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Abstract 

The Friedmann-Robertson-Walker universe containing non-relativistic matter and a canonical scalar 

field is considered here. We assumed scaling solution of a scalar field density and dust matter density, 

neglecting radiation components, so that we can obtain the corresponding scalar field potential, with 

attractor behaviors. Two cases of the potential occur. These are an exponential potential and a negative 

power-law potential. This work is a re-investigation of literatures by Liddle and Scherrer (1998) and 

Rubano and Barrow (2001). 
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Introduction 

 Our present universe is in an accelerating 

expansion phase of the cause is still unknown. Our 

existing physics is not sufficient to explain it. We 

describe it in form of dark energy [1]. There are 

several models of dark energy, such as cosmological 

constant and scalar field. The widely acceptable one is 

the dark energy in the form of a canonical scalar field 

because it can solve the fine-tuning problem [1] of the 

cosmological constant. The scalar field density    

can evolve in time. 

 In this work we assume scaling solutions [2,3] as 

which the scalar field energy and matter densities [3] 

decrease like an inverse power function of scale 

factor:
na

  and 
m

m a  . We find an exact 

form of the potential, the case where m n  is an 

exponential potential [5,6] and case n m  is 

produced by a negative power-law potential [6,7]. The 

exact solution at late time is also analyzed. 

Scaling solutions 

         A flat universe contains a homogeneous and 

isotropic barotropic perfect fluid and a scalar field  , 

with the potential ( )V  , energy density,  , and 

pressure p , therefore 
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where H is the Hubble parameter. Scalar field 

dynamics is governed by Eq. (3) and Eq. (4) is the 

total scalar field energy density. We has the equation 

of state ( 1)p    , which implies 

nKa
 , 

m

m Da  ,  (5) 

where m and n are exponents of the scale factor of 

matter (m  3) and of scalar field. We assume in first 

part of this paper that m   at earlier time. The 

constant D   and K are their density values at present 

time. We let n < m so that the scalar field can 

dominate at late time. From fluid equation, the field 

density rate of change is  

23H    .   (6) 

Dividing the fluid equation of the scalar field by   

hence / ( / )n a a       and 
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We see that for a scaling assumption, the ratio 

between the scalar field kinetic energy density and its 
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total energy density is constant. If the kinetic energy 

dominates, then 6n  or if the field kinetic term is 

negligible,  0n   and field density is constant. 

Hence scaling behavior for the scalar field energy 

density lies in a range, 0 6n  . 

Potential Construction 

With the scaling-solution assumed  and m , we 

substitute them into Friedmann equation. Let the 

perfect fluid with 
m

m a   dominate, then 

 

  
2/ma t .   (8) 

 

Hence, the fluid equation can be written as 

 

 
6 1 dV

m t d
 


     .  (9) 

Considering scaling behavior of  , substitute it into 

Eq. (7), therefore 

 

 
/n mAt  .   (10) 

 

When m n , solution of Eq. (10) is  

0ln( )A t   . Hence 0exp[( ) / ]t A   . 

Using Eq. (9), hence we obtain the field potential 
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where (2 / )A   and 
2 2(2 / ) ( / 2)A  . The 

potential has an exponential form as in [5] and can be 

comparable to the potential found in Lucchin and 

Matarrese [4], 
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as we express, 2 /  , 3 6 /p m  and 0 1t  . 

Note that   can be either positive or negative. 

 For the case m n , we integrate Eq. (10) to 

yield 
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The field acceleration is 
1 ( / )( / ) n mA n m t    . 

Substituting it into Eq. (9), one can find 
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The potential has a power-law form. The fact that 

n m  makes the exponent negative and the scalar 

field grows with time. 

 

Potential Reconstruction without Pre-

assumption of Perfect Fluid Domination at 

Early Time 

 

 It is possible to reconstruct the scalar field 

potential in the case of n < m.  We can find the 

constant D  from ,0 /m m c   . We used the 

present value of the scale factor 0 1a  and the 

present density parameter ,0m , we obtain 
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Since ,0 ,0 1m    , hence  
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From (7), we can directly write down  

  
2

3

nKn
a  .   (16) 

The time derivative of the field is 

 

  
d d
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We then have 
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Substituting m and  into the Friedmann equation, 

gives 

 

 2 2 2

0 ,0 0 ,0(1 )m n

m mH H a H a     .   (19) 

 

Substituting Eq. (19) and Eq. (16) into Eq. (18), we 

obtain 
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Integrating Eq. (20) yields 
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From Eq. (4), (15) and Eq. (16)  
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We substitute scale factor in Eq. (22), giving 

ultimately 
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The slope of potential for a tracker condition is  
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For the potential in Eq. (23), it is 
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When n = 6, the potential is zero. The slope and the 

amplitude of ( )V  is  - dependent. When different 

barotropic fluid dominates, potential acquires 

different slopes. We should include three fluids and 

the same time in the analysis. That is 
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which is not possible find the solution and 

analytically. One needs to employ numerical 

integration for the potential.  

 

  

Conclusions 
 

The cosmological density solutions are 

assumed here in such the way that the scalar field 

density scales with the barotropic density. Our 

demanded cosmic solution is that the scalar field must 

be sub-dominant at early time for structure to form 

and dominant at late time for describing late 

acceleration. The exact scalar field potentials are 

found analytically assuming barotropic density 

domination at early time. These are in form of 

exponential function and inverse-power law. The case 

when the assumption of early barotropic domination 

is turn off, the potential can be found analytically as 

function of observational parameters and of the field.  

If we consider more realistic situation of which there 

are dust and radiation in coexistence, the potential can 

not be found analytically as function of field but it 

needs to be done numerically. In this work, apart from 

reinvestigation of the work by [2] and [3], we correct 

typos of the results therein.   
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