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A systematic analysis of all the massless bosonic fields in superstring theory is carried out. Emphasis is put
on the derivation of their propagators, their polarization aspects and the investigation of their underlying
constraints as well as their number of degrees of freedom. The treatment is given in the presence of external
sources, in the celebrated Coulomb gauge, ensuring the positivity of the formalism - a result which is also
established in the process. The challenge here is the investigation involved in the self-dual fourth rank anti-
symmetric tensor field. No constraints are imposed on the external sources so that their components may be
varied independently, thus the complete expressions of the propagators may be obtained. As emphasized in
our earlier work, the latter condition is an important one in dynamical theories with constraints giving rise
to modifications as Faddeev-Popov factors. The analysis is carried out in 10 dimensions, not only because
of the consistency requirement by the superstrings, but also in order to take into account of the self-duality
character of the fourth rank anti-symmetric tensor field as spelled out in the paper.
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1 Introduction

As we have pointed out in our earlier investigation [1], what is remarkable about string theory is that
the fundamental fields that are required to describe the dynamics of elementary particles arise naturally
in the mass spectra of oscillating springs and are not, a priori, assumed to exist or put in by hand in the
underlying theories. String theory also generates some novel fields such as an anti-symmetric fourth rank
massless tensor field as arising in the mass spectra of some superstring theories. Such anti-symmetric fields
have been important in providing a hint of the existence of branes, as extended objects, with which such
fields may interact. At present only the massless fields string modes are really physically relevant because
of the enormous masses of the massive fields string-excitation modes. A massless vector field, for exam-
ple, may be thought to acquire mass by some mechanism such as, for example, from open strings whose
end points are attached to different branes and by acquiring any additional degree of freedom from the
massless scalar field modes excitations. In this paper, we are interested in all the massless bosonic field
excitations in superstring theory (c.f. [2–4]). These are: an anti-symmetric fourth rank self dual tensor
field, anti-symmetric third and second rank tensor fields, a symmetric traceless second rank tensor field,
a vector field, and finally, a scalar field. In the present work, as in the earlier one in [1], the scalar field
presents no challenge and nothing new emerges about it here. We work in 10 dimensions, not only because
this is the consistency condition emerging from superstring theory, but also there is a strict self-duality
condition that is satisfied by the fourth rank anti-symmetric tensor field. This will be spelled out below.
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Our earlier analysis in [1] of the vector field, the symmetric traceless second rank tensor field, the second
rank anti-symmetric tensor field were all investigated in arbitrary dimensions D > 2. Accordingly, there
is no need to repeat their underlying analyses here. For details concerning these three massless fields, we
refer the reader to [1].

Light-cone variables may be defined as follows: x± = (x0±x9)/
√

2, xa, a = 1, . . . , 8. The coordinates
xa, a = 1, . . . , 8 are sometimes referred to as transverse variables. The self-duality constraint of the fourth
rank anti-symmetric tensor field Aμνσρ may be then defined by

1
4!

εabcda′b′c′d′
Aa′b′c′d′

= Aabcd, (1)

giving restrictions between its various components. This constraint must be properly implemented in its
underlying analysis. Here εabcda′b′c′d′

is totally anti-symmetric with ε12345678 = +1. We are interested in
dynamical aspects of these fields. To this end, we are concerned about underlying constraints, the explicit
expressions of their propagators, their polarization states and their inherit degrees of freedom. We work
in the celebrated Coulomb gauge, which ensures the positivity of the formalism as will be established in
each case. The fields are coupled to non-constrained external sources so that each of their components
may be varied independently thus generating the complete expressions of the propagators. As emphasized
in [5], the variations of each of the components of external sources is necessary in describing full field
theory interactions, such as deriving Faddeev-Popov factors. A detailed demonstration of the importance
of varying the components of the external sources independently with applications to gauge theories is
given in Sect.3 of [5] for the convenience of the reader. The third rank anti-symmetric field is treated
next in Sect.2, followed by the more difficult one of the fourth rank anti-symmetric tensor field in Sect.3.
The Greek indices μ, ν, σ, . . . go over 0, 1, . . . , 9, while the Latin indices, in the middle of the alphabet,
i, j, k, . . . go over 1, 2, . . . , 9, and finally Latin indices, in the beginning of the alphabet, a, b, c, . . . go over
1, 2, . . . , 8. Our metric is [ημν ] = diag[−1, 1, . . . , 1]. A summation over repeated indices is understood
throughout.

2 Third rank anti-symmetric tensor field

The Lagrangian density of a third rank massless anti-symmetric tensor field Aμνσ , may be be defined by

L = − 1
8

FμνσλFμνσλ, (2)

where Fμνσλ is totally anti-symmetric and is given by

Fμνσλ = ∂μAνσλ − ∂νAσλμ + ∂σAλμν − ∂λAμνσ, (3)

defined as a cyclic permutation. The Lagrangian density is invariant under the gauge transformation

Aμνσ → Aμνσ + ∂μϕνσ + ∂νϕσμ + ∂σϕμν . (4)

We work in a Coulomb-like gauge

∂iA
ijk = 0, ∂iA

0ij = 0, (5)

and similarly defined with respect to the indices j, k.
We add a source contribution to (2), obtaining

L = − 1
8

FμνσλFμνσλ + AμνσJμνσ, (6)
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where no constraints are imposed on the external source Jμνσ so we may vary its components indepen-
dently. Due to the constraints in (5), one cannot vary the components of Aijk , as well as the components of
A0jk , independently. We may, however, introduce a field Aijk that may be varied independently, and set

Aijk = πi
[i′π

j
j′π

k
k′] Ai′j′k′

, πij = δij − ∂i∂j

∂2 , (7)

and the square brackets in πi
[i′π

j
j′π

k
k′], means an anti-symmetrization over the indices i′, j′, k′. Similarly,

we may introduce a field Ajk , and set

A0jk = πj
[j′π

k
k′ ] Aj′k′

. (8)

By varying the Lagrangian density in (6) with respect to Aijk , and Ajk , we obtain

∂2Aijk = −πi
[i′π

j
j′π

k
k′] J

i′j′k′
, (9)

∂2A0jk = −πj
[j′π

k
k′ ] J

0j′k′
. (10)

Clearly, only Aijk may propagate.
We note from the right-hand side of (9), that if a constraint is imposed on the source J ijk , the complete

expression for the propagator does not follow. Upon equating the expectation value 〈0+|Aijk(x)|0−〉 and
(−i)δ/δJ ijk(x)〈0+|0−〉, and similarly carrying out for 〈0+|A0jkl(x)|0−〉, and integrating with respect to
the source components, we obtain

〈0+|0−〉 = exp
[
+

i
2

∫
(dx)(dx′)Jμνσ(x)Δμνσ,μ′ν′σ′

+ (x − x′)Jμ′ν′σ′(x′)
]

, (11)

and in the momentum description,

Δ0jk,0j′k′
+ (p) =

πj
[j′π

k
k′]

p2
, πij = δij − pipj

p2
, (12)

Δijk,i′j′k′
+ (p) =

πi
[i′π

j
j′π

k
k′ ]

p2 − iε
, (13)

and Δ0ij,i′j′k′
+ (p) = 0, Δijk,0j′k′

+ (p) = 0. Clearly, Δ0jk,0j′k′
+ (p) contributes only a phase factor to

〈0+|0−〉.
Upon introducing the completeness relation

πij =
8∑

a=1

ei
a ej

a, (14)

in terms of polarization vectors ei
a, where piei

a = 0, ei
a1

ei
a2

= δa1a2 , we may, after some grouping of the
polarization vectors, re-write

πi
[i′π

j
j′π

k
k′] = ei

[a1
ej

a2
ek

a3]
ei′
[a1

ej′
a2

ek′
a3]

. (15)

This suggests to introduce the polarizations

ei
[a1

ej
a2

ek
a3]

≡ ei j k
a1a2a3

. (16)
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and define

J(a1a2a3) = J ijk ei j k
a1a2a3

. (17)

The vacuum persistence probability then emerges as

|〈0+|0−〉|2 = exp

⎡
⎣−

∫
d9p

2|p|(2π)9
( 8∑

a1,a2,a3=1

|J(a1a2a3)(p)|2
)⎤
⎦ < 1, p0 = |p|, (18)

establishing the positivity of the formalism. The number of degrees of freedom is obtained as follows,
giving

8∑
a1,a2,a3=1

ei j k
a1a2a3

ei j k
a1a2a3

=
1
3!

(
πiiπjjπkk − πijπijπkk − πiiπjkπkj + πijπjkπki − πikπjjπki + πikπjiπkj

)

=
1
6

(336) = 56 (19)

degrees of freedom.

3 Fourth rank anti-symmetric self-dual tensor field

The Lagrangian density of a fourth rank massless anti-symmetric tensor field Aμνσρ, may be defined by

L = − 1
10

FμνσλρFμνσλρ, (20)

where Fμνσλρ is totally anti-symmetric and is given by

Fμνσλρ = ∂μAνσλρ + ∂νAσλρμ + ∂σAλρμν + ∂λAρμνσ + ∂ρAμνσλ, (21)

defined as a cyclic permutation. The Lagrangian density is invariant under the gauge transformation

Aμνσρ → Aμνσρ + ∂μϕνσρ − ∂νϕσρμ + ∂σϕρμν − ∂ρϕμνσ . (22)

We work in a Coulomb-like gauge

∂iA
ijk� = 0, ∂iA

0ijk = 0, (23)

and similarly defined with respect to the indices j, k, �.
We add a source contribution to (20), obtaining

L = − 1
10

FμνσλρFμνσλρ + AμνσρJμνσρ, (24)

where no constraints are imposed on the external source Jμνσρ, so we may vary its components indepen-
dently. Due to the constraints in (23), one cannot vary the components of Aijk� , as well as the components
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of A0ijk , independently. We may, however, introduce a field Aijk� , that may be varied independently, and
set

Aijk� = Λi j k �
i′j′k′�′ Ai′j′k′�′ , (25)

where Λi j k �
i′j′k′�′ is totally anti-symmetric in the indices {i, j, k, �}, as well as as in the indices {i′, j′, k′, �′},

satisfying the following properties

Λi j k �
i′j′k′�′ = Λi′j′k′�′

i j k � , Λi j k �
i′j′k′�′Λ

i′ j′ k′ �′
i′′j′′k′′�′′ = Λi j k �

i′′j′′k′′�′′ , (26)

i.e., it is, in particular, a projection operator, and also satisfies orthogonality relations

∂iΛ
i j k �
i′j′k′�′ = 0 = Λi j k �

i′j′k′�′∂i, (27)

as well as in all of its indices j, k, �, i′, j′, k′, �′. We will explicitly construct this operator below. We will
see how the self-duality condition, spelled out below, may be also defined through this process. Similarly,
we may set

A0ijk = Λi j k
i′j′k′ Ai′j′k′

, (28)

where Λi j k
i′j′k′ is totally anti-symmetric in the indices {i, j, k}, as well as in the indices {i′, j′, k′}, and

satisfies the properties

Λi j k
i′j′k′ = Λi′j′k′

i j k , Λi j k
i′j′k′Λi′ j′ k′

i′′j′′k′′ = Λi j k
i′′j′′k′′ , (29)

i.e., it is, in particular, a projection operator, and also satisfies orthogonality relations

∂iΛ
i j k
i′j′k′ = 0 = Λi j k

i′j′k′∂i, (30)

as well as in all of its indices j, k, i′, j′, k′.
By using these properties, and varying the Lagrangian density in (24) with respect to the fields Aijk� ,

and Aijk , we obtain, after some labor, the equations

∂2Aijk� = −Λi j k �
i′j′k′�′ J i′j′k′�′ , (31)

∂2A0jk� = −Λj k �
j′k′�′ J0j′k′�′ . (32)

Clearly, only Aijk� may propagate.
By taking the vacuum expectation value 〈0+| . |0−〉 of (31), and carrying out a Fourier transform, gives

〈0+|Aijkl(x)|0−〉 =
∫

(dp)
(2π)10

1
p2 − iε

Λi j k �
i′j′k′�′ J i′j′k′�′(p) 〈0+|0−〉, (33)

and Λi j k�
i′j′k′�′ , may be explicitly given in terms of mutually orthonormal polarization vectors ei

a, piei
a = 0,

ei
aei

a′ = δaa′ , a, a′ = 1, . . . , 8, as follows

Λi j k �
i′j′k′�′ = ei

[a ej
b ek

c e�
d] Γ

a b c d
a′b′c′d′ ei′

[a′ ej′
b′ ek′

c′ e�′
d′], (34)
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where ei
[a ej

b ek
c e�

d] includes 4! = 24 terms, with the square brackets in [a b c d] defining an anti-symmetri-

zation over the indices a, b, c, d. Γa b c d
a′b′c′d′ is explicitly given by

Γa b c d
a′b′c′d′ =

1
2

(
δa
[a′ δb

b′ δc
c′ δd

d′] +
1
4!

εabcda′b′c′d′)
, (35)

where, we recall, εabcda′b′c′d′
is totally anti-symmetric with ε12345678 = +1. The following basic proper-

ties should be noted:

ei
[a ej

b ek
c e�

d] ei
[a′ ej

b′ ek
c′ e�

d′] = δa
[a′ δb

b′ δc
c′ δd

d′], (36)

pi Λi j k �
i′j′k′�′ = 0, (37)

and similarly defined with respect to the indices j, k, �, i′, j′, k′, l′,

Γa b c d
a′b′c′d′ Γa′ b′ c′ d′

a′′b′′c′′d′′ = Γa b c d
a′′b′′c′′d′′ , (38)

and most importantly,

1
4!

εabcda′b′c′d′
Γa′ b′ c′ d′

a′′b′′c′′d′′ = Γa b c d′
a′′b′′c′′d′′ . (39)

All the properties in (26), (27) are now verified.
Now we are ready to discuss the self-duality condition. To this end, the Fourier transform in (33) reads

〈0+|Aijkl(p)|0−〉 =
1

p2 − iε
Λi j k �

i′j′k′�′ J i′j′k′�′(p) 〈0+|0−〉. (40)

Consider the momentum p = (0, 0, . . . , 0, |p|) with non-zero at the 9th place. The polarization vectors
may be written as ei

a = δi
a, and we simply obtain

〈0+|Aabcd(p)|0−〉 =
1

p2 − iε
Γa b c d

a′b′c′d′ Ja′b′c′d′
(p) 〈0+|0−〉. (41)

The remarkable property in (39) gives rigorously,

1
4!

εabcda′b′c′d′ 〈0+|Aa′b′c′d′
(p)|0−〉 = 〈0+|Aabcd(p)|0−〉, (42)

thus satisfying the self-duality restriction. For example, this gives A1234 = + A5678, and for all disjoint
sets {a, b, c, d}, {a′, b′, c′, d′}, with unequal elements, Aabcd = ±Aa′b′c′d′

, where the signs are readily
determined.

We note from the right-hand side of (31), that if a constraint is imposed on the source J ijk� , the complete
expression for the propagator does not follow. Upon equating the expectation value 〈0+|Aijkl(x)|0−〉
and (−i) δ/δJ ijk�(x)〈0+|0−〉, and similarly carrying out this for 〈0+|A0jk�(x)|0−〉, and integrating with
respect to the source components, we obtain

〈0+|0−〉 = exp
[
+

i
2

∫
(dx)(dx′)Jμνσρ(x)Δμνσρ,μ′ν′σ′ρ′

+ (x − x′)Jμ′ν′σ′ρ′(x′)
]

, (43)
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Δ0ijk,0i′j′k′
+ (p) =

Λi j k
i′j′k′

p2
, Λi j k

i′j′k′ = ei
[a ej

b ek
c] ei′

[a ej′
b ek′

c] , (44)

Δijk�,i′j′k′�′
+ (p) =

Λi j k �
i′j′k′�′

p2 − iε
, (45)

with all the other components equal to zero, and where Λi j k �
i′j′k′�′ is defined in (34), (35). Clearly,

Δ0ijk,0i′j′k′
+ (p) gives rise to a phase factor to 〈0+|0−〉.
The property in (26), together with the one in (38), suggest to introduce the polarizations

ei
[a′ ej

b′ ek
c′ e�

d′] Γ
a′b′c′d′
a b c d ≡ eijk�

abcd, (46)

and set

eijk�
abcdJ

ijk� ≡ J (abcd). (47)

The vacuum persistence probability then emerges as

|〈0+|0−〉|2 = exp

⎡
⎣−

∫
d9p

2|p|(2π)9
( 8∑

a,b,c,d=1

|J (abcd)(p)|2
)⎤
⎦ < 1, p0 = |p|, (48)

establishing the positivity of the formalism.

The number of independent degrees of freedom may be obtained from the following, giving

8∑
a,b,c,d=1

eijk�
abcd eijk�

abcd = ei
[a′ ej

b′ ek
c′ e�

d′] Γ
a′b′c′d′
a b c d ei

[a′′ ej
b′′ ek

c′′ e�
d′′] Γ

a′′b′′c′′d′′
a b c d

= δa′
[a′′ δb′

b′′ δc′
c′′ δd′

d′′] Γ
a′′b′′c′′d′′
a′ b′ c′ d′

=
1
2

8∑
a,b,c,d=1

(
δa
[a δb

b δc
c δd

d] +
1
4!

δa′
[a′′ δb′

b′′ δc′
c′′ δd′

d′′] ε
a′b′c′d′a′′b′′c′′d′′)

=
1
2

8∑
a,b,c,d=1

(
δa
[a δb

b δc
c δd

d] + 0
)

=
1
2

(70) = 35 (49)

degrees of freedom, where we have used, in the process, the expression in (35), and inserted the summation
signs in the last steps to emphasize that we are summing over repeated indices. Finally, in the last step, we
have used the identity

8∑
a,b,c,d=1

δa
[a δb

b δc
c δd

d] = 70. (50)
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4 Conclusion

A systematic analysis of all the massless bosonic fields in superstring theory have been carried out. We have
worked out in the celebrated Coulomb gauge, ensuring positivity, paying special attention to constraints in
the theory, while imposing no constraints on the external sources thus generating the complete expressions
of the corresponding propagators. Much emphasis was put on polarization aspects of the fields, and the
number of independent degrees of freedom naturally followed. It remains to investigate all the massless
fermion fields in superstring theory. These require very special tools, beyond the scope of the present paper,
and will be given in a separate report. The importance of the underlying propagators and their polarization
aspects are expected to be useful in finding connections between string theory and field theory computa-
tions and for the generation of non-trivial effective actions. These points will be taken up in subsequent
reports as well.
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