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1 Introduction

The problem of dark energy is one of the most serious problems faced by cosmologists and
particle physicists. The cosmological constant is the simplest candidate, but it is plagued by
the huge difference of energy scales between the theoretical and observed values [1]. Many
alternative models to the cosmological constant have been proposed to approach the origin
of dark energy [2].

Dark energy models can be broadly classified into two classes: (i) modified matter
models, and (ii) modified gravity models. In the class (i) the modified matter source is
introduced to drive the late-time cosmic acceleration. The representative model in this class
is quintessence [3], in which the potential energy V (φ) of a slow-rolling scalar field φ is the
source for dark energy. Another model is k-essence [4], in which a non-linear term with
respect to the field kinetic energy X = −(∂φ)2/2 leads to the cosmic acceleration.

The representative models that belong to the class (ii) are those based on f(R) the-
ories [5, 6], f(R,G) theories [7], Brans-Dicke theories [8], Dvali-Gabadazde-Porrati (DGP)
braneworld [9], and Galileon gravity [10, 11] (see ref. [12] for reviews). The Lagrangian in
f(R) theories is an arbitrary function of the Ricci scalar R, which corresponds to the par-
ticular class of Brans-Dicke theories (Brans-Dicke parameter ωBD = 0 [13]). The f(R,G)
theories consist of a function of R and the Gauss-Bonnet term G, in which case there are
two independent scalar degrees of freedom in a general background [14]. In Galileon gravity,
the Lagrangian is constructed such that the field equations are invariant under the Galilean
symmetry ∂µφ → ∂µφ + bµ in the limit of Minkowski spacetime [10]. One of those terms is
given by X �φ, which appears in the DGP model as a result of the mixing of a brane-bending
mode with a transverse graviton [15]. In the Galileon model there exists a stable late-time
de Sitter solution where φ̇ =constant [16, 17]. Moreover the model can be consistent with
local gravity constraints through the Vainshtein mechanism [18].
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Recently Deffayet et al. [19] derived the action for the most general scalar-tensor theo-
ries having second-order field equations. This action is equivalent to that derived by Horn-
deski [20] in 1974 in the context of Lovelock gravity [21] (see also ref. [22]). In fact the
Horndeski’s action is sufficiently general to accommodate most of the dark energy models
proposed in literature. Moreover, the Gauss-Bonnet couplings F (φ)G [23], the generalized
Galileon term G(φ,X)�φ [24–27], the derivative couplings Gµν∂µφ∂νφ with the Einstein
tensor Gµν [28] also belong to the class of the Horndeski’s action [21].

For such general theories the full background and perturbation equations were recently
derived in ref. [29] in the presence of non-relativistic matter. In the context of inflation sev-
eral authors computed the power spectra of scalar and tensor perturbations [21] as well as
the non-linear parameter of primordial non-Gaussianities [30–32].

If we modify gravity from General Relativity we need to worry about the presence of
ghosts as well as Laplacian instabilities. In the presence of two perfect fluids (radiation and
non-relativistic matter) we shall derive conditions for the avoidance of ghosts and Laplacian
instabilities associated with scalar, tensor, and vector perturbations in the Horndeski’s theo-
ries. This is of particular importance for the construction of theoretically consistent modified
gravitational models of dark energy. We apply our results to extended Galileon models in
which a tracker solution is present. This tracker corresponds to the generalization of that
found in ref. [16] for the covariant Galileon. Unlike the covariant Galileon the equation of
state of dark energy wDE can take the values close to −1 during the evolution from the matter
era to the accelerated epoch. This property should allow for the tracker to be compatible
with observations.

This paper is organized as follows. In section 2 the background equations of motion are
derived on the flat FLRW spacetime in the presence of two perfect fluids. In section 3 we
find conditions for the absence of ghosts and Laplacian instabilities by deriving the second-
order action for scalar, tensor, and vector perturbations. In section 4 we apply our general
formulas to kinetically driven dark energy models, which cover the covariant Galileon as a
specific case. Not only we identify a theoretically consistent parameter space but also we
numerically integrate the field equations to confirm the analytic estimation. Section 5 is
devoted to conclusions.

2 The background equations of motion

In order to avoid the Ostrogradski instability [33] it is desirable to keep the equations of
motion at second order in derivatives. The most general 4-dimensional scalar-tensor theories
having second-order field equations are described by the Lagrangian [19]

L =
5
∑

i=2

Li , (2.1)

where

L2 = K(φ,X), (2.2)

L3 = −G3(φ,X)�φ, (2.3)

L4 = G4(φ,X)R+G4,X [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] , (2.4)

L5 = G5(φ,X)Gµν (∇µ∇νφ) (2.5)

−1

6
G5,X [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ) + 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] . (2.6)
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Here K and Gi (i = 3, 4, 5) are functions with respect to a scalar field φ and its kinetic
energy X = −∂µφ∂µφ/2, R is the Ricci scalar, and Gµν is the Einstein tensor. Gi,X and Gi,φ

(i = 3, 4, 5) correspond to the partial derivatives of Gi with respect to X and φ respectively,
i.e. Gi,X ≡ ∂Gi/∂X and Gi,φ ≡ ∂Gi/∂φ. The above Lagrangian was first discovered by
Horndeski in a different form [20], which is equivalent to the Lagrangian (2.1) [21].

In addition to the scalar field φ we take into account two barotropic perfect fluids, whose
energy densities are ρA and ρB. Then the total action is given by

S =

∫

d4x
√−g (L+ LA + LB) , (2.7)

where g is the determinant of the metric gµν , LA and LB are the Lagrangians of two perfect
fluids respectively.

Let us consider a flat FLRW background with the metric ds2 = −N2(t)dt2 + a2(t)dx2,
where t is the cosmic time, N(t) is the lapse function, and a(t) is the scale factor. In the
ADM formalism [34] (see also ref. [35]) applied to FLRW manifolds, we can derive two inde-
pendent generalized Einstein equations by varying the action (2.7) with respect to N(t) and
a(t). They are given, respectively, by

2XK,X−K+6Xφ̇HG3,X−2XG3,φ−6H2G4+24H2X(G4,X+XG4,XX)−12HXφ̇G4,φX−6Hφ̇G4,φ

+2H3Xφ̇ (5G5,X+2XG5,XX)−6H2X (3G5,φ+2XG5,φX) =−ρA−ρB , (2.8)

K−2X(G3,φ+φ̈ G3,X)+2(3H2+2Ḣ)G4−12H2XG4,X−4HẊG4,X−8ḢXG4,X−8HXẊG4,XX

+2(φ̈+2Hφ̇)G4,φ+4XG4,φφ+4X(φ̈−2Hφ̇)G4,φX−2X(2H3φ̇+2HḢφ̇+3H2φ̈)G5,X−4H2X2φ̈ G5,XX

+4HX(Ẋ−HX)G5,φX+2[2(ḢX+HẊ)+3H2X]G5,φ+4HXφ̇G5,φφ =−pA−pB , (2.9)

where a dot represents a derivative with respect to t, H ≡ ȧ/a is the Hubble parameter, and
pA, pB are the pressures of the two perfect fluids. Varying the action (2.7) with respect to
φ(t), it follows that

1

a3
d

dt

(

a3J
)

= Pφ , (2.10)

where

J ≡ φ̇K,X + 6HXG3,X − 2φ̇ G3,φ + 6H2φ̇(G4,X + 2XG4,XX)− 12HXG4,φX

+2H3X(3G5,X + 2XG5,XX)− 6H2φ̇(G5,φ +XG5,φX) , (2.11)

Pφ ≡ K,φ − 2X
(

G3,φφ + φ̈ G3,φX

)

+ 6(2H2 + Ḣ)G4,φ + 6H(Ẋ + 2HX)G4,φX

−6H2XG5,φφ + 2H3Xφ̇G5,φX . (2.12)

The two perfect fluids obey the following continuity equations

ρ̇A + 3H(ρA + pA) = 0 , (2.13)

ρ̇B + 3H(ρB + pB) = 0 . (2.14)

Equations (2.8), (2.9), (2.10), (2.13), and (2.14) are not independent because of the Bianchi
identities. The field equation (2.10) can be derived by using the other equations.

3 Conditions for the avoidance of ghosts and Laplacian instabilities in the

presence of two perfect fluids

In this section we study the stability of the flat FLRW background for the action (2.7) in the
presence of two perfect fluids.

– 3 –
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Let us first consider scalar metric perturbations Ψ, χ, and Φ with the line element [36]

ds2 = −(1 + 2Ψ)dt2 + 2∂iχdt dxi + (1 + 2Φ) dx2 . (3.1)

Here we have gauged away a scalar perturbation E that appears in the form E,ij in front
of the term dx2. This fixes the spatial part of the gauge-transformation vector ξµ. In the
following we choose the uniform-field gauge for which the field φ has no perturbations, that
is, δφ = 0. This fixes the temporal part of the vector ξµ.

The two perfect fluids can be described in terms of the following Lagrangian

Spf =

∫

d4x
√−g [pA(µA, sA) + pB(µB, sB)] , (3.2)

where µi and si (i = A,B) correspond to the chemical potential and the entropy per particle
respectively. We will employ the method introduced in ref. [37] to study the perfect fluid
from a Lagrangian point of view in order to extract the conditions for the absence of ghost
and Laplace instabilities. In the following we will summarize and simplify the method given
in ref. [37] (see also ref. [38]).

Since we are interested in those fluids with equations of state of the kind pi = wiρi
(i = A,B), we consider pi as functions of µi alone. Here the chemical potential of each fluid
is defined as µini = ρi + pi, where ni = ∂pi/∂µi is the number density of the fluid i. In
fact, it is sufficient to give the equations of state µi ∝ nwi

i . We define the fluid 4-velocity
uα associated with the chemical potential µ, as uα = µ−1∂αℓ, where ℓ is a scalar field. The
normalization condition for the 4-velocity allows us to write the 4-velocity of the fluid A, as
µA =

√

−gαβ∂αℓA∂βℓA. After we perturb the field ℓA as ℓA(t) + δℓA, we can expand the
matter Lagrangian at second order and then perform the field redefinition δℓA = −µAvA,
where vA is chosen to represent the independent scalar degree of freedom of the fluid A.
Along the same lines, the independent scalar degree of freedom for the fluid B corresponds
to vB. Since, at linear order, the scalar fluids do not contribute to the vector perturbations,
it is sufficient to study their scalar contributions alone in order to derive the conditions for
the avoidance of ghosts and Laplacian instabilities. We will discuss this issue in appendix A.

We perturb the action S =
∫

d4x
√−gL+Spf up to the second order. After integrations

by parts, the second-order action is given by

S(2)=

∫

d4x a3

[

{

2w1Φ̇−w2Ψ+
∑

l

ρl(1+wl)vl
} ∂2χ

a2
+

(

1

2

∑

l

(1+wl)ρl
wl

+
w3

3

)

Ψ2+
w4

a2
(∂Φ)2−3w1Φ̇

2

+

{

3w2Φ̇−2w1
∂2Φ

a2
−
∑

l

ρl(1+wl) (v̇l−3Hwlvl)

wl

}

Ψ+
∑

l

ρl(1+wl)

2wl

{

v̇2l −
wl

a2
(∂vl)

2
}

+ 3Φ
∑

l

ρl(1 + wl) (v̇l − 3Hwlvl) +
3

2
Ḣ
∑

l

(1 + wl)ρlv
2
l

]

, (3.3)

where l = A,B, and

w1 ≡ 2 (G4 − 2XG4,X)− 2X (G5,X φ̇H −G5,φ) , (3.4)

w2 ≡ −2G3,XXφ̇+ 4G4H − 16X2G4,XXH + 4(φ̇G4,φX − 4H G4,X)X + 2G4,φφ̇

+ 8X2HG5,φX + 2HX (6G5,φ − 5G5,X φ̇H)− 4G5,XXφ̇X
2H2 , (3.5)

w3 ≡ 3X(K,X + 2XK,XX) + 6X(3Xφ̇HG3,XX −G3,φXX −G3,φ + 6Hφ̇G3,X)

+18H(4HX3G4,XXX−HG4−5Xφ̇G4,φX−G4,φφ̇+7HG4,XX+16HX2G4,XX−2X2φ̇G4,φXX)

– 4 –
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+6H2X(2Hφ̇G5,XXXX
2−6X2G5,φXX+13XHφ̇G5,XX−27G5,φXX+15Hφ̇G5,X−18G5,φ) , (3.6)

w4 ≡ 2G4 − 2XG5,φ − 2XG5,X φ̈ . (3.7)

The equation of motion for χ gives rise to the following momentum constraint

w2Ψ = 2w1Φ̇ +
∑

l=A,B

ρl(1 + wl)vl , (3.8)

which can be used to integrate out the field Ψ. After replacing Ψ in eq. (3.3), by using
eq. (3.8), we need to integrate the terms ∂2Φ Φ̇ and ∂2Φ vl by parts, so that the action (3.3)
reduces to

S(2) =

∫

d4x
[

AijQ̇iQ̇j − Cij(∂Qi)(∂Qj)− BijQiQ̇j −DijQiQj

]

, (3.9)

where Qi = (Φ, vA, vB), and Aij , Bij , Cij , Dij are the components of the 3 × 3 matrices A,
B, C, D.

Imposing the matrix A to be positive definite leads to the no-ghost conditions

QS ≡ w1(4w1w3 + 9w2
2)

3w2
2

> 0 , (3.10)

and wA(1 + wA)ρA > 0, wB(1 + wB)ρB > 0. The latter two conditions are automatically
satisfied for radiation (wA = 1/3) and non-relativistic matter (wB = 0+). The speed of
propagation cs for the fields can be found by solving the following discriminant equation

det
(

c2sA− a2C
)

= 0 . (3.11)

This has two trivial solutions c2s = wA and c2s = wB, which are not negative for radiation
and non-relativistic matter. In order to avoid the Laplacian instability associated with the
remaining solution of eq. (3.11) we require that

c2S ≡ 3(2w2
1w2H − w2

2w4 + 4w1w2ẇ1 − 2w2
1ẇ2)− 6w2

1[(1 + wA)ρA + (1 + wB)ρB]

w1(4w1w3 + 9w2
2)

≥ 0 .

(3.12)
We also consider tensor perturbations hij characterized by δgij = a2(t)hij , where hij

is traceless (hii = 0) and divergence-free (hij ,j = 0). We decompose hij into the two po-
larization modes, hij = h⊕ e⊕ij + h⊗e

⊗
ij , where the matrices e⊕ij and e⊗ij are normalized to

be eλij(k)e
λ
ij(−k)∗ = 2, (where λ = ⊕,⊗) and e⊕ij(k)e

⊗
ij(−k)∗ = 0 in Fourier space. The

second-order action for tensor perturbations can be written as

S
(2)
T =

∑

λ

∫

d4x a3QT

[

ḣ2λ − c2T
a2

(∂hλ)
2

]

, (3.13)

where the conditions for the avoidance of ghosts and Laplacian instabilities are given by

QT ≡ w1

4
> 0 , (3.14)

c2T ≡ w4

w1
≥ 0 . (3.15)

For the consistency of the theories given by the action (2.7) the condi-
tions (3.10), (3.12), (3.14), and (3.15) need to be satisfied. Finally, as we will show in
appendix A, the vector modes do not add any conditions to those derived above.

– 5 –
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4 Application to extended Galileon dark energy models

In this section we shall study the cosmology based on the extended Galileon models by
taking into account the conditions for the avoidance of ghosts and Laplacian instabilities
derived in section 3.

The covariant Galileon without the field potential [11] corresponds to

K = −c2X , G3 =
c3
M3

X , G4 =
1

2
M2

pl −
c4
M6

X2 , G5 =
3c5
M9

X2 , (4.1)

where ci (i = 2, 3, 4, 5) are dimensionless constants, Mpl is the reduced Planck mass, and
M is a constant having the dimension of mass. In this case it is known that there exists
a cosmological tracker solution characterized by the condition Hφ̇ =constant [16]. Along
the tracker the dark energy equation of state evolves as wDE = −7/3 (radiation era) →
wDE = −2 (matter era) → wDE = −1 (de Sitter era). However, the tracker solution for the
covariant Galileon is not favored by the joint data analysis of Supernovae Ia (SNIa), Cosmic
Microwave Background (CMB), and Baryon Acoustic Oscillations (BAO) [39]. This comes
from the unusual evolution of wDE during the matter era away from −1. Only the solutions
that approach the tracker at late times can be allowed observationally.

Let us consider the generalization of the covariant Galileon to find tracker solutions
with different wDE. We take the following functions

K = −c2M
4(1−p2)
2 Xp2 , G3 = c3M

1−4p3

3 Xp3 , G4 =
1

2
M2

pl − c4M
2−4p4

4 Xp4 , G5 = 3c5M
−(1+4p5)
5 Xp5 ,

(4.2)

where ci and pi (i = 2, 3, 4, 5) are dimensionless constants, andMi (i = 2, 3, 4, 5) are constants
having dimensions of mass1. For two perfect fluids we consider radiation (energy density ρA =
ρr, equation of state wA = 1/3) and non-relativistic matter (energy density ρB = ρm, equa-
tion of state wB = 0). For the choice (4.2) the field equations (2.8) and (2.9) can be written as

3H2M2
pl = ρDE + ρm + ρr , (4.3)

(3H2 + 2Ḣ)M2
pl = −pDE − ρr/3 , (4.4)

where

ρDE ≡ 2XK,X−K+6Hφ̇XG3,X−6H2G̃4+24H
2X(G4,X+XG4,XX)+2H3φ̇X(5G5,X+2XG5,XX) , (4.5)

pDE ≡K−2φ̈XG3,X+2(3H2+2Ḣ)G̃4−12H2XG4,X−4HẊG4,X−8ḢXG4,X−8HXẊG4,XX

−2X(2H3φ̇+2HḢφ̇+3H2φ̈)G5,X−4H2φ̈X2G5,XX , (4.6)

and G̃4 ≡ G4 −M2
pl/2 = −c4M

2−4p4
4 Xp4 .

For the covariant Galileon (p2 = p3 = 1, p4 = p5 = 2) there is a tracker solution with
Hφ̇ =constant, in which case all the terms in eq. (4.5) are proportional to φ̇2. We search for
tracker solutions characterized by the condition

Hφ̇2q = constant , (4.7)

where the power q is a real constant. If we choose the following powers, all the terms in
eq. (4.5) are proportional to φ̇2p:

p2 = p , p3 = p+ (2q − 1)/2 , p4 = p+ 2q , p5 = p+ (6q − 1)/2 . (4.8)

1Kimura and Yamamoto [26] studied the model with p2 = 1, p3 6= 0, c4 = 0, c5 = 0, which recovers the
Dvali-Turner model [40].

– 6 –
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Note that the covariant Galileon corresponds to p = 1 and q = 1/2.
Let us study whether the tracker really exists or not for the powers given by eq. (4.8).

Before doing so we first discuss conditions for the existence of a de Sitter solution character-
ized by φ̇ =constant and H =constant. We introduce the following variable

x ≡ φ̇

HMpl
. (4.9)

For the simplification of the background equations it is convenient to define

M2 ≡ (HdSMpl)
1/2 , M3 ≡

(

Mpl
1−2p3

HdS
2p3

)1/(1−4p3)

,

M4 ≡
(

Mpl
2−2p4

HdS
2p4

)1/(2−4p4)

, M5 ≡
(

HdS
2+2p5

Mpl
1−2p5

)1/(1+4p5)

, (4.10)

where HdS is the Hubble parameter at the de Sitter solution. For the covariant Galileon one
has M3 = M4 = M5 = (H2

dSMpl)
1/3. From eqs. (4.3) and (4.4) we find that the de Sitter

fixed point where φ̈ = 0 and Ḣ = 0 is present under the following conditions

c2 =
3

2

(

2

x2dS

)p

(3α− 4β + 2) , (4.11)

c3 =

√
2

2p+ q − 1

(

2

x2dS

)p+q

[3(p+ q)(α− β) + p] , (4.12)

where xdS is the value of x at the de Sitter solution, and

α ≡ 4(2p4 − 1)

3

(

x2dS
2

)p4

c4 , β ≡ 2
√
2 p5

(

x2dS
2

)p5+1/2

c5 . (4.13)

In order to discuss the cosmological dynamics it is convenient to introduce the following
variables

r1 ≡
(xdS

x

)2q
(

HdS

H

)1+2q

, r2 ≡
[

(

x

xdS

)2 1

r31

]
p+2q
1+2q

, Ωr ≡
ρr

3H2M2
pl

. (4.14)

The solution (4.7), in terms of the variable r1, is given by r1 = 1. The de Sitter fixed
point corresponds to (r1, r2,Ωr) = (1, 1, 0). We will only consider cosmological dynamics
for which r1 and r2 are both positive at all times: otherwise the inverse relations of (4.14)
may be ill-defined. On the other hand, we will see later on that a viable cosmology cannot
allow a change of sign for the variable r2. Defining the dark energy density parameter
ΩDE ≡ ρDE/(3H

2M2
pl), it follows that

ΩDE =
r

p−1
2q+1

1 r2
2

[

r1
{

r1
[

12(α− β)(p+ q) + 4p− r1(2p− 1)(3α− 4β + 2)
]

− 3α(2p+ 4q + 1)
}

+4β(p+ 3q + 1)
]

. (4.15)

The Friedmann equation gives the relation Ωm ≡ ρm/(3H2M2
pl) = 1 − Ωr − ΩDE. For the

initial conditions where r1 is positive but small (0 < r1 ≪ 1), we require that

p− 1

2q + 1
≥ 0 , (4.16)
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in order to have ΩDE → 0. In the following we will replace Ωm with 1− Ωr − ΩDE.
We can obtain the differential equations for r1, r2, and Ωr after deriving φ̈ and Ḣ

from eqs. (2.9) and (2.10), e.g., r′1/r1 = −2qφ̈/(Hφ̇) − Ḣ/H2, where a prime represents
a derivative with respect to N = ln a. The r.h.s. of these differential equations can be
expressed in terms of r1, r2, and Ωr together with the coefficients α, β, p, and q.

The equation for r1 is given by

r′1 = [r1(r1 − 1){β(2p(r1 − 1)(2r1 + 1)− 6q(r1 + 1)) + r1(3α(p− pr1 + 2q)− 2pr1)}
×{2((3 + Ωr)(2p− 1) + 12q)r

(1−p)/(1+2q)
1 + 3(4β(1 + p+ 3q)− 3α(1 + 2p+ 4q)r1

+4((1 + 3α− 3β)p+ 3(α− β)q)r21 + (−2− 3α+ 4β)(2p− 1)r31)r2}]/∆ , (4.17)

where

∆ ≡ 2[−2r
(2+2q−p)/(1+2q)
1 (3α(p+2q)(2p+4q−1)−(2p+2q−1)((2+6α)p+6αq)r1+(2+3α)p(2p−1)r21)

+4βr
(1−p)/(1+2q)
1 (2p2−p+18q2+12pq−3q−3(2p+2q−1)(p+q)r21+2p(2p−1)r31)

+r21{9α
2(2q(2qr1−2q−1)+(2p2+p+8pq)(r1−1))(r1−1)+4p2r21+6αpr1((2p+4q+1)r1−2p−6q−1)}r2

+3β2(r1−1){4p(r1−1)(1+2r1+6q(r1+1)2)+4p2(r1−1)(1+r1(2+3r1))+6q(r1+1)(2q(r21−3)−2)}r2

−3βr21{4pr1((r1−1)(2pr1+1)+2q(r21−2))+α(r1−1)(8p2(r1−1)(2r1+1)+6q(4qr21−(1+2q)r1−3−10q)

+4p(r1−1)(12q(r1+1)+r1+2))}r2] . (4.18)

In addition to eq. (4.17) we write the remaining equations of motion for the variables r2 and
Ωr. We find that the second Einstein equation is equivalent to

r′1
r1

{

4(3q+1)(p+2q)−2r2(p+2q)r
p−1

2q+1

1 {3αr1(p−q−1)−3β(p−3q−2)−r21 [3αp−3β(p+q)+p+3αq]}
}

+
2r′2
r2

(2q + 1)
{

r
p−1

2q+1

1 r2{3β(p+ q) + r21[3αp− 3β(p+ q) + p+ 3αq]− 3αr1(p+ q)}+ 2q
}

− 3(2q+1)(p+2q){r
p−1

2q+1

1 r2[r
3
1(4β−3α−2)+3αr1−4β]+2}−2(2q+1)(p+2q) Ωr=0 , (4.19)

whereas the equation of continuity for the radiation fluid leads to

(2q + 1)(p+ 2q)
Ω′
r

Ωr
− 2(3q + 1)(p+ 2q)

r′1
r1

− 2q(2q + 1)
r′2
r2

+ 4(2q + 1)(p+ 2q) = 0 . (4.20)

These two equations, combined with eq. (4.17), completely determine the dynamics of the
system.

4.1 Tracker

From eq. (4.17) we find that there is a fixed point characterized by

r1 = 1 , (4.21)

which corresponds to the tracker solution with Hφ̇2q = constant. Considering the homoge-
nous perturbations δr1 along the solution r1 = 1, it follows that

δr′1 = −6(p+ 2q)− 3 + (2p− 1)Ωr + 3r2
2(pr2 + 2q)

δr1 . (4.22)

For pr2 + 2q > 0 the tracker is stable along the r1 direction provided that

6(p+ 2q) + (2p− 1)Ωr > 3(1− r2) . (4.23)
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Along the tracker the dark energy density parameter is simply given by

ΩDE = r2 . (4.24)

For 0 ≤ ΩDE ≤ 1 the r.h.s. of eq. (4.23) is within the range 0 ≤ 3(1− r2) ≤ 3. As long as the
condition (4.23) is satisfied, which includes the case of the covariant Galileon, the solutions
stay at the tracker. With the increase of r2 the solutions finally reach the de Sitter fixed
point characterized by r1 = 1 and r2 = 1.

Along the tracker the equations for r2 and Ωr are given by

r′2 =
(p+ 2q)(Ωr + 3− 3r2)

pr2 + 2q
r2 , (4.25)

Ω′
r =

2q(Ωr − 1− 3r2)− 4pr2
pr2 + 2q

Ωr . (4.26)

Combining these equations, it follows that

r′2
r2

− (1 + s)
Ω′
r

Ωr
= 4(1 + s) , where s ≡ p

2q
. (4.27)

Integration of this equation leads to

r2 = c1a
4(1+s)Ωr

1+s , (4.28)

where c1 is a constant. Since Ωr ∝ a−4H−2, the evolution of the variable r2 is r2 ∝ H−2(1+s).
Since we want r2 to be subdominant at early times and to grow on the tracker solution, we
further impose

1 + s = 1 +
p

2q
> 0 . (4.29)

Substituting eq. (4.28) into (4.26), we obtain the integrated solution

c1a
4(1+s)Ωr

1+s = 1− Ωr(1− c2a) , (4.30)

where c2 is a constant. Therefore, the dynamics on the tracker depends only on the free
parameter s = p/(2q) and the two initial conditions c1,2. For a particular choice of s such
as s = 1 (which corresponds to the covariant Galileon), it is possible to derive the explicit
solution for Ωr in terms of a [17, 39]. For general s, however, we cannot necessarily find an
explicit expression for Ωr. The density parameter of dark energy along the tracker is given
by ΩDE = r2 = c1a

4(1+s)Ωr
1+s. Writing the density parameters of dark energy and radiation

today (a = 1) as Ω
(0)
DE and Ω

(0)
r respectively and using eqs. (4.24), (4.28), and (4.30), the

coefficients c1 and c2 are found to be

c1 =
1− Ω

(0)
m − Ω

(0)
r

(Ω
(0)
r )1+s

, c2 = −Ω
(0)
m

Ω
(0)
r

, (4.31)

where Ω
(0)
m = 1− Ω

(0)
DE − Ω

(0)
r is the density parameter of non-relativistic matter today.

The dark energy equation of state wDE ≡ pDE/ρDE and the effective total equation of
state weff ≡ −1− 2Ḣ/(3H2) along the tracker are

wDE = −3 + s(3 + Ωr)

3(sr2 + 1)
, weff = −3r2(s+ 1)− Ωr

3(sr2 + 1)
. (4.32)
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In the early cosmological epoch in which the condition ΩDE = r2 ≪ 1 is satisfied, one has
wDE ≃ −1 − s(1 + Ωr/3) and weff ≃ Ωr/3, respectively. Hence the evolution of wDE during
the radiation and matter eras is given by wDE = −1− 4s/3 and wDE = −1− s, respectively.
At the de Sitter fixed point (r2 = 1 and Ωr = 0) it follows that wDE = weff = −1. The
tracker solution for the covariant Galileon (s = 1) is incompatible with observations because
wDE is away from −1 during the matter and radiation eras [39]. For the compatibility with
observations we require that

s =
p

2q
< 1 . (4.33)

In the regime r2 ≪ 1 the conditions for the avoidance of ghosts and Laplacian instabil-
ities are given by

QS

M2
pl

≃ 6q [p− 3(α− 2β)q] r2 > 0 , (4.34)

c2S ≃
{

4p3(Ωr + 3)− 2p2{(Ωr + 3)(6β − 3α+ 2)− 2q[3Ωr + 11− 3(α− 2β)(Ωr + 3)]}
−3{β(Ωr+3)+8q3(Ωr+5)(α−2β)−2q2(7Ωr+27)(α−2β)+q[3α(Ωr+3)−2β(5Ωr+17)]}
−p{(Ωr + 3)(3α− 12β − 1) + 4q2[(α− 2β)(9Ωr + 33)− 2(Ωr + 5)]

+q[12(2β − α)(3Ωr + 10) + 6Ωr + 22]}
}

/[24q2(2p+ 4q − 1){p− 3(α− 2β)q}] ≥ 0 , (4.35)

QT

M2
pl

≃ 1

8
[2 + 3(α− 2β)r2] > 0 , (4.36)

c2T ≃ 1− 3{2[2(α− 2β)q + 3β]p+ 8(α− 2β)q2 + β(16q − 3) + β(2p+ 4q − 1)Ωr}
4q(2p+ 4q − 1)

r2 ≥ 0 . (4.37)

These results reproduce those derived in refs. [16, 17] for the covariant Galileon (p = 1, q =
1/2). Let us consider the case in which the parameters α, β, p, q are not very different from the
order of unity. Since r2 ≪ 1 the conditions (4.36) and (4.37) are automatically satisfied. We
see here that r2 cannot change its sign, as this implies the violation of the condition QS > 0.
Since we only consider the case r2 > 0 at the initial stage, the scalar ghost can be avoided for

q [p− 3(α− 2β)q] > 0 . (4.38)

For p and q satisfying q(2p+4q− 1) > 0, the Laplacian instability of the scalar perturbation
is absent as long as the numerator in eq. (4.35) is positive. For the covariant Galileon this
corresponds to the condition 8 + 10α− 9β +Ωr(2 + 3α− 3β) ≥ 0 [16, 17].

4.2 De Sitter solutions (r1 = r2 = 1)

We study the stability of the late-time de Sitter solution characterized by r1 = r2 = 1. At
the de Sitter fixed point the system is effectively described by one scalar degree of freedom
Φ, with the second-order action S(2) =

∫

d4x a3QS [Φ̇
2 − (c2S/a

2)(∇Φ)2]. For homogenous
perturbations (comoving wavenumber k = 0) the scalar perturbation obeys the equation of
motion d

dt(a
3QSΦ̇) = 0, whose solution is

Φ(t) = c1 + c2

∫ t 1

a3QS
dt̃ , (4.39)

where c1 and c2 are constants. Now we are considering the de Sitter solution where φ̇ is
constant, in which case QS does not vary in time. Since a ∝ eHdSt, the second term in
eq. (4.39) decays in proportion to e−3HdS t. Hence the de Sitter solution in our theory is
classically stable against homogeneous perturbations.
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The conditions for the avoidance of ghosts and Laplacian instabilities (against inhomo-
geneous perturbations) at r1 = r2 = 1 are given by

QS

M2
pl

=
6(p+ 2q)(3α− 6β + 2)[p− 3(α− 2β)q]

[2p− 6(α− 2β)q − 3α+ 6β − 2]2
> 0 , (4.40)

c2S = {6β+4p2+p [9(α−2β)2+3α−12β+4q(6β−3α+2)−2]+3(α−2β)[3β+q(9α−12β−8q+6)]}

× 3(2β − α)(2q + 1) + 2p− 2

6(6β − 3α− 2)(p+ 2q)(2p+ 4q − 1)(p− 3αq + 6βq)
≥ 0 , (4.41)

QT

M2
pl

=
1

8
(3α− 6β + 2) > 0 , (4.42)

c2T =
2(2p+ 4q − 1)− 3α

(2p+ 4q − 1)(3α− 6β + 2)
≥ 0 . (4.43)

4.3 The solutions in the regime r1 ≪ 1 and r2 ≪ 1

Equation (4.17) shows that there is another fixed point characterized by

r1 = 0 . (4.44)

Let us study the behavior of the solutions in the regime r1 ≪ 1 and r2 ≪ 1. In doing so we
consider the parameter space with p ≥ 1 and q > 0. Then the equations for r1, r2, and Ωr

are approximately given by

r′1 ≃ (3 + Ωr)(2p− 1) + 12q

2(2p+ 6q − 1)
r1 , (4.45)

r′2 ≃ (p+ 2q)[9− 6p+Ωr(7− 2p+ 12q)]

2(2q + 1)(2p+ 6q − 1)
r2 , (4.46)

Ω′
r ≃ Ωr(Ωr − 1) . (4.47)

From eq. (4.47) there are two fixed points: Ωr = 1 and Ωr = 0. During the radiation era
(Ωr = 1) integration of eqs. (4.45) and (4.46) gives

r1 ≃ a
4p+6q−2
2p+6q−1 , r2 ≃ a

(p+2q)(8−4p+6q)
(2q+1)(2p+6q−1) , (4.48)

whereas during the matter era (Ωr = 0) one has

r1 ≃ a
3(2p+4q−1)
2(2p+6q−1) , r2 ≃ a

3(p+2q)(3−2p)
2(2q+1)(2p+6q−1) . (4.49)

The variable r1 increases for p ≥ 1 and q > 0, which is followed by the approach to the
tracker solution. Whether the variable r2 grows or not depends on the values of p and q. If
p > 3/2 and q > 0, for example, r2 decreases in the matter era. However the dynamics will
in general change as the solutions approach the tracker, r1 → 1.

The dark energy equation of state wDE and the total effective equation of state weff in
the regime r1 ≪ 1 and r2 ≪ 1 are approximately given by

wDE ≃ 1 + Ωr

2(1− 2p− 6q)
, weff ≃ 1

3
Ωr . (4.50)

If p = 1 and q = 1/2, we have wDE = −(1 + Ωr)/8 [16, 17].
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For (p− 1)/(2q + 1) > 0 the ghosts and Laplacian instabilities can be avoided for

QS

M2
pl

≃ 3(p+ 3q)(2p+ 6q − 1)βr
(p−1)/(2q+1)
1 r2 > 0 , (4.51)

c2S ≃ p+ 3q − 2

2(p+ 3q)(2p+ 6q − 1)
(1 + Ωr) ≥ 0 , (4.52)

QT

M2
pl

≃ 1

4

[

1− 3βr2r
(p−1)/(2q+1)
1

]

> 0 , (4.53)

c2T ≃ 1 +
3(4p+ 12q − 5− 3Ωr)

4p+ 12q − 2
βr

(p−1)/(2q+1)
1 r2 ≥ 0 . (4.54)

In the regime r1 ≪ 1 and r2 ≪ 1 the conditions (4.53) and (4.54) are automatically satisfied.

4.4 Other fixed points

From eq. (4.17) we see that in general there are other two more complicated fixed points,
r1 = ra,b, those which satisfy the equation

p(3α− 4β + 2)r2j + [2β(p+ 3q)− 3α(p+ 2q)]rj + 2β(p+ 3q) = 0 , (4.55)

with j = a, b. Whether or not these fixed points are viable or not depends on their stability
and the chosen parameters of the model.

Then we will consider only those models for which either there are no real solutions to
eq. (4.55), or, if they exist, they are placed outside the range of interest corresponding to the
interval 0 < r1 ≤ 1. Therefore we need to fulfill the following condition

(∆̄ < 0) ∨ [∆̄ ≥ 0 ∧ (ra < 0 ∨ ra > 1) ∧ (rb < 0 ∨ rb > 1)] , (4.56)

where the symbols ∧ and ∨ stand for the logical “and” and “or” respectively, and

ra,b =
3α(p+ 2q)− 2β(p+ 3q)±

√
∆̄

2p (3α− 4β + 2)
, (4.57)

∆̄ = [2β(p+ 3q)− 3α(p+ 2q)]2 − 8βp(3α− 4β + 2)(p+ 3q) . (4.58)

4.5 Theoretically viable parameter space

Let us discuss the relevant constraints we have found so far in order to restrict the allowed
parameter space. Therefore we have

p− 1

1 + 2q
≥ 0 , in order to have ΩDE subdominant et early times, (4.59)

1 +
p

2q
> 0 , in order to have a growing ΩDE along the tracker , (4.60)

p

2q
< 1 , in order to have the tracker consistent with data, (4.61)

p+ 3q − 2

(p+ 3q)(2p+ 6q − 1)
≥ 0 , in order to have c2S

∣

∣

r1≪1,r2≪1
≥ 0 , (4.62)

(p+ 3q)(2p+ 6q − 1)β > 0 , in order to have QS |r1≪1,r2≪1 > 0 , (4.63)

3α− 6β + 2 > 0 , in order to have QT |de Sitter > 0 , (4.64)

– 12 –



J
C
A
P
0
2
(
2
0
1
2
)
0
0
7

(p+ 2q)[p− 3(α− 2β)q] > 0 , in order to have QS |de Sitter > 0 , (4.65)

q [p− 3(α− 2β)q] > 0 , in order to have QS |r1=1,r2≪1 > 0 , (4.66)

c2S
∣

∣

de Sitter
≥ 0 , c2T

∣

∣

de Sitter
≥ 0 , (4.67)

c2S
∣

∣

r1=1,r2≪1,Ωr=0
≥ 0 , c2S

∣

∣

r1=1,r2≪1,Ωr=1
≥ 0 . (4.68)

The conditions (4.59)–(4.62) impose

q >
1

2
, and 1 ≤ p < 2q . (4.69)

This implies that negative values of p and q are excluded. Furthermore, the condition (4.63)
implies

β > 0 . (4.70)

Altogether we find the following allowed parameter space
(

q >
1

2

)

∧ (1 ≤ p < 2q) ∧
[(

2p−2

6q+3
<α ≤ p

3q
∧ 0<β ≤ βmax

)

∨
(

p

3q
<α ≤ 1

3
(4p+8q−2) ∧ 3αq−p

6q
<β ≤ βmax

)]

, (4.71)

where

βmax ≡ 3α− 2p+ 6αq + 2

6(2q + 1)
. (4.72)

Although the above conditions have been derived for different initial conditions, we impose
them to be true at the same time. This is because we do not know a priori initial conditions
in the early Universe, as we have not specified how inflation works in these models.

To be more concrete, let us consider the theory with p = 1 and q = 5/2. In this case
the dark energy equation of state along the tracker is given by wDE = −1.2 during the
matter era. The condition (4.71) reduces to

(α ≥ 2β) ∧
[

(α > 0 ∧ β > 0 ∧ 15α ≤ 2) ∨
(

15α > 2 ∧ α < 2β +
2

15
∧ 3α ≤ 22

)]

. (4.73)

Adding the condition (4.56), the parameter space reduces to

(α ≥ 2β) ∧
[(

α > 0 ∧ 2
√
17
√

3(272− 75α)α+ 68 + 561β > 408α+ 68 ∧ 75α ≤ 34
)

∨
(

75α > 34 ∧ α < 2β +
2

15
∧ 3α ≤ 22

)]

. (4.74)

During the transition from the regime r1 = 1 and r2 ≪ 1 to the de Sitter attractor
(r1 = 1 and r2 = 1) the tensor propagation speed squared c2T can be negative, depending on
the model parameters. For p = 1 and q = 5/2 we have

c2T =
110 + (22− 15α− 99β − 33βΩr)r2 + 3(33β − α)r22

11[2 + 3(α− 2β)r2](5 + r2)
, (4.75)

along the tracker. Since the transition occurs at late times, the contribution of the radiation
density parameter can be neglected in eq. (4.75). If |α| ≪ 1 and |β| ≪ 1, then c2T is close to
1. For positive α and β of the order of unity it happens that c2T becomes negative. Taking
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Figure 1. (Left) Allowed parameter space in the (α, β) plane (the area in black) for p = 1 and q = 5/2.
In the right panel we zoomed the available parameter space of the left panel in the (α, β−α/2) plane.
We have used all the available conditions considered so far, i.e. (4.74) and (4.79).

the derivative of eq. (4.75) with respect to r2, c2T has a minimum (the second derivative
d2(c2T )/dr

2
2, at r2 = r2,min, is always positive in the region 0 < r2,min < 1 and when the

conditions (4.73) are satisfied) at

r2,min =
60α− 275β + 3

√
∆min

55β − 12α− 594β2 + 297αβ
, (4.76)

where

∆min ≡ β [180α2 − 3α(197β + 8) + 22β(21β + 5)] . (4.77)

In eq. (4.76) we have chosen the solution with r2 > 0, because another solution is always
negative if the conditions (4.73) are satisfied.

Plugging the solution (4.76) into eq. (4.75), we find that

c2T
∣

∣

r2,min
=

36
√
55
√
∆min − 225α2 − 15α(69β + 20) + 66β(45β − 23) + 44

11(30β − 15α+ 2)2
. (4.78)

Therefore the allowed parameter space is characterized by

∆min < 0∨ [∆min ≥ 0∧(r2,min ≤ 0∨r2,min ≥ 1)]∨ [∆min ≥ 0∧(0 < r2,min < 1)∧ c2T
∣

∣

r2,min
≥ 0] .

(4.79)
The first inequality comes from setting r2,min to be an imaginary number such that there
is no minimum for c2T . The second inequality allows the minimum of c2T to be outside the
interested range for r2.

In figure 1 we plot the allowed parameter space for p = 1 and q = 5/2 in the (α, β)
plane constrained by the conditions (4.74) and (4.79).

4.6 Numerical simulations

In order to confirm the analytic estimation given above, we solve the differential equations
of r1, r2, and Ωr numerically for given values of α, β, p, and q. In particular we study the
cosmological evolution for p = 1 and q = 5/2, in which case the parameters α and β need
to satisfy the constraints (4.74) and (4.79).
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Figure 2. Evolution of the density parameters ΩDE, Ωm, Ωr, weff , and wDE versus the redshift z for
p = 1, q = 5/2, α = 1, β = 0.45, and xdS = 1. The initial conditions are chosen to be r1 = 1, r2 =
10−30, and Ωr = 0.9998 at z = 1.76×107. In this case the solution is on the tracker from the beginning.

Figure 3. Variation of wDE versus z for p = 1, q = 5/2, α = 1, β = 0.45, and xdS = 1 with
several different initial conditions. The solid line corresponds to the tracker with the initial conditions
same as those given in figure 2. The initial conditions for the cases (a)-(c) are (a) r1 = 4.0 × 10−2,
r2 = 5.0×10−26, Ωr = 0.9998 at z = 1.82×107, (b) r1 = 1.0×10−5, r2 = 1.0×10−13, Ωr = 0.9998 at
z = 1.76× 107, and (c) r1 = 1.0× 10−7, r2 = 1.0× 10−9, Ωr = 0.99995 at z = 6.64× 107, respectively.
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Figure 4. Variation of QS/M
2
pl versus z for the same model parameters and initial conditions as

those given in figure 3. The solid line represents the tracker solution, whereas the cases (a), (b), and
(c) correspond to the evolution for the initial conditions as those given in figure 3.

Figure 5. Evolution of c2S versus z for the same model parameters and initial conditions as those
given in figure 3. The solid line represents the tracker solution, whereas the cases (a), (b), and (c)
correspond to the evolution for the initial conditions as those given in figure 3.

In figure 2 we plot the evolution of ΩDE, Ωm, Ωr, weff , and wDE versus the redshift
z = 1/a − 1 for p = 1, q = 5/2, α = 1, β = 0.45, and xdS = 1 with the initial conditions
corresponding to the tracker from the beginning (r1 = 1). For this choice of α and β
the conditions (4.74) and (4.79) are satisfied. Note that the coefficients ci (i = 2, · · · , 5)
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are known to be c2 = 9.60, c3 = 18.07, c4 = 4.36, and c5 = 7.20 from eqs. (4.11)–(4.13).
Furthermore both the fixed points given in eq. (4.55) exist in the region ra,b > 1. Figure 2
shows that the sequence of radiation (weff = 1/3, Ωr = 1), matter (weff = 0, Ωm = 1), and
de Sitter (weff = −1, ΩDE = 1) eras is in fact realized. The dark energy density parameter
grows as ΩDE = r2 ∝ t2(1+s) = t12/5 toward the de Sitter attractor (r1 = r2 = 1). As
estimated by eq. (4.32), the evolution of wDE during the radiation and matter eras are given
by wDE = −1.267 and wDE = −1.2, respectively. After the end of the matter-dominated
epoch the solution approaches the de Sitter attractor with wDE = −1.

In figure 3 we show the variation of wDE for the same model parameters as those
used in figure 2 with a number of different initial conditions. The approach to the tracker
occurs later for smaller initial values of r1. This can be clearly seen in the numerical
simulations of the cases (a)-(c) in figure 3. The case (a) corresponds to the early tracking,
whereas the case (c) to the late-time tracking with smaller initial values of r1. In the regime
characterized by r1 ≪ 1 and r2 ≪ 1, the analytic estimation (4.50) gives wDE = −0.0625
and wDE = −0.03125 during the radiation and the matter eras, respectively. These analytic
values of wDE are in good agreement with their numerical values for the late-time tracking
solution (such as the case (c) in figure 3).

In figure 4 the evolution of the quantity QS is shown for the same model parameters
and the initial conditions as those given in figure 3. For the tracker our numerical simulations
show that QS grows according to eq. (4.34) in the regime r2 ≪ 1 (i.e. QS ∝ r2 ∝ t12/5),
which finally approaches the value (4.40) at the de Sitter solution. For the initial conditions
with r1 ≪ 1 and r2 ≪ 1 we find that the early evolution of QS is well described by eq. (4.51),
i.e. QS ∝ r2 ∝ t19/32 during the radiation era. As we can see in figure 4, the evolution of QS

shifts to that of the tracker after the solutions reach the regime around r1 = 1. Provided
that r2 > 0 initially, QS always remains to be positive.

As we see in eqs. (4.36) and (4.53) the quantity QT /M
2
pl is close to the value 1/4 in

the regime r2 ≪ 1, independently of the values of r1. Numerically we confirmed that, for
both the initial conditions r1 = 1 and r1 ≪ 1, QT /M

2
pl stays the value around 1/4 until

recently and then it finally approaches the value (4.42) at the de Sitter solution. Provided
that 3α− 6β + 2 > 0 the no-ghost condition for the tensor perturbation is always satisfied.

In figure 5 we illustrate the evolution of c2S for the same model parameters and the initial
conditions as those given in figure 3. The analytic estimation (4.35) for the tracker gives
c2S = 0.639 and c2S = 0.515 during the radiation and matter dominated epochs respectively,
which show good agreement with the numerical result in figure 5. Finally c2S approaches the
value 9.48 × 10−2 with a smooth transition from the matter era to the de Sitter epoch. In
the regime r1 ≪ 1 and r2 ≪ 1 the analytic estimation (4.52) gives c2S ≃ (13/544)(1 + Ωr).
In fact the numerical simulations for the cases (a), (b), and (c) reproduce this value before
the solutions reach the tracker. Since 0 < c2S < 1 from the radiation era to the de Sitter
epoch, the Laplacian instability of the scalar perturbation is absent.

Figure 6 depicts the evolution of c2T for the tracker with two different combinations
of α and β. The case (i) corresponds to the model parameters and the initial conditions as
those given in figure 2. As estimated by eq. (4.37), the tensor propagation speed squared
along the tracker is very close to 1 but slightly less than 1 in the early cosmological epoch.
In the case (i) the model parameters satisfy the condition (4.79), so that c2T takes a positive
minimum value 0.745 at r2 = 0.847. Then the solution finally approaches the de Sitter
attractor with c2T = 0.751. In the case (ii), in which the condition (4.79) is violated, the
minimum value of c2T is negative. This shows that the condition (4.79) is in fact required to
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Figure 6. Evolution of c2T versus z along the tracker for (i) p = 1, q = 5/2, α = 1, β = 0.45, xdS = 1,
and (ii) p = 1, q = 5/2, α = 6.1, β = 3, xdS = 1. In both cases the initial conditions are chosen to
be r1 = 1, r2 = 10−30, and Ωr = 0.9998. In the case (ii) the condition (4.79) is violated, so that c2T
temporally becomes negative during the transition from the regime r2 ≪ 1 to the regime r2 = 1.

avoid the Laplacian instability of the tensor perturbation. We have also run our numerical
code for the initial conditions with r1 ≪ 1, r2 ≪ 1 and found that the evolution of c2T is
similar to that for the tracker. The only difference is that the tensor propagation speed
is slightly superluminal in the regime r1 ≪ 1, r2 ≪ 1. In fact, eq. (4.54) shows that c2T is
slightly larger than 1 under the conditions (4.69) and (4.70).

We have also carried out the numerical simulations for other values of p, q and confirmed
the accuracy of the analytic estimation. If we choose larger values of q for given p, the dark
energy equation of state wDE along the tracker approaches −1. In the limit where q → ∞
the scalar propagation speed squared (4.41) at the de Sitter solution reduces to c2S → α− 2β
and hence we require the condition α ≥ 2β. On the other hand the condition (4.66) reduces
to α < 2β for q → ∞. Hence, if wDE along the tracker is close to −1, the allowed parameter
space tends to be smaller.

5 Conclusions

In the Horndeski’s most general scalar-tensor theories we derived conditions for the avoidance
of ghosts and Laplacian instabilities associated with scalar, tensor, and vector perturbations.
The four conditions (3.10), (3.12), (3.14), and (3.15) need to be satisfied for the theoretical
consistency. Vector perturbations do not give rise to any additional conditions to those
derived for scalar and tensor perturbations.

The Horndeski’s action covers most of the dark energy models proposed in literature
and hence our formulas are general enough to apply them to concrete models with second-
order field equations. We proposed new kinetically driven dark energy models described by
the functions (4.2), which cover the covariant Galileon as a specific case. For the choice of
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the powers pi (i = 2, 3, 4, 5) given in eq. (4.8) we showed the existence of the tracker solution
along which Hφ̇2q =constant. Finally the solutions approach a stable de Sitter attractor at
which φ̇ =constant.

Along the tracker the dark energy equation of state during the matter dominance is
found to be wDE = −1 − p/(2q). The covariant Galileon (p = 1 and q = 1/2) corresponds
to wDE = −2 during the matter era, which is not favored from the combined data analysis
of SNIa, CMB, and BAO. The extended Galileon model we proposed can alleviate this
problem because wDE can be close to −1 for p smaller than q.

We clarified the theoretically allowed parameter space in which the ghosts and Lapla-
cian instabilities are absent. For p = 1 and q = 5/2 we carried out numerical simulations to
check the evolution of the background quantities (like wDE and ΩDE) as well as the quantities
such as c2S , c

2
T , QS , and QT . As we estimated analytically, the dark energy equation of state

for the tracker evolves as wDE = −1.267 (radiation era), wDE = −1.2 (matter era), and
wDE = −1 (de Sitter era), see figure 3. For the initial conditions with r1 ≪ 1, wDE starts to
evolve from the value estimated by eq. (4.50). The approach to the tracker occurs later for
smaller initial values of r1.

For the values of α and β which are inside the allowed parameter space, our numerical
simulations show that c2S , c

2
T , QS , and QT remain to be positive in the cosmic expansion

history. Note that the condition (4.79) is important to avoid that c2T becomes negative
during the transition from the matter era to the de Sitter epoch. While we showed the
cosmological evolution for one choice of p and q, we also confirmed that the analytic
estimation is trustable for other values of p and q. In the limit that p/q → 0 the dark energy
equation of state for the tracker mimics that in the ΛCDM model.

It will be of interest to see how the combined data analysis of SNIa, CMB, and BAO
places constraints on the tracker solution in the extended Galileon models. In order to
confront this model with the observations of large scale structure and weak lensing, we
also need to study the evolution of matter density perturbations as well as gravitational
potentials. We leave these issues for future work.
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A Ghost conditions for the vector modes

The no-ghost conditions for the vector modes in the presence of two perfect fluids can be
found by using the method in ref. [37]. Let us consider the perturbed metric

ds2 = −dt2 + aγidt dx
i + a2(δij + Ci,j + Cj,i) dx

idxj , (A.1)

where γi,i = 0 = Ci,i. In order to describe the vector perturbations at linear order, for the
perfect fluid we write µuAα = AA∂αBA, where AA and BA are the velocity potentials for the
fluid A. We can choose the background values for AA and BA as follows: AA = 0, and ∂iBA =
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bAi = arbitrary constant. Then, for a plane wave in Fourier space, we have Ciki = 0. By
splitting BB as BB = bBi x

i+ bBi δBB, and choosing the gauge for which C⊥ = 0 = δBA (where
C⊥ is the component of Ci perpendicular to bBi ), and the arbitrary background quantities
such that bBi ki = 0, we find that bBi is parallel to Ci and both are perpendicular to ki.

After expanding the action at second order in the fields and integrating out the
auxiliary fields, we obtain

S =

∫

d4x
[

QV
11ĊiĊi + 2QV

12b
B
i Ċi

˙δBB +QV
22b

B
i b

B
i

˙δB2
B

]

, (A.2)

where Q11, Q12, and Q22 are time-dependent coefficients. The two no-ghost conditions can
be written as

QV
11 = a5

w1(k/a)
2 [(1 + wA)ρA + ρB(1 + wB)]

2 [2(1 + wA)ρA + 2 ρB(1 + wB) + w1(k/a)
2]

> 0 , (A.3)

QV
11Q

V
22 − (QV

12)
2 = a10

w1(k/a)
2(1 + wA)ρA(1 + wB)ρB

4[2(1 + wA) ρA + 2 (1 + wB)ρB + w1(k/a)
2]

> 0 . (A.4)

These conditions are satisfied for w1 > 0 (which corresponds to the condition (3.14)) and
(1 + wA)ρA > 0, and (1 + wB)ρB > 0. In General Relativity with one single perfect fluid,
only the condition (A.3) holds, and it agrees with the result in ref. [37], when w1 = M2

pl.
Hence the vector perturbations do not provide additional constraints to those derived for
scalar and tensor perturbations.
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[25] C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from kinetic gravity
braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE];
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