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 Scalar  field  cosmology  is  a  model  for  dark  
energy  and  inflation. It has been recently found that 
the standard Friedmann formulation of the scalar 
field cosmology can be expressed in a nonlinear 
Schrödinger-type equation. The new mathematical 
formulation is hence called non-linear Schrödinger 
(NLS) formulation which is suitable for a FRLW 
cosmological system with non-negligible barotropic 
fluid density. Its major features are reviewed here. 
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1. Introduction  
 The present universe is under accelerating expansion. This is convinced 
by many present observational data from cosmic microwave background  [1], 
large scale structure surveys  [2] and supernovae type Ia  [3-5]. There are 
many ideas to explain such an expanding state, mainly it can be classified 
into three types: braneworlds and modification of gravitational theory (e.g. 
[6]), backreaction effect from inhomogeneity [7] and dark energy (for review, 
see [8]). Dark energy is a type of cosmological fluid appearing in the matter 
term of the Einstein equation with equation of state wD.E. < −1/3 so that it can 
generate repulsive gravity and therefore accelerating the universe. The 
simplest dark energy model is just a cosmological constant with wΛ = −1. 
However the cosmological constant suffers from fine-tuning problem. 
Observational data suggests that the present value of wD.E. is very close to -1 
and it also allows possibility that dark energy could be dynamical. Therefore 
scalar field model of dark energy became interesting topic in cosmology 
since time-evolving behavior of the scalar field gives hope for resolving the 
fine-tuning problem. Although the scalar field has not yet been observed, it is 
motivated from many ideas in high energy physics and quantum gravities. 
Theoretical predictions of its existence at TeV scale could be tested at LHC 
and Tevatron in very near future. Phenomenologically the scalar field is also 
motivated in model building of inflation where super-fast acceleration 
happens in the early universe [9]. Cosmic microwave background data 
combined with other results allows possibility that the scalar field could be 
phantom, i.e. having equation of state coefficient wφ < −1 [10]. The phantom 
equation of state is attained from negative kinetic energy term in its 
Lagrangian density [11,12]. The most recent five-year WMAP result [13] 
combined with Baryon Acoustic Oscillation of large scale structure survey 
from SDSS and 2dFGRS [14] and type Ia supernovae data from HST [4], 
SNLS [5] and ESSENCE [15] assuming dynamical w with flat universe 

yields −1.38 < wφ,0  < −0.86 at 95% CL and wφ,0 = −1.12 ± 0.13 at 68% CL. 

With additional BBN constraint of limit of expansion rate [16,17], wφ,0 = 
−1.09 ± 0.12 at 68% CL. The phantom field will finally dominate the 
universe in future, leading to Big Rip singularity [18]. There have been many 
attempts to resolve the singularity from both phenomenological and 
fundamental inspirations [19]. However fundamental physics of the phantom 
field is still incomplete due to severe UV instability of the field’s quantum 
vacuum state [20].  
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 This review interests in non-linear Schrödinger-type formulation of scalar 
field cosmology.  We shall call the formulation, NLS formulation. In our NLS 
system, cosmological ingredients are scalar field and a barotropic fluid with 
constant equation of state, pγ = wγ ργ. We also have non-zero spatial curvature. 
This is a system resembling of our present universe filled with scalar field dark 
energy and barotropic cold dark matter or of the early inflationary universe in 
presence of inflaton and other fields behaving barotropic-like considered in e.g. 
[32]. In such a model, the scale invariant spectrum in the cosmic microwave 
background was claimed to be generated not only from fluctuation of scalar 
field alone but rather from both scalar field and interaction between gravity to 
other gauge fields such as Dirac and gauge vector fields.  
 Not long ago, mathematical alternatives to the standard Friedmann 
canonical scalar field cosmology with barotropic perfect fluid, was proposed 
e.g. non-linear Ermakov-Pinney equation [21,22]. Expressing standard cosmology 
with k > 0 in Ermakov equation system yields a system similar to Bose-Einstein 
condensates [23]. Another example is a connection from a generalized 
Ermakov-Pinney equation with perturbative scheme to a generalized WKB 
method of comparison equation [24]. It was then realized that solutions of the 
generalized Ermakov-Pinney equation are correspondent to solutions of a non-
linear Schrödinger-type equation, and then the NLS version of the 
Friedmannıtre-Robertson-Walker (FLRW) cosmology was formulated [22]. In 
the NLS framework, the system of FLRW cosmological equations:  Friedmann 
equation, acceleration equation and fluid equation are written in a single 
nonlinear Schrödinger-type equation. We will not prove it here but instead, 
referring to Ref. [25]. Few recent applications [26-29] of the NLS formulation 
have been made and this review intends to conclude its major aspects.  
 
2. Scalar field cosmology  
A.   Friedman formulation  
 We set up major concepts in this section before considering its 
application later. In the Friedmann system, barotropic fluid has pressure pγ 
and density ργ with an equation of state, pγ = wγ ργ = [(n − 3)/3]ργ where n = 

3(1 +wγ ). Scalar field pressure obeys pφ = wφρφ. To sum up, ρtot = ργ + ρφ and 

ptot = pγ + pφ. Therefore n = 0 means wγ = −1. The others are: n = 2 for wγ = 

−1/3; n = 3 for wγ = 0; n = 4 for wγ = 1/3; n = 6 for wγ = 1. Barotropic fluid 
and scalar fluid are conserved separately. Dynamics of the barotropic is 
governed by fluid equation, γρ

i

 = −nHργ with solution, ργ = D/an, where a is 
scale factor. The dot denotes time derivative. H = /a a

i  is Hubble parameter and 
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D ≥ 0 is a proportional constant. Scalar field is minimally-coupled to gravity 
with Lagrangian density, L = (1/2)ε 2

φ
i  − V (φ) and is homogenously spread 

all over the universe. The scalar field density and pressure are  
 

                                        
(1)

  
 The branch ε = 1 is for non-phantom field case and ∈ = -1 is for 
phantom field case. Dynamics of the scalar field is controlled by conservation 
equation, ε ( 3 )Hφ φ+

ii i  = −dV/dφ, in which the spatial expansion H of the 
universe sources friction to dynamics of the field. The Hubble parameter is 
governed by Friedmann equation, H2 = (κ2 /3)ρtot − k/a2, and by acceleration 
equation, ä/a = −(κ2/6)(ρtot + 3ptot), which gives acceleration condition ptot < 

−ρtot/3. Here ptot = weff ρtot, κ2 ≡ 8πG = 1/M 2
P . G is Newton’s gravitational 

constant. MP is reduced Planck mass. k is spatial curvature and  
 

                                                                   (2)
 

 
 If we express the field speed and the field potential in term of a(t) and 
time derivative of a(t), then 
 

   
(3)

 
  
B. NLS formulation  
 NLS formulation is a mathematical alternative to the standard Friedmann 
formulation with hope that the new formulation might suggest some new 
mathematical tackling to problems in scalar field cosmology. In the NLS 
formulation, there is no such an analogous equation to Friedmann equation or 
fluid equation. Instead both of them combine in single non-linear 
Schrödinger-type equation,  
 

                                  
(4) 

 
The links to cosmology are valid as one defines NLS quantities [25],  
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(5) 

 
where ‘ denotes d/dx. Independent variable t is scaled to NLS independent 
variable x as x = σ(t), such that  
 

                                                (6)
 

 
which gives . Hence  and  
 

                                                           
(7) 

 
Inverse function ψ-1(x) exists for P(x) ≠ 0 and n ≠ 0. In this circumstance, x(t) 
= ψ-1 º φ(t)  and the scalar field potential,  can be 
expressed in NLS formulation as 
 

                                          
(8)

 
 
and  
 

                                  
(9) 

 
The other equations are  
 

                                           (10) 
 

                                   
(11) 

 

                                                   (12) 
 

                                
(13) 
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                                   (14)
 

 

                                  
(15)

 
 
 We shall see later examples that the program of NLS formulation must 
start from presuming the “wave function”, u(x) ≡ a-n/2 =  before 
proceeding to calculate the other quantities. We know that normalization 
condition for a wave function is  If applying this to our 
NLS wave function, then  In order to satisfy the condition, x 
must be constant (hence so is t) with an integrating constant = 1. In 
connecting Friedmann formulation to NLS formulation, we are forced to have 
u(x) = . Therefore u(x) is, in general, non-normalizable.  
 
3. Slow-roll conditions  
A. Slow-roll conditions: Flat geometry and scalar field domination  
 In flat universe with scalar field domination,  
Hencefor ε = -1(phantom field),  
 
0 < aH2 < ä,                                                                                                  (16) 
 
i.e. the acceleration is greater than speed of expansion per Hubble radius, 

 and for ∈ = 1 (non-phantom field),  
 
0 < ä < aH2.                                                                                                  (17) 
 
 Slow-roll condition [30,31] assumes negligible kinetic term, i.e. 

 which makes an approximation H2 ~ κ2V/3. This results in 
a condition  Slow-roll parameter,   is hence defined 

from this relation. The condition  is then equivalent to ⎜ε⎟ 
<< 1, i.e. -1 << ε < 0 for phantom field case and 0 < ε << 1 for non-phantom 
field case. Considering  implying approximative constancy in H 
during the slow-rolling regime. For non-phantom field, this condition is 
necessary for inflation to happen (though not sufficient) [31] however, for 
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phantom field case, the negative kinetic term always results in acceleration 
with wφ ≤ −1 then it does not need the slow-roll approximation. Another 
slow-roll parameter can be defined when the friction term dominates 

 This gives the second parameter,  and the 
approximation is made to |η| << 1 [31]. The field fluid equation is then 

 which implies that if ε = −1, the field can roll up the hill. 
With all assumptions imposed here, i.e. k = 0, ργ = 0,  

 one can derive ε = (1/2κ2ε) (Vφ/V)2 and η = 
(1/κ2) (Vφφ/V) as known where the subscript φ  denotes d/dφ.  
 
B. Slow-roll conditions: Non-flat geometry and non-negligible 
barotropic density  
 There are also inflationary models in presence of other field behaving 
barotropic-like apart from having only single scalar fluid [32]. The scale 
invariant spectrum in the cosmic microwave background was claimed to be 
generated not only from fluctuation of scalar field alone but rather from both 
scalar field and interaction between gravity to other gauge fields. Assuming 
this scenario with k ≠ 0 and ργ = 0, then  
 

                                                        
(18)

 
 
The slow-roll condition becomes  
hence 
 

                                                  (19) 
 
implying  We can reexpress this 
slow-roll condition as 
 
⎜ε + εk + εD⎟ << 1,                                                                                        (20) 
 
where εk ≡ k/ a2H2 and εD ≡ -nκ2 D/6anH2. Another slow-roll parameter η is 
defined as  i.e. the same as the flat scalar field dominated case 
since the condition  is independent of k and ργ.    
 Writing the condition  in NLS form using Eqs. (5) and (9), 
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(21) 

 
 If the absolute sign is not used, the condition is then  allowing 
fast-roll negative kinetic energy. Then Eq. (21), when combined with the 
NLS equation (4), yields 
 

                                   
(22)

 
 
 Friedman analog of this condition can be obtained simply by using Eq. 
(3) in the condition. Using Eq. (15), the second slow-roll condition, 

 in the NLS form is written as, 
 

                                                           (23)
     

This condition yields the approximation  which, in NLS 
form, is 
 

                                                              (24)
  

The slow-roll parameters ε, εk and εD, in NLS form, are 
 

                                      (25) 
 
therefore 
 

                                                  (26) 
 
Hence the slow-rollcondition, ⎜εtot⎟ << 1, is just 
 

                                                                         
(27)

 
 

 Another slow-roll parameter  can be found as follow. First 
considering  and Eq.  (7), using relation  one can 
obtain  
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                                           (28)
 

 
The slow-roll condition ⎟η⎟ << 1 in NLS form is just 
 

                                                                          
(29)

 
 
4. Acceleration condition  
 For the phantom field, since its kinetic term is always negative and could 
take any large negative values, the slow-roll condition is not needed. The 
acceleration equation is taken as acceleration condition straightforwardly, i.e. 
ä > 0 hence  
 

                                                           (30)
 

 
This, in NLS-type form, is equivalent to 
 

                                                  (31)
 

 
which is reduced to 
 

                                                                               
(32)

 
 
with help of the Eq.  (4). Using Eqs.  (14), the acceleration condition is just ε < 1.  
 
5. Power-law cosmology  
 The power-law expansion a(t) = tq, with q > 1 is assumed here as the 
first step of calculation. In some high-energy physics models, during 
inflation, flat geometry and scalar field domination are assumed. The 
universe was driven by an exponential potential V(φ) = [q(3q − 1)/(κ2 t0

2)] 
exp [33]. Also, at late time with dark matter 
component, the expansion could be power-law. Recent results from X-Ray 
gas of galaxy clusters put a constraint of q ~ 2.3 for k = 0, q ~ 1.14 for k = 
−1 and q ~ 0.95 for k = 1 [34]. For a flat universe, the power law expansion, 
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a = tq, is attained when −1 < weff < −1/3 where q = 2/[3(1 + weff)]. If using q 

= 2.3 as above, it gives weff = −0.71 (only flat case). Latest combined 
WMAP5 results with SNI and BAO yield −0.0175 < Ωk < 0.0085 at 95% 
maximum likelihood [13]. The mean is Ωk = -0.0045 corresponding to 
closed universe with q = 0.986 [35]. Assuming power-law expansion, the 
Schrödinger wave function is [26]  
 

                                                                  (33) 
 
 Integrating the equation above so that the Schrödinger scale, x is related 
to cosmic time scale, t as  
 

                          (34) 
 
where β ≡ (qn -2)/2 and x0 is an integrating constant. The parameters x and t 
have the same dimension since β is only a number. Then the wave function is  
 

                                      (35)
 

 
which depends on only q and n. Wave functions for a range of barotropic 
fluids are presented in Fig. 1. The result is confirmed by substituting Eq. (35) 
into Eq. (4). The field speed and scalar potential are: 
 

  
(36) 

 
From Eq. (5), therefore the Schrödinger potential is found to be 
 

    
(37)

 
 
With E = -κ2n2D/12, the Schrödinger kinetic energy is 
 

 
    (38)
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Figure 1. u(x) versus x for power-law cosmology with q = 2. We set x0 = 0. There is 
no real-value wave function for n =  3, n = 4 and n = 6 unless x < 0. 
 
 A disadvantage of Eq.  (37) is that we can not use it in the case of scalar 
field domination. Dropping D term in Eq. (37) can not be considered as scalar 
field domination case since the barotropic fluid coefficient n still appears in the 
other terms. The non-linear Schrödinger-type formulation is therefore suitable 
when there are both scalar field and a barotropic fluid together such as the 
situation when dark matter and scalar field dark energy live together in the late 
universe or in the inflationary models in presence of other fields behaving 
barotropic-like and single scalar fluid [32]. P (x) is plotted versus x for power-
law expansion with q = 2 in closed, flat and open universe in Fig. 2. One can 
check that the acceleration condition (32) for the power-law case is just q > 1.  
 There is application of the NLS scalar field function ψ in Eq.  (7) to solve 
for scalar field exact solutions in power-law, phantom expansion (a ~ (ta − 
t)q, q < 0) and exponential (de Sitter) expansion a ~ exp(t/τ) [27,28]. For 
example in power-law case:  
 

 
(39) 
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Figure 2. P(x) plotted versus x for power-law expansion. We set q = 2, κ = 1, D = 1 
and x0. There is only a real-value P(x) for the cases k = ±1 with n = 4 because, when x 
> 0, P(x) becomes imaginary in these cases. The physical value is when x < 0 since t 
has a reverse sign of x. 
  
The solution can be found only when assuming k = 0, 
 

  
(40) 
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 When q = 2/n or n = 0, the field has infinite value. q and ε must have the 
same sign for the solution to be real. The last logarithmic term does not 
restrict sign of q. This is unlike the solution obtained from Friedmann 
formulation which requires q < 0 which violates power-law expansion 
condition (q > 1). Working in neither of them can obtain exact solution with  
k ≠ 0. In NLS formulation, we can not set D to zero while n is multiplied to 
the other terms then it can not be reduced to the scalar dominant case. This is 
a weak aspect. Obviously, the most difficult case is when k ≠ 0 with D  ≠ 0. 
This case can not be integrated out in both frameworks unless assuming n = 2 
(equivalent to wγ = −1/3) which is not physical. 
 There are other good aspects of the NLS formulation. Since transforming 
standard Friedmann formulation (t as independent variable) to NLS formulation 
(x as independent variable) makes n appear in all terms of the integrand and 
also changes fluid density term D from time-dependent term to a constant E, 
therefore the number of x  (or equivalently t)-dependent terms is reduced by 
one and hence simplifying the integral (7). In the case of exponential (de Sitter) 
expansion using NLS formulation, the solution when k ≠ 0 and D ≠ 0 can be 
obtained without assuming n value but n = 0, 2, 3, 4, 6 must be given if 
working within Friedmann formulation. The phantom expansion case is very 
similar to the power-law case but only with different sign (see Ref. [28]).  
 
6. Phantom cosmology and big rip singularity  
 If we assume the expansion to a form, a(t) ~ (ta − t)q with a finite time ta, 
one can see that q = 2/3(1 + weff) < 0 (for a flat universe). This corresponds to 

weff < −1. Such equation of state is called phantom. The Schrödinger scale, x 
is related to cosmic time scale, t as  
 

                                                       
(41)

 
 
and the wave function is  
 
u(x) = [β(x-x0)]qn/(qn-2)                                                                                   (42) 
 
which is plotted in Fig. 3 with various types of barotropic fluid [28].  
Therefore 
 

  
(43) 
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Figure 3. Schrödinger wave function, u(x) when assuming phantom expansion. u(x) 
depends on only q, n and ta. Here we set ta = 1.0 and q = -6.666. If k = 0, q = -6.666 

corresponds to weff = -1.1.   
 
 Fig. 4 shows P(x) plots for three cases of k with dust and radiation. P(x) 
goes to negative infinity at x = x0 = 1. Expansion of the form, a(t) ~ (ta − t)q  
leads to unwanted future Big Rip singularity [11]. The Big Rip conditions are 
that (a, ρtot, |ptot|) → ∞ which happen when t → ta

-n in finite future time.  
Written in NLS language, if a → ∞, u → 0+ and then u → 0 (see Fig. 3). 
Considering also Eqs. (12) and (13), hence conditions of the Big Rip 
singularity are [29]  
 

                                                                 (44)  
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Figure 4. Schrödinger potential in phantom expansion case for dust and radiation 
fluids with k = 0, ±1. Νumerical parameters are as in the u(x) plots (Fig. 3). x0 is set to 
1. For non-zero k, there is only one real branch of P(x). 
 
 We have one less infinite value in NLS Big Rip condition, i.e.  u(x) goes 
to zero. The NLS effective equation of state weff = ptot /ρtot can be expressed 

using Eqs. (12) and (13). Approaching the Big Rip, x → x-
0, u → 0+, then weff 

→ −1 +2/3q, where q < 0 is a constant. This limit is the same as the effective  
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phantom equation of state in the case k = 0. It is important to note that scalar 
field potential here is built phenomenologically based on expansion function, 
not on fundamental physics.  
 
7. WKB approximation  
 WKB approximation in quantum mechanics is a tool to obtain wave 
function. However, in NLS formulation of scalar field cosmology, the wave 
function is first presumed before working out the shape of P(x). Procedure is 
opposite to that of quantum mechanics. Hence the WKB approximation 
might not be needed at all for the NLS. Anyway, if one wants to test the 
WKB approximation in the NLS formulation, these below are some results.  
The WKB are valid when the coefficient of highest-order derivative term in 
the Schrödinger equation is small or when the potential is very slowly-
varying. Consider linear case of Eq.  (4), (k = 0),  
 
-u″ + [P(x) – E] u = 0.                                                                                  (45) 
 
 In Figs 2 and 4, the left-hand side of P(x) is physical since it corresponds 
to positive time. In most regions, there are ranges of slowly varying P(x) at 
large value of ⎟x⎜, in which the WKB is valid. The approximation gives 
 

 
                                         (46)

  
 
where A is a constant.  
 
8. Conclusions  
 Here we conclude aspects of NLS-type formulation of scalar field 
cosmology. The NLS-type formulation is well-applicable in presence of 
barotropic fluid and a canonical scalar field. There are few advantages of the 
NLS formulation as well as disadvantages to the conventional Friedmann 
formulation. With hope that some more interesting and useful features could 
be revealed in future.  
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