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Abstract. The extended Galileon models possess tracker solutions with de Sitter attractors
along which the dark energy equation of state is constant during the matter-dominated epoch,
i.e. wDE = −1− s, where s is a positive constant. Even with this phantom equation of state
there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent.
Using the observational data of the supernovae type Ia, the cosmic microwave background
(CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at
the background level and find that the parameter s is constrained to be s = 0.034+0.327
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% CL) in the flat Universe. In order to break the degeneracy between the models we also
study the evolution of cosmological density perturbations relevant to the large-scale structure
(LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the
model parameters, the LSS and the ISW effect is either positively or negatively correlated.
It is then possible to constrain viable parameter spaces further from the observational data
of the ISW-LSS cross-correlation as well as from the matter power spectrum.
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1 Introduction

The main target of the dark energy research over the next few years or so is to distinguish
between the Λ-Cold-Dark-Matter (ΛCDM) model and dynamical models with time-varying
equations of state wDE. From the observational data of WMAP7 combined with baryon
acoustic oscillations (BAO) [1] and the Hubble constant measurement [2], Komatsu et al. [3]
derived the bound wDE = −1.10±0.14 (68 % CL) for the constant equation of state. Adding
the supernovae type Ia (SN Ia) data provides tighter constraints on wDE, but still the phan-
tom equation of state (wDE < −1) is allowed by the joint data analysis [3]. This property
persists for the time-varying dark energy equation of state with the parametrization such as
wDE = w0 + wa(1− a) [4], where a is the scale factor [5].

In the framework of General Relativity (GR) it is generally difficult to construct theo-
retically consistent models of dark energy which realize wDE < −1. In quintessence [6] with
a slowly varying scalar-field potential, for example, the field equation of state is always larger
than −1. A ghost field with a negative kinetic energy leads to wDE < −1 [7], but such a
field is plagued by a catastrophic instability of the vacuum associated with the spontaneous
creation of ghost and photon pairs [8].

In modified gravitational theories it is possible to realize wDE < −1 without having
ghosts and Laplacian-type instabilities (see refs. [9]). This property usually originates from
non-trivial couplings between the Ricci scalar R and a scalar degree of freedom. In f(R)
gravity, where the Lagrangian f is a function of R, the background equations in the Jordan
frame can be written as the forms analogous to those in Einstein gravity with additional
corrections coming from the modification of gravity [10, 11]. The dark energy equation of
state crosses the cosmological constant boundary (wDE = −1) [12–15] for the viable models
constructed to satisfy observational and experimental constraints [10, 12–14, 16].
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The crossing of wDE = −1 is also possible for Brans-Dicke (BD) theory [17] with a field
potential in which the field φ is directly coupled to R in the form φR. In fact, f(R) gravity
in the metric formalism corresponds to the special case of BD theory with the BD parameter
ωBD = −3/2 [18]. In such theory, as long as the field is sufficiently massive in the region
of high density, the chameleon mechanism [19] can be at work to suppress the propagation
of the fifth force because of the presence of the density-dependent matter coupling [20]. In
order for the same field to be responsible for dark energy (density ρDE ≈ 10−29 g/cm3), the
field mass mφ is required to be as small as the Hubble parameter today (H0). In modified
gravity models of dark energy based on the chameleon mechanism the effective potential of
a scalar degree of freedom needs to be carefully designed to pass both cosmological and local
gravity constraints [21].

There is another class of modified gravity models of dark energy in which a nonlinear
self-interaction of a scalar degree of freedom φ can lead to the recovery of GR in a local region
through the Vainshtein mechanism [22]. The representative models of this class are those
based on the Dvali-Gabadadze-Porrati (DGP) braneworld [23] and the Galileon gravity [24]
(see refs. [25–27] for the implementation of the Vainshtein mechanism in these models). The
nonlinear interaction of the form (∂φ)2�φ, which appears from the brane-bending mode
in the DGP model [25], gives rise to the field equation invariant under the Galilean shift
∂µφ → ∂µφ+ bµ in the flat spacetime. This was extended to more general field Lagrangians
satisfying the Galilean symmetry in the limit of the Minkowski spacetime [24, 28].

The cosmology based on the covariant Galileon or on its modified versions has been
studied by many authors [29, 30]. In refs. [31, 32] the dynamics of dark energy was investi-
gated in the presence of the full covariant Galileon Lagrangian. In this model the solutions
with different initial conditions converge to a common trajectory (tracker). Along the tracker
the dark energy equation of state wDE changes as −7/3 (radiation era) → −2 (matter era) →
−1 (de Sitter era) [31–34]. Even though wDE < −1, there exists a viable parameter space in
which the ghosts and Laplacian instabilities are absent. However, the joint analysis based on
the observational data of SN Ia, CMB, and BAO shows that the tracker solution is disfavored
because of the large deviation of wDE from −1 during the matter era [34, 35]. The solutions
that approach the tracker only at late times are allowed from the combined data analysis [35].

As an extension of the covariant Galileon model, Deffayet et al. [36] obtained the most
general Lagrangian in scalar-tensor theories with second-order equations of motion. In four
dimensions the corresponding Lagrangian is of the form (2.1) with the four functions (2.2)–
(2.5) given below. In fact this is equivalent to the Lagrangian found by Horndeski [37] more
than 3 decades ago [38, 39]. The conditions for the avoidance of ghosts and Laplacian insta-
bilities were recently derived in ref. [40] in the presence of two perfect fluids (non-relativistic
matter and radiation).

The covariant Galileon corresponds to the choice K = −c2X, G3 = c3X/M3, G4 =
M2

pl/2−c4X
2/M6, G5 = 3c5X

2/M9 in eqs. (2.2)–(2.5), where ci’s are dimensionless constants,
X = −∂µφ∂µφ/2, Mpl is the reduced Planck mass, and M is a constant having the dimension
of mass. Kimura and Yamamoto [34] studied the model with the functions K = −c2X,
G3 = c3M

1−4nXn (n ≥ 1), G4 = M2
pl/2, and G5 = 0, in which case the dark energy equation

of state during the matter era is given by wDE = −1 − s with s = 1/(2n − 1) > 0. At the
background level this is equivalent to the Dvali-Turner model [41], which can be consistent
with the observational data for n larger than the order of 1. If we consider the evolution of
cosmological perturbations, the LSS tends to be anti-correlated with the late-time ISW effect.
This places the tight bound on the power n, as n > 4.2×103 (95% CL) [42], in which case the
dark energy equation of state is practically indistinguishable from that in the ΛCDM model.

– 2 –
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In ref. [40] the present authors proposed more general extended Galileon models with

the functions K = −c2M
4(1−p2)
2 Xp2 , G3 = c3M

1−4p3
3 Xp3 , G4 = M2

pl/2 − c4M
2−4p4
4 Xp4 , and

G5 = 3c5M
−(1+4p5)
5 Xp5 , where the masses Mi’s are fixed by the Hubble parameter at the

late-time de Sitter solution with φ̇ =constant. For the powers p2 = p, p3 = p + (2q − 1)/2,
p4 = p+ 2q, p5 = p+ (6q − 1)/2, where p and q are positive constants, there exists a tracker
solution characterized by Hφ̇2q =constant. During the matter-dominated epoch one has
wDE = −1 − s, where s = p/(2q), along the tracker. This covers the model of Kimura and
Yamamoto [34] as a specific case (p = 1, q = n − 1/2, c4 = 0, c5 = 0). In the presence of
the nonlinear field self-interactions in G4 and G5, the degeneracy of the background tracker
solution for given values of p and q is broken by considering the evolution of cosmological
perturbations. Hence the ISW-LSS anti-correlation found in refs. [34, 42] for c4 = c5 = 0
should not be necessarily present for the models with non-zero values of c4 and c5.

In this paper we first place constraints on the tracker solution in the extended Galileon
models by using the recent observational data of SN Ia, CMB, and BAO. The bound on the
value s = p/(2q) is derived from the background cosmic expansion history with/without the
cosmic curvature K. We then study the evolution of cosmological density perturbations in
the presence of non-relativistic matter to break the degeneracy of the tracker solution at the
background level. We will show that the LSS and the ISW effect are either positively or
negatively correlated, depending on the parameters c4 and c5. This information should be
useful to distinguish between the extended Galileon models with different values of c4 and c5
from observations.

2 Background field equations

We start with the following Lagrangian

L =
5

∑

i=2

Li , (2.1)

where

L2 = K(X), (2.2)

L3 = −G3(X)�φ, (2.3)

L4 = G4(X)R+G4,X [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] , (2.4)

L5 = G5(X)Gµν (∇µ∇νφ)− (G5,X/6)[(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ)

+2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] . (2.5)

K and Gi (i = 3, 4, 5) are functions in terms of the field kinetic energy X = −gµν∂µφ∂νφ/2
with the metric gµν , R is the Ricci scalar, Gµν is the Einstein tensor, and Gi,X ≡ dGi/dX.
If we allow the φ-dependence for the functions K and Gi as well, the Lagrangian (2.1)
corresponds to the most general Lagrangian in scalar-tensor theories [36, 37]. In order to
discuss models relevant to dark energy we also take into account the perfect fluids of non-
relativistic matter and radiation minimally coupled to gravity (with the Lagrangians Lm and
Lr respectively), in which case the total 4-dimensional action is given by

S =

∫

d4x
√−g(L+ Lm + Lr) . (2.6)

– 3 –
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If matter is non-minimally coupled to the field φ through the coupling to the metric g̃µν =
A(φ)gµν , the Lagrangian (2.1) can still be written as the forms (2.2)–(2.5) in terms of g̃µν and
φ (which comes from the fact that the transformation gµν → A(φ)gµν does not give rise to
higher-order derivative terms). Hence it is enough to consider matter minimally coupled to φ.

In the following we focus on the extended Galileon models [40] in which K and Gi are
given by

K = −c2M
4(1−p2)
2 Xp2 , G3 = c3M

1−4p3
3 Xp3 ,

G4 = M2
pl/2− c4M

2−4p4
4 Xp4 , G5 = 3c5M

−(1+4p5)
5 Xp5 , (2.7)

where Mpl is the reduced Planck mass, ci and pi (i = 2, 3, 4, 5) are dimensionless constants,
and Mi (i = 2, 3, 4, 5) are constants having the dimension of mass. In the flat Universe it
was shown in ref. [40] that tracker solutions characterized by the condition Hφ̇2q = constant
(q > 0 and a dot represents a derivative with respect to cosmic time t) are present for

p2 = p , p3 = p+ (2q − 1)/2 , p4 = p+ 2q , p5 = p+ (6q − 1)/2 . (2.8)

The covariant Galileon [28] corresponds to p = 1 and q = 1/2, i.e. p2 = p3 = 1, p4 = p5 = 2.
We will extend the analysis to the general Friedmann-Lemâıtre-Robertson-Walker

(FLRW) background with the cosmic curvature K:

ds2 = −dt2 + a2(t)

[

dr2

1−Kr2
+ r2(dθ2 + sin2 θ dφ2)

]

, (2.9)

where a(t) is the scale factor. The closed, flat, and open geometries correspond to K > 0,
K = 0, and K < 0, respectively. For the theories given by the action (2.6) the dynamical
equations of motion are

3H2M2
pl = ρDE + ρm + ρr + ρK , (2.10)

(3H2 + 2Ḣ)M2
pl = −PDE − ρr/3 + ρK/3 , (2.11)

ρ̇m + 3Hρm = 0 , (2.12)

ρ̇r + 4Hρr = 0 , (2.13)

ρ̇K + 2HρK = 0 . (2.14)

Here H ≡ ȧ/a, ρK ≡ −3KM2
pl/a

2, ρm and ρr are the energy densities of non-relativistic
matter and radiation respectively, and

ρDE ≡ 2XK,X −K + 6Hφ̇XG3,X − 6H2G̃4 + 24H2X(G4,X +XG4,XX)

+2H3φ̇X(5G5,X + 2XG5,XX) , (2.15)

PDE ≡ K − 2Xφ̈G3,X + 2(3H2 + 2Ḣ)G̃4 − 4(3H2X +HẊ + 2ḢX)G4,X − 8HXẊG4,XX

−2X(2H3φ̇+ 2HḢφ̇+ 3H2φ̈)G5,X − 4H2X2φ̈ G5,XX , (2.16)

where G̃4 ≡ G4 −M2
pl/2 = −c4M

2−4p4
4 Xp4 .

From eqs. (2.10) and (2.11) we find that there exists a de Sitter solution characterized
by Ḣ = 0 and φ̈ = 0. In order to discuss the cosmological dynamics we introduce the
dimensionless variables [40]

r1 ≡
(xdS

x

)2q
(

HdS

H

)1+2q

, r2 ≡
[

(

x

xdS

)2 1

r31

]
p+2q

1+2q

, Ωr ≡
ρr

3H2M2
pl

, (2.17)

– 4 –
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where x ≡ φ̇/(HMpl), and the subscript “dS” represents the quantities at the de
Sitter solution. We relate the masses Mi (i = 2, · · · , 5) in eq. (2.7) with HdS, as
M2 ≡ (HdSMpl)

1/2, M3 ≡ (H−2p3
dS M1−2p3

pl )1/(1−4p3), M4 ≡ (H−2p4
dS M2−2p4

pl )1/(2−4p4), and

M5 ≡ (H2+2p5
dS M2p5−1

pl )1/(1+4p5). The existence of de Sitter solutions demands that the
coefficients c2 and c3 are related with c4 and c5, via

c2 =
3

2

(

2

x2dS

)p

(3α− 4β+2) , c3 =

√
2

2p+ q − 1

(

2

x2dS

)p+q

[3(p+ q)(α− β) + p] , (2.18)

where

α ≡ 4(2p4 − 1)

3

(

x2dS
2

)p4

c4 , β ≡ 2
√
2 p5

(

x2dS
2

)p5+1/2

c5 . (2.19)

The density parameter of dark energy, ΩDE ≡ ρDE/(3H
2M2

pl), can be expressed as

ΩDE=
r

p−1

2q+1

1
r2

2

[

r1
{

r1
[

12(α−β)(p+q)+4p−r1(2p−1)(3α−4β+2)
]

−3α(2p+4q+1)
}

+4β(p+3q+1)
]

.

(2.20)

From eq. (2.10) it follows that ΩDE + Ωm + Ωr + ΩK = 1, where Ωm ≡ ρm/(3H2M2
pl) and

ΩK ≡ ρK/(3H2M2
pl).

The autonomous equations for r1, r2, and Ωr are written in terms of r1, r2, Ωr, α, β,
p, q. As in the case of the flat Universe [40] one can show that there is a fixed point for the
differential equation of r1 characterized by

r1 = 1 , (2.21)

From the definition of r1 in eq. (2.17) this corresponds to the tracker solution where
Hφ̇2q =constant. Along the tracker the autonomous equations for r2 and Ωr are

r′2 =
(p+ 2q)(Ωr + 3− 3r2 − ΩK)

pr2 + 2q
r2 , (2.22)

Ω′
r =

2q(Ωr − 1− 3r2 − ΩK)− 4pr2
pr2 + 2q

Ωr , (2.23)

where a prime represents the derivative with respect to N = ln a. Combining these equations,
we obtain the integrated solution

r2 = c1a
4(1+s)Ω1+s

r , s =
p

2q
, (2.24)

where c1 is a constant. For the theoretical consistency the parameter s is positive [40]. Since
r2 ∝ H−2(1+s), the quantity r2 grows toward the value 1 at the de Sitter solution. Along the
tracker the density parameter (2.20) is given by

ΩDE = r2 =
1− Ωm,0 − Ωr,0 − ΩK,0

Ω1+s
r,0

e4(1+s)N Ω1+s
r , (2.25)

where the subscripts “0” represent the values today (the scale factor a0 = 1, i.e. N0 = ln a0 =
0). Using the relation ΩK/Ωr = (ΩK,0/Ωr,0)e

2N as well, eq. (2.23) reads

Ω′
r = −

1− Ωr +ΩK,0e
2N Ωr/Ωr,0 + (1− Ωm,0 − Ωr,0 − ΩK,0)(3 + 4s) e4(1+s)NΩ1+s

r /Ω1+s
r,0

1 + (1− Ωm,0 − Ωr,0 − ΩK,0)se4(1+s)NΩ1+s
r /Ω1+s

r,0

Ωr .

(2.26)
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Figure 1. Evolution of wDE versus the redshift z for the open Universe with ΩK,0 = 0.1 for p = 1,
q = 5/2, α = 3, β = 1.45. The solid curve corresponds to the tracker solution with the initial
conditions r1 = 1, r2 = 1.0 × 10−30, Ωr = 0.99987, ΩK = 4.0 × 10−12 at log10(z + 1) = 7.245. In
the cases (A) and (B) the initial conditions are chosen to be (A) r1 = 1.0 × 10−2, r2 = 1.0 × 10−23,
Ωr = 0.99985, ΩK = 5.0× 10−12 at log10(z + 1) = 7.210, and (B) r1 = 3.0× 10−6, r2 = 1.0× 10−10,
Ωr = 0.9998, ΩK = 1.15× 10−11 at log10(z + 1) = 6.967, respectively.

This equation can be solved as

1− Ωm,0 − Ωr,0 − ΩK,0

Ω1+s
r,0

e4(1+s)N Ω1+s
r +

Ωm,0

Ωr,0
eNΩr +Ωr +

ΩK,0

Ωr,0
e2N Ωr = 1 , (2.27)

which is nothing but the relation ΩDE+Ωm+Ωr +ΩK = 1. From eq. (2.25) the dark energy
density parameter evolves as ΩDE ∝ H−2(1+s) and hence

H

H0
=

(

ΩDE,0

ΩDE

)1/[2(1+s)]

. (2.28)

Since it is not generally possible to solve eq. (2.27) for Ωr in terms of N (apart from some
specific values of s such as s = 1), we numerically integrate eq. (2.26) and find the expression
of H/H0 by using eqs. (2.25) and (2.28).

Along the tracker the dark energy equation of state wDE ≡ PDE/ρDE and the effective
equation of state weff = −1− 2Ḣ/(3H2) are given by

wDE = −3 + s(3 + Ωr − ΩK)

3(1 + sr2)
, weff = −r2(3s+ 3− sΩK)− Ωr

3(1 + sr2)
. (2.29)

In the early cosmological epoch (r2 ≪ 1) these reduce to wDE ≃ −1 − s(3 + Ωr − ΩK)/3
and weff ≃ Ωr/3. During the matter era in which {Ωr, |ΩK |} ≪ 1 it follows that
wDE ≃ −1 − s < −1 (for s > 0) and weff ≃ 0. At the de Sitter fixed point (r2 = 1) with
Ωr = ΩK = 0 one has wDE = weff = −1. In figure 1 we plot the evolution of wDE versus

– 6 –
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the redshift z = a0/a − 1 in the open Universe with ΩK,0 = 0.1 for the model parameters
p = 1, q = 5/2, α = 3, β = 1.45 (i.e. s = 0.2). The tracker is shown as a solid curve, along
which wDE changes as −1.267 (radiation era) → −1.2 (matter era) → −1 (de Sitter era).
The effect of the cosmic curvature ΩK becomes important only for the late Universe, which
affects the luminosity distance in the SN Ia observations.

If the solutions start from the regime r1 ≪ 1, the evolution of wDE is different from
eq. (2.29) before they reach the tracker. For r1 ≪ 1 and r2 ≪ 1, wDE and weff are
approximately given by

wDE ≃ − 1 + Ωr − ΩK

2(2p+ 6q − 1)
, weff ≃ 1

3
Ωr . (2.30)

In figure 1 we show the variation of wDE for p = 1, q = 5/2, α = 3, β = 1.45 with two
different initial conditions satisfying r1 ≪ 1. In both cases the density parameter ΩK today
is ΩK,0 = 0.1. The cases (A) and (B) correspond to the early and late trackings, respectively.
For smaller initial values of r1 the tracking occurs later. As estimated by eq. (2.30), wDE

starts from the value wDE ≃ −1/16 in the deep radiation era. If the solutions do not reach
the tracker during the matter era (as in the case (B) in figure 1), wDE temporally approaches
the value −1/32.

In ref. [35] it was shown that the tracker for the covariant Galileon (s = 1) is disfavored
from observations, but the late-time tracking solution is allowed from the data. This property
comes from the fact that for the late-time tracker the deviation of wDE from −1 is not
significant. For s ≪ 1 even the tracker is expected to be allowed from observations. In
such cases the solutions starting from the initial conditions with r1 ≪ 1 should be also
compatible with the data (because even for s = 1 the late-time tracking solution is allowed).
In the following sections we will focus on the tracker solution to discuss the background
observational constraints and the evolution of cosmological perturbations.

3 Observational constraints on the extended Galileon models

In this section we place observational constraints on the tracker solution from the back-
ground cosmic expansion history. We use three data sets: 1) the CMB shift parameters
(WMAP7) [3]; 2) the BAO (SDSS7) [1]; 3) and the SN Ia (Constitution) [43]. The total
chi-square χ2

tot for all three combined data sets will be calculated on a grid representing a
chosen set of available parameters. We then find the minimum on this grid, and consequently
find the 1σ and 2σ contours.

In order to integrate eq. (2.26), once a set of model parameters (in this case not
only s, but also Ωr,0, Ωm,0, and ΩK,0) is given, we have the choice of one initial condition,
that is Ωr,i ≡ Ωr(Ni). In principle it is possible to solve eq. (2.26) backwards for a given
value of Ωr(0) = Ωr,0, but we find that the integrated results are prone to numerical
instabilities. Therefore, it is more convenient to obtain the expression of Ωr,i for a given
Ni < 0 (chosen to be Ni = − ln(1 + zi), where the initial redshift is zi = 1.76× 107), which
gives Ωr(N = 0) = Ωr,0 after solving the differential equation.

For given Ωr,0 and the other parameters we can use eq. (2.27) to obtain the desired
value of Ωr,i. At N = Ni, eq. (2.27) is written as

(

1 +
ΩK,0

Ωr,0
e2Ni +

Ωm,0

Ωr,0
eNi

)

Ωr,i − 1 = −1− Ωm,0 − ΩK,0 − Ωr,0

Ω1+s
r,0

e4(1+s)Ni Ω1+s
r,i . (3.1)
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Since Ωr,i ≈ 1 during the radiation domination, it is possible to solve this equation iteratively
by assuming that the l.h.s. is a small correction (indeed the r.h.s. corresponds to −ΩDE,i).
At 0-th order the solution of eq. (3.1) is given by

Ω
(0)
r,i =

1

1 + (ΩK,0/Ωr,0) e2Ni + (Ωm,0/Ωr,0) eNi
. (3.2)

At first order we find

Ω
(1)
r,i =

1− (1− Ωm,0 − ΩK,0 − Ωr,0)e
4(1+s)Ni [Ω

(0)
r,i /Ωr,0]

1+s

1 + (ΩK,0/Ωr,0) e2Ni + (Ωm,0/Ωr,0) eNi
. (3.3)

This process can be iterated up to the desired precision. In the numerical code, we employ

the solution derived after the three iterations, that is Ωr,i ≃ Ω
(3)
r,i . Since the late-time de

Sitter background is an attractor, small differences in the initial conditions do not lead to
very different final solutions. Therefore we indeed find that the three iterations are sufficient
to derive the parameter Ωr,0 accurately.

In the following we first discuss the method for carrying out the likelihood analysis
to confront the tracker solution with observations and then proceed to constrain the model
parameters.

3.1 CMB shift parameters

We use the data of the CMB shift parameters provided by WMAP7, which are related
with the positions of the CMB acoustic peaks. These quantities are affected by the cosmic
expansion history from the decoupling epoch to today. The redshift at the decoupling is
known by means of the fitting formula of Hu and Sugiyama [44]

z∗ = 1048 [1 + 0.00124(Ωb,0h
2)−0.738] [1 + g1 (Ωm,0h

2)g2 ] , (3.4)

where g1 = 0.0783 (Ωb,0h
2)−0.238/[1+39.5 (Ωb,0h

2)0.763], g2 = 0.560/[1+21.1 (Ωb,0h
2)1.81], h =

H0/[100 km sec−1Mpc−1], and Ωb,0 corresponds to the today’s density parameter of baryons.
The shift of the CMB acoustic peaks can be quantified by the two shift parameters [45]

R =

√

Ωm,0

ΩK,0
sinh

(

√

ΩK,0

∫ z∗

0

dz

H(z)/H0

)

, la =
π d

(c)
a (z∗)

rs(z∗)
, (3.5)

where rs(z∗) corresponds to the sound horizon at the decoupling, given by

rs(z∗) =

∫ ∞

z∗

dz

H(z)
√

3{1 + 3Ωb,0/[4Ωγ,0(1 + z)]}
. (3.6)

Note that Ωγ,0 is the today’s value of photon energy density and d
(c)
a (z∗) is the comoving

angular distance to the last scattering surface defined by d
(c)
a (z∗) = R/[H0

√

Ωm,0].
The likelihood values of la,R, z∗ provided by the WMAP7 data [3] are la = 302.09±0.76,

R = 1.725±0.018, and z∗ = 1091.3±0.91. The chi-square associated with this measurement is

χ2
CMB = (la − 302.09,R− 1.725, z∗ − 1091.3)C−1

CMB





la − 302.09
R− 1.725
z∗ − 1091.3



 , (3.7)

where the inverse covariance matrix is

C
−1
CMB =





2.305 29.698 −1.333
29.698 6825.27 −113.18
−1.333 −113.18 3.414



 . (3.8)
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3.2 BAO

We also employ the data of BAO measured by the SDSS7 [1]. The redshift zd at which the
baryons are released from the Compton drag of photons is given by the fitting formula of
Eisenstein and Hu [46]:

zd =
1291 (Ωm,0h

2)0.251

1 + 0.659 (Ωm,0h2)0.828
[1 + b1 (Ωb,0h

2)b2 ] , (3.9)

where b1 = 0.313 (Ωm,0h
2)−0.419[1 + 0.607 (Ωm,0h

2)0.674] and b2 = 0.238(Ωm,0h
2)0.223. We

define the effective BAO distance

DV (z) =
[

d2A(z) (1 + z)2z/H(z)
]1/3

, (3.10)

where dA(z) is the diameter distance given by

dA(z) =
1

1 + z

1

H0

√

ΩK,0

sinh

[

√

ΩK,0

∫ z

0

dz̃

H(z̃)/H0

]

. (3.11)

The BAO observations constrain the ratio rs(zd)/DV (z) at particular redshifts z, where
rs(zd) is the sound horizon for z = zd. At z = 0.2 and z = 0.35 the recent observational
bounds are rs(zd)/DV (0.2) = 0.1905 ± 0.0061 and rs(zd)/DV (0.35) = 0.1097 ± 0.0036. The
chi-square associated with the BAO is evaluated as

χ2
BAO=(rs(zd)/DV (0.2)−0.1905, rs(zd)/DV (0.35)−0.1097)C−1

BAO

(

rs(zd)/DV (0.2)−0.1905
rs(zd)/DV (0.35)−0.1097

)

,

(3.12)
where the inverse covariance matrix is [1]

C
−1
BAO =

(

30124 −17227
−17227 86977

)

. (3.13)

3.3 SN Ia

Finally we consider the experimental bounds coming from the observations of the SN Ia
standard candles. The apparent magnitudes, together with their absolute magnitudes, can
be used to generate the following chi-square [47]

χ2
SN Ia =

∑

i

µobs(zi)− µth(zi)

σ2
µ,i

, (3.14)

where σ2
µ,i are the errors on the data, and µth is the theoretical distance modulus defined as

µth(zi) = 5 log10
[

d̄L(zi)
]

+ µ0 . (3.15)

Here d̄L(z) and µ0 are given, respectively, by

d̄L(z) = (1 + z)2H0 dA(z) , µ0 = 42.38− 5 log10 h . (3.16)

In the following we will make use of the Constitution SN Ia data sets provided in ref. [43]
(see also ref. [48]).
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3.4 Observational constraints on the tracker

We now define the total chi-square as

χ2 = χ2
CMB + χ2

BAO + χ2
SN Ia . (3.17)

In the following we reduce the numerical complexity by fixing several parameters, as
h = 0.71, Ωb,0 = 0.02258h2, Ωγ,0 = 2.469 × 10−5h−2, and Ωr,0 = Ωγ,0(1 + 0.2271Neff) [3],
where the relativistic degrees of freedom are set to be Neff = 3.04. Then two analysis
will be performed for the tracker solution: 1) the flat case, ΩK,0 = 0, for which two free
parameters, Ωm,0 and s, are left to be varied; 2) the non-flat case, for which the additional
free parameter, ΩK,0, is varied as well.

Later on, when we compare models with different number of free parameters, we will
also make use of the Akaike Information Criterion (AIC) method (see e.g., [49]). For each
model the AIC is defined as

AIC = χ2
min + 2P , (3.18)

where P is the number of free parameters in the model, and χ2
min is the minimum value for

χ2 in the chosen parameter space. The smaller the AIC the better the model. To be more
precise, if the difference of χ2 between two different models is in the range 0 < ∆(AIC) < 2,
the models are considered to be equivalent, whereas if ∆(AIC) > 2, the data prefer one
model with respect to the other.

3.4.1 Flat case: ΩK,0 = 0

In this case we compute the χ2 on a grid in the intervals 0 ≤ s < 0.9 and 0.25 < Ωm,0 < 0.32.
The minimum value of χ2 is found to be χ2

min = 468.876 for the model parameters
s = 0.03446 and Ωm,0 = 0.27159. Then we calculate the difference of χ2 at each grid
point, that is, ∆χ2 = χ2 − χ2

min. When ∆χ2 ≥ 2.88 the chi-square distribution, with two
free parameters, excludes the models with those values of χ2 at 68% confidence level (1σ),
whereas when ∆χ2 ≥ 5.99 those models are excluded at 95% CL (2σ).

Our numerical results are plotted in figure 2. Even if we use the Gaussian likelihood
function P ∝ e−χ2/2, we find that the observational contours are similar to those given in
figure 2. The parameters s and Ωm,0 are constrained to be

s = 0.034+0.327
−0.034 , Ωm,0 = 0.271+0.024

−0.010 (95% CL). (3.19)

This shows that the tracker solution with −1.36 < wDE < −1 during the matter era can be
allowed observationally. The ΛCDM model corresponds to the line s = 0 in figure 2, which,
as expected, is inside the 1σ contour for 0.264 < Ωm,0 < 0.273 (with χ2

ΛCDM = 469.024).
The best-fit χ2 for the extended Galileon model is slightly smaller than that in the ΛCDM
model. However, since ∆(AIC) = 1.85, the observational data do not particularly favor the
extended Galileon model over the ΛCDM model.

3.4.2 Non-flat case: ΩK,0 6= 0

In the presence of the cosmic curvatureK we also evaluate the χ2 in the parameter space given
by 0 ≤ s < 0.9, 0.25 < Ωm,0 < 0.32, and −0.006 < ΩK,0 < 0.014. The minimum value of χ2 is
found on the point s = 0.067, Ωm,0 = 0.2768, and ΩK,0 = 0.00768, at which χ2

min,K = 467.436.

We evaluate the difference ∆χ2
K ≡ χ2−χ2

min,K on each grid point, according to which we can

exclude: a) the values of χ2 at 68% CL (which, for a system with 3 parameters, corresponds
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Ω
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Figure 2. Observational contours for the tracker solution in the (s,Ωm,0) plane for the flat Universe
(ΩK,0 = 0). 1σ and 2σ contours correspond to the internal and external lines, respectively.

to ∆χ2
K > 3.51), and b) the values of χ2 at 95% CL (i.e. ∆χ2

K > 7.82). In figure 3 we plot a
three dimensional region (by showing only some slices of it) of the allowed parameter space
for the tracker solution. We find that the model parameters are constrained to be

s = 0.067+0.333
−0.067 , Ωm,0 = 0.277+0.023

−0.022 , ΩK,0 = 0.0077+0.0039
−0.0127 (95% CL). (3.20)

The AIC for the best-fit extended Galileon model is AIC = 473.436, whereas in the best-
fit ΛCDM model with two parameters Ωm,0 and ΩK,0 the AIC is found to be AICΛCDM,K =
472.543 with χ2

ΛCDM,K = 468.543. Since ∆(AIC) = 0.893 between the two models, they are
equivalently supported by the data. However, if we compare the non-flat extended Galileon
model with the flat ΛCDM (1 parameter only, Ωm,0), then we see that ∆(AIC) = 2.412, which
states that the flat ΛCDM is better supported by the data. According to this criterion, the
flat extended Galileon tracker is favored over the non-flat case from a statistical point of view.

4 Cosmological perturbations and the discrimination between the models

The property of the tracker solution does not depend on the parameters α and β at the level
of the background cosmology. If we consider cosmological perturbations, it is possible to
discriminate between the models with different values of α and β. In order to confront the
extended Galileon models with the observations of LSS, CMB, and weak lensing, we shall
study the evolution of linear density perturbations as well as gravitational potentials. Since
our interest is the growth of non-relativistic matter perturbations in the late Universe, we do
not take into account the radiation as far as the perturbations are concerned.
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Figure 3. Observational contours for the tracker solution in the (s,Ωm,0,ΩK,0) space with the
cosmic curvature taken into account. 1σ and 2σ contours correspond to the black and red regions,
respectively.

4.1 Linear perturbation equations

Let us consider the perturbed metric in the longitudinal gauge about the flat FLRW back-
ground [50]

ds2 = −(1 + 2Ψ) dt2 + a2(t)(1 + 2Φ)δijdx
idxj , (4.1)

where Ψ and Φ are scalar metric perturbations. We perturb the scalar field as φ(t)+δφ(t,x),
and non-relativistic matter as well, in terms of the matter density perturbation δρm and the
scalar part of the fluid velocity v. The density contrast of non-relativistic matter is defined
as δ ≡ δρm/ρm. We also introduce the gauge-invariant density contrast

δm ≡ δ + 3Hv . (4.2)

The full linear perturbation equations in the Horndeski’s most general scalar-tensor
theories were derived in ref. [51]. For the extended Galileon models, in Fourier space, they
are given by

A1Φ̇ +A2
˙δφ− ρmΨ+A3

k2

a2
Φ+A4Ψ+A6

k2

a2
δφ− ρmδ = 0 , (4.3)

B6Φ+B7δφ+A3Ψ = 0 , (4.4)

A3Φ̇ +A6
˙δφ−A1Ψ/3 + C4δφ+ ρmv = 0 , (4.5)

3A6Φ̈+D2δ̈φ+D3Φ̇+D4
˙δφ−A2Ψ̇+

(

B7
k2

a2
+D8

)

Φ+D9
k2

a2
δφ+

(

A6
k2

a2
+D11

)

Ψ = 0 , (4.6)

v̇ −Ψ = 0 , (4.7)

δ̇ + 3Φ̇ +
k2

a2
v = 0 , (4.8)
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where k is a comoving wave number, and

A1 = 12HG4 − 6 φ̇XG3,X − 48HX (G4,X +XG4,XX)− 6H2X (5G5,X + 2XG5,XX) φ̇ , (4.9)

A2 = − (K,X + 2XK,XX) φ̇− 6HX (3G3,X + 2XG3,XX)− 6H2
(

3G4,X + 12XG4,XX + 4X2G4,XXX

)

φ̇

− 2H3X
(

15G5,X + 20XG5,XX + 4X2G5,XXX

)

, (4.10)

A3 = 4G4 − 8XG4,X − 4Hφ̇XG5,X , (4.11)

A4 = 2X (K,X + 2XK,XX)− 12H2G4 + ρm + 12HX (2G3,X +XG3,XX) φ̇

+12H2X
(

7G4,X+16XG4,XX+4X2G4,XXX

)

+4H3X
(

15G5,X+13XG5,XX+2X2G5,XXX

)

φ̇ , (4.12)

A6 = −2XG3,X − 4H (G4,X + 2XG4,XX) φ̇− 2H2X (3G5,X + 2XG5,XX) , (4.13)

B6 = 4G4 − 4XG5,X φ̈ , (4.14)

B7 = −4G4,XHφ̇− 4(G4,X + 2XG4,XX)φ̈− 4(G5,X +XG5,XX)Hφ̇φ̈− 4XG5,X(H2 + Ḣ) , (4.15)

C4 = K,X φ̇+ 6HXG3,X + 6H2(G4,X + 2XG4,XX)φ̇+ 2XH3(3G5,X + 2XG5,XX) , (4.16)

D9 = −K,X − 2(G3,X +XG3,XX)φ̈− 4HG3,X φ̇− 4H(3G4,XX + 2XG4,XXX)φ̇φ̈− 2G4,X(3H2 + 2Ḣ)

−4XG4,XX(5H2+2Ḣ)−2H2(G5,X+5XG5,XX+2X
2G5,XXX)φ̈−4H(H2+Ḣ)(G5,X+XG5,XX)φ̇. (4.17)

The readers may refer to the paper [51] for the explicit forms of the coefficients
D2, D3, D4, D8, and D11. Since the perturbation equations (4.3)–(4.8) are not independent,
we do not need to know these unwritten coefficients to solve the equations numerically. Now
we are dealing with a massless scalar field, so that the mass term M does not appear in the
perturbation equations.

From eqs. (4.7) and (4.8) the gauge-invariant matter perturbation (4.2) obeys

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 3

(

Ï + 2Hİ
)

, (4.18)

where I ≡ Hv − Φ. We define the effective gravitational potential

Φeff ≡ (Ψ− Φ)/2 . (4.19)

This quantity is related to the deviation of the light rays in CMB and weak lensing observa-
tions [52]. To quantify the difference between the two gravitational potentials Φ and Ψ, we
also introduce

η ≡ −Φ/Ψ , (4.20)

by which eq. (4.19) can be written as Φeff = Ψ(1 + η)/2.

4.2 Quasi-static approximation on sub-horizon scales

For the modes deep inside the Hubble radius (k2/a2 ≫ H2) we can employ the quasi-static ap-
proximation under which the dominant contributions in the perturbation equations are those
including k2/a2 and δ (or δm) [53, 54]. This approximation is known to be trustable as long
as the oscillating mode of the field perturbation is negligible relative to the matter-induced
mode. Combining eqs. (4.3), (4.4), and (4.6) under this approximation, it follows that [51]

k2

a2
Ψ ≃ −4πGeffρmδ , (4.21)

where

Geff =
2M2

pl(B6D9 −B2
7)

A2
6B6 +A2

3D9 − 2A3A6B7
G . (4.22)
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Here we introduced the bare gravitational constant G = 1/(8πM2
pl). Substituting eq. (4.21)

into eq. (4.18) with the relation δm ≃ δ (valid for k2/a2 ≫ H2), we obtain

δ′′m +

(

2 +
H ′

H

)

δ′m − 3

2

Geff

G
Ωmδm ≃ 0 , (4.23)

where a prime represents a derivative with respect to N = ln a.
Under the quasi-static approximation the quantity η defined in eq. (4.20) reads [51]

η ≃ A3D9 −A6B7

B6D9 −B2
7

. (4.24)

On using eq. (4.21), the effective gravitational potential Φeff = Ψ(1 + η)/2 yields

Φeff ≃ −3

2
ξ

(

aH

k

)2

Ωmδm , (4.25)

where

ξ ≡ Geff

G

1 + η

2
≃

M2
pl(B6D9 −B2

7 +A3D9 −A6B7)

A2
6B6 +A2

3D9 − 2A3A6B7
. (4.26)

The ΛCDM model corresponds to K = −Λ, G4 = M2
pl/2, G3 = G5 = 0, in which case

A3 = B6 = 2M2
pl, A6 = 0, and B7 = 0. Then one has Geff/G = 1 and ξ = 1 from eqs. (4.22)

and (4.26).
In the extended Galileon models the general expressions of Geff/G and ξ are quite

complicated. In what follows we shall focus on the evolution of cosmological perturbations
for the tracker solution (r1 = 1).

In the early cosmological epoch (r2 ≪ 1) and during the matter domination (Ωr = 0),
Geff/G and ξ are approximately given by

Geff/G ≃ 1 + [27p(2p− 1)(3α2p+ 6β2(2p− 1) + β(1 + 3α− 2(1 + 6α)p)) + 9(6α2p(18p− 5)

+2β(2p−1)(β(90p−3)−11p)+α(2p(2p−1)−3β(1+4p(33p−13))))q+2(−9(9α−23β)(α−2β)

+6(147α2+α(5−507β)+6β(71β−3))p+8(9α−18β−1)p2+16p3)q2+4(9(27α−46β)(α−2β)

−12(9α−18β−8)(α−2β)p+16(1−3α+6β)p2)q3+48(α−2β)(6β(7−2p)−8p+3α(2p−7))q4

+576(α− 2β)2q5]r2/∆, (4.27)

ξ ≃ 1 + [27p(2p− 1)(3α2p+ 6β2(2p− 1) + β(1 + 3α− 2(1 + 6α)p)) + 9(24α2p(4p− 1)

+2β(2p− 1)(β(78p+ 3)− 11p) + α(4p(2p− 1) + β(3 + 12(10− 29p)p)))q + 2(−45(α− 2β)β

+6(96α2+α(10−321β)+6β(43β−2))p+4(27α−54β−4)p2+32p3)q2+8(9(3α−10β)(α−2β)

−3(27α−54β−26)(α−2β)p+16(1−3α+6β)p2)q3+48(α−2β)(66β−8(2+3β)p+3α(4p−11))q4

+1152(α− 2β)2q5]r2/(2∆), (4.28)

where

∆ ≡ 4q[(3−9α)p+12p3+2pq(α(60−66q)+20q−11)+2p2(α(9−18q)+22q−6)−3αq(9−54q+40q2)

+3β(2p+ 4q − 1)(3− 22q + 20q2 + 6p(2q − 1))] . (4.29)

To derive eqs. (4.27) and (4.28) we set Ωr = 0 and performed the Taylor expansion around
r2 = 0.

At the de Sitter solution (r1 = r2 = 1), Geff and ξ are simply given by

Geff/G = ξ =
2

2(1− p) + 3(1 + 2q)(α− 2β)
. (4.30)

– 14 –



J
C
A
P
0
3
(
2
0
1
2
)
0
2
5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

β

α

(c) 

(b) 

(d) 

(a) 

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

 0

 0  1  2  3  4  5  6

β 
− 

α/
2

α

(c) 

(b) 

(d) 

(a) 

Figure 4. Allowed parameter space in the (α, β) plane for p = 1 and q = 5/2. In the blue
region the conditions for the avoidance of ghosts and Laplacian instabilities of scalar and ten-
sor perturbations are satisfied. The right panel shows the enlarged version of the left panel in
the (α, β − α/2) plane. The borders correspond to (a) β = α/2, (b) β = α/2 − 1/15, (c)
β = (408α + 68 − 2

√
17
√

3(272− 75α)α+ 68)/561, and (d) β = (242 − 15α + 4
√
3630− 495α)/99,

respectively. Taken from ref. [40].

The equality of Geff/G and ξ comes from the fact that η = 1 at r1 = r2 = 1.
Let us first consider the theory where α = β = 0. From eqs. (4.27)–(4.30) it follows that

Geff/G = ξ ≃ 1 +
4pq

6p+ 10q − 3
r2 (for r2 ≪ 1), (4.31)

Geff/G = ξ =
1

1− p
(for r2 = 1). (4.32)

For p = 1 [34] both Geff/G and ξ diverge at the de Sitter solution. In this case one has
Geff/G = ξ ≃ 1 + 4qr2/(10q + 3) in the regime r2 ≪ 1, so that Geff/G and ξ are larger
than 1 for q > 0. The property that ξ is as large as Geff/G leads to the enhancement of the
effective gravitational potential relative to the matter perturbation δm normalized by a [34].
This gives rise to the anti-correlation between the late-time ISW effect and the LSS. Then
the parameter q is constrained to be q > 4.2 × 103 at the 95 % confidence level [42], which
means that wDE is very close to −1 along the tracker.

The situation is different for α 6= 0 and β 6= 0. Let us consider the models with p = 1
and q = 5/2, i.e. s = 0.2, in which case the models are compatible with the observational
constraints discussed in section 3. In the regime r2 ≪ 1, eqs. (4.27) and (4.28) read

Geff/G ≃ 1 +
48411α2 − 3α(3560 + 60291β) + 22(50 + 924β + 7641β2)

10(308− 1536α+ 3201β)
r2 , (4.33)

ξ ≃ 1 +
75276α2 − 3α(8020 + 99981β) + 22[100 + 3β(733 + 4527β)]

20(308− 1536α+ 3201β)
r2 . (4.34)

At the de Sitter solution eq. (4.30) gives

Geff/G = ξ =
1

9(α− 2β)
. (4.35)

In ref. [40] the authors clarified the viable parameter region in which the ghosts
and Laplacian instabilities of scalar and tensor perturbations are absent. In figure 4 we
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Figure 5. The left and right panels show the values of Geff/G and ξ = (Geff/G)(1 + η)/2 versus α
for p = 1 and q = 5/2, respectively, along the tracker solution (r1 = 1) at r2 = 0.1. The blue regions
illustrate the viable parameter spaces in which the parameters α and β belong to the blue region in
figure 4. The borders (a), (b), (c), (d) correspond to those given in figure 4.

plot the allowed parameter space in the (α, β) plane for p = 1 and q = 5/2. The viable
region is surrounded by the four borders: (a) β = α/2, (b) β = α/2 − 1/15, (c) β =
(408α+68−2

√
17

√

3(272− 75α)α+ 68)/561, and (d) β = (242−15α+4
√
3630− 495α)/99.

The model with α = β = 0 is on the border lines [the intersection of the lines (a) and (c)],
in which case both Geff/G and ξ diverge at the de Sitter solution.

Figure 5 illustrates the regions for the possible values of Geff/G in eq. (4.33) and ξ in
eq. (4.34) for p = 1 and q = 5/2 at r2 = 0.1. The blue regions are surrounded by the borders
(a), (b), (c), (d), which correspond to those given in figure 4 respectively. The lines (a) in
figure 5 show Geff/G and ξ for β = α/2, along which both Geff/G and ξ decrease for larger
α. One has Geff/G = ξ = 1.035 for α = β = 0, in which case our numerical simulations
show that there is an anti-correlation between δm/a and Φeff for the modes deep inside the
horizon. When α > 0 the variable ξ is larger than Geff/G on the line (a) for the same α, so
that the anti-correlation tends to be even stronger than that for α = 0.

On the line (b) in figure 4, i.e. β = α/2 − 1/15, one has Geff/G ≃ 1 + 0.52r2 and
ξ = 1 + 0.16r2, which are independent of the values of α. The fact that Geff/G is larger
than ξ may imply the absence of the anti-correlation between δm/a and Φeff . In fact we will
show in section 4.3 that the anti-correlation tends to disappear as the model parameters
approach the border line (b) in figure 4. For given α, as we move from β = α/2 to
β = α/2 − 1/15, Geff/G increases whereas ξ gets smaller. For 0 ≤ α ≤ 34/75 the viable
regions for Geff/G and ξ in figure 5 are surrounded by the lines (a), (c), and α = 34/75,
whereas for 5.579 ≤ α ≤ 5.646 they are surrounded by the lines (b), (d), and α = 5.579.

In figure 6 we plot Geff/G = ξ = 1/[9(α−2β)] for the late-time de Sitter solution. Both
Geff/G and ξ diverge on the line (a) in figure 4, including the case α = β = 0. On the line
(b) one has Geff/G = ξ = 5/6, so that the growth rate of matter perturbations is smaller
than that in the ΛCDM model around the future de Sitter solution. The allowed values of
Geff/G and ξ exist in the wide regions in figure 6.

The present epoch corresponds to the regime between r2 ≪ 1 and r2 = 1, so we need
to resort to numerical simulations to estimate the growth rate of perturbations accurately.
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Figure 6. Geff/G versus α for p = 1 and q = 5/2 at the de Sitter solution (r1 = 1, r2 = 1). Note that
the parameter ξ is exactly the same as Geff/G. Geff/G diverges at β = α/2, so that it is unbounded
from above. The borders (b), (c), (d) correspond to those given in figure 4, respectively.

4.3 Numerical simulations

In order to study the evolution of perturbations for a number of different wave numbers
(both sub-horizon and super-horizon modes), we shall solve the full perturbation equations
numerically without using the quasi-static approximation. Let us introduce the following
dimensionless variables

V ≡ Hv , δϕ ≡ δφ/(xdSMpl) , (4.36)

with Ã1 ≡ A1/(HM2
pl), Ã2 ≡ xdSA2/(HMpl), Ã3 ≡ A3/M

2
pl, Ã4 ≡ A4/(H

2M2
pl),

Ã6 ≡ xdSA6/Mpl, B̃6 ≡ B6/M
2
pl, B̃7 ≡ xdSB7/Mpl, and C̃4 ≡ xdSC4/(HMpl). From

eqs. (4.3), (4.4), (4.5), (4.7), and (4.8) we obtain

Ψ = −(B̃6Φ+ B̃7δϕ)/Ã3 , (4.37)

Φ′ = [(3Ã4Ã6B̃6 + Ã1Ã2B̃6 − 3Ã2
3Ã6k

2/(aH)2 − 9Ã6B̃6Ωm)Φ

+(3Ã2Ã3C̃4+3Ã4Ã6B̃7+Ã1Ã2B̃7−9Ã6B̃7Ωm−3Ã3Ã
2
6k

2/(aH)2)δϕ+9Ã3Ã6Ωmδ+9Ã2Ã3ΩmV ]

×[3Ã3(Ã1Ã6 − Ã2Ã3)]
−1 , (4.38)

δϕ′ = −[(Ã2
1B̃6 + 3Ã3Ã4B̃6 − 3Ã3

3k
2/(aH)2 − 9Ã3B̃6Ωm)Φ

+(Ã2
1B̃7+3Ã3Ã4B̃7+3Ã1Ã3C̃4−3Ã2

3Ã6k
2/(aH)2−9Ã3B̃7Ωm)δϕ+9Ã2

3Ωmδ+9Ã1Ã3ΩmV ]

×[3Ã3(Ã1Ã6 − Ã2Ã3)]
−1 , (4.39)

δ′ = −3Φ′

− k2/(aH)2 V , (4.40)

V ′ = (H ′/H)V +Ψ . (4.41)

In order to recover the General Relativistic behavior in the early cosmological epoch
we choose the initial conditions Φ′ = 0, δϕ′ = 0, δϕ = 0, and δ = 10−5, in which case Φi,
Ψi, and Vi are known from eq. (4.37)–(4.39) (where the subscript “i” represents the initial
values). For non-zero initial values of δϕ the field perturbation oscillates at the early stage.
For the initial conditions with |δϕi| . |Ψi| the evolution of perturbations in the low-redshift
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Figure 7. Evolution of δm/a (left) and Φeff (right) versus the redshift z for p = 1, q = 5/2,
α = 3, β = 1.49 along the tracker solution. Note that δm/a and Φeff are normalized by their initial
values, respectively. Each curve corresponds to the evolution of perturbations for the wave numbers
k = 300a0H0, k = 15a0H0, k = 5a0H0, and k = a0H0. The dotted curves show the results obtained
under the quasi-static approximation on sub-horizon scales. In this case there is an anti-correlation
between δm/a and Φeff for the modes k & 5a0H0.

Figure 8. Similar to figure 7, but for the model parameters p = 1, q = 5/2, α = 3, β = 1.45. In this
case δm/a and Φeff are not anti-correlated.

regime is hardly affected by the oscillations. This situation is similar to that found in
ref. [34] for the model with α = β = 0.

In figure 7 we plot the evolution of δm/a and Φeff versus the redshift z = 1/a − 1 for
p = 1, q = 5/2, α = 3, and β = 1.49 with several different wave numbers. In this case the
model parameters are close to the border line (a) in figure 4. The solid curve in figure 7
corresponds to the simulation for the wave number k = 300 a0H0 ≃ 0.1hMpc−1, where the
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Figure 9. Evolution of the growth index γ for the mode k = 300a0H0 in the regime 0 < z < 1 with
the model parameters (i) p = 1, q = 5/2, α = 3, β = 1.49, (ii) p = 1, q = 5/2, α = 3, β = 1.45, and
(iii) p = 1, q = 5/2, α = 3, β = 1.434.

subscript “0” represents the today’s values. The numerical results of δm/a and Φeff show
good agreement with those derived under the quasi-static approximation on sub-horizon
scales. For the model parameters used in figure 7 the analytic estimates (4.33) and (4.34)
give Geff/G ≃ 1 − 0.05r2 and ξ ≃ 1 + 0.23r2 in the regime r2 ≪ 1, whereas from eq. (4.35)
one has Geff/G = ξ = 5.56 at the de Sitter solution. From figure 7 we find that δm/a is
anti-correlated with Φeff for the modes k ≫ a0H0. This property comes from the fact that
the parameter ξ is always larger than 1, while Geff/G is smaller than ξ in the regime r2 ≪ 1.
In figure 7 the growth rates of δm and Φeff decrease for smaller k. The anti-correlation
between δm/a and Φeff is present for the modes k & 5a0H0.

Figure 8 shows the evolution of δm/a and Φeff for p = 1, q = 5/2, α = 3, and β = 1.45
with several different wave numbers. In this case β is smaller than that used in figure 7.
From eqs. (4.33) and (4.34) one has Geff/G = 1 + 0.25r2 and ξ = 1 + 0.16r2 for r2 ≪ 1,
whereas Geff = ξ = 1.11 at the de Sitter solution. Compared to the case β = 1.49, Geff/G
and ξ get larger and smaller, respectively, for the same value of r2 (≪ 1). This leads to the
suppression of the growth of Φeff . From figure 8 we find that δm/a and Φeff are positively
correlated for the mode k = 300a0H0. For the wave numbers k ≫ a0H0 the quasi-static
approximation reproduces the numerical results in high accuracy. On larger scales both δm
and Φeff evolve more slowly, so that δm/a and Φeff are also positively correlated.

We define growth index γ of matter perturbations, as [55]

δ̇m
Hδm

= (Ωm)γ . (4.42)

In the ΛCDM model γ ≃ 0.55 for the redshift 0 ≤ z . 1 [56]. In figure 9 we plot the
evolution of γ for p = 1 and q = 5/2 with the wave number k = 300a0H0 in three different
cases: (i) α = 3, β = 1.49, (ii) α = 3, β = 1.45, and (iii) α = 3, β = 1.434. The numerical
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simulations for (i) and (ii) correspond to the model parameters used in figures 7 and 8,
respectively, whereas the model parameter in the case (iii) is close to the border (b) in
figure 4. In the cases (i), (ii), (iii) the effective gravitational couplings in the regime r2 ≪ 1
are Geff/G = 1 − 0.05r2, Geff/G = 1 + 0.26r2, Geff/G = 1 + 0.51r2, respectively, whereas
at the de Sitter solution Geff/G = 5.56, Geff/G = 1.11, Geff/G = 0.84, respectively. For
smaller β, Geff is larger in the early epoch (r2 ≪ 1), so that the deviation of γ from the
value 0.55 is more significant. On the other hand, Geff at the de Sitter solution gets smaller
for decreasing β, which leads to the approach to the value 0.55 around z = 0.

While the above discussion corresponds to the case s = 0.2, we have also studied the
evolution of perturbations for different values of s and found the similar properties to those
discussed above. For p = 1 the upper bound for the allowed parameter space in the (α, β)
plane is characterized by the line β = α/2 [40], around which the ISW-LSS anti-correlation
is present for 0 < s < 0.36 (i.e. for s constrained observationally at the background level).
As β gets smaller for a fixed α (> 0), the anti-correlation tends to disappear. We also found
that, for p = 1 and 0 < s < 0.36, the growth index γ varies in the range 0.4 . γ . 0.6 for
0 ≤ z . 1. The ISW-LSS anti-correlation as well the variation of γ allows us to discriminate
between the extended Galileon models and the ΛCDM.

Finally we comment on the Vainshtein radius rV below which the nonlinear field self-
interaction can allow the recovery of General Relativistic behavior in the region of high
density. For the functions K = −c2X, G3 = c3M

1−4p3
3 Xp3 , and G4 = M2

ple
−2Qφ/Mpl (where

Q is a constant), the Vainshtein radius is estimated as rV ≈ (|Q|r2p3−1
g H−2p3

0 )1/(4p3−1) [27],
where rg is the Schwarzschild radius of a source and H−1

0 ≈ 1028 cm is the Hubble radius
today. If |Q| = O(1) and p3 = 1, for example, one has rV ≈ 10−4 Mpc for the Sun. This radius
is much smaller than the scales relevant to the linear regime of the galaxy power spectrum
(10 Mpc . λ . 100 Mpc), so that linear perturbation theory employed in this paper is
valid. The Vainshtein radius can be subject to change for the functions G4 and G5 given in
eq. (2.7). It will be of interest to derive the solution of the field φ in a spherically symmetric
background for constraining extended Galileon models further from local gravity tests.

5 Conclusions

In this paper we have studied cosmological constraints on the extended Galileon models
of dark energy. For the functions (2.7) with the powers (2.8) there exist tracker solutions
along which the field equation of state wDE changes as −1− 4s/3 (radiation era) → −1− s
(matter era) → −1 (de Sitter era), where s = p/(2q) > 0. Unlike the case of the covariant
Galileon (s = 1), wDE can be close to −1 during the radiation and matter eras for 0 ≤ s ≪ 1.
Moreover, even for wDE < −1, there are viable model parameter spaces in which the ghosts
and Laplacian instabilities are absent.

Using the recent data of SN Ia, CMB, and BAO, we placed observational constraints on
the background tracker solutions with s > 0. In the flat Universe we found that the model
parameters are constrained to be s = 0.034+0.327

−0.034 and Ωm,0 = 0.271+0.024
−0.010 (95% CL) from the

joint data analysis. The chi-square for the best-fit case (s = 0.034) is slightly smaller than
that in ΛCDM. However the difference of the AIC information criteria between the two
models is ∆(AIC) = 1.85, so that the extended Galileon is not particularly favored over the
ΛCDM. We also carried out the likelihood analysis in the presence of the cosmic curvature
K and obtained the bounds s = 0.067+0.333

−0.067, Ωm,0 = 0.277+0.023
−0.022, and ΩK,0 = 0.0077+0.0039

−0.0127
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(95% CL). The tracker for the covariant Galileon (s = 1) is disfavored from the data, in
which case only the late-time tracking solution is allowed observationally [35].

The background quantities for the tracker are independent of the values of α and
β. This means that the models with different α and β cannot be distinguished from the
observational constraints derived from the background cosmic expansion history. In order
to break this degeneracy we studied the evolution of cosmological perturbations in the
presence of non-relativistic matter for the flat FLRW background. As shown in ref. [34], for
α = β = 0, the matter density perturbation δm divided by the scale factor a is anti-correlated
with the effective gravitational potential Φeff for the modes relevant to the LSS. This leads
to the anti-correlation between the LSS and the ISW effect in CMB, so that the parameter
s for the tracker is severely constrained to be s < 1.2× 10−4 (95% CL).

For the models with α 6= 0 and β 6= 0, however, the correlation between δm/a and Φeff

depends on the values of α and β. If p = 1 and q = 5/2 (i.e. s = 0.2), for example, δm/a
and Φeff tend to be positively correlated for the model parameters close to the border (b)
in figure 4 (β = α/2 − 1/15), whereas they show anti-correlations for α and β close to the
border (a) (β = α/2). The typical examples of the positive and negative correlations are
plotted in figures 8 and 7, respectively. The qualitative differences between these two cases
can be understood by estimating the effective gravitational coupling Geff and the quantity
ξ = (Geff/G)(1+η)/2 derived under the quasi-static approximation on sub-horizon scales. As
the model parameters approach the border (a) in figure 4, ξ gets larger while Geff decreases,
so that the anti-correlation between δm/a and Φeff tends to be stronger. We studied the
evolution of perturbations for different values of s in the range 0 < s < 0.36 and found that
the basic properties for the ISW-LSS correlation are similar to those discussed for s = 0.2.

We also estimated the growth index γ of the matter perturbation and found that, for
p = 1 and 0 < s < 0.36, it typically varies in the range 0.4 . γ . 0.6 at the redshifts for
0 ≤ z . 1. Hence it is also possible to distinguish between the extended Galileon models
and the ΛCDM model from the galaxy clustering. However, we expect that the tightest
observational bounds on the values α and β should come from the ISW-LSS correlation. We
leave such observational constraints for future works.
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