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A systematic analysis of the massless fields in the mass spectra of bosonic strings is carried in arbitrary
spacetime dimension D > 2. The emphasis is put on the derivations of their propagators, their polarization
aspects and the underlying constraints involved. The treatment is given, in the presence of external sources,
in the celebrated Coulomb gauge for the second rank tensors and vector fields, which ensures positivity - a
result which is also established in the process. No constraints are imposed on the external sources so that
their components may be varied independently generating complete expressions for the propagators. This
latter condition is an important one in the generation of dynamical theories with constraints involving such
modifications as Faddeev-Popov factors.
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1 Introduction

What is remarkable about string theory is that the fundamental fields that are required to describe the
dynamics of elementary particles arise naturally in the mass spectra of oscillating strings and are not, a
priori, assumed to exist or put in by hand in the the underlying theories. At present only the massless
fields string modes are really physically relevant because of the enormous masses of the massive fields
string-excitation modes. A massless vector field, for example, may be thought to acquire mass by some
mechanism such as, for example, from open strings whose end points are attached to different branes or
by some other means such as the Higgs mechanism. In this paper, we are interested in all the massless
fields excitations of bosonic strings. The massless fields in question are: the second rank symmetric tensor
field, the second-rank anti-symmetric tensor field, the vector field and the scalar one (c.f. [1–3]) which
arise in the mass spectra of oscillating bosonic strings in D = 26 dimensional spacetime. The second rank
symmetric tensor field is associated with the graviton and the scalar one with the dilaton which is thought
to provide a coupling strength in string theory through its vacuum expectation value. We are interested
in dynamical aspects of these fields. To this end, we are concerned about underlying constraints and the
explicit expressions of their propagators. We set the dimension of spacetime arbitrarily to D > 2. We work
in the celebrated Coulomb gauge, as applied to the second rank tensors and vector fields, which ensures
positivity of the formalism as will be established in each case. For earlier four-dimensional studies of the
massless symmetric second rank tensor, c.f [4], and for the anti-symmetric one, c.f. [5–7]. Our analysis,
however, is involved with dynamical aspects by deriving expressions of the underlying propagators, as just
mentioned, and obtain the basic polarization aspects of the fields and the inherit degrees of freedom in ar-
bitrary dimensional spacetime D > 2. Quite importantly, the fields are coupled to non-constrained external
sources so that each of their components may be varied independently and thus the complete expressions
of the propagators are obtained. Also the variations of each of the components of external sources is neces-
sary in describing full field theory interactions, such as deriving Faddeev-Popov factors. A fairly detailed
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2 E. B. Manoukian: All the fundamental massless fields in bosonic string theory

demonstration of the importance of varying the components of the external sources independently with ap-
plications to gauge theories is given in Sect. 3 of [4] for the convenience of the reader. In the present work,
the scalar field presents no challenge and nothing new emerges about it here. The vector field is relatively
simpler to analyze than the second rank tensor cases, but we provide a detailed analysis for it to set up the
formalism involved in our analysis, and we also need aspects of its underlying polarization vectors for the
other cases. This is given in Sect. 2. Sections 3 and 4 constitute the main contribution of this paper dealing,
in turn, with the symmetric and anti-symmetric tensor field cases, respectively. The Minkowski metric is
defined by [ημν ] = diag[−1, 1, . . . , 1], the Greek indices μ, ν, . . . go over 0, 1, . . . , D − 1, while the Latin
ones i, j, . . . go over 1, . . . , D − 1.

2 Vector field

The Lagrangian density of a massless vector field Aμ, may be defined by

L = − 1
4
FμνFμν , Fμν(x) = ∂μAν(x) − ∂νAμ(x). (1)

It is invariant under the gauge transformation Aμ → Aμ + ∂μΛ. We work in the Coulomb gauge

∂iAi = 0, (2)

with a summation over i is understood as a repeated index.
We add an external source contribution to (1), obtaining

L = − 1
4
FμνFμν + JμAμ. (3)

Quite generally, we may write

Aμ = −A0 ημ0 + ημiAj . (4)

Due to the constraint in (2), one cannot vary the components of Aj independently. We may, however,
introduce a field with components Ai that may be varied independently and set

Ai(x) = πijAj(x), (5)

where

πij =
(
δij − ∂i∂j

∂k∂k

)
, (6)

satisfying the identities

πij = πji, ∂iπ
ij = 0, πij∂j = 0, πijπjk = πik, (7)

operating as a projection operator.
Upon varying A0, Aj the Lagrangian density (3) leads to

− ∂μ∂μ Ai =
(
δij − ∂i∂j

∂k∂k

)
Jj , (8)

− ∂k∂k A0 = J0. (9)

Clearly only the Ai may propagate. Since no constraints were imposed on Jμ(x), we may vary its
components independently. Upon taking the vacuum expectation values 〈0−| . |0+〉 of (8), (9), setting
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〈0+|Aμ(x)|0−〉 = (−iδ/δJμ(x))〈0+|0−〉, and integrating with respect to the source components, we
obtain

〈0+|0−〉 = exp[
i
2

∫
(dx)(dx′)Jμ(x)Δμν

+ (x − x′)Jν(x′)], (10)

where

Δμν
+ (x − x′) =

∫
(dp)

(2π)D
eip(x−x′) Δμν

+ (p), (11)

and Δ0i
+ = Δi0

+ = 0,

Δ00
+ (p) =

1
|p|2 , (12)

Δij
+ =

1
p2 − iε

πij , ε → + 0, (13)

where now

πij = δij − pipj

|p|2 . (14)

Let e1, ..., eD−2, p/|p|, be D−1 mutually pairwise orthonormal vectors spanning a (D−1) Euclidean
space, i.e.,

δij =
pi

|p|
pi

|p| +
D−2∑
λ=1

ei
λ ej

λ, (15)

from which

πij =
D−2∑
λ=1

ei
λ ej

λ. (16)

Clearly, Δ00
+ (p) gives rise to a phase to 〈0+|0−〉. Upon using the identity

i
[ 1

p2 − iε
− 1

p2 + iε

]
= − π

|p| [ δ(p
0 − |p|) + δ(p0 + |p|) ], (17)

and (12)-(16), we obtain for the vacuum persistence probability

|〈0+|0−〉|2 = exp[−
∫ D−2∑

λ=1

dD−1p
2|p|(2π)D−1

|J(λ, p)|2] < 1, (18)

establishing the positivity of the formalism, where

J(λ, p) = J i(p) εi
λ, p0 = +|p|. (19)

The number of independent polarization states may be obtained from (16) to be

D−2∑
λ=1

ei
λ ei

λ = πii = δii − 1 = D − 2. (20)
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3 Symmetric traceless second rank tensor field

The Lagrangian density of a massless symmetric tensor field is given by (c.f. [8])

L = − 1
2

∂σhμν ∂σhμν + ∂μhμν∂σhσ
ν − ∂σhσμ∂μh +

1
2

∂μh ∂μh, (21)

where h = hμ
μ, hμν = hνμ. It is invariant under the gauge transformation

hμν → hμν + ∂μΛν + ∂νΛμ, (22)

up to a total derivative. We work in the Coulomb-like gauge

∂ihiν = 0, (23)

with a sum over i.
We add an external source contribution to the Lagrangian density in (21) to obtain

L = − 1
2

∂σhμν ∂σhμν + ∂μhμν∂σhσ
ν − ∂σhσμ∂μh +

1
2

∂μh ∂μh + T μνhμν . (24)

We may write

hμν = ημiηνjhij − (ημ0ηνi + ημiην0)h0i + ημ0ην0h00. (25)

Due to the constraint in (23), the components hij , h0i, cannot be varied independently. We can, however,
introduce fields Hk�, φj , whose components may be varied independently, and set

hij =
1
2
(πikπj� + πi�πjk)Hh�, (26)

h0i = πijφj , (27)

with πij defined in (6). The variations of the fields φj , h00, Hk�, lead from the Lagrangian density (24),
after some labor, to

hii = − 1
∂k∂k

T 00, h00 = − 1
(D−2) ∂k∂k

[
(D−3)

∂2

∂�∂�
T 00 + πijT ij

]
, (28)

h0i = − 1
∂�∂�

πikT 0k, πij =
(
δij − ∂i∂j

∂k∂k

)
, (29)

− ∂2hij =
1

D−2

[D−2
2

(πikπjl + πilπjk) − πijπkl
]
T kl +

1
D−2

πij ∂2

∂k∂k
T 00, (30)

recalling that δi
i = D − 1, ∂2 = ∂μ∂μ. Clearly, only hij may propagate. We note that if constraints

are imposed on the external sources on the right-hand of these equations, the complete expression of the
propagator in question would not follow. Since no constraints were imposed on T μν(x), we may vary its
components independently. Upon taking the vacuum expectation values 〈0−| . |0+〉 of (29), (30), setting
〈0+|hμν(x)|0−〉 = (−iδ/δTμν(x))〈0+|0−〉, and integrating with respect to the source components, we
obtain

〈0+|0−〉 = exp
[

i
2

∫
(dx)(dx′)Tμν(x)Δμν,λσ

+ (x − x′)Tλσ(x′)
]

, (31)

where

Δμν,λσ
+ (x − x′) =

∫
(dp)

(2π)D
eip(x−x′) Δμν,λσ

+ (p), (32)
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Δ00,00
+ (p) =

D − 3
D − 2

(p2)
|p|4 , p2 = |p|2 − (p0)2, (33)

Δ00,ij
+ (p) =

2
D − 2

1
|p|2 πij , Δ00,0i

+ = Δ0i,00
+ = 0, (34)

Δ0i,0k
+ (p) = − 1

|p|2 πik, (35)

Δij,k�
+ =

1
p2 − iε

1
D − 2

[D − 2
2

(πikπj� + πi�πjk) − πijπk�
]
, ε → +0, (36)

Δij,00
+ (p) =

2
D − 2

πij 1
|p|2 , (37)

and πij is given in (14).

Clearly, Δ00
+ (p), Δ0i,0k

+ (p), Δij,00
+ (p), Δ00,ij

+ (p), provide phase factors to 〈0+|0−〉. We use the com-
pleteness relation in (15), the identity in (16), and the following identity

1
D − 2

[D − 2
2

(πikπj� + πi�πjk) − πijπk�
]

=
D−2∑

λ,λ′=1

εij(λ, λ′) εk�(λ, λ′), (38)

where

εij(λ, λ′) =
1

D − 2

[D − 2
2

(ei
λ ej

λ′ + ei
λ′ ej

λ) − δλ,λ′

D−2∑
κ=1

ei
κ ej

κ

]
, (39)

obtained after a few steps. Finally the identity in (17) gives for the vacuum persistence probability the
expression

|〈0+|0−〉|2 = exp[−
∫ D−2∑

λ,λ′=1

dD−1p
2|p|(2π)D−1

|T (λ, λ′, p)|2] < 1, (40)

establishing the positivity of the formalism, and where

T (λ, λ′, p) = T ij(p) εij(λ, λ′), p0 = +|p|. (41)

The number of independent polarization states is obtained from the identity (38) and is worked out as
follows:

D−2∑
λ,λ′=1

εij(λ, λ′) εij(λ, λ′) =
1

D − 2

[D − 2
2

(πiiπjj + πijπji) − πijπij
]

=
1
2

D(D − 3), (42)

where we have used the set of equalities on the right-hand side of (20), and

πij πij = πijδij = D − 2. (43)
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4 Anti-symmetric second rank tensor field

Consider an anti-symmetric tensor field Cμν = −Cνμ, and introduce the tensor field

Fμνσ = ∂μCνσ + ∂σCμν + ∂νCσμ, (44)

defined as a cyclic permutation of the indices. We define the Lagrangian density

L = − 1
6

FμνσFμνσ . (45)

The Lagrangian density is invariant under the gauge transformation

Cμν → Cμν + ∂μΛν − ∂νΛμ. (46)

We work in the Coulomb-like gauge

∂iC
iν = 0, (47)

with a sum over i.
We add an external source contribution to the Lagrangian density in (45) to obtain

L = − 1
6

FμνσFμνσ + FμνσJμνσ . (48)

up to an overall multiplicative dimensional constant. We may write

Cμν = ημiηνjCij − (ημ0ηνi − ημiην0)C0i. (49)

Due to the constraint in (47), one cannot vary all the components of Ciν independently, we can, however,
introduce fields with component χkl, ϕj , that may be varied independently, and set

Cij =
1
2

(πikπjl − πilπjk)χkl, C0i = πijϕj , πij = δij − ∂i∂j

∂k∂k
. (50)

The variations of the components χkl, ϕj , lead from the Lagrangian density in (48) to

− ∂k∂k C0i = πij J0j , (51)

− ∂2 Cij =
1
2

(πikπjl − πilπjk)Jkl. (52)

Clearly, only Cij may propagate. Again if a constraint is imposed on the external source on the right-
hand sides of these equations, such as a transversality condition ∂iJ

ij = 0, the complete expression of
the propagator in question would not follow. Upon taking the vacuum expectation values 〈0−| . |0+〉 of
(51), (52), setting 〈0+|Cμν(x)|0−〉 = (−iδ/δJμν(x))〈0+|0−〉, and integrating with respect to the source
components, we obtain

〈0+|0−〉 = exp[
i
2

∫
(dx)(dx′)Jμν(x)Δ̃μν,λσ

+ (x − x′)Jλσ(x′)] (53)

where

Δ̃μν,σλ
+ (x − x′) =

∫
(dp)

(2π)D
eip(x−x′) Δ̃μν,σλ

+ (p), (54)
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Δ̃00,00
+ = 0 = Δ̃00,0i

+ = Δ̃0i,00
+ = Δ̃ij,00

+ ,

Δ̃0i,0j
+ (p) = − 1

|p|2 πij , (55)

Δ̃ij,k�
+ (p) =

1
p2 − iε

(πikπj� − πi�πjk)
2

, ε → + 0. (56)

Clearly, Δ̃0i,0j
+ (p) gives rise to a phase factor to 〈0+|0−〉.

Upon using the identity

(πikπj� − πi�πjk)
2

=
D−2∑

λ,λ′=1

εij(λ, λ′)εk�(λ, λ′), (57)

where now

εij(λ, λ′) =
1
2

(ei
λej

λ′ − ei
λ′e

j
λ), (58)

the vacuum persistence probability emerges as

|〈0+|0−〉|2 = exp[−
∫ D−2∑

λ,λ′=1

dD−1p
2|p|(2π)D−1

|J(λ, λ′, p)|2] < 1, (59)

with

J(λ, λ′, p) = J ij(p) εij(λ, λ′), p0 = |p|, (60)

establishing the positivity of the formalism, except now for the number of independent polarization states,
we obtain

D−2∑
λ,λ′=1

εij(λ, λ′) εij(λ, λ′) =
1
2

[
πiiπjj − πijπji

]
=

1
2
(D − 2)(D − 3). (61)

5 Conclusion

Detailed analysis of the massless fields of string theory was carried out in arbitrary dimensions of spacetime
D(> 2). We have worked in the celebrated Coulomb gauge, ensuring positivity, and no constraints were
imposed on the external sources thus generating the complete expressions for the corresponding propaga-
tors. Much emphasis was put on polarization aspects of the fields, and the number of independent degrees
of freedom naturally followed. It is interesting to note that for D = 4, we recover our earlier expression
of the graviton propagator derived in [4] by much more involved and a lengthy method. The importance of
such propagators and their polarization aspects are expected to be useful in finding connections between
string theory and field theory for computations and for the generation of non-trivial effective actions. These
points will be taken up in subsequent reports, as well as the investigation of the massless fields in super-
string theory.
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