

The stability of the fixed point solutions is therefore
determined by the eigenvalues of the resulting perturbation
matrix. A lengthy calculation which we will omit here
shows that the point (0, 0, 0) leads to the eigenvalues

�1 ¼ 3ð!� 1Þ
2

; �2 ¼ 3ð1þ!Þ
2

;

�3 ¼ 3ð1þ!Þ
2

;

(3.7)

which indicates that this is never a point of stability for the
theory unless the equation of state is phantom, i.e. !<
�1. In fact, this statement will be true for all the various
cases we have considered in the physical limit, since the
dynamical equations of motion all reduce to the exact same
form in this instance.
Another relatively simple case to consider is that in

case III. For slices through the ðx; yÞ plane at z ¼ 0, we
find the eigenvalues

� ¼ 1

2
ðx2 þ y2Þ þ 3

2
ð!ðx2 � 1Þ � 1Þ; �� ¼ 1

4x2
ð�6x4ð1þ!Þ � 6x2 þ 2y2x2 þ 5y2 � Fðx; yÞÞ;

Fðx; yÞ ¼

12y2x2!þ 96y2x4!� 48y2x6!� 8y4x2 þ 48y2x4 þ 16y4x4 � 48y2x6 þ 36!2x4 þ 17y4

q
:

(3.8)

If one now slices this through y ¼ 0, we see that we are left
with the same situation discussed above (as expected),
indicative of a phantom equation of state.

On the other hand, through the y ¼ 0 plane we see that
the eigenvalues become

� ¼ 3

2
ð1þ!Þ

�
1� z2 � x2

�
1�Qz2

x2

��
;

�� ¼ � 3

2x
ð�Qz2 � xþ 2xz2 þ x3 � xz2Qþ x2

� Fðx; yÞÞ;
(3.9)

where F is another polynomial in x, z, and we have defined
Q ¼ T= ~V for simplicity. In the limit that z ! 0, we find
that these simplify to yield

� ! 3
2ð1þ!Þð1� x2Þ;

�� ! 3
2ð1þ!Þðx2 � 1� x2ð1� 1ÞÞ:

(3.10)

Note that two of the eigenvalues are therefore degenerate
as before, requiring a phantom equation of state; however,
the final eigenvalue has the opposite sign, and therefore
this fixed point is always unstable.
The remaining fixed points can be analyzed in precisely

the same manner, although the analysis is somewhat awk-
ward. We will postpone the relevant discussion and return
to it in a follow-up publication.

IV. DISCUSSION

We have initiated an alternate approach to the problem
of k-essence, or DBI quintessence [25], using a more
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generalized form of the DBI action. Since this has more
degrees of freedom, the resulting analysis is typically
complicated, but the phase-space structure is far richer.
We have attempted to make some headway by restricting
the phase-space volume to various two-dimensional slices,
and by attempting to identify the relevant solution curves
upon which the fixed points may lie. Our ansatz for each of
the unknown functions is also potentially restrictive; how-
ever, we are confident that it represents the leading semi-
classical contributions which may (or may not) be
derivable from a full string theory embedding of our
model.

What is clear is that the ratio of the (warped) brane
tension to the potential is an important factor in the dy-
namics of the theory, where we found T � ~V in several
cases. Moreover, the additional multiplicative factorWð�Þ
plays a crucial role, even when it is a constant, since it
comes into the field equations nontrivially in the expres-
sion for H0=H. In the usual DBI analysis, W ¼ 1 and the
tension is the sole term responsible for the interesting
quintessence behavior. In some string compactifications,
where the warp factor has no cutoff at small distances, we
typically find W is constant and greater than unity.
However, there may be entire classes of solutions where
W � 1, which can lead to novel phase-space trajectories.
Since our approach has been phenomenological, and since
there may be additional string backgrounds of interest that
have yet to be fully explored, we cannot rule out W < 1—

which is vital for obtaining fixed point solutions in case I,
for example.
Our numerical results have shown that there is indeed a

rich phase-space structure present due to the increased
number of degrees of freedom. We expect many of these
to yield highly nontrivial stable fixed points in the full
analysis, which is beyond the scope of the current paper.
We have classified the nature of as many of the fixed points
as is feasible within the current analysis. Ultimately we
hope that this will lead to a renewed interest in dynamical
dark energy models driven by a more generalized approach
to D3-brane dynamics.
In light of the recent developments in holographic dark

energy [31,32] and the apparent relation to agegraphic
[33,34] dark energy, we hope that it may be possible to
reconstruct the various potentials in our generalized model
along the lines of [35].
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