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a b s t r a c t

Non-minimal derivative coupling (NMDC) to gravity in flat FLRW universe is investigated in the
scenario of holographic dark energy. Kinetic term is coupled to the Einstein tensor under potential
V = (1/2)m2φ2. The free kinetic term is allowed to be canonical and phantom. Gravitational constant
is modified with the NMDC coupling. Holographic cutoff at Hubble horizon gives modification to dark
energy density. We evaluate dark energy equation of state and the variation of gravitational constant
of the theory such that the theory can be constrained. It is found that positive NMDC coupling is
favored rather than the negative one. The model with purely NMDC theory and the potential is favored
with positive sub-Planckian NMDC coupling and decaying scalar field. The canonical scalar field with
positive NMDC coupling under the scalar potential is also viable under some conditions that result
in oscillating scalar field. The phantom field case is not favored in this model since the coupling and
scalar mass are required to be super-Planckian while it is tightly constrained by gravitational constant
variation observations.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the past decades, many theoretical approaches to explain
osmological problems, namely present acceleration with w ≃

1 [1–8], dark matter and inflationary graceful exits with accept-
ble CMB data [9,10], have been proposed (as reviewed in [11–16]
nd many references therein). Two approaches are to modify
atter Lagrangian and to modify gravitational sector. In modify-

ng matter sector, dark energy density is added into consideration
n form of cosmological constant or various models of scalar field.
n modifying gravitational sector, the f (R) theories are to modified
instein–Hilbert Lagrangian with function of Ricci scalar, Ricci
ensor or Riemann tensor [17]. As we allow coupling between
arotropic matter to scalar field, chameleon mechanism could
afe the theory from solar system fifth force constraints [18]. It is
ossible that both matter and gravity can be modified together at
he same time in scalar–tensor theory as coupling between scalar
nd gravitational sector is allowed [11,19,20].
Coupling function in form of f (φ, φ,µ, φ,µν, . . .) was intro-

uced as an modification of the scalar–tensor theory. The term
s motivated in the context of scalar quantum electrodynamics or
n gravitational theory of which Newton’s constant is a function
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cademia Institute’’, Naresuan University, Phitsanulok 65000, Thailand.

E-mail addresses: chontichakr57@nu.ac.th (C. Kritpetch),
andrasyahm59@nu.ac.th (C. Muhammad), buring@nu.ac.th (B. Gumjudpai).
ttps://doi.org/10.1016/j.dark.2020.100712
212-6864/© 2020 Elsevier B.V. All rights reserved.
of the density [21] which later was considered as a function
of kinetic energy density of the scalar field. In maintaining the
action, acceleration solution must be possible. Other coupling
terms apart from Rφ,µφ,µ and Rµνφ,µφ,ν was shown to be un-
necessary [22]. The two terms are of the lower energy limits
of higher dimensional theories or Weyl anomaly of N = 4
conformal supergravity [23,24], hence giving good motivation
to the theory. The non-minimal derivative coupling to gravity
terms have been considered as κ1Rφ,µφ,µ and κ2Rµνφ,µφ,ν . It
usually results in de-Sitter expansion [25]. These coupling terms
were further modified with motivation that the static fixed point
suggests κ ≡ κ2 = −2κ1 [26–28]. This gives a hint to a
theory of NMDC term coupling to the Einstein tensor, Gµν as both
the metric and Einstein tensor are divergence-free making the
theory naturally settle [29–47]. Attempts in generalizing scalar–
tensor theory with at most second-order derivative with respect
to its dynamical variables, i.e. the metric tensor and scalar field,
brought about other upgraded versions of the theory, for exam-
ples, galileons [48–50] and the Fab-Four [51]. Recent literatures
found that the NMDC term is a sub-class of the Horndeski action
proposed a few decades ago [52–54] and of the beyond Horndeski
action such as GLPV theories [55].

Considering NMDC theory, the sign of the coupling and its
constancy (or variation [26]) are significantly important since the
NMDC effect could enhance or dilute the effects of the free kinetic
term. This could affect power spectral index, tensor-to-scalar

ratio, evolution of the equation of state, future Big Rip singularity
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nd its phantom crossing [30,34,56,57]. The theoretical predic-
ions are confronted with observational data leading to tight
onstraints for particular types of scalar potential [41,45]. It also
uggests us if the NMDC model should be suitable either as an
nflationary model or as a dark energy model. The NMDC theory
an also be considered in Palatini approach when considering the
onnection field as an additional dynamical variable, [58–60].
In this work, we consider NMDC theory with constant coupling

. Typically the theory is viable under some restricted condi-
ions. In such theory, quasi-de Sitter expansion can be achieved
ith graceful exits if without scalar potential V (φ) and if having

ast-roll initial field speed. This is because the positive coupling
MDC theory with a potential but without barotropic fluid allows
nbound value of φ̇ but finite value of Hubble parameter. The
quation of state of the NMDC theory approaches −1 at late
ime [29,61]. Inclusion of constant potential (or cosmological
onstant) can also result in quasi-de Sitter expansion [33]. When
ncluding of power-law potential (without barotropic matter),
(φ) = V0φ

n, it is found that acceleration is possible for n ≤ 2
or a range of scalar mass, mφ and κ , i.e. κ < G and V0 < G (sub-
lanckian), where G is the Newton gravitational constant. The
cceleration comes to an end with scale factor oscillation whereas
he case n > 2 results in Big Rip singularity. The case n < 2
esults in the same inflationary regime as the constant potential
ase [34]. The analysis is extended to include Higgs-like potential
nd exponential potential in [62,63]. The theory produces larger
ensor-to-scalar ratio and no graceful exits for n ≤ 2, hence it
hould be considered as dark energy rather than inflation in the
arly universe.
Here we apply the holographic dark energy framework to

he NMDC theory. We will examine the NMDC effects on the
olographic dark energy density and predict the evolution of
quation of state coefficient, wDE and its effects on gravitational
onstant variation. There are some works previously considering
roperties of holographic superconductors with charged scalar
ield non-minimal derivative coupling (with derivative operator
µ = ∂µ − iAµ) to Einstein tensor in presence of electromagnetic
auge field in the AdS background [64,65]. Our consideration is
ifferent from this one that our derivative operator is covariant
erivative and the scalar field is not charged. As final aim of
heoretical physics, quantum gravity is believed to be the theory
f unification of all forces and it is yet to complete. However,
ven without the complete theory of quantum gravity, one can
onsider the nature of dark energy under some principles in
uantum gravity — the holographic principle [66,67]. Idea of
olographic energy is considered as an infrared cutoff which puts
imit to the dark energy density [68–73]. The UV energy scale, IR
ength scale, and entropy are hypothesized to relate as ρΛ ∝ SL−4

or a blackhole. Blackhole’s entropy scales with area as of the
ekenstein–Hawking entropy, S ∼ A/4G ∼ L2 [74–77]. The
olographic dark energy is an application of this idea, not to
lackholes’ horizon, but to cosmological length scale, e.g. to the
pparent horizon or to the Hubble horizon. In this framework, the
otal dark energy in a considered volume cannot exceed blackhole
ass of the same volume size. The energy density of holographic
ark energy is given hence by

Λ =
3c2

8πGL2
, (1)

where L is infrared cutoff scale and here it is considered as the
size of H−1. The factor c is a constant.

In this work, we study holographic dark energy which is scalar
field with non-minimal derivative coupling (NMDC) to gravity
in spatially flat FLRW universe.1 The wDE = 0 problem of the

1 Consideration of non-minimal coupling (NMC) theory as holographic dark
nergy was studied previously as in [78].
holographic dark energy model in flat FLRW universe [71] is
solved with the NMDC modification. The other type of IR cutoffs
are reviewed in [79]. One type is future event horizon, Rh =∫

∞

t a−1dt ′ = a
∫

∞

a (1/Ha′2)da′ which resolves the cosmic coinci-
ence problem but violating causality [72]. This is since the future
ven horizon is used to determine present day acceleration. It is
s well found that this model failed to predict age of the uni-
erse [80]. Another model is agegraphic dark energy of which the
R cutoff is chosen to be conformal time [81–83]. In this model,
nergy density of dark energy is taken to be ρDE = 3n2(8πG)/η2,
here η is conformal time η =

∫
dt/a =

∫
(a2H)−1da. This model

can solve cosmic coincidence problem, but strongly disfavored
by data. The Ricci scalar can also be considered as the IR cutoff.
The Ricci dark energy density is proportional to Ricci scalar [84],
ρDE = −αR/(16π ) = [3α/(8π )]

(
Ḣ + 2H2

+ k/a2
)
. Observational

onstraints for Ricci dark energy are shown in [85]. The other
R cut-off is proposed by Granda and Oliveros [86,87] with dark
nergy density, ρΛ ≈ αH2

+ βḢ where α and β are model
arameters, therefore it includes the Ricci dark energy model. In
ome case, higher-order derivative of the Hubble parameter could
e considered in the cutoff effect, these are such as in [88–92].
urrently this model is still widely studied in the context of some
odified gravity theories. Different forms of the cutoff would
hange the character of the Friedmann equation dramatically.
It was recently shown that for the case of κ > 0, the NMDC

heory has classical (Laplacian) instability, i.e. square of sound
peed, c2s is negative2 [57]. However we notice that c2s of the the-
ry is a function of φ̇, φ̈,H and Ḣ hence different dynamics could
hange the range of c2s significantly. The holographic modification
f the dark energy density modifies ρΛ term which, as a result,
odifies NMDC kinetic term in the equations of motion. Hence it
hould significantly change Laplacian instability.
Motivations of both NMDC and holographic dark energy can

e well fit in quantum gravities such as string theory and both
o not contradict to each other. There are no reason that such
calar–tensor theories cannot be incorporated with holographic
deas. The two dark energy ideas can be considered as one picture
n describing the late acceleration. In Section 2, NMDC gravity
nd its cosmological aspects of the theory are introduced and
iscussed. In Section 3, we discuss the idea of holographic dark
nergy and draw the NMDC effect into the scenario of holographic
ark energy. We investigate the situation when there is only
MDC term damping the universe without the free kinetic term
n Section 4. In Section 5, both kinetic terms are considered
ogether. Equations of state are analyzed in each case of canonical
nd phantom scalar fields. Constraints from variation of gravita-
ional constant are considered in Section 6. At last, the conclusion
nd critics are given in Section 7.

. Non-minimal derivative coupling (NMDC) gravity

We consider gravitational action in form of

=

∫
d4x

√
−g

{
R

16πG
−

[
εgµν + κGµν

]
2

(∇µφ)(∇νφ) − V

}
,

(2)

together with matter action Sm where Gµν is the Einstein tensor,
ε = ±1 for canonical and phantom case, or ε = 0 when
considering purely NMDC kinetic term. V = V (φ) is scalar

2 The sign of coupling constant in [57] is defined oppositely from our
onvention here. Moreover, it is noted that the Klein–Gordon equation (φ̈
equation) in [57] was reported differently from ours. This leads to different ex-
pression of pφ which results in different predictions of c2s . Hence the mentioned
shortcomings of the κ > 0 case is not yet to conclude.
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potential. Factor κ is the NMDC coupling constant [27,29,30].
The Lagrangian is a sub-class of Horndeski theory [51–54] with
G2 = −(ε/2)gµν(∇µφ)(∇νφ), G3 = 0, G4 = (16πG)−1, G5 =

c5φ = φκ/2, with c5 ≡ κ/2. Here H is the Hubble parameter
nd ρm, pm are the energy density and pressure of matter. For
patially flat FLRW universe as

s2 = −dt2 + a(t)2(dr2 + r2dΩ2) . (3)

The Friedmann equation is viewed in two perspectives. Firstly,
keeping Newton’s gravitational constant G standard and having
calar kinetic term modified [29],

2
=

8π
3

G
[
1
2
φ̇2(ε − 9κH2) + V + ρtot

]
, (4)

where ρtot = ρm + ρΛ. Secondly, keeping scalar kinetic term
in standard form and let the gravitational constant G modi-
fied, Eq. (4) can be rearranged as

H2
=

8π
3

Geff

( ε

2
φ̇2

+ V + ρtot

)
, (5)

where effective gravitational constant can be read off from the
Friedmann equation,

Geff(φ̇) ≡
G

1 + 12πGκφ̇2
. (6)

The other field equation (ii components) is expressed in the view
of modified scalar kinetic term as

2Ḣ + 3H2
=

πG
{
−

φ̇2

2

[
ε + κ

(
2Ḣ + 3H2

+ 4H
φ̈

φ̇

)]
+ V − ptot

}
, (7)

r in the view of modifying of G and of modifying energy density
ogether as

Ḣ + 3H2
=

8πG
(1 + 4πGκφ̇2)

[
−

φ̇2

2
ε + V − ptot − 2κHφ̇φ̈

]
, (8)

where ptot = pm + pΛ. These are combined with the Friedmann
equation to give

Ḣ = −4πG
[
φ̇2

(
ε + κḢ − 3κH2

+ 2κH
φ̈

φ̇

)
+ ptot + ρtot

]
. (9)

or

Ḣ =
−4πG

(1 + 4πGκφ̇2)

[
φ̇2ε + ptot + ρtot − 3κφ̇2H2

+ 2κHφ̈φ̇
]
.

(10)

he factor G/(1 + 4πGκφ̇2) cannot be regarded as Geff since it
s neither derived from the Einstein-frame Lagrangian nor the
riedmann equation in standard form. The Klein–Gordon equa-
ion describes conservation of scalar field energy density. The
quation can be viewed as modification in φ̈ (field acceleration)
nd φ̇ (field speed) or modification of the scalar potential-slope
erm [29],

ε − 3κH2) φ̈ +
(
3εH − 6κHḢ − 9κH3) φ̇ = −Vφ , (11)

r it can be rearranged as

¨ + 3Hφ̇ = −
Vφ

ε − 3κH2 +
6κHḢφ̇

ε − 3κH2 , (12)

here Vφ ≡ dV/dφ. The field derivative of the effective potential
s defined as

eff,ffi =
Vφ − 6κHḢφ̇

, (13)

ε − 3κH2
which is a function expressed with choice of five variables φ, φ̇,

φ̈,H, Ḣ of the system. Since there are three equations relating
these variables, therefore there are only two degrees of freedom.
The energy density of barotropic and holographic dark energy are
conserved separately as

ρ̇Λ + 3H(ρΛ + pΛ) = 0 , (14)
ρ̇m + 3H(ρm + pm) = 0 , (15)

where ρΛ, pΛ are density and pressure of the holographic dark
energy contribution. The interaction case is to considered energy
transfer between dark energy and matter in form of interaction
term, Q ∝ HρΛ, i.e. ρ̇Λ+3H(ρΛ+pΛ) = Q and ρ̇Λ+3H(ρΛ+pΛ) =

−Q such as in [93] and [94]. Energy transfer from holographic
dark energy to barotropic matter, (Q > 0) would increase value
of effective equation of state, resulting in less acceleration. The
opposite sign of Q gives opposite result. We do not consider the
interaction case in this work.

3. Holographic dark energy with NMDC gravity

We shall apply concept of NMDC gravity to the holographic
dark energy here. Using H−1 as holographic cutoff scale in Eq. (1)
and realizing that the gravitational constant is modified with the
NMDC effect (Eq. (6)), hence

ρΛ =
3c2H2

8πGeff
=

3c2

8πG
(1 + 12πGκφ̇2)H2 . (16)

ence the holographic modification tunes the NMDC density with
he evolution of H2, giving possibility of NMDCmodel to be viable.
he Friedmann equation (5) now reads,

2(1 − c2) =
8π
3

Geff

( ε

2
φ̇2

+ V + ρm

)
. (17)

e consider late universe with dark energy domination evolving
nder the scalar potential

(φ) =
1
2
m2φ2 . (18)

e choose this analytic potential because it is considered as free
otential in generalized Lagrangian that includes free potential,
ree kinetic, non-minimal coupling (NMC) and NMDC terms. The
2-dependency makes it comparable to the NMC, Rφ2 term which

plays a role as NMC potential in [78]. The barotropic density is
negligible and the solutions are considered in form of

a = a0ert , (19)
φ = φ0est , (20)

or one can use a = a0erx and φ = φ0esx where the e-folding
number, N ≡ rx. Using either forms of the solution results
in the same modified Friedmann equation (negligible ρm) and
Klein–Gordon equation,

εs2 = −m2 and s2 + 3rs +
m2

ε − 3κr2
= 0 , (21)

here the constant c is set to 1. This gives a relation,

=
ε − 3κr2

κr
, (22)

here conditions κ ̸= 0, r ̸= 0 and s ̸= 0 are imposed for
hose cases that apply this relation. This scale factor function and
he scalar field solution are hence solutions of the system.3 If
ithout scalar potential V = 0, i.e. m = 0 = s, we cannot

3 Formal approach, i.e. dynamical stability analysis, is needed, in future work,
to check other possible fixed points and their stability solutions.
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se Eq. (22). Instead, we must use Eq. (21). Then one can see
hat r can take any real values. In case of existing non-negligible
arotropic density ρm in the Friedmann equation,

ε

2
φ2
0s

2e2st +
1
2
m2φ2

0e
2st

+
ρm,0

a3(1+wm)
0 e3(1+wm)rt

= 0 . (23)

We can see that m = 0 (that is V = 0) does not imply s = 0 but
mplying phantom field, ε < 0. When setting ε = 0, i.e. removing
free kinetic term, the Lagrangian is left with purely NMDC kinetic
effect (absorbed into Geff), scalar potential term and barotropic
atter term. This results in either m2 < 0 or ρm,0 < 0 which
re not realistic. If we consider all three terms together, it also
mplies phantom field, ε < 0. For simplification in this work, we
onsider that the barotropic density is negligible and we consider
he relation (22) in three cases of the ε value.

4. Holographic dark energy with purely NMDC kinetic term
(ε = 0)

The first case is to consider purely NMDC kinetic theory. That
is the gravitational coupling to the field derivative is the only
kinetic term, i.e. we let ε = 0. Therefore, from Eq. (22), s = −3r
(with negligible ρm and s ̸= 0). The solutions are

a = a0ert , φ = φ0e−3rt . (24)

Using these results in Eqs. (14) and (16), the energy density of the
holographic dark energy is (keeping c here for completeness)

ρΛ =
3c2

8πG

(
1 + 108πGκφ2

0r
2e−6rt) r2 , (25)

and the pressure is

pΛ = −
3c2

8πG

(
1 − 108πGκφ2

0r
2e−6rt) r2 . (26)

This gives the equations of state,

wΛ =
−1 + 108πGκφ2

0r
2e−6rt

1 + 108πGκφ2
0r2e−6rt

. (27)

Converting t into redshift z with relation 1+ z = a0/a, we have,

rt = ln(1 + z). (28)

In this convention, at present t = t0 = 0 as z = 0 and t → −∞

as z → ∞ in the past. Therefore

wΛ =
−1 + 108πGκφ2

0r
2(1 + z)6

1 + 108πGκφ2
0r2(1 + z)6

. (29)

The present Hubble parameter H0 is considered as r , we think of
sub-Planckian values of φ0 and of the coupling constant κ . Various
values of these parameters are used and the evolution of wΛ(z)
is presented in Fig. 1. This case is interesting since it renders
wΛ −→ −1 at late time. However κ < 0 case is not favored
because its wΛ equations either goes out of the range [−1, 1]
or comes from outside the range [−1, 1] for all evolutions. All
numeric values used here are in Planck unit, i.e. we set 8πG =

1, φ0 = 1. Considering r ∼ H0 ∼
√

Λ/3 and Λ/M2
P ∼ 10−121 (the

reduced Planck mass MP = (8πG)−1/2.), hence r ∼ 10−60. The less
brings wΛ to −1 earlier as shown in Fig. 2 in which two different
alues of r are used while fixing other variables. At present z = 0,
ingularity in wΛ occurs if κ = κs,z=0 = −(108πGφ2

0r)
−1 which is

κs,z=0 = −7.4 × 1058 in Planck unit. Singularity in κ is negative.
Since we favor positive κ case, it is not a problem that κ < 0.
s,z=0
Fig. 1. Equation of state for the holographic dark energy with purely NMDC
kinetic term is plotted versus z for κ = −0.5, −0.25, 0.25, 0.5, 1.0 and r = 0.01.
ivergencies in the case κ < 0 are predicted with singularity in Eq. (29).

Fig. 2. Equation of state for the holographic dark energy with purely NMDC
kinetic term plotted against z. Keeping κ = 1.0 and varying r = 1, 0.01, 0.0001,
less r makes w(z) approaching at higher redshift. If r is as less as H0 ∼

√
Λ/3 ∼

0−121 , as a result w(z) must have approached −1 long time ago.

. Holographic dark energy with both NMDC and free kinetic
erms

For ε = ±1, the relations (21) and (22) allow us to express r
n terms of m and κ ,

= ±

√
(6−m2κ)

ε
± m

√
κ(m2κ − 12)

√
18κ

, (30)

here the condition s ̸= 0, r ̸= 0, κ ̸= 0 must hold. Energy
ensity and pressure of the holographic dark energy are

Λ =
3c2

8πG

(
1 + 12πGκφ2

0s
2e2st

)
r2 , (31)

nd

Λ = −
3c2

8πG

(
r2 + 8πGκφ2

0s
3e2st r + 12πGκφ2

0s
2e2st r2

)
. (32)

he equation of state is hence

Λ = −

(
r + 8πGκφ2

0s
3e2st + 12πGκφ2

0s
2e2st r

)
r
(
1 + 12πGκφ2

0s2e2st
) , (33)

r, as function of redshift,

Λ = −

[
r + 8πGκφ2

0s
3(1 + z)−

2s
r + 12πGκφ2

0s
2r(1 + z)−

2s
r

]
r
[
1 + 12πGκφ2

0s2(1 + z)−
2s
r

] ,

(34)
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Fig. 3. Real part of the equation of state of the case 1 and case 6 of canonical
kinetic term case for m = 1 and κ = −5, −1, 1, 5.

Fig. 4. Real part of the equation of state of the case 2 and case 5 of canonical
kinetic term case for m = 1 and κ = −5, −1, 1, 5.

Fig. 5. Real part of the equation of state of the case 3 and case 8 of canonical
kinetic term case for m = 1 and κ = −5, −1, 1, 5.

where the relation −rt = ln(1 + z) is expressed as e2st = (1 +

)−
2s
r . In Eq. (21), εs2 = −m2, the value of s is real if ε = −1,

i.e. the kinetic term is phantom. On the other hand, if ε = 1, s is
imaginary.

5.1. Canonical kinetic term (ε = 1)

With free canonical kinetic term ε = 1, s2 = −m2 hence
s = ±im which is imaginary and s3 = ∓im3. The equation of
state as function of time is

wΛ = −
1
C

(A + iB) , (35)

where A, B are real and imaginary parts,

A ≡ 1 +

8πGκφ2m2
[
−3 cos(2mt) +

m
sin(2mt) + 18πGκφ2m2

]
, (36)
0 r 0
Fig. 6. Real part of the equation of state of the case 4 and case 7 of canonical
kinetic term case for m = 1 and κ = −5, −1, 1, 5.

≡ 8πGκφ2
0
m3

r

[
±12πGκφ2

0m
2
∓ cos(2mt)

]
, (37)

nd

≡ 1 + 24πGκφ2
0m

2 [
− cos(2mt) + 6πGκφ2

0m
2] . (38)

The ± and ∓ signs of Eq. (37) correspond to the sign of s = ±im
consequently. It should be noted that complex value of wΛ does
not imply that NMDC density or free scalar kinetic term are com-
plex, but the complex value arises from holographic modification
of the Friedmann equation, εs2 = −m2 (21) and in deriving pΛ

from the fluid equation (14). The complex value is indeed of the
ρΛ, pΛ, not of the scalar field density nor pressure terms. There
is a singularity in wΛ when

ts =
1
2m

arccos
[
1 + 144π2G2κ2φ4

0m
4

24πGκφ2
0m2

]
, (39)

for a fixed κ ̸= 0. If we need to know the range of κ that
can give singularity at present epoch, we use t = t0 = 0
at present time and assume m = 1 in Eq. (39). The result is
κs,t0 = 2/3. As argument of arccos function in Eq. (39) must
be in the range [−1, 1], this puts the limits to κs to be in the
range [−2/3, 2/3] which limits ts into [0, π] in Planck unit. If
considering uncarefully, we might think that present value wΛ,t0
(as a function κ in Planck unit, setting 8πG ≡ 1,m = 1, φ0 = 1)
can be found from the real part −A/C in Eq. (35) as wΛ,t0 =

[−1+3κ −(9/4)κ2
]/[1−3κ +(9/4)k2] = −1. However this is not

correct. The coefficient r in Eq. (36) could take imaginary value
and need to be taken into account. Hence considering equation
(30) in our ε = 1 context,

r = ±

√
6 − m2κ

(
1 ∓

√
1 −

12
m2κ

)
√
18κ

. (40)

he ± and ∓ signs in the expression of r come from solving
uadratic equation. Here r always has complex value. Using re-
ation t = −r−1 ln(1 + z), we plot real part of wΛ(z) in all
possible eight cases. To simplify, we define D ≡

√
1 − 12/(m2κ),

E ≡ 8πGκφ2
0m

3/r and F ≡ 12πGκφ2
0m

2. Conditions of the eight
cases are,

• case 1:
r =

√
6 − m2κ (1 − D)/

√
18κ ,

B = E [F − cos(2mt)] , s = im
• case 2:

r =

√
6 − m2κ (1 − D)/

√
18κ ,

B = E [−F + cos(2mt)] , s = −im
• case 3:

r =

√
6 − m2κ (1 + D)/

√
18κ ,
B = E [F − cos(2mt)] , s = im
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• case 4:
r =

√
6 − m2κ (1 + D)/

√
18κ ,

B = E [−F + cos(2mt)] , s = −im
• case 5:

r = −

√
6 − m2κ (1 − D)/

√
18κ ,

B = E [F − cos(2mt)] , s = im
• case 6:

r = −

√
6 − m2κ (1 − D)/

√
18κ ,

B = E [−F + cos(2mt)] , s = −im
• case 7:

r = −

√
6 − m2κ (1 + D)/

√
18κ ,

B = E [F − cos(2mt)] , s = im
• case 8:

r = −

√
6 − m2κ (1 + D)/

√
18κ ,

B = E [−F + cos(2mt)] , s = −im .

eal parts of the wΛ(z) for these cases are plotted. Real parts of
ome cases are the same. These are (case 1 and case 6: Fig. 3),
case 2 and case 5: Fig. 4), (case 3 and case 8: Fig. 5) and (case 4
nd case 7: Fig. 6). Moreover, when κ > 0, real parts of wΛ(z) in
igs. 3 and 6 are the same and the real parts of wΛ(z) in Figs. 4
nd 5 are also the same. This is because the distinct of each case
ppears in the imaginary parts. Cases 2 and 5 (Fig. 4) and cases 4
nd 7 (Fig. 6) have −1 as late time value of wΛ while the rests do
ot. Considering realistic character that wΛ should be about −1
t present, and past evolution should not have wΛ < −1 hence
nly reasonable cases are the portraits with κ > 0 in Fig. 4. These
re of case 2 and case 5. Focusing on case 2, we take positive root
f r with s = −im while for case 5 we take negative root of r with
= im. These two cases result in the same real part of wΛ but
e need the expansion to be de-Sitter and positive root of r is
referred which matches only the case 2.

.2. Phantom kinetic term (ε = −1)

Considering phantom kinetic term ε = −1, we have s = ±m.
he equation of state is

Λ =[
r ± 8πGκφ2

0m
3(1 + z)∓

2m
r + 12πGκφ2

0m
2r(1 + z)∓

2m
r

]
r
[
1 + 12πGκφ2

0m2(1 + z)∓
2m
r

] , (41)

where the ± and ∓ sign correspond to s = ±m accordingly.
The ± signs in the expression of r (Eq. (30)) do not result from
s = ±m but are positive and negative roots obtained in solving
the equations of motion (5) and (11). Here we have

r =

√
−6 + m2κ

(
1 ±

√
1 −

12
m2κ

)
√
18κ

. (42)

The scale factor is spatial expansion when r is real and positive,
that is κ > 0 and

±

√
1 −

12
m2κ

>
6

m2κ
− 1 . (43)

The right-hand side requires that

m2κ ≥ 12 or m ≥
2
√
3

√
κ

, (44)

resulting that
√
1 − 12/(m2κ) falls into a range [0, 1) for the pos-

tive branch of the left-hand side of Eq. (43). This also restricts the
alue of (6/m2κ) − 1 to a range (−1, −0.5]. The negative branch
f the left-hand side is restricted to (−1, 0]. The negative branch
orresponds to value of (6/m2κ)−1 to lie within (−1, −0.5]. The
ituation requires both coupling κ > 0 and the scalar mass m to
Fig. 7. Equation of state of the positive branch of Eq. (43) for κ = 2 and
m = 3, 3.5, 4.

Fig. 8. Equation of state of the positive branch of Eq. (43) for κ = 3, 3.5, 4 and
m = 2.

be in super-Planckian regime as we set φ0 = 1. Unless positive
κ nor κ = 0, scalar mass is imaginary. Figs. 7 and 8 present the
plots of wΛ(z) for the positive branch of Eq. (43) and Figs. 9 and 10
presents the plots of wΛ(z) for the negative branch. Combination
of the values of m and κ results in the value of wΛ and in how fast
it changes. Since φ = φ0est , hence negative s is preferred other-
wise the field evolves to super-Planckian regime. If considering
that the present universe is expanding approximately like de-
Sitter case, r should be very small (∼ 10−60) in Eq. (42). Therefore
if considering scalar mass m ∼ MP = 1, we would need κ to be
as large as 1060.

6. Variation of gravitational constant

A constraint to the model can be given by the measurement of
gravitational constant variation. For example, the constraint with
gravitational-wave standard sirens and supernovae is Ġ/G|t0≲ 3×

10−12 year−1 at present time [95]. Constraint of the same order
(Ġ/G|t0≲ 10−12 year−1) is given by observations of pulsars [96,
97], lunar laser ranging [98] and Big Bang nucleosynthesis [99,
100]. The variation in our model is

Ġeff

Geff
=

−24πGκφ2
0s

3e2st

1 + 12πGκφ2
0s2e2st

. (45)

s this is not consequence of Eq. (22), we found that if without
he scalar potential (m = 0 hence s = 0), Ġeff/Geff = 0, i.e. the
gravitational constant is always constant.
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Fig. 9. Equation of state of the negative branch of Eq. (43) for κ = 2 and
m = 3, 3.5, 4.

Fig. 10. Equation of state of the negative branch of Eq. (43) for κ = 3, 3.5, 4
nd m = 2.

.1. Variation of G: purely NMDC kinetic term (ε = 0)

If there is only purely NMDC kinetic term, ε = 0 and s = −3r
a consequence of Eq. (22)). Using these relations in Eq. (45) and
onsidering t = t0 = 0 at present time,

Ġeff

Geff

]
t0

=
648πGκφ2

0r
3

1 + 108πGκφ2
0r2

. (46)

he variation diverges at singularity, κs,t0 = (−108πGφ2
0r

2)−1 <

which is κs,t0 ∼ −7.4×10118 (with r ∼ 10−60, 8πG ≡ 1, m = 1
and φ0 = 1). The constraint Ġ/G|t0≲ 10−12 year−1 limits the
present-time κ value to −7.4×10118 ≲ κ ≲ 7.4×10118 in Planck
nit. However κ ̸= 0 must hold. The allowed range includes the
ingularity value of κ . That is κs,t0 is very slightly greater than
7.4×10118. Considering the equation of state, κ > 0 is favored,
ence the result is concluded as 0 < κ ≲ 7.4 × 10118.

.2. Variation of G: canonical scalar field case (ε = 1)

In finding variation of G of this case, we do not use any
onsequence of Eq. (22), hence conditions κ ̸= 0, s ̸= 0 and r ̸= 0
are not hold. For the case s = im/

√
ε, we have

Ġeff
=

Geff
−

(
ακm3

ε
√

ε

)
sin

(
2mt
√

ε

)
+ i

(
βκ2m5

√
ε

)[
2 cos

(
2mt√

ε

)
ακm2ε

− 1

]
1 −

(
ακm2

ε

)
cos

(
2mt
√

ε

)
+

βκ2m4

2

, (47)

nd for the case s = −im/
√

ε,

Ġeff

Geff
=

−

(
ακm3

ε
√

ε

)
sin

(
2mt
√

ε

)
+ i

(
βκ2m5

√
ε

)[
−

2 cos
(
2mt√

ε

)
ακm2ε

+ 1

]
1 −

(
ακm2

ε

)
cos

(
2mt
√

ε

)
+

βκ2m4

2

, (48)

where α ≡ 24πGφ2
0 and β ≡ 288π2G2φ4

0 . For ε = 1, we see that
real parts of Eqs. (47) and (48) are the same, i.e. the cases s = im
and s = −im give the same real part of the equation of state.
Considering present time, t0 = 0, therefore

Re
[
Ġeff

Geff

]
t0

= 0 . (49)

ence in this case, at present time, there is no variation in the
ravitational constant.

.3. Variation of G: phantom scalar field case (ε = −1)

In this section, consequence of Eq. (22) is neither used, there-
ore the conditions κ ̸= 0, s ̸= 0 and r ̸= 0 are not hold.
onsidering ε = −1 case, for s = im/

√
ε = m, the variation

is,

Ġeff

Geff
=

−ακm3 sinh(2mt) − βκ2m5
[
2 cosh(2mt)

ακm2 + 1
]

1 + ακm2 cosh(2mt) + βκ2m4/2
, (50)

and for s = −im/
√

ε = −m,

Ġeff

Geff
=

−ακm3 sinh(2mt) + βκ2m5
[
2 cosh(2mt)

ακm2 + 1
]

1 + ακm2 cosh(2mt) + βκ2m4/2
, (51)

where the distinct is the signs of the second term in each case.
At present time, we set t0 = 0, hence

[
Ġeff

Geff

]
t0

=

∓288π2G2φ4
0κ

2m5

[
2/3

8πGφ2
0κm2 + 1

]
1 + 24πGφ2

0κm2 + 144π2G2φ4
0κ

2m4
. (52)

The ∓ sign denotes the case s = m and s = −m respectively.
There is singularity at

κs,t0 =
−2/3

8πGφ2
0m2

, (53)

or, in Planck unit, it is κs,t0 = −2/3. We use the constraint
Ġ/G|t0≲ 10−12 year−1 to limit the value of κ . In the both cases
(s = m and s = −m), we found that the constraints are the
same, that is −0.0038 ≲ κ ≲ 0.0038. We see how the ratio
Ġeff/Geff changes with κ for the phantom case in Figs. 11 and 12.
The gray shade denotes the constraint on κ at present time. This
contradicts to the wΛ results in Section 5.2 which requires the
coupling to be super-Planckian or very large.

7. Conclusions

In this work, we study non-minimal derivative coupling
(NMDC) to gravity in spatially flat FLRW universe in context of
holographic dark energy. The theory has one free kinetic term and
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Fig. 11. Variation of Geff in unit of year−1 versus κ in Planck unit for ε = −1
and s = m.

Fig. 12. Variation of Geff in unit of year−1 versus κ in Planck unit for ε = −1
and s = −m.

a kinetic NMDC term coupling to the Einstein tensor with con-
stant coupling strength κ . The scalar potential is V = (1/2)m2φ2

nd possibility of canonical field and phantom field is allowed.
n the NMDC gravity, gravitational constant is modified with the
MDC kinetic term. The limits of dark energy is introduced with
he holographic IR cutoff. We takes cosmological length scale,
hat is, the Hubble horizon as our cutoff length scale. Hence dark
nergy density is, ρΛ = 3c2H2/(8πGeff). The dark energy density
as then a combination of NMDC and holographic modification
ffects. Assuming exact solutions of the theory, we evaluate
ark energy equation of state and the variation of gravitational
onstant of the theory in many possible cases of the solution. We
ut some constraints such that we can rule out some cases of
onsideration. Conclusion for each possibility is

• Purely NMDC term: The purely NMDC case result in wΛ −→

−1 at late time for κ > 0 while the κ < 0 case is not
favored since wΛ either diverges from [−1, 1] or approaches
−1 from the region with wΛ < −1. Hence only κ > 0
case gives acceptable behavior. The scalar field evolves as
φ = φ0 exp(−3rt) with r could be as small as ∼ 10−60.
In this case wΛ bends to −1 earlier for less r as shown
in Fig. 2. Gravitational constant variation constraint results
that −7.4 × 10118 ≲ κ ≲ 7.4 × 10118 in Planck unit. The
allowed range includes the singularity value κs,t0 . Therefore

118
the range 0 < κ ≲ 7.4 × 10 is allowed for purely
NMDC theory with potential V = (1/2)m2φ2. However, to
be realistic, it is possible that the coupling has sub-Planckian
value, 0 < κ < 1.

• Free kinetic and NMDC terms (canonical field): When
allowing free kinetic term in the dynamics, as in Eqs. (12)
and (13), the free kinetic term takes part in the damping
and the NMDC term takes part in modification of the force,
i.e. the modifying slope of the potential with an extra piece
(6κHḢφ̇/(ε − 3κH2)). The free kinetic term is considered in
two possibilities, canonical or phantom fields. For the canon-
ical field, some solutions of the theory (case 2) with κ > 0
are favored. The favored case is the one with wΛ → −1 at
late time and the one with wΛ that does not evolve from the
phantom region in the past. This is with conditions, s = −im
with r = [6−m2κ(1−

√
1 − 12/(m2κ))]1/2/

√
18κ and other

conditions as stated in case 2. As seen in Fig. 4, larger κ

makes wΛ approach −1 sooner. The expansion function is
a = a0 exp(rt) with field oscillation, φ = φ0 exp(−imt).
Singularity of wΛ at present is κs, t0 = 2/3 and the sin-
gularity in wΛ at any time t only happens in limited range
−2/3 ≤ κs ≤ 2/3. Hence to avoid singularity at any time,
κ > 2/3 is suggested. In this case, there is no variation in
gravitational constant at present time.

• Free kinetic and NMDC terms (phantom field): For phan-
tom field, s = −m is preferred as it results that equation
of state approaches −1 at late time. Negative s is good
because it prevents scalar field from increasing to super-
Planckian regime. Positive coupling, κ > 0 is required
to avoid imaginary r and imaginary mass m. However the
shortcomings are that the scalar mass m and the coupling κ

are required to be super-Planckian while the constraint on
gravitational constant variation puts a very narrow viable
range of κ as −0.0038 ≲ κ ≲ 0.0038.

In summary, κ > 0 is favored in all cases. The purely NMDC
heory with the potential V = (1/2)m2φ2 is favored with positive
ub-Planckian coupling, satisfying wΛ,t0 → −1 and satisfying
ariation of gravitational constant constraint. The other viable
ase is the canonical field with NMDC term under the same po-
ential with conditions stated in case 2 (Section 5.1). The phantom
ield case is disfavored.

As we mentioned in introduction (Section 1), the canonical
ield NMDC theory with V (φ) = V0φ

n can give acceleration phase
or n ≤ 2, with sub-Planckian m and sub-Planckian positive
[34]. We see here that the acceleration phase is also possible
ith the addition of holographic dark energy idea (for n = 2).

t was claimed in [57] (see Section 1) that the κ > 0 case
ould have classical (Laplacian) instability (c2s < 0). However c2s
epends on dynamical and kinematical variables, i.e. φ̇, φ̈,H and

˙ , hence inclusion of holographic cutoff should alter dynamics of
he system and should change the range of c2s significantly. This
s of interest for further study. We also notice that the NMDC
oupling, κ only affects r (the exponent of the scale factor) but
t does not contribute to any modification of s which is the main
haracter of scalar field evolution. Therefore further study can be
nvestigated on some modification (with reasonable motivation)
uch that the NMDC coupling could contribute to both r and s.
nclusion of barotropic density as dark matter can definitely allow
MDC effect to contribute to the expressions of s and r . Therefore
t is of further interests to perform dynamical analysis of such
odel with dark matter fluid inclusion.
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