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Abstract We describe non-flat standard Friedmann cosmology of canonical scalar
field with barotropic fluid in form of non-linear Schrödinger-type (NLS) formulation
in which all cosmological dynamical quantities are expressed in term of Schrödinger
quantities as similar to those in time-independent quantum mechanics. We assume the
expansion to be superfast, i.e. phantom expansion. We report all Schrödinger-anal-
ogous quantities to scalar field cosmology. Effective equation of state coefficient is
analyzed and illustrated. We show that in a non-flat universe, there is no fixed weff
value for the phantom divide. In a non-flat universe, even weff > −1, the expansion
can be phantom. Moreover, in open universe, phantom expansion can happen even
with weff > 0. We also report scalar field exact solutions within frameworks of the
Friedmann formulation and the NLS formulation in non-flat universe cases.
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226 T. Phetnora et al.

1 Introduction

Supernovae Type Ia data and cosmic microwave background observations show
recently strong evidence of present accelerating phase of the universe [1–12] while
nowadays inflationary paradigm in the early universe is one of the corner stones in cos-
mology [13–18]. Present acceleration and inflation of the universe are both believed
to result from effect of either dynamical scalar field with time-dependent equation of
state coefficient wφ(t) < −1/3 or a cosmological constant with w = −1. Alternative
explanation for present acceleration to dark energy is modification of general relativ-
ity which includes braneworld models (for review, see [19] and references therein).
Among these ideas, the scalar field catches most attention therefore many analysis in
cosmological contexts and observations have been carried out [20–22]. Conventional
formulation of canonical scalar field cosmology with barotropic perfect fluid, can also
be expressed as non-linear Ermakov-Pinney equation as shown recently [23–28]. How-
ever, non-Ermakov-Pinney equation for such system can also be written in form of a
non-linear Schrödinger-type equation (NLS). The solutions of the NLS-type equation
correspond to solutions of the generalized Ermakov-Pinney equation of scalar field
cosmology [28,29]. The NLS-type formulation was concluded and shown in case of
power-law expansion in Ref. [30] where all Schrödinger-type quantities correspond-
ing to scalar field cosmology are worked out. NLS-type formulation also provides an
alternative way of solving for the scalar field exact solutions in various cases even
with non-zero curvature [31].

Various observations allow scalar field equation of state coefficient, wφ to be less
than −1 [33–35]. Previous evidence from combined cosmic microwave background,
large scale structure survey and supernovae type Ia without assuming flat universe
yields wφ = −1.06+0.13

−0.08 [36] while using supernovae data alone assuming flat uni-
verse yields wφ = −1.07 ± 0.09 [37]. The most recent WMAP five-year result
[38,39] combined with Baryon acoustic oscillation (BAO) of large scale structure
survey: SDSS and 2dFGRS [40] and type Ia supernovae data from HST [10,11],
SNLS [12] and ESSENCE [37] assuming dynamical w with flat universe yields
−1.33 < wφ,0 < −0.79 at 95% confident level [41]. Also this data with additional
BBN constraint of limit of expansion rate [42,43] yields −1.29 < wφ,0 < −0.79
at 95% confident level and wφ,0 = −1.04 ± 0.13 at 68% confident level [41]. This
suggests that the scalar field could be phantom, i.ewφ < −1 [44–46]. For a canonical
scalar field, phantom behavior can be attained by negative kinetic energy term of the
scalar field Lagrangian density. In FLRW general relativistic cosmology, there is a Big
Rip singularity with a, ρ, |p| → ∞ at finite time [47–59], nevertheless singularity
avoidance has been attempted in various ways [60–69]. Extension to include phantom
field case in NLS-type formulation was made in [30]. In NLS-type formulation one
can presume any law of expansion a = a(t), e.g. power law a ∼ tq or exponential
expansion, a ∼ exp(t/τ) [30,31] and works out all NLS-quantities keeping open
possibility for the field to be phantom or non-phantom and non-zero spatial curvature.
Analogous studies to the slow-roll, WKB and the Big Rip in NLS formulation were
done in [32].

To attain accelerating expansion, one needs to have effective equation of state coef-
ficient, weff < −1/3 where
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Phantom expansion with non-linear Schrödinger-type formulation 227

weff = ρφwφ + ργwγ

ρtot
, (1)

ργ is density of barotropic fluid, ρφ is density of the scalar field and ρtot = ρφ + ργ .
It has been known in standard cosmology that for flat universe (k = 0), if the expan-
sion is a ∼ tq , then −1 < weff < −1/3; if a ∼ exp(t/τ), then weff = −1 and if
a ∼ (ta − t)q , thenweff < −1. Here q ≡ 2/[3(1+weff )], τ, ta are finite characteristic
times. In the last case, weff < −1 corresponds to q < 0.

In this work, we consider phantom expansion a ∼ (ta − t)q in the NLS-type formu-
lation with non-zero curvature k. We introduce cosmological system in Sect. 2, then
NLS-type formulation in Sect. 3. The Schrödinger quantities for phantom expansion
are presented in Sect. 4 where we analyze value of weff and show conditions of how
much negative wφ must be in order to keep the expansion phantom. We also illustrate
parametric plots for weff with q and t . Scalar field exact solutions solved from both
standard formulation and NLS-type formulation are given in Sect. 5 where we com-
ment on both procedures of obtaining the solutions. Finally we conclude our work in
Sect. 6.

2 Cosmological system

Barotropic fluid and scalar field fluid are major components in our scenario. The
perfect barotropic fluid pressure pγ and density ργ obey an equation of state, pγ =
(γ −1)ργ = wγ ργ while for scalar field, pφ = wφρφ . Total density and total pressure
are ρtot = ργ + ρφ and ptot = pγ + pφ . For the barotropic fluid, wγ is written in
term of n. We set wγ ≡ (n − 3)/3 so that n = 3(1 + wγ ) = 3γ , hence wγ = −1
corresponds to n = 0, wγ = −1/3 to n = 2, wγ = 0 to n = 3, wγ = 1/3 to n = 4,
and wγ = 1 to n = 6. The conservation equation is hence

ρ̇γ = −nHργ , (2)

with solution,

ργ = D

an
. (3)

Therefore pγ = [(n − 3)/3](D/an) , where a is scale factor, the dot denotes time
derivative, H = ȧ/a is Hubble parameter and D ≥ 0 is a proportional constant. We
consider scalar field that is minimally coupling to gravity with Lagrangian density,
L = (1/2)εφ̇2 − V (φ) , of which ε = 1 for non-phantom case and −1 for phantom
case. Density and pressure of the field are given as

ρφ = 1

2
εφ̇2 + V (φ), pφ = 1

2
εφ̇2 − V (φ) , (4)

therefore

wφ = pφ
ρφ

= εφ̇2 − 2V (φ)

εφ̇2 + 2V (φ)
. (5)
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The field obeys conservation equation

ε
[
φ̈ + 3H φ̇

]+ dV

dφ
= 0. (6)

Considering Friedmann-Lemaître-Robertson-Walker (FLRW) universe, the
Friedmann equation and acceleration equation are

H2 = κ2

3
ρtot − k

a2 , (7)

ä

a
= −κ

2

6
ρtot(1 + 3weff) , (8)

where κ2 ≡ 8πG = 1/M2
P,G is Newton’s gravitational constant, MP is reduced

Planck mass and k is spatial curvature. Using Eqs. (3), (4), (6) and (7), one can show
that

εφ̇(t)2 = − 2

κ2

[
Ḣ − k

a2

]
− nD

3an
, (9)

V (φ) = 3

κ2

[
H2 + Ḣ

3
+ 2k

3a2

]
+
(

n − 6

6

)
D

an
. (10)

3 NLS-type formulation

Non-linear Schrödinger-type formulation for canonical scalar field cosmology and
barotropic fluid was proposed by J. D’Ambroise and F. L. Williams [29] and was also
extended to include phantom field case [30].1 In the Schrödinger formulation, wave
function u(x) is related to scale factor in cosmology as

u(x) ≡ a(t)−n/2 , (11)

while Schrödinger total energy E and Schrödinger potential P(x) are linked to cos-
mology as

E ≡ −κ
2n2

12
D , (12)

P(x) ≡ κ2n

4
a(t)nεφ̇(t)2. (13)

These quantities satisfy a non-linear Schrödinger-type equation:

d2

dx2 u(x)+ [E − P(x)] u(x) = −nk

2
u(x)(4−n)/n , (14)

1 It is worth noting that Schrödinger-type equation in scalar field cosmology was previously considered in
different procedure to study inflation and phantom field problems [70–74].
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Phantom expansion with non-linear Schrödinger-type formulation 229

with a mapping from t to x is via

x = σ(t), (15)

such that [30,31]

ẋ(t) = u(x) , (16)

φ(t) = ψ(x) = ±2

κ
√

n

∫ √
P(x)

ε
dx . (17)

If P(x) �= 0 and n �= 0, inverse function of ψ(x) exists as ψ−1(x). Therefore
x(t) = ψ−1 ◦ φ(t) and the scalar field potential, V ◦ σ−1(x) can be expressed as,

V (t) = 12

κ2n2

(
du

dx

)2

− 2u2

κ2n
P(x)+ 12u2

κ2n2 E + 3ku4/n

κ2 . (18)

4 Phantom expansion

Expansion of the form a ∼ (ta − t)q is called phantom when q < 0 for a flat universe.
Here in non-flat universe, q is considered to possess any value and the term phantom
expansion also refers to expansion function of the form a ∼ (ta − t)q as in the flat
case.

4.1 NLS-type formulation for phantom expansion

With the phantom expansion, a ∼ (ta − t)q , we use Eqs. (11) and (16) to relate
Schrödinger wave function to standard cosmological quantity as

u(x) = ẋ(t) = (ta − t)−qn/2. (19)

Integrate the equation above so that the Schrödinger scale, x is related to cosmic
time scale, t as

x(t) = 1

β
(ta − t)−β + x0 , (20)

where β ≡ (qn − 2)/2 and x0 is an integrating constant. Conversely,

t (x) = ta − 1

[β(x − x0)]1/β . (21)

The Schrödinger wave function can be directly found from Eqs. (19) and (21) as

u(x) = [β(x − x0)]
qn/(qn−2) . (22)

123



230 T. Phetnora et al.

For a ∼ (ta − t)q , we can find εφ̇(t)2 from Eq. (9):

εφ̇(t)2 = 2q

κ2(ta − t)2
+ 2k

κ2(ta − t)2q
− nD

3(ta − t)qn
. (23)

Using Eq. (23) with phantom expansion in Eq. (13), therefore

P(t) = qn

2
(ta − t)qn−2 + kn

2
(ta − t)q(n−2) − κ2n2 D

12
, (24)

which can be expressed in term of x using Eq. (21) as

P(x) = 2qn

(qn − 2)2
1

(x − x0)2
+ kn

2

[
2

(qn − 2)(x − x0)

]2q(n−2)/(qn−2)

− κ2n2 D

12
.

(25)

One might have a thought that all functions in phantom expansion case can be
changed to those in power-law expansion case by interchanging (ta − t) ⇔ t . How-
ever when (ta − t) is differentiated, there is an extra minus sign. The Eq. (25) slightly
defers from that of the power-law expansion case because in the power-law case, the
numerator of the second term is −2 instead of 2. The Schrödinger kinetic energy T
is negative value of the first two terms of the Schrödinger potential. At last, the scalar
field potential obtained from Eq. (18) is

V (t) = q(3q − 1)

κ2(ta − t)2
+ 2k

κ2(ta − t)2q
+
(

n − 6

6

)
D

(ta − t)qn
. (26)

which can be checked by using a ∼ (ta − t)q in Eq. (10). Wave function of the NLS-
formulation is found to be non-normalizable [30] as seen in Fig. 1 for case of phantom
expansion with various types of barotropic fluid. Here q is chosen to −6.666. In flat
universe q = −6.666 can be attained when weff = −1.1. Figure 2 shows P(x) plots
for three cases of k with dust and radiation. In there x0 = 1, therefore P(x) goes to
negative infinity at x = 1.

4.2 Analysis on effective equation of state coefficient

The definition of effective equation of state coefficient, weff = (ρφwφ + ργwγ )/ρtot
together with Eq. (4) and the results in Eqs. (23) and (26) in context of phantom
expansion a ∼ (ta − t)q , we can derive

weff = (−3q2 + 2q)(ta − t)2q−2 − k

3q2(ta − t)2q−2 + 3k
. (27)
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Phantom expansion with non-linear Schrödinger-type formulation 231

Fig. 1 Schrödinger wave
function, u(x) when assuming
phantom expansion. u(x)
depends on only q, n and ta but
does not depend on k. Here we
set ta = 1.0 and q = −6.666.
If k = 0, q = −6.666
corresponds to weff = −1.1

u(x)

x

n = 6

n = 0

n = 2

n = 3

n = 4

There is a locus,

t = ta −
(−k

q2

)1/(2q−2)

, (28)

where weff becomes infinite along the locus. Hence for k = −1 the locus is t =
ta − q−1/(q−1) (in term of x , it is x = [2/(qn − 2)]q(qn−2)/2(q−1) + x0). Hence for
k = 0, the coefficient weff is infinite at q = 0 or t = ta. It seems from the equation
above that weff does not depend on properties, n or amount of the barotropic fluid, D.
Indeed weff implicitly depends on D and n since time variable and q are related to ργ
in the Friedmann equation. If k = 0, it reduces to q = 2/3(1 + weff) and therefore
the phantom condition weff < −1 implies q < 0 as it is known. This corresponds to
a condition,

wφ < −1 − (1 + wγ )
ργ

ρφ
. (29)

Therefore for a fluid withwγ > −1, wφ is always less than −1 in a flat universe. In
order to have the expansion a ∼ (ta − t)q in k = 0 universe, we must haveweff < −1,
i.e. in phantom region. We can rewrite wφ in term of weff as

wφ =
[

3q2

κ2 (ta − t)−2 + 3k
κ2 (ta − t)−2q

]
weff − n−3

3 D(ta − t)−qn

3q2

κ2 (ta − t)−2 + 3k
κ2 (ta − t)−2q − D(ta − t)−qn

. (30)

Equation (30), when D = 0 and k = 0, yieldswφ = weff . Albeit we set only D = 0,
it gives the same result sincewφ is independent of geometrical background. However,
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P(x)

Scalar field with radiation (n = 4)Scalar field with dust (n = 3)

k = +1

k = -1

k = 0

P(x)P(x)

P(x) P(x)

P(x)

x

x

xx

x

x

Fig. 2 Schrödinger potential in phantom expansion case for dust and radiation fluids with k = 0,±1.
Numerical parameters are as in the u(x) plots (Fig. 1). x0 is set to 1. For non-zero k, there is only one real
branch of P(x)

since the expansion law is fixed,wφ is tied up with D implicitly via Eq. (1). Note thatwφ
has value in the range (−∞,−1] and [1,∞) so that the phantom crossing can not hap-
pen when the scalar field is dominant. However, presence of the dust barotropic fluid
in the system gives a multiplication factor that is less than 1 to the equation of state, i.e.

weff =
(

ρφ

ρφ + ργ

)
wφ. (31)

We can see that the phantom crossing fromweff > −1 toweff < −1 can happen in
this situation. Figure 3 presents parametric plots of the weff , q, t diagram for various
k values. From the figure, we see the locus in Eq. (28) where weff blows up. In the
parametric plots, the value ofweff at any instance can be obtained if we know the value
of q. We need to know q from observation in order to know the realistic value of weff
or the other way around. Figure 4 plotted from Eq. (27) setting ta = 1 and t = 0.7
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Fig. 3 Parametric plots of weff
for the expansion a ∼ (ta − t)q

in closed, flat and open universe.
Here ta is set to 1
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Fig. 4 weff for the expansion
a ∼ (ta − t)q in closed, flat and
open universe. Here ta is set to 1
and t is 0.7

weff k = +1

q

weff

weff

k = 0

q

weff

weff

k = -1

q

weff

weff

weff
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shows that if k = ±1, q could be negative, i.e. phantom accelerated expansion, even
when weff > −1. Regardless of ta and t ,

lim
q→−∞weff(q) = −1 and lim

q→+∞weff(q) = −1

3
, (32)

for phantom expansion. In particular, for k = −1, weff > 0 could give q < 0 andweff
is infinite when ln q/ ln (ta − t)+ q = 1 (see Eq. (28)).

5 Scalar field exact solution

5.1 Bound value of φ(t) from effective equation of state for k = 0 case

In flat universe, the phantom expansion occurs when weff < −1. Using Eqs. (4) and
(5) in Eq. (1), we get a bound

εφ̇2 < −n

3
ργ . (33)

Assuming a(t) = (ta − t)q and phantom scalar field, i.e. ε = −1 with using Eq. (3),
the solution is found to be in the region,

φ(t) >
1

β

√
Dn

3
(ta − t)−β + φ0. (34)

where β ≡ (qn − 2)/2.

5.2 Solution solved from Friedmann equation

5.2.1 Scalar field potential in flat and scalar field dominated case

A simplest case for analysis is when considering flat universe (k = 0) with negligible
amount of barotropic fluid (D = 0). The Eq. (23) is hence simply integrated out. The
solution is

φ(t) = ± 1

κ

√
2q

ε
ln(ta − t) + φ0 (35)

Insert this result into Eq. (26), we obtain the scalar field potential,

V (φ) = q(3q − 1)

κ2 exp

{

±κ
√

2ε

q
[φ(t)− φ0]

}

. (36)

The solutions above are real only when q and ε have the same sign, i.e. when
ε = 1, q > 0 and ε = −1, q < 0. This looks similar to potential that gives power-law
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expansion as well-known [75]. It is not surprised since in our case (q < 0) it has
been known that phantom field, when rolling up the hill of slope-varying exponential
potential (varying q), results in phantom expansion a ∼ (ta − t)q [47–59].

5.2.2 Solution for k = 0, D �= 0 case

For the case k = 0 with D �= 0, the solution of Eq. (23) is

φ(t) = ± 1

qn − 2

√
2q

εκ2

×

⎧
⎪⎨

⎪⎩
ln

⎡

⎢
⎣

(ta − t)−qn+2

(
1 +√

1 − (nDκ2/6q)(ta − t)−qn+2
)2

⎤

⎥
⎦

+ 2

√

1 − nDκ2(ta − t)−qn+2

6q
+ ln

(−nDκ2

6q

)
⎫
⎬

⎭
+ φ0 , (37)

which is infinite when q = 2/n. The last logarithmic term in the bracket is an inte-
grating constant. Logarithmic function is valid only when q < 0.

5.2.3 Solution for k �= 0, D = 0 case

For the reverse case, k �= 0, D = 0, the solution is

φ(t) = ± 1

q − 1

√
2q

εκ2

×
{

ln

[
(ta − t)q−1

√
k/q

(

1 +
√(

k

q

)
(ta − t)−2q+2 + 1

)]

−
√(

k

q

)
(ta − t)−2q+2 + 1

}

+ φ0 , (38)

which becomes infinite when q = 1. The values q and ε must have the same sign for
it to be real-value function. The case k �= 0 with D �= 0 can not be found analytically
except when setting n = 2 (wγ = −1/3) which is not natural fluid.

5.3 Solution solved with NLS-type formulation

One can obtain exact solution of Eq. (23) indirectly via NLS-type formulation. Con-
sider Eq. (25), we notice that setting D = 0 does not make sense in NLS-formulation
since even D vanishes, n (barotropic fluid parameter) still appears in other terms.
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Therefore we can only consider non-zero D case. Assuming k = 0 with D �= 0 and
using Eq. (25) in Eq. (17), the solution is

ψ(x) = ±
√

8q

εκ2(qn − 2)2

×
⎧
⎨

⎩
−
√

1 −
[
κ2 Dn(qn − 2)2

24q
(x − x0)2

]

+ ln

⎡

⎣
1 +

√
1 − [

κ2 Dn(qn − 2)2/24q
]
(x − x0)2

(x − x0)

4qn

ε(qn − 2)2

⎤

⎦

⎫
⎬

⎭
.

(39)

Transforming to t variable using Eq. (20),

φ(t) = ± 1

qn − 2

√
2q

εκ2

×

⎧
⎪⎨

⎪⎩
ln

⎡

⎢
⎣

(ta − t)−qn+2

(
1 +√

1 − (nDκ2/6q)(ta − t)−qn+2
)2

⎤

⎥
⎦

+ 2

√

1 − nDκ2(ta − t)−qn+2

6q
+ ln

(
qn − 2

2qn

)2
⎫
⎬

⎭
+ φ0. (40)

The only difference from the solution (37) obtained from standard method is the
logarithmic integrating constant term in the bracket. In case of k �= 0 with D �= 0, the
integral (17) can not be integrated analytically even when assuming n value except
for n = 2 which is integrable. However n = 2 is not natural fluid. This is similar to
using standard method in Sect. 5.2.3.

6 Conclusions

We consider a system of FLRW cosmology of scalar field and barotropic fluid assuming
phantom acceleration. We have worked out cosmological quantities in the NLS-for-
mulation of the system for flat and non-flat curvature. The Schrödinger wave functions
are illustrated in Fig. 1 for various types of barotropic fluid. These wave functions are
non-normalizable. We show Schrödinger potential plots for dust and radiation cases in
closed, flat and open universe. The procedure considered here is reverse to a problem
solving in quantum mechanics in which the Schrödinger potential must be known
before solving for wave function. In NLS formulation, the Schrödinger equation is
non-linear (reducible to linear in some cases) and the wave function is expressed first
by the expansion function, a(t). Afterward the Schrödinger potential is worked out
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based on expansion function assumed. Moreover, the NLS total energy E is negative
(see Eq. (12)). We also perform analysis on effective equation of state. We expresses
weff in term of q and k. In a non-flat universe, there is no fixedweff value for a phantom
divide. We show this by analyzing Eq. (27) and by presenting illustrations in Figs. 3
and 4. In these plots, evenweff > −1, the expansion can still be phantom, i.e. q can be
negative. Especially, in k = −1 case, positive weff could also give q < 0. The value
of weff approaches -1 when q → −∞ and −1/3 when q → +∞. In open universe,
weff blows up when ln q/ ln (ta − t)+ q = 1.

The last part of this work is to solve for scalar field exact solution for phantom
expansion. Within framework of the standard Friedmann formulation, we obtained
exact solution in simplest case where scalar field is dominated in flat universe. Apart
from that we also obtained exact solutions in the cases of non-flat universe with scalar
field domination and flat universe with mixture of barotropic fluid and scalar field.
Afterward, we use NLS formulation, in which the wave function is equivalent to the
scalar field exact solution, to solve for the exact solutions. We can apply the NLS
method to solve for the solution only when the barotropic fluid density is non-negligi-
ble. Setting D = 0 in NLS framework is not sensible because even if D term vanishes,
the barotropic fluid parameter n still appears in other terms of the wave function. This
is a disadvantage point of the NLS formulation.

Transforming standard Friedmann formulation to NLS formulation renders a few
effects to the integration. In standard form (Eq. (23)), n appears in only D-term and
all terms are t-dependent. In NLS-form (Eq. (25) when inserted in Eq. (17)), D-term
becomes a constant (E), hence the number of x(or equivalently t)-dependent terms
is reduced by one. This is a good aspect of the NLS. In both Friedmann-form and
NLS-form, the solutions when k �= 0 and D �= 0 are difficult or might be impossi-
ble to integrate unless assuming values of q and n. Therefore reduction number of
x-dependent term helps simplifying the integration.
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