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ABSTRACT

It has been known that dust dominated cosmological model has many problems

to explain accelerating universe which was found in 1998 by Riess et al. and Perlmutter

et al. [49][48]. Many models of universe are proposed under hypothesis that dark energy

causes acceleration of the universe. We study dark energy focusing to single scalar

field models. We briefly review dark energy models namely quintessence, phantom

and tachyon models. In particular, we investigate phantom cosmology in which the

scale factor is of power-law function. We use cosmological observations from Cosmic

Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational

Hubble data, in order to impose complete constraints on the model parameters. We

find that the power-law exponent is β = 6.51+0.24
−0.25, while the big rip is realized at

ts = 104.5+1.9
−2.0 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions

and power-law nature of a(t), we find that the dark-energy equation-of-state parameter

at the big rip remains finite and equal to wDE = −1.153, with the dark-energy density

and pressure diverging. Finally, we reconstruct the phantom potential.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

Mathematical implication by Friedmann and others within Einstein’s general

relativity tells us that the universe is expanding. A strong evidence corresponding to

the predictions is that all the observed objects in deep space are redshifted. This means

that these objects are receding from the Earth. This phenomenon obeys a law known

as Hubble’s law, which Hubble was found empirically in 1929 [24]. However, the law

was first derived from general relativity by Georges Lemâıtre in 1927 [36].

The simplest cosmological model assumes that the universe is filled with both

matter (slowly moving particles i.e., galaxies, nebulae and so on) and radiation. Nowa-

days, it was found that radiation density is much less than matter density therefore

the universe today is assumed to be matter dominated. If matter can be treated as a

pressureless fluid, then the universe will expand forever (if the spatial geometry is Eu-

clidean or hyperbolic) or eventually recollapse (if the spatial geometry is of a 3-sphere)

[53].

In 1998, published observations of type Ia supernovae by the High-z Supernova

Search Team [49], followed in 1999 by the Supernova Cosmology Project [48], suggested

that the expansion of the universe is accelerating. The observational evidences indicate

that the universe can not be modeled in such a simple way. A hypothesis correspond-

ing to the observations is that the universe may consist of some form of dark energy

with negative-pressure. The existence of dark energy is needed to reconcile the mea-

sured geometry of space by measurements of the cosmic microwave background (CMB)

anisotropies, most recently by the WMAP satellite. The CMB indicates that the uni-

verse is very close to flatness [33, 35]. The WMAP seven-year analysis gives an estimate

of 72.7% dark energy, 22.7% dark matter and 4.6% ordinary matter. The first model of

dark energy is “cosmological constant” that give equation-of-state parameter w = −1.
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This model has an unsolved problem, namely its observed energy scale from astro-

physics is much different from vacuum energy in particle physics [55]. This leads to

scalar field model of dark energy which gives time-dependent equation of state.

1.2 Objectives

We study single scalar field models of dark energy, especially phantom dark

energy, a dark energy model with w less than minus one. We apply power-law expan-

sion of the universe to phantom dark energy. Our objectives are to obtain phantom

potential, scalar field solution, and the big rip time. These result can be used to predict

equation of state of phantom energy at late time.

1.3 Frameworks

We review basic cosmology in the Chapter 2, and roughly review single scalar

field models of dark energy in the Chapter 3. Chapter 4 is dedicated to a model of dark

energy called “phantom energy” [9]. In this work, we aim to impose observational con-

straints on phantom power-law cosmology. That is on the scenario of a phantom scalar

field with the matter fluid in which the scale factor is power law in time. In particular,

we use cosmological observations from Cosmic Microwave Background (CMB), Baryon

Acoustic Oscillations (BAO) and Hubble Space Telescope data (HST, H0), in order to

impose complete constraints on the model parameters, e.g. the power-law exponent,

w and on the big rip time. In this chapter, we use the observational data to impose

constraints on the model parameters, reconstructing the phantom potential and solving

for phantom scalar field solution. Finally we determine equation-of-state parameter of

phantom dark energy at late time. The last Chapter is the conclusions.



CHAPTER II

STANDARD COSMOLOGY

2.1 The cosmological principle and Weyl’s postulate

Modern cosmology is based on cosmological principle. It is believed that

the universe on large scales possesses two important properties, homogeneity and

isotropy at a particular time. Homogeneity means the universe looks the same ev-

erywhere. There is no special location in the universe. Isotropy means the universe

looks the same in all directions. Note that homogeneity does not imply isotropy and

vice versa, e.g. a uniform electric field is a homogeneous field, at all points the field is

the same, but it is not isotropic at one point because directions of the field lines can

be distinguished. Alternatively, if we are in the center of a ball, we can see that all

directions are the same, it is isotropic but not necessarily homogeneous. However, if

isotropy is required at every point, the universe is automatically enforced to be homoge-

neous. Mathematical language of homogeneity and isotropy are translational invariant

and rotational invariant respectively.

The cosmological principle needs to be defined at particular time. In special

relativity, the concept becomes well-defined if one chooses a particular inertial frame

but in general relativity the concept of global inertial frames is not defined. A postulate

known as Weyl’s postulate is (d’Inverno’s book [25])

The particles of the substratum lie in spacetime on a congruence of

timelike geodesics diverging from a point in the finite or infinite past,

which requires that some observersare moving in a local Lorentz frame whose worldlines

are bundles or congruences1. These trajectories are non-intersecting. Only one trajec-

tory passes through a point in space. The number of local inertial observers can be

infinite and continuous at all points in space. The observers which obey these conditions

1The observers can be at anywhere or at any points in spacetime.
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are called fundamental observer. The Weyl’s postulate allows us to introduce a series of

non-intersecting spacelike hypersurface which all observers lie on. The hypersurface is

surface of simultaneity of the local Lorentz frame of any fundamental observers [23, 26].

Thus, the 4-velocity of any observers is orthogonal to the hypersurfaces. This series

of hypersurfaces is labeled by proper time of any stationary observers. This defines a

universal time so that a particular time means a given spacelike hypersurface on the

series of hypersurface. The time t = constant of each hypersurface is the cosmic time.

2.2 Hubble’s law

Hubble discovered that most galaxies are receding from the Earth. Hubble real-

ized a linear relation between recessional velocity and distance in term of mathematical

expression:

v = H0r, (2.1)

where r is the physical distance. This is known as Hubble’s law and the constant

H0 is known as the Hubble’s constant at present time. These galaxies’ velocities are

measured via redshift, which is Doppler’s effect of light. The Hubble’s constant is

usually parameterized as

H0 = 100h km s−1Mpc−1. (2.2)

The result from WMAP 7-year data combined with Baryon Acoustic Oscillations

(BAO) and Hubble constant (H0) measurement gives [33]

h = 0.704+0.013
−0.014, (2.3)

with one-sigma error. The radial motion of a galaxy required by cosmological principle

implies that, at a particular cosmic time t, the distance ri(t) of the ith galaxy from us

is given by

ri(t) = a(t)xi(t0) (2.4)

where homogeneity property is applied so that a, the scale factor, is a function of

cosmic time alone. The Eq. (2.4) implies that the expanding universe is indeed the
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expansion of coordinate grid with time. Therefore the galaxies remain at fixed location

in the xi(t0) coordinate system, the comoving coordinate, which is fixed by definition

in a cosmic time t0. The radial (expanding) velocity of the ith galaxy is given by

ṙi(t) = ȧ(t)xi(t0) =
ȧ(t)

a(t)
ri(t). (2.5)

The Hubble parameter H(t) hence, defined as

H(t) ≡ ȧ(t)

a(t)
, (2.6)

and the Hubble’s law can be written as ṙi(t) = H(t)ri(t). Note that the value as

measured today is denoted by a subscript “0” as H0.

2.3 A brief review of Friedmann-Lemâıtre-Robertson-Walker universe

A solution of Einstein’s field equations in general relativity that describes our

universe is the Friedmann-Lemâıtre-Robertson-Walker metric (FLRW metric). In de-

riving of the FLRW metric, a metric satisfying the Weyl’s postulate must be considered.

The spatial component of the metric can be time dependent and it is therefore written

in the form

ds2 = c2dt2 − a2(t)dΣ2 (2.7)

where dΣ2 = γijdx
idxj is the spacelike hypersurface, and γij is only function of

(x1, x2, x3). If x(τ) is the observer’s worldline, where τ labels proper time of the observer

along the worldline, according to Weyl’s postulate, the proper time for any observers on

a hypersurface is indeed the cosmic time coordinate. The factor a(t) is dimensionless

scale factor, a function of cosmic time. The spacelike hypersurface metric dΣ satisfying

these above conditions is dΣ2 = dr2/(1− kr2) + r2(dθ2 + sin2 θ dφ2) as in standard text

books [23, 25, 26]. The full FLRW metric in the coordinates xµ = (t, r, θ, φ) is then

taken the form

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (2.8)

where the curvature k is constant and is independent of coordinates. The hypersurface

dΣ can have flat geometry, spherical geometry, or hyperbolic geometry when the k value
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is rescaled to {0, 1,−1} respectively. The coordinates xµ in FLRW metric is indeed the

comoving coordinates mentioned earlier. The metric (2.8) may be parametrized with

χ in form of

ds2 = c2dt2 − a2(t)
[
dχ2 + f 2

k (χ)(dθ2 + sin2 θ dφ2)
]
, (2.9)

where

fk(χ) =



sinχ, k = +1

χ, k = 0

sinhχ, k = −1.

Note that the function fk(χ) can be written in unified form for k 6= 0 as

fk(χ) =
1√
−k

sinh
(√
−kχ

)
, (2.10)

which might be more convenient to use later.

2.3.1 Friedmann equations

Cosmological equations can be derived by imposing the FLRW metric to the

Einstein’s field equations with source term, the energy-momentum tensor Tµν , which is

taken as a perfect fluid. The Einstein’s field equation is

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.11)

where Gµν is Einstein tensor defined in the terms of metric gµν , Ricci tensor Rµν and

Ricci scalar R. Tµν is energy-momentum tensor. However, Einstein’s field equations

can be expressed in alternative form

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
, (2.12)

where T ≡ T µµ. The Cristoffel symbols is given in terms of the FLRW metric,

Γσµν =
1

2
gσρ (∂νgρµ + ∂µgρν − ∂ρgµν) .

Using the metric components of FLRW metric, the non-zero coefficients of Cristoffel

symbols are straightforward calculated as in Table 1 where the dots denote differen-
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Γ1
11 = kr/(1− kr2) Γ1

01 = Γ2
02 = Γ3

03 = ȧ/a

Γ3
13 = Γ2

12 = 1/r Γ0
33 = aȧr2 sin2 θ/c2

Γ1
22 = −r(1− kr2) Γ2

33 = − sin θ cos θ

Γ0
11 = aȧ/c2(1− kr2) Γ1

33 = −r(1− kr2) sin2 θ

Γ3
23 = cos θ/ sin θ Γ0

22 = aȧr2/c2

Table 1. Non-zero coefficients of Cristoffel symbols for FLRW matric

tiation with respect to the cosmic time t. Substituting these non-zero coefficients of

Cristoffel symbols into the expression of the Ricci tensor,

Rµν = Rρ
µρν = ∂σΓσµν − ∂νΓσµσ + ΓρµνΓ

σ
ρσ − ΓρµσΓσρν .

Thus, according to Table 1, the components of the Ricci tensor are given by

R00 = −3ä

a
,

R11 =
aä+ 2ȧ2 + kc2

c2(1− kr2)
,

R22 = (aä+ 2ȧ2 + 2kc2)r2/c2,

R33 = (aä+ 2ȧ2 + 2kc2)r2 sin2 θ/c2.

The off-diagonal components of the Ricci tensor are zero. Next step is to consider

the energy-momentum tensor in Einstein’s field equations. According to the Weyl’s

postulate, only one observer’s geodesic can pass through each point of spacetime, and

consequently the observer at any point possesses a unique velocity. Therefore any

observer or any particle can be considered as perfect fluid. Thus, the energy-momentum

tensor Tµν in the field equations is assumed to be of a ‘cosmic’ perfect fluid, which is

described by

T µν =
(
ρ+

p

c2

)
uµuν − pgµν , (2.13)

where uµ is 4-velocity. ρ and p are, respectively, mass density and pressure, which are

only functions of cosmic time because the universe is assumed to be homogeneous and

isotropic. Since all observers possess each local Lorentz frame, their 4-velocities are

simply

uµ = (1, 0, 0, 0). (2.14)
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The covariant component of the 4-velocity is uµ = gµνu
ν , u0 = g0νu

ν = (c2, 0, 0, 0) and

hence uµ = c2δ0
µ therefore the energy-momentum tensor in covariant component is in

the form

Tµν = gµρgνσT
ρσ =

(
ρ+

p

c2

)
gµρgνσu

ρuσ − pgµν =
(
ρc2 + p

)
c2δ0

µδ
0
ν − pgµν . (2.15)

Contraction of energy-momentum tensor gives

T = T µµ =
(
ρ+

p

c2

)
uµu

µ − pδµµ = ρc2 − 3p, (2.16)

where uµuµ = c2. Connecting the curvature terms to the matter terms following Eq.

(2.12) yields two independent equations which are called Friedmann equations, which

taking the form

ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (2.17)

H2 =
8πG

3
ρ− kc2

a2
, (2.18)

where H = ȧ/a. Note that the first equation is usually known as called acceleration

equation.

2.3.2 Fluid equation

The fluid equation in FLRW universe can be derived by taking divergence to

the energy-momentum tensor. The conservation of energy-momentum tensor requires

∇µT
µν = 0. (2.19)

Considering divergence of the energy-momentum tensor for perfect fluid, Eq. (2.13),

which is given by

∇µT
µν = ∇µ

[(
ρ+

p

c2

)
uµuν − pgµν

]
= uν∇µ

[(
ρ+

p

c2

)
uµ
]

+
(
ρ+

p

c2

)
uµ∇µu

ν − gµν∇µp.

Since each worldline in cosmological fluid particle is geodesic path which requires that

uµ∇µu
ν = 0, hence the second term on right-hand-side in second line of the equation

above vanishes. Thus, conservation of the energy-momentum tensor gives[
uµuν∇µ

(
ρ+

p

c2

)
+ uν

(
ρ+

p

c2

)
∇µu

µ
]
− gµν∇µp = 0.
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Expanding the covariant derivative as ∇µA
ν = ∂µA

ν + ΓνµλA
λ, and using the fact that

covariant derivative of any scalar field φ is indeed equal to partial derivative such as

∇µφ = ∂µφ, thus the equation above becomes

uµuν∂µ

(
ρ+

p

c2

)
+ uν

(
ρ+

p

c2

) [
∂µu

µ + Γµµλu
λ
]
− gµν∂µp = 0.

Since the assumptions of FLRW universe are homogeneity and isotropy therefore the

mass density and pressure are only function of cosmic time. We therefore have

u0u0∂0ρ+
u0u0

c2
∂0p+ u0

(
Γ1

10 + Γ2
20 + Γ3

30

) (
ρ+

p

c2

)
− g00∂0p = 0.

The second term and the last terms on the left hand side cancel out. Using expression

of the coefficients of the Cristoffel symbols in Table 1, we get

ρ̇+ 3H
(
ρ+

p

c2

)
= 0. (2.20)

This is called cosmological fluid equation.

2.3.3 Cosmological redshift

In astrophysics, the redshift z of moving light source is defined as

z =
λobs − λem

λem

or z =
νem − νobs

νobs

, (2.21)

where λ and ν are wavelengths and frequency of light. The subscript “em” and “obs”

denote emitted and observed photon respectively. The light ray follows null geodesic,

ds = 0 and dθ = dφ = 0 along the photon path. Therefore, using the Eq. (2.9) we

have ∫ tobs

tem

c dt

a(t)
=

∫ χem

0

dχ = χem, (2.22)

where χ is coordinate relating to r as r = χ for k = 0, r = sinχ for k = 1 and r = sinhχ

for k = −1. If next light pulse was sent from the galaxy at time tem + δtem, which is

received at time tobs + δtobs, then∫ tobs+δtobs

tem+δtem

c dt

a(t)
=

∫ χem

0

dχ =

∫ tobs

tem

c dt

a(t)
.
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Assuming δtem and δtobs are small therefore a(t) can be taken as constant in both

integrals, therefore

δtobs

a(tobs)
=

δtem

a(tem)
.

Since the frequency is inversely proportional to the time interval, form Eq. (2.21), we

find

1 + z =
νem

νobs

=
a(t0)

a(t)
(2.23)

where a(tobs) and a(tem) are renamed to, respectively, a(t0) and a(t) for simplicity.

2.3.4 Cosmological parameters

In simple cosmological model, the universe is assumed to be filled with matter

and radiation. The total density is simply the sum of the individual contributions of

cosmological components:

ρ(t) = ρm(t) + ρr(t) (2.24)

where the subscripts denote mass densities of matter and radiation respectively. Since

these cosmological components can be treated as a perfect fluid with an equation of

state of the form

p = wρc2,

where the equation-of-state parameter w is a constant. Hence the Eq. (2.18) with

k = 0 and Eq. (2.20) give

ρ ∝ a−3(1+w), (2.25)

a ∝ t
2

3(1+w) , (2.26)

where t0 is constant. Note that the above solutions are valid for w 6= −1. In particular

w = 0 for slowly moving particles or pressureless dust. For radiation or, in the sense

of particle, photon, an ideal model of photon gas, the pressure of photons is given

by pr = ρrc
2/3. Therefore the equation-of-state parameter for radiation is given by

w = 1/3.

A useful parameter in cosmology is the density parameter, Ω(t), defined as

Ω(t) ≡ ρ(t)

ρc(t)
, (2.27)
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where the critical density is given by

ρc(t) ≡
3H2(t)

8πG
. (2.28)

We can write the Friedmann equation (2.18) in the form

Ω(t)− 1 =
kc2

H2(t)a2(t)
. (2.29)

If one define the curvature density parameter

Ωk(t) ≡ −
kc2

H2(t)a2(t)
, (2.30)

hence the Friedmann equation becomes

Ω(t) ≡ Ωm(t) + Ωr(t) = 1− Ωk(t). (2.31)

In summary density contribution determines the spatial geometry of our universe, i.e.

Ω < 1 or ρ < ρc ⇔ k = −1 ⇔ open universe

Ω = 1 or ρ = ρc ⇔ k = 0 ⇔ flat universe

Ω > 1 or ρ > ρc ⇔ k = +1 ⇔ closed universe.

Note that, the total density parameter Ω can be included other cosmological compo-

nents for more advanced cosmological models.

2.4 Why dark energy?

As we mention in the Chapter 1, the simplest dust model can not describe

accelerating universe problem. However this problem can be solved by including a

term of “dark energy” in cosmological model. In this section, we discuss for details

of some observational evidence for dark energy, and why there should be dark energy

needs in the universe.

2.4.1 Problems of dust model

In the present time, radiation density in the universe is much less than matter

density. Thus the universe today might be filled with matter (or dust). If it is so,
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the universe model would not be consistent with observation. Consider acceleration

equation (2.17) for dust model, which state that

ä

a
= −4πG

3
ρ(1 + 3w). (2.32)

Accelerating universe needs ä > 0, thus we need 1 + 3w < 0. We can immediately see

that if we use ρ = ρm (wm = 0), it can not give accelerating universe. Therefore we

need a term of some sort of energy which has w < −1/3 in the Friedmann equation.

This energy is so called dark energy.

Another problem of dust model is the age of the universe. In flat FRW universe,

the dust model gives the solution (2.26) which is

a =

(
t

t0

)2/3

, (2.33)

where we set a0 = 1. Thus we have

H =
ȧ

a
=

2

3t
. (2.34)

In such a universe, the age is actually estimated as

t0 =
2

3
H−1

0 = 6.51h−1 × 109 years. (2.35)

Observational data from WMAP7 gives h = 0.702 [33], thus the age of the universe

is estimated to be 9.27 Gyr. Carretta et al. [10] estimated the age of globular cluster

in the Milky Way galaxy to be 12.9 ± 2.9 Gyr, whereas Jimenez et al. [27] found the

value 13.5± 2 Gyr. Hansen et al. [20] constrained the age of globular cluster M4 to be

12.7± 0.7 Gyr. We see that, in most cases, the age of globular clusters are larger than

11 Gyr. Therefore the age of the universe estimated by Eq. (2.35) is inconsistent with

the age of globular clusters mentioned above.

2.4.2 The age of the universe

In previous subsection, the cosmic age for dust model is inconsistence with the

age of the globular clusters. However if dark energy term is included in Friedmann

equation, the cosmic age problem can be resolved. Moreover the dark energy term can
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give accelerating universe. Now we consider in details. Consider Friedmann equation

that includes dark energy term,

H2 =
8πG

3
(ρr + ρm + ρDE)− kc2

a2
, (2.36)

where ρDE is energy density for dark energy. The acceleration equation with dark

energy term write

ä

a
= −4πG

3
(ρr + pr + ρm + ρDE + 3pDE) . (2.37)

This equation gives ä > 0 if pDE < −(ρr + pr + ρm + ρDE)/3. Thus dark energy which

possesses negative pressure can yield for accelerating universe. Now we turn our point

to consider the term of dark energy. Assuming constant equation of state, Eq. (2.25)

are written as

ρDE = ρDE0a
−3(1+wDE), (2.38)

where wDE is equation-of-state parameter of dark energy. In term of matter (wm = 0)

and radiation (wrad = 1/3) we have ρm = ρm0a
−3 and ρrad = ρr0a

−4 respectively (we

have set a0 ≡ 1). Therefor the Friedmann equation becomes

H2 =
8πG

3

[
ρr0a

−4 + ρm0a
−3 + ρDE0a

−3(1+wDE)
]
− kc2

a2
. (2.39)

Writing the equation in term of density parameter and redshift z using relation (2.27),

(2.30) and (2.23), the Friedmann equation reads

E(z) =
[
Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩDE0(1 + z)3(1+wDE) + Ωk0(1 + z)2

]1/2
, (2.40)

where E(z) ≡ H(z)/H0. Using relation dt = −dz/[(1 + z)H], the age of the universe

can be calculated via the equation

t0 =
1

H0

∫ ∞
0

dz

E(z)(1 + z)
(2.41)

The expression (2.40) is dominated by the term of small redshift, thus for term of high

redshift such radiation term can be neglected. Considering for simplest case, wDE = −1,

Eq. (2.41) can be expressed as

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm0(1 + z)3 + ΩDE0 + Ωk0(1 + z)2
. (2.42)
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In case of flat universe, Eq. (2.42) is integrated to be

t0 =
1

3H0

√
1− Ωm0

ln

(
1 +
√

1− Ωm0

1−
√

1− Ωm0

)
, (2.43)

where we have used Ωm0 + ΩDE0 = 1. The age of the universe is allowed to be

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0

1.2

1.4

1.6

Not allowed region 
from oldest stars

WMAP 7-year data bound

Flat universe with dark energy

Open universe 
without dark energy

Wm

H0t0

Figure 1. Plotting of the age of the universe and density parameter of matter shows
that flat universe with dark energy (solid line) is consistent with WMAP
7-year bound. We see that the matter contributed in the universe is indeed
about 28%, and dark energy is 72%

t0 > 11 Gyr from observed the age of oldest stars. Thus we require that 0 > Ωm0 ≥

0.591. The WMAP 7-year data (with wDE = −1) constraints the cosmic age to be

13.67 Gyr ≥ t0 ≥ 13.89 Gyr [33]. Therefore matter in the universe is constrained to

be 0.265 ≥ Ωm0 ≥ 0.281. This means that dark energy contributed in our universe

amount 72% of the whole cosmic components.

For the open universe without dark energy the Eq. (2.42) becomes

t0 =
1

H0(1− Ωm0)

[
1 +

Ωm

2
√

1− Ωm

ln

(
1−
√

1− Ωm0

1 +
√

1− Ωm0

)]
, (2.44)

where we have used Ωm0+Ωk0 = 1. Open universe without dark energy can not give the

age of the universe larger than WMAP 7-year measurement (see Fig. 1). Thus in this

case is inconsistence with observation. The discussions above show that the existence
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of dark energy is important to solve the cosmic age problem.

2.4.3 Accelerating universe and dark energy

In this subsection, we consider detail for accelerating universe. Upon the as-

sumption flat-FLRW universe, wDE = −1 and neglecting radiation term, the Friedmann

equation can be written as (a0 ≡ 1)

H =
ȧ

a
= H0

[
Ωma

−3 + ΩDE

]1/2
, (2.45)

or in the integral form

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

Now

Flat model Ωm  = 0.3, 
ΩDE = 0.7

Ωm  = 1.0, 
ΩDE = 0.0

H0(t -t 0)

a(t)

Figure 2. Plotting of the scale factor a(t) versus H0(t−t0) shows that the universe with
dark energy (the solid line) gives accelerating expansion while dust model
without dark energy (the dashed line) can not give accelerating universe.

H0

∫ t

0

dt′ =

∫ a

0

da′√
Ωma′−1 + ΩDEa′2

. (2.46)

Eq. (2.46) needs numerical calculation. For the universe without dark energy, Eq. (2.46)

yields

a(t) =

(
3

2

√
ΩmH0t

)2/3

. (2.47)

In Fig. 2 shows that the universe with dark energy (the solid line) gives accelerating

expansion (obtain by Eq. (2.46)) while dust model without dark energy (the dashed
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line) can not give accelerating universe (obtain by Eq. (2.47)). This illustrates that

accelerating universe problem can be solved by including the term of energy.

2.4.4 Type Ia Supernovae – observational evidence for dark energy

In 1998, Riess et al. [49] and Perlmutter et al. [48] indicate that the universe

is under accelerating expansion. The cosmic acceleration is reported by observing

luminosity distance of type Ia supernovae (SN Ia) which occurs when mass of a white

dwarf exceeds Chandrasekhar limit [14] (about 1.38 Solar masses [41, 57]) in binary

system.

If dark energy is included as a cosmic component. The luminosity distance will

be large comparable to other measurements without dark energy. Let us consider the

luminosity distance of a star defined as

d2
L =

Ls

4πFob

, (2.48)

where Ls is the light source’s absolute luminosity and Fob is an observed flux. Since

the universe is expanding, the observed flux is then defined as a function of scale factor

of the present time namely

Fob =
Lob

4πR2(a0)
=

Lob

4π (a0fk(χ))2 , (2.49)

where Lob is observed luminosity, and R(a0) = a0fk(χ) is distance from the receding

star to the observer. Now the luminosity is taken as

d2
L = (a0fk(χ))2 Ls

Lob

. (2.50)

The luminosity is indeed an amount of energy per a time interval, Ls = ∆εs/∆ts, and

also Lob = ∆εob/∆tob. From Eq. (2.23), we have relation

1 + z =
νs

νob

=
∆εs
∆εob

=
∆tob

∆ts
=
a0

a
. (2.51)

Thus the fraction Ls/Lob in Eq. (2.50) becomes

Ls

Lob

=
∆εs
∆ts

∆tob

∆εob

= (1 + z)2. (2.52)
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Using Eq. (2.30) and Eq. (2.10) for non-flat universe, the luminosity distance becomes

dL =
(1 + z)c

H0

√
Ωk0

sinh
(√
−kχ

)
. (2.53)

The light ray traveling along χ direction satisfies ds2 = c2dt2 − a2(t)dχ2 = 0, FLRW

metric gives

χ =

∫ χs

0

dχ =

∫ tob

ts

c

a(t)
dt (2.54)

Converting t→ z by using the relation dt = −dz/[(1 + z)H], Eq. (2.54) becomes

χ =
c

a0H0

∫ z

0

dz′

E(z′)
, (2.55)

where E(z) is given by Eq. (2.40). Therefore luminosity distance expressed as function

of redshift reads

dL =
(1 + z)c

H0

√
Ωk0

sinh

(√
Ωk0

∫ z

0

dz′

E(z′)

)
. (2.56)

In case of flat universe, dL can be expressed as

dL =
(1 + z)c

H0

∫ z

0

dz′

E(z′)
. (2.57)

By assuming dark energy equation of state wDE = −1 and assuming flat universe, we

have E(z) = [Ωm0(1 + z)3 + ΩDE0]1/2. Thus the luminosity distance becomes

dL =
(1 + z)c

H0

∫ z

0

dz′√
Ωm0(1 + z′)3 + ΩDE0

, (2.58)

which can be numerically evaluated for given ΩDE0.

The apparent magnitude m of a star and its absolute magnitude M2 is related

to the luminosity distance dL as

m−M = 5 log10 dL + 25, (2.59)

where dL is the luminosity distance of star in Magaparsec. In general, the absolute

magnitude M of type Ia supernovae are nearly constant with little variation, which

give M = −19.30 [22]. Because initial mass absorbed by white dwarf star is nearly

2absolute magnitude M is defined when distance dL is equal to 10 parsec.



18

Chandrasekhar limit, that gives nearly constant absolute magnitude when they explode.

Therefore the distance modulus µ0 is often defined as µ0 = m−M , thus we can write

µ0 = 5 log10 dL + 25. (2.60)

Measuring µ0 of SN Ia gives also dL. Fig. (3) shows that observed dL of 75 type

Ωm = 0.0, ΩDE = 1.0

Ωm = 0.3, ΩDE = 0.7

Ωm = 1.0, ΩDE = 0.0

Flat model

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

d L
H

0/
c

z

SN 2003ak

Figure 3. Plotting of the luminosity distance versus redshift of SN Ia for flat cosmo-
logical model. Most data from SN Ia correspond to ΩDE ' 0.7 (the solid
line).

Ia supernovae with their redshifts correspond to cosmological model with ΩDE = 0.7.

These SN Ia data are taken from the “Gold” data observed in the year 1997-2003 with

z > 0.1 of report of Riess et al. [50] in 2004. For example for a datum, a distance

modulus of supernova SN 2003ak is 45.30, which is evaluated via Eq. (2.60) to give

dL = 2.689. Its observed redshift is 1.551, thus the supernova SN 2003ak corresponds

ΩDE ' 0.7 as shown in Fig. (3).

Riess et al. (2004) [50] reported the measurement of 16 high-redshift SN Ia

with z > 1.25 by Hubble Space Telescope (HST). A best fitted value of Ωm0 was

found to be Ωm0 = 0.29+0.05
−0.03 (1σ error). Figure 4 shows the observational values of the
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luminosity distance dL versus redshift z. A best-fit value of Ωm0 obtained by Ref. [16]

is Ωm0 = 0.31 ± 0.08, which is consistent with Riess et al.. This indicates that dark

energy contributed in the universe is about 70%.

Figure 4. Plotting of the luminosity distance versus redshift for flat FLRW model. The
black points are taken from the “Gold” dataset by Riess et al. [50], and the
red points are taken from HST data measured in 2003. This Figure is taken
from Ref. [16]



CHAPTER III

DARK ENERGY MODELS

Dark energy hypothesis is that there is some sort of energy permeating through-

out space, and increases with the expansion of the universe [46]. It is the most accepted

theory for explaining recent observations that the universe appears to be in accelerating

expansion. In standard model of cosmology3, dark energy currently accounts for 73%

of total mass-energy of the universe.

In this Chapter (also later), we adopt natural units, such that c = ~ = 1,

where c is the speed of light and ~ is the reduced Planck’s constant. We denote

the Planck mass as mPl = G−1/2 = 1.22 × 1019 GeV and reduced Planck mass as

MPl = (8πG)−1/2 = 2.44× 1018 GeV. Finally, a constant κ is defined to be κ ≡
√

8πG.

3.1 Cosmological constant

In 1917, Einstein included cosmological constant Λ in his field equations to

attain a static universe. But it was dropped by him after Hubble’s discovery of the

expansion of the universe in 1929. In 1998, observations of Type Ia supernovae [48, 49]

indicated that the expansion of the universe is accelerating. The cosmological constant

was re-included in Einstein’s field equations as a dark energy content for explaining

this phenomenon. Many possible models of dark energy have been proposed such as

quintessence, phantom field, but the cosmological constant is the simplest model of

dark energy. In particle physics, the cosmological constant arises as an energy density

of the vacuum. If it originates from the vacuum energy density, the energy scale of Λ is

much larger than present Hubble constant H0. This gives rise of cosmological constant

3Standard model of cosmology called ΛCDM model which is an abbreviation for Lambda-Cold

Dark Matter. This model included cold dark matter model with dark energy, which is the simplest

model in general agreement with observations.
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problem [55].

3.1.1 Einstein’s equations with cosmological constant

The Einstein’s equations (2.11) satisfies Bianchi identities ∇µG
µν = 0 and

momentum-energy conservation ∇µT
µν = 0. Since ∇αg

µν = 0, a term Λgµν can be

included into the Einstein’s equations. Therefore the Einstein’s equations are written

as

Rµν −
1

2
gµνR = 8πGTµν + Λgµν . (3.1)

In the FLRW universe given by Eq. (2.8), the Einstein equations (3.1) give

H2 =
8πG

3
ρ− k

a2
+

Λ

3
(3.2)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (3.3)

By using the field equations (3.2) and (3.3) with dust-dominated universe (p = 0), the

Einstein’s static universe, H = 0, corresponds to

ρ =
Λ

4πG
,

k

a2
= Λ . (3.4)

Since ρ is positive, and also Λ is required to be positive. This means that the static

universe corresponds to k = +1. However the static universe was abnegated due to

discovery of expanding universe. However it returned again in the late 1990’s to explain

the observed acceleration of the universe. Introducing the modified energy density and

pressure as the form

ρ̃ = ρ+ ρΛ, (3.5)

p̃ = p+ pΛ, (3.6)

where ρΛ ≡ Λ/8πG and pΛ ≡ −Λ/8πG. From the expressions above, the Eqs. (3.2) and

(3.3) reduce to the Friedmann equations Eqs. (2.18) and (2.17). Note that equation-

of-state parameter of cosmological constant is given by wΛ ≡ pΛ/ρΛ = −1.
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3.1.2 Vacuum energy and fine-tuning problem

If the cosmological constant Λ dominates universe, hence from Eq. (3.2), the

value of Λ ought to be of order the present value of the Hubble parameter H0, that is

[2, 17, 46, 55]

Λ ≈ H2
0 . (3.7)

Therefore the density of Λ is approximated in the order

ρΛ =
Λ

8πG
≈ 10−47 GeV4 . (3.8)

If cosmological constant originates from vacuum energy, this is a serious problem be-

cause vacuum energy scale is much difference from the dark energy density observed

today [55]. The vacuum energy can be evaluated by the sum of lowest possible energy

E0, zero-point energy of quantum harmonic oscillators with mass m, given by

E0 =
∑
i

1

2
ωi →

1

2

∫
ωkD(k)d3k, (3.9)

where we integrate over all wave vectors k, and D(k) is density of mode. Putting

the system in a box of volume L3, and impose periodic boundary conditions, we have

D(k) = L3/(2π)3. Therefore Eq. (3.9) becomes

E0 =
L3

2

∫
ωk

(2π)3
d3k. (3.10)

The energy density of vacuum ρvac can be obtained by taking L → ∞. Using ω2
k =

k2 +m2, we have

ρvac = lim
L→∞

E0

L3

= lim
L→∞

L3

2L3

∫ kmax

0

√
k2 +m2

(2π)3
d3k

=
1

4π2

∫ kmax

0

dk k2
√
k2 +m2. (3.11)

If we impose a cut-off at a maximum wave vector kmax � m, we obtain [13, 46, 55]

ρvac ≈
k4

max

16π2
. (3.12)
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If general relativity is still valid up to Planck scale, and hence taking kmax = mpl, we

obtain the vacuum energy density as

ρvac ≈ 1074 GeV4. (3.13)

This value is larger than the observed value given by Eq. (3.8) about 121 orders of

magnitude. This is a fine-tuning problem which requires a fine adjustment of ρΛ to the

observed energy density of the universe today. However, the large discrepancy is not

yet explained.

3.2 Scalar field models of dark energy

Cosmological constant model in the previous subsection gives constant of equa-

tion-of-state parameter wΛ = −1. Nowadays, the observed value of w is close to −1 and

it has a little time variation. This situation leads to considering dynamical dark energy

equation of state. Scalar field φ is motivated from particle physics for describing flatness

problem and horizon problem in inflationary universe model, which was proposed by

Guth in 1981 [19]. Particle physics models suggest that existence of scalar field φ is

needed in symmetry breaking mechanism. Scalar field driving inflation is called inflaton

field. Now the scalar field is a model of dark energy with time-dependent equation of

state. In this section we roughly discuss about homogeneous scalar field (φ = φ(t)),

which included quintessence field, phantom field, k-essence field and Dirac-Born-Infeld

dark energy.

3.2.1 Quintessence field

Cosmological model of dark energy which is a canonical scalar field φ is called

“quintessence” [8, 58]. This scalar field is similar to that of inflation, but it gives rate

of expansion of the universe much slower than inflation. The action for quintessence is

given by [17, 46]

S =

∫ [
1

2
gµν∂µφ∂νφ− V (φ)

]√
−g d4x, (3.14)

where φ is the quintessence field with potential V (φ), and g is determinant of gµν .
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Variation of the action (3.14) with respect to φ gives

δS

δφ
≡ 0 =

√
−g gµν∂µ∂νφ+ gµν∂νφ ∂µ

√
−g +

√
−g dV

dφ
. (3.15)

In flat FLRW background (k = 0), the metric (2.8) gives
√
−g = a3. Then considering

for only homogeneous field, we find

φ̈+ 3Hφ̇+ V,φ = 0, (3.16)

where V,φ ≡ dV/dφ.

The energy momentum tensor of the scalar field can be derived by varying the

action (3.14) respects to the metric gµν as in the form

Tµν =
2√
−g

δS

δgµν
. (3.17)

Note that δ
√
−g = −(1/2)

√
−ggµνδgµν , then the energy momentum tensor is taken the

form

Tµν = ∂µφ ∂νφ− gµν
[

1

2
gρσ∂ρφ ∂σφ+ V (φ)

]
. (3.18)

Energy density and pressure of the scalar field can be found by

ρφ = T 0
0 =

1

2
φ̇2 + V (φ), (3.19)

pφ = −T ii =
1

2
φ̇2 − V (φ). (3.20)

Then the Friedmann equation (2.18) and acceleration equation (2.17) yield

H2 =
κ2

3

[
1

2
φ̇2 + V (φ)

]
, (3.21)

ä

a
= −κ

2

3

[
φ̇2 − V (φ)

]
. (3.22)

Hence accelerating expansion of the universe (ä > 0) occurs when φ̇2 < V (φ). The

equation of state for the field φ is given by

wφ ≡
p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (3.23)

In case of φ̇2 � V (φ) and φ̈ ' 0, Eq. (3.16) and (3.22) give the approximation

3Hφ̇ ' −V,φ and 3H2 ' κ2V (φ),
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respectively. Hence the equation-of-state parameter Eq. (3.23) can be approximated

to

wφ ' −1 +
2

3
ε, (3.24)

where ε ≡ (V,φ/V )2/(2κ2) is called slow-roll parameter [37].

The fluid equation of the field is taken the form

ρ̇φ + 3H(1 + wφ)ρφ = 0, (3.25)

which can be written in an integrated form:

ρ = ρ0 exp

[
−
∫

3(1 + wφ)
da

a

]
, (3.26)

where ρ0 is an integration constant. The Eq. (3.23) implies that wφ ranges in the

region −1 ≤ wφ ≤ 1. The limit φ̇2 � V (φ) corresponds to wφ = −1, which gives

constant ρ from Eq. (3.26). In the case φ̇2 � V (φ) gives wφ = 1, and hence ρ ∝ a−6 as

Eq. (3.26). In other cases, the behavior of the evolution of energy density with scale

factor is presumed that obeys

ρ ∝ a−m, 0 < m < 6. (3.27)

Hence wφ < −1/3 or 0 ≤ m < 2 yields the accelerating expansion of the universe (as

seen from Eq. (2.17)). From the solution (2.26), It suggests to write the scale factor as

a function of power law exponent of time

a(t) ∝ tβ, (3.28)

with the accelerated expansion occurs for β > 1. The acceleration equation (2.17) for

quintessence field gives Ḣ = −4πGφ̇2. Therefore the potential V (φ) the scalar field φ

can be expressed, respectively, as

V =
3H2

8πG

(
1 +

Ḣ

3H2

)
, (3.29)

φ =

∫
dt

(
− Ḣ

4πG

)1/2

. (3.30)

One of the problems of quintessence field is that it could couple to ordinary matter.

This leads to long range forces and time dependence of physical constants [11].
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3.2.2 Phantom field

The quintessence field models discussed in the previous subsection correspond

to equation-of-state parameter w ≥ −1. When w < −1, the model is of phantom

type. Indeed observation today indicates that the equation-of-state parameter lies in a

narrow region around w = −1 [33]. Simplest model of phantom dark energy is provided

by negative kinetic term of scalar field [7, 12]. The action of the phantom field is given

by

S =

∫ [
−1

2
gµν∂µφ∂νφ− V (φ)

]√
−g d4x. (3.31)

Similar method to the case of quintessence, the equation of motion for the phantom

field is then given by

φ̈+ 3Hφ̇ = V,φ. (3.32)

The evolution of Eq. (3.32) is the same as that of the normal scalar field but the negative

kinetic energy of the field allows it to evolve from lower value to higher potential [52].

The energy density and pressure density for phantom field can be found, respectively,

from the Eq. (3.17), which is given by

ρφ = − φ̇
2

2
+ V (φ), (3.33)

pφ = − φ̇
2

2
− V (φ). (3.34)

Since the energy density is positive by definition therefore φ̇2/2 < V (φ) which gives

accelerating expansion. The equation of state of the phantom field is taken form

wφ =
pφ
ρφ

=
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
(3.35)

which allowing value of wφ lies in region −∞ < wφ ≤ −1. Note that the evolution of

scale factor Eq. (2.26) corresponds to contracting universe for w < −1. Therefore, for

phantom field, the scale factor Eq. (2.26) must be slightly modified to be

a(t) ∝ (ts − t)β, (3.36)

where β ≡ 2/3(1 + wφ) < 0, and ts is constant with ts > t. The Hubble parameter is

then taken the form

H = − β

ts − t
. (3.37)
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Note that the Hubble parameter diverges as t → ts. Moreover, the scalar curvature

also grows to in infinity as t → ts [17]. These correspond to big rip singularity in the

future [9].

3.2.3 Tachyon field

Tachyons are a class of particles which is able to travel faster than the speed of

light. Tachyon has strange property, i.e. when increasing velocity, its energy decreases.

The slowest speed for tachyons is the speed of light. Consider a normal relativistic

particle with energy-momentum relation E2 = p2 +m2, the total energy of the particle

with velocity v is given by

E =
m√

1− v2
.

If v > 1 then the above equation give imaginary energy. For describing tachyons with

real masses, we must treats m = iz, where i =
√
−1. Therefore energy-momentum

relation and the total energy become

E2 + z2 = p2, E =
z√

v2 − 1
. (3.38)

The above equation implies that the energy of tachyon decreases when its velocity

increases. In relativistic mechanics, relativistic particle with position q(t) and mass m

is described by Lagrangian L = −m
√

1− q̇2 [45]. In view point of field theory, the

mass m is treated as a function of scalar field φ, namely V (φ). Therefore the action

for homogeneous tachyon field is taken form [5]

S =

∫ [
−V (φ)

√
1− gµν∂µφ∂νφ

]
d4x, (3.39)

where V (φ) is treated as potential of the field. In a flat FRW background the energy

density ρ and the pressure density p for the tachyon field are given by

ρtach =
V (φ)√
1− φ̇2

, ptach = −V (φ)

√
1− φ̇2. (3.40)

Then equation of state is given by

wtach = φ̇2 − 1. (3.41)
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Hence from Eq. (2.17), the accelerating expansion of the universe occurs when φ̇2 < 2/3.

However, if tachyons were conventional that move faster than speed light (φ̇ > 1), this

would leads to violations of causality in special relativity, and this yields the contracting

universe.

3.2.4 Other models

There are many other models of single-scalar field dark energy which we do

not consider here, such as K-essence field, Dirac-Born-Infeld (DBI) dark energy.

The k-essence models was found rely on dynamical attractor properties of scalar

fields with nonlinear kinetic energy terms in the action [4] k-essence is characterized

by a scalar field with non-canonical kinetic energy. The Lagrangian for k-essence cor-

responds to a pressure which is a function of scalar field and its derivative [3, 4, 15].

A shortcoming of this model is that it needs to adjust energy scale to be order of the

present energy density of the universe [17].

Another one is Dirac-Born-Infeld (DBI) dark energy. The DBI action mo-

tivated from string theory provides new classes of dark energy due to its relativistic

kinematics [1]. Serious shortcoming of DBI model is, for simple potentials, the equation-

of-state parameter appears to be too far from the present observation [40].



CHAPTER IV

PHANTOM POWER-LAW COSMOLOGY

In this work we desire to impose observational constraints on phantom power-

law cosmology, that is on the scenario of a phantom scalar field along with the matter

fluid in which the scale factor is a power law. In particular, we use cosmological

observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations

(BAO) and observational Hubble data (H0), in order to impose complete constraints

on the model parameters, focusing on the power-law exponent and on the big rip time.

In section 4.1 we construct the scenario of phantom power-law cosmology. In

section 4.2 we use observational data in order to impose constraints on the model

parameters. Finally, in section 4.3 we discuss the physical implications of the obtained

results.

4.1 Phantom cosmology with power-law expansion

In this section we present phantom cosmology under power-law expansion.

Matter contributed in the universe we consider here is baryonic matter plus cold dark

matter, which is assumed to be a barotropic fluid with energy density ρm and pressure

pm, and equation-of-state parameter wm = pm/ρm. Since we focus on small redshifts,

the radiation sector is neglected, thus the Friedmann equation and acceleration equation

with phantom energy write:

H2 =
8πG

3
(ρm + ρφ)− k

a2
(4.1)

ä

a
= −4πG

3
(ρm + ρφ + 3pm + 3pφ) (4.2)

The helpful relation for calculate the phantom potential is to express Eq. (4.1) and

(4.2) in the term of Ḣ, namely

Ḣ =
ä

a
− ȧ2

a2
= −4πG (ρm + pm + ρφ + pφ) +

k

a2
. (4.3)
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In these expressions, ρφ and pφ are respectively the energy density and pressure of the

phantom field, which are given by Eq. (3.33) and Eq. (3.34).

We note that in phantom cosmology the dark energy sector is attributed to the

phantom field, that is ρDE ≡ ρφ and pDE ≡ pφ, and thus its equation-of-state parameter

is given by

wDE ≡
pDE

ρDE

=
pφ
ρφ
. (4.4)

Considering the solution of fluid equation for matter Eq. (2.25) which is written as

ρm =
ρm0

an
, (4.5)

where n ≡ 3(1 + wm) and ρm0 ≥ 0 is the value at present time t0.

Lastly, we can extract two helpful relations, by rearranging (4.1) we obtain

ρφ =
3

κ2

(
H2 − κ2

3
ρm +

k

a2

)
=

3

κ2

(
H2 − κ2

3

ρm0

an
+
k

a2

)
, (4.6)

while substitution of Eq. (3.33) and (3.34) into Eq. (4.3) gives

φ̇2 =
2

κ2

(
Ḣ − k

a2

)
+ ρm

n

3

=
2

κ2

(
Ḣ − k

a2

)
+
n

3

ρm0

an
, (4.7)

Note that κ ≡
√

8πG, as we introduced in the Chapter 3.

Since we study the power-law behavior of the scale factor in phantom cosmol-

ogy, then we use Eq. (3.36) to model the expansion of the universe. The scale factor

takes the form [42, 43]

a(t) = a0

(
ts − t
ts − t0

)β
, (4.8)

with a0 the value of the scale factor at present time t0, while the Hubble parameter

and its time derivative read:

H(t) ≡ ȧ(t)

a(t)
= − β

ts − t
(4.9)

Ḣ = − β

(ts − t)2
. (4.10)
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Since β < 0 we have an accelerating (ä(t) > 0) and expanding (ȧ(t) > 0) universe,

which possesses a positive Ḣ(t) that is it exhibits super-acceleration [18, 30].

In section 3.2.2, we have an un-determine phantom potential V (φ) and a phan-

tom scalar field φ, which come from scalar field theory. Now we have more sufficiently

helpful relations to reconstruct the phantom potential and the phantom scalar field by

observational data. Thus by substituting Eq. (4.6) and (4.7) into Eq. (3.33), we obtain

the phantom potential

V (φ) =
3

8πG

(
H2 +

Ḣ

3
+

2k

3a2

)
+

(
n− 6

6

)
ρm0

an
. (4.11)

In the following we consider as usual the matter (dark matter plus baryonic matter)

component to be dust, that is wm ≈ 0 or equivalently n = 3. Thus, using the Eq. (4.8),

restoring the SI units and using also M2
P = ~c/κ2, we find

V (t) =
M2

Pc

~

[
3β2 − β
(ts − t)2

+
2kc2(ts − t0)2β

a2
0(ts − t)2β

]
− ρm0c

2

2

(ts − t0)3β

a3
0(ts − t)3β

. (4.12)

Additionally, solving Eq. (4.7) by using Eq. (4.10) for the phantom field and inserting

the power-law scale factor, gives

φ(t) =

∫ √
2M2

Pc

~

[
− β

(ts − t)2
− kc2(ts − t0)2β

a2
0(ts − t)2β

]
+
ρm0c2(ts − t0)3β

a3
0(ts − t)3β

dt. (4.13)

Finally, the time-dependence of the phantom energy density and pressure can be ex-

tracted from Eq. (3.33) and (3.34) by using Eq. (4.12) and (4.13), namely

ρφ =
M2

Pc

~

[
3β2

(ts − t)2
+

3kc2(ts − t0)2β

a2
0(ts − t)2β

]
− ρm0c

2(ts − t0)3β

a3
0(ts − t)3β

, (4.14)

pφ = −M
2
Pc

~

[
3β2 − 3β

(ts − t)2

]
− ρm0c

2(ts − t0)3β

2a3
0(ts − t)3β

. (4.15)

Note that at t → ts, ρφ and pφ diverge. However wDE remains finite. This is exactly

the big rip behavior according to the classification of singularities of [17, 44].

All the aforementioned can be expressed in terms of the redshift z. In partic-

ular, since 1 + z = a0/a, in phantom power-law cosmology we have

1 + z =

(
ts − t0
ts − t

)β
. (4.16)
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Therefore, using this relation we can extract the z-dependence of all the relevant quan-

tities of the scenario, which can then straightforwardly be confronted by the data.

4.2 Observational constraints

In the present section we can proceed to confrontation with observations. In

particular, we use Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations

(BAO) and Observational Hubble Data (H0), in order to impose constraints on the

model parameters, and especially to the power-law exponent β and to the Big Rip time

ts. Finally, we first obtain our results using only the CMB-WMAP7 data [35], and then

we perform a combined fit using additionally the BAO [47] and H0 ones [51, 54].

In this work we prefer not to use SNIa data as in the combined WMAP5+BAO

+SNIa dataset [32]. This is because the combined WMAP5 with SNIa data from [21,

34] do not include systematic error, and the cosmological parameter derived from the

combined WMAP5 dataset also differ from derivation of SNIa data [31]. Inclusion of the

SNIa systematic error, which is comparable with its statistical error, can significantly

alter the value of equation-of-state parameter [33]. Furthermore the value of equation-

of-state parameter derived from two different light-curve fitters are different [6]. This

could make it difficult to identify if wDE is phantom case.

Firstly, we consider the power-law exponent β in the present time, which can

be expressed as

β = −H0(ts − t0). (4.17)

In a general, non-flat geometry the big rip time ts cannot be calculated, bringing a large

uncertainty to the observational fitting. However, one could estimate it by assuming

a flat geometry, which is a very good approximation [33]. This is a very plausible

assumptions [9]. Considering Friedmann equation for k = 0, which include dark energy

term,

H2 ≡
(
ȧ

a

)2

= H2
0

(
ρm

ρc0
+
ρDE

ρc0

)
, (4.18)

where the subscripts “0” stand for value at the present time. We assume the evolution
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of phantom dark energy obeys Eq. (3.25), which its solution is then taking the inte-

gral form as shown in Eq. (3.26). However for constant equation-of-state parameter,

Eq. (3.26) yields

ρDE = ρDE0a
−3(1+wDE). (4.19)

We have ρm = ρm0a
−3, as shown in Eq. (4.5) for n = 3, then the Eq. (4.18) becomes

ȧ

a
= H0

(
Ωm0

a3
+

ΩDE0

a3(1+wDE)

)1/2

, (4.20)

The universe today is already dark-energy-dominated, thus the matter term in Eq. (4.20)

can be neglected. With Ωk = 0, we have ΩDE0 = 1− Ωm0, then Eq. (4.20) becomes∫ ∞
a0

a3(1+wDE)/2−1da =

∫ ts

t0

H0(1− Ω0)1/2dt, (4.21)

where ts is big rip time, time at a→∞. Integrating equation above with rescale a0 ≡ 1,

ts can be expressed as [9]

ts ' t0 +
2

3
|1 + wDE|−1H−1

0 (1− Ωm0)−1/2. (4.22)

We have all the required information, and now we proceed to the data fitting. For the

case of the WMAP7 data alone we use the maximum likelihood parameter values for

H0, t0, ΩCDM0 and Ωb0 [33], focusing on the flat geometry. Additionally, we perform

a combined observational fitting, using WMAP7 data, along with Baryon Acoustic

Oscillations (BAO) in the distribution of galaxies, and Observational Hubble Data

(H0).

4.3 Results and discussions

In the previous section we presented the method that allows for the confronta-

tion of power-law phantom cosmology with the observational data. In the present

section we perform such an observational fitting, presenting our results, and discussing

their physical implications.

First of all, in Table 2, we show for completeness the maximum likelihood

values for the present time t0, the present Hubble parameter H0, the present baryon
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density parameter Ωb0 and the present cold dark matter density parameter ΩCDM0,

that was used in our fitting [33], in WMAP7 as well as in the combined fitting. In fact,

fitting parameters are obtained from maximum likelihood values, whereas the error

bars are extracted from mean values. Realizing that both maximum likelihood values

and mean values have the same distribution function.

We use equation-of-state parameter wDE from WMAP7-year data which is

wDE = −1.12 [35] to calculate the big rip time ts via Eq. (4.22) without including error

bar of wDE. Including error bar in wDE can dramatic changes the value of ts (See detail

in Appendix A). In the same table we also provide the 1σ bounds of every parameter.

Parameter WMAP7+BAO+H0 WMAP7

t0 13.78± 0.11 Gyr 13.71± 0.13 Gyr

[(4.33± 0.04)× 1017 sec] [(4.32± 0.04)× 1017 sec]

H0 70.2+1.3
−1.4 km/s/Mpc 71.4± 2.5 km/s/Mpc

Ωb0 0.0455± 0.0016 0.0445± 0.0028

ΩCDM0 0.227± 0.014 0.217± 0.026

Table 2. The maximum likelihood values in 1σ confidence level for the present time t0,
the present Hubble parameter H0, the present baryon density parameter Ωb0

and the present cold dark matter density parameter ΩCDM0, for WMAP7 as
well as for the combined fitting WMAP7+BAO+H0. The values are taken
from [33].

In Table 3 we present the maximum likelihood values and the 1σ bounds for the derived

parameters, namely the power-law exponent β, the present matter energy density value

ρm0, the present critical energy density value ρc0 and the big rip time ts.

Let us discuss in more detail the values and the evolution of some quantities of

interest. For the combined data WMAP7+BAO+H0, the potential Eq. (4.12) is fitted

as

V (t) ≈ 6.47× 1027

(3.30× 1018 − t)2
− 2.51× 10−371(3.30× 1018 − t)19.54, (4.23)

while WMAP7 data alone give

V (t) ≈ 6.37× 1027

(3.23× 1018 − t)2
− 1.99× 10−368(3.23× 1018 − t)19.39. (4.24)
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Parameter WMAP7+BAO+H0 WMAP7

β −6.51+0.24
−0.25 −6.5± 0.4

ρm0 (2.52± 0.26)× 10−27 kg/m3 (2.50± 0.30)× 10−27 kg/m3

ρc0 (9.3+0.3
−0.4)× 10−27 kg/m3 (9.57± 0.67)× 10−27 kg/m3

ts 104.5+1.9
−2.0 Gyr 102.3± 3.5 Gyr

[(3.30± 0.06)× 1018 sec] [(3.23± 0.11)× 1018 sec]

Table 3. Derived maximum likelihood values in 1σ confidence level for the power-law
exponent β, the present matter energy density value ρm0, the present critical
energy density value ρc0 and the big rip time ts, for WMAP7 as well as for
the combined fitting WMAP7+BAO+H0.

Note that the second terms in these expressions, although very small at early times,

they become significant at late times, that is close to the big rip. In particular, the

inflection happens at 22.4+1.9
−2.0 Gyr (WMAP7+BAO+H0) and 22.0±3.5 Gyr (WMAP7),

after which we obtain a rapid increase. The evolution of phantom potential is illustrated

on Fig. 5.
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Figure 5. The phantom potential as function of t, obtained from observational data
fitting of WMAP7 and WMAP7+BAO+H0.

Now, concerning the scalar field evolution φ(t), at late times (t → ts) the
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ρm0-term in Eq. (4.13) can be neglected. Thus, Eq. (4.13) reduces to

φ(t) ≈
∫ √

2M2
Pc

~
|β|

(ts − t)2
dt

= −2M2
Pc

~
|β| ln(ts − t) (4.25)

which can be fitted using combined WMAP7+BAO+H0 giving

φ(t) ≈ −2.64× 1013 ln (3.30× 1018 − t), (4.26)

while for WMAP7 dataset alone we obtain

φ(t) ≈ −2.63× 1013 ln (3.23× 1018 − t). (4.27)

As expected, both the phantom field and its kinetic energy (−φ̇2/2) diverge at the big

rip.

Now we straightforwardly white the potential as a function of the phantom

field, namely V (φ). In particular, Eq. (4.25) can be easily inverted, giving t(φ),

t(φ) = ts − Exp

[
− ~

2M2
Pc|β|

φ

]
. (4.28)

Thus substitution the equation above into Eq. (4.12) provides V (φ) at the late time as

V (φ) =
M2

Pc

~

(
3|β|2 − |β|
e−2φ/α

)
+
|β|c2(ts − t0)−3|β|

2e3|β|φ/α , (4.29)

where α ≡ (2M2
Pc|β|/~)1/2. Doing so, for the combined data WMAP7+BAO+H0 the

potential is fitted as

V (φ) ≈ 6.47× 1027 e0.75×10−13φ − 2.51× 10−371 e−7.4×10−13φ, (4.30)

while for WMAP7 dataset alone we obtain

V (φ) ≈ 6.37× 1027 e0.76×10−13φ − 1.99× 10−368 e−7.4×10−13φ. (4.31)

In order to provide a more transparent picture, in Fig. 6 we present the corresponding

plot for V (φ), for both the WMAP7+BAO+H0 as well as the WMAP7 case.

Let us now consider the equation-of-state parameter for the phantom field,

that is for the dark energy sector. As we mentioned in the end of section 4.1, it is
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Figure 6. The phantom potential as function of φ, obtained from observational data
fitting of WMAP7 and WMAP7+BAO+H0.

given by wDE(t) = pφ(t)/ρφ(t), with pφ(t) and ρφ(t) given by relations (4.15) and (4.14)

respectively. We prefer to white wDE as function of redshift z by using the relation

Eq. (2.23),

1 + z =
a0

a
=

(
ts − t0
ts − t

)β
. (4.32)

By substitution equation above into Eq. (4.15) and (4.14). One can therefore use

WMAP7 and WMAP7+BAO+H0 observational data in order to fit the evolution

of wDE(z) at late times, that is for t → ts, or equivalently for z → −1. For the

WMAP7+BAO+H0 combined dataset we find

wDE(z) ≈ 1

2
− 6.068

3.670− (1 + z)3.307
, (4.33)

while for the WMAP7 dataset alone we have

wDE(z) ≈ 1

2
− 6.328

3.824− (1 + z)3.309
. (4.34)

As we observe, at t→ ts, wDE becomes -1.153 for the combined dataset and -1.155 for

the WMAP7 dataset alone. However, the phantom dark energy density and pressure

become infinite. These behaviors are the definition of a big rip [44], and this acts as a

self-consistency test of our model.



CHAPTER V

CONCLUSIONS

In this thesis we study dark energy models for explain accelerating expansion of

the universe. We investigated phantom cosmology in which the scale factor is a power

law. After constructing the scenario, we used observational data in order to impose

constraints on the model parameters, focusing on the power-law exponent β and on the

big rip time ts.

Using the WMAP7 dataset alone, we found that the power-law exponent is

β ≈ −6.5 ± 0.4 while the big rip is realized at ts ≈ 102.3 ± 3.5 Gyr, in 1σ confidence

level. Additionally, the dark-energy equation-of-state parameter wDE lies always below

the phantom divide as expected, and at the big rip it remains finite and equal to -1.155.

However, both the phantom dark-energy density and pressure diverge at the big rip.

Using WMAP7+BAO+H0 combined observational data we found that β ≈

−6.51+0.24
−0.25, while ts ≈ 104.5+1.9

−2.0 Gyr, in 1σ confidence level. Moreover, wDE at the big

rip becomes -1.153. Finally, in order to present a more transparent picture, we provided

the reconstructed phantom potential.

In summary, we observe that phantom power-law cosmology can be compati-

ble with observations, exhibiting additionally the usual phantom features, such is the

future big rip singularity. However, it exhibits also the known disadvantage that the

dark-energy equation-of-state parameter lies always below the phantom divide, by con-

struction. In order to acquire a more realistic picture, describing also the phantom

divide crossing, as it might be the case according to observations, one should pro-

ceed to the investigation of quintom power-law cosmology, considering apart from the

phantom a canonical scalar field, too. Such a project is left for future investigation.
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APPENDIX A NOTES OF THIS THESIS

In the Table 3, estimation the time at big rip ts via Eq. (4.22), I have used

wDE = −1.12 [35] from WMAP7 alone, while other using parameters are taken from

WMAP7+BAO+H0 dataset. However, the true value of these parameters from WMAP7

+BAO+H0 are shown in the new table, as follows

Parameter WMAP7+BAO+H0 WMAP7

β −7.82+0.22
−0.23 −6.5± 0.4

ρm0 (2.52± 0.26)× 10−27 kg/m3 (2.50± 0.30)× 10−27 kg/m3

ρc0 (9.3+0.3
−0.4)× 10−27 kg/m3 (9.57± 0.67)× 10−27 kg/m3

ts 122.7+2.3
−2.4 Gyr 102.3± 3.5 Gyr

[(3.87+0.07
−0.08)× 1018 sec] [(3.23± 0.11)× 1018 sec].

Table 4. The table shows the true parameter values, which using wDE = −1.10 [33]
from WMAP+BAO+H0. The changed values from Table 3 are power-law
exponent and the big rip time, while other parameters remain the same.

Moreover, the phantom potential in Eq. (4.23) is changed to the true value

namely

V (t) ≈ 9.40× 1027

(3.87× 1018 − t)2
− 2.59× 10−445(3.87× 1018 − t)23.45, (A.1)

which the true inflection happen at 24.06 Gyr. Comparing with WMAP7 dataset alone

is shown in Fig. 7. We see that the phantom potential using wDE = −1.10 is slower

increase than WMAP7 dataset alone. A little deviation of wDE immensely influences

deviation of other variables.

The scalar field evolution at the late time of true WMAP7 combined dataset

are fitted as

φ(t) ≈ −2.89× 1013 ln (3.87× 1018 − t), (A.2)

and it can easily inverted as

V (φ) ≈ 9.40× 1027 e6.91×10−14φ − 2.59× 10−445 e−8.1×10−13φ. (A.3)
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Figure 7. The phantom potential of the true value for WMAP7+BAO+H0 dataset and
WMAP7 dataset alone

The true field potential V (φ) from combined data remains consistent with

phantom scenario. A different thing to WMAP7 dataset alone is that V (φ) of combined

data is more rapidly increased when φ in creases than V (φ) from WMAP7 dataset alone.

This V (φ) from two datasets may not be implicitly illustrated in the same range. We

then chose not to show plotting for comparison of two datasets.

The equation-of-state parameter at the late time estimating from true WMAP7

combined dataset approaches to wDE ≈ −1.128, which has a small deviate from the

present value.

Indeed, the equation-of-state parameter of phantom dark energy is very sensi-

tive to the value of the time at big rip ts. In details, we consider plotting of ts versus

wDE, which given by equation

ts ' t0 +
2

3
|1 + wDE|−1H−1

0 (1− Ωm0)−1/2. (A.4)

Plotting of ts versus wDE as shown in Fig. 8 shows small variation of wDE can dramatic

changes the value of ts. There is a good way to exclude error bar from wDE for estimating

ts
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Figure 8. Plotting of big rip time ts versus equation-of-state parameter of dark energy
wDE

wDE ts (Gyr) wDE ts (Gyr)

-1.06 195.25 -1.16 81.83

-1.08 149.88 -1.18 74.27

-1.10 122.66 -1.20 68.22

-1.12 104.51 -1.22 63.27

-1.14 91.55 -1.24 59.15

Table 5. Relation between the value of dark energy equation-of-state parameter wDE

and the value of big rip time ts



APPENDIX B ESTIMATION FOR ERROR

We are frequently confronted with observational data, which giving in many

terms of measurements. Then we need to know what is the error on the final answer,

which are given by individual measurements. We conclude that, for general case, an

answer f of n measured quantities can be obtained via the method as follows, defining

f = f(x1, x2, ..., xi, ..., xn), (B.1)

where xi are the measured quantities . Differentiation of f gives

δf =
∂f

∂x1

δx1 +
∂f

∂x2

δx2 + ...+
∂f

∂xn
δxn. (B.2)

Squaring and averaging over a whole terms of measurement, which all the cross terms

like δx1δx2, vanished 4 then we find

(δf)2 =
n∑
i=1

(
∂f

∂xi

)2

(δxi)
2. (B.3)

The quantities δf and δxi are indeed the errors of f and measured quantities xi, then

we change notation as δf → σf and δxi → σi, we finally obtain

σ2
f =

n∑
i=1

(
∂f

∂xi

)2

σ2
i . (B.4)

Note that Eq. (B.4) is usually used for small error. For example, estimating error of ts

(WMAP7 dataset alone), we start from considering

ts = t0 +
2

3
|1 + wDE|−1H−1

0 (1− Ωm0)−1/2. (B.5)

Therefore the error of ts can be found from

σ2
ts =

(
∂ts
∂t0

)2

σ2
t0

+

(
∂ts
∂H0

)2

σ2
H0

+

(
∂ts
∂Ωm0

)2

σ2
Ωm0

. (B.6)

4If different xi are uncorrelated, then all of cross terms vanish. See also in Section 1.7 of

reference [39]
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We have

∂ts
∂t0

= 1,

∂ts
∂H0

=
2

3H2
0 (1 + wDE)(1− Ωm0)1/2

,

∂ts
∂Ωm0

= − 2

3H0(1 + wDE)(1− Ωm0)3/2
, (B.7)

then substituting these observed quantities as shown on the right column of Table 2,

we find ts = 102.3± 3.5 billion years (see Mathematica code in Appendix C).



APPENDIX C MATHEMATICA CODE

C.1 Code for plotting in Fig. 1

In[1]:= (* Changing unit *)

gyr = 3.15576 10^16; (* 1 Gigayear *)

hunit = 10^(-19)/3.086; (* Hubble constant in SI unit *)

hzero = 70.2 hunit; (* maximum likelihood value of WMAP7 data *)

(* ------------------------ *)

In[4]:= (* flat with DE *)

t0DE[Omgm_]:= 1/(3 Sqrt[1-Omgm])Log[(1 + Sqrt[1-Omgm])/(1

-Sqrt[1-Omgm])];

(* open without DE *)

t0k[Omgm_]:= 1/(1-Omgm)(1+Omgm/(2 Sqrt[1-Omgm])Log[(1-Sqrt[1-Omgm])/(1

+Sqrt[1-Omgm])]);

Glob := 11 gyr hzero;

(* WMAP 7-year bound *)

WMAPbndUp := 13.89 gyr hzero;

WMAPbndLo := 13.67 gyr hzero;

Plot[{t0DE[Omgm], t0k[Omgm], WMAPbndUp, WMAPbndLo, Glob}, {Omgm, 0, 1},

PlotRange -> {{0, 1}, {0.6, 1.6}}, Axes -> False, Frame -> True,

PlotStyle -> {{Blue, Thick}, {Red, Dashed}, Purple, Purple, LightGray},

Filling -> {{3 -> {{4}, LightRed}}, {5 -> {Axis, LightGray}}}]

Out[9]=



54

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0

1.2

1.4

1.6

In[10]:= (* obtaining Omega_m *)

(* Lower bound *)

FindRoot[1/(3 Sqrt[1-Omgm])Log[(1+Sqrt[1-Omgm])/(1-Sqrt[1-Omgm])]

== 13.89 gyr hzero, {Omgm, 0.3}]

(* Upper bound *)

FindRoot[1/(3 Sqrt[1-Omgm])Log[(1+Sqrt[1-Omgm])/(1-Sqrt[1-Omgm])]

== 13.67 gyr hzero, {Omgm, 0.3}]

Out[10]= {Omgm -> 0.265656}

Out[11]= {Omgm -> 0.281499}

(* ==================== End of Code =================== *)

C.2 Code for plotting evolution of scale factor Fig. 2

In[1]:= (* density parameters for dust (Omgm) DE (OmgL) *)

Omgm1 = 0.3;

Omgm2 = 1;

OmgL1 = 0.7;
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OmgL2 = 0;

OmgL3 = 1;

Omgk = 0.0085;

(* ---------------------------------- *)

In[7]:=

c = 2.99792458*10^8; (* speed of light *)

(* ======================= *)

(* changing unit *)

gyr = 3.15576 10^16;

hunit = 10^(-19)/3.086;

H0 = 70.2 hunit;

Htdust = 2/(3 Sqrt[Omgm2]); (* age of a universe--dust model *)

Htdust30 = 2/(3 Sqrt[Omgm1]);

In[13]:= (* age of a universe--LCDM *)

H0t0 = 1/(3 Sqrt[1 - Omgm1])Log[(1+Sqrt[1-Omgm1])/(1-Sqrt[1-Omgm1])];

In[14]:= aHt = Table[{N[Integrate[1/Sqrt[Omgm1 a^(-1)+OmgL1 a^2],

{a, 0, 0.05 i}]]-H0t0, 0.05 i}, {i, 0, 80}]

Out[14]= {{-0.950492,0.05},{-0.925624,0.1},{-0.893481,0.15},

{-0.855569,0.2},{-0.812864,0.25},{-0.766142,0.3},{-0.716094,0.35},

{-0.66337,0.4},{-0.608589,0.45},{-0.55234,0.5},{-0.495171,0.55},

{-0.437576,0.6},{-0.379988,0.65},{-0.322773,0.7},{-0.266232,0.75},

{-0.210599,0.8},{-0.156052,0.85},{-0.102719,0.9},{-0.0506847,0.95},

{-1.*10^-9,1.},{0.0493114,1.05},{0.0972471,1.1},{0.143821,1.15},

{0.189057,1.2},{0.232991,1.25},{0.27566,1.3},{0.317108,1.35},

{0.35738,1.4},{0.396522,1.45},{0.434578,1.5},{0.471595,1.55},

{0.507617,1.6},{0.542685,1.65},{0.576842,1.7},{0.610126,1.75},
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{0.642576,1.8},{0.674226,1.85},{0.705112,1.9},{0.735266,1.95},

{0.764718,2.},{0.793498,2.05},{0.821632,2.1},{0.849149,2.15},

{0.876071,2.2},{0.902424,2.25},{0.928228,2.3},{0.953505,2.35},

{0.978275,2.4},{1.00256,2.45},{1.02637,2.5},{1.04973,2.55},

{1.07265,2.6},{1.09516,2.65},{1.11725,2.7},{1.13895,2.75},

{1.16028,2.8},{1.18123,2.85},{1.20184,2.9},{1.22209,2.95},

{1.24202,3.},{1.26163,3.05},{1.28092,3.1},{1.29991,3.15},

{1.31861,3.2},{1.33702,3.25},{1.35516,3.3},{1.37303,3.35},

{1.39064,3.4},{1.408,3.45},{1.42511,3.5},{1.44198,3.55},

{1.45862,3.6},{1.47503,3.65},{1.49122,3.7},{1.5072,3.75},

{1.52297,3.8},{1.53853,3.85},{1.5539,3.9},{1.56907,3.95},

{1.58405,4.}}

In[15]:= scalef=Interpolation[aHt]

Out[15]= InterpolatingFunction[{{-0.950492,1.58405}},<>]

In[16]:= (* evolution of a(t)--dust model *)

age2[t_]:= (3/2(t+Htdust))^(2/3);

In[17]:= Plot[{scalef[t], age2[t]},{t, -1.2, 2},PlotRange->{{-1.2, 2},

{0,4}}, Frame->True, Axes->False,AspectRatio->5/6,

PlotStyle->{{Red,Thick}, {Darker[Blue], Thick,Dashed}, {Blue}}]

Out[17]=
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C.3 Code for plotting luminosity distance with SN Ia data Fig. 3

In[1]:= (* Omega_DE *)

OmgL1=0.7;

OmgL2=0;

OmgL3=1;

In[4]:= Ar1 = Table[{0.1i, Abs[N[(1+0.1i)Integrate[1/Sqrt[(1-OmgL1)

(1+z)^3+OmgL1], {z,0, 0.1i}]]]},{i,15}]

Out[4]= {{0.1,0.107478},{0.2,0.228841},{0.3,0.362551},{0.4,0.507189},

{0.5,0.661477},{0.6,0.824282},{0.7,0.994618},{0.8,1.17163},

{0.9,1.35459},{1.,1.54285},{1.1,1.73589},{1.2,1.93323},{1.3,2.13448},

{1.4,2.33928},{1.5,2.54734}}

In[5]:= dL1 = Interpolation[Ar1]

Out[5]= InterpolatingFunction[{{0.1,1.5}},<>]
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In[6]:= dL3[x_]:= 2(1+x)-2Sqrt[1+x]; (* flat , OmgL = 0 *)

dL4[x_]:= (1+x)x/Sqrt[OmgL3] ; (* flat OmgL = 1 *)

In[8]:= dLPlot = Plot[{dL1[x], dL3[x], dL4[x]}, {x,0,2}, Frame->True,

Axes->False, PlotRange->{{0, 2}, {0, 4}}, AspectRatio->1,

PlotStyle->{{Darker[Green], Thick}, {Magenta, Thick, DotDashed},

{Red,Thick,Dashed}}];

(* ============================================================== *)

(* Speed of Light *)

c = 2.99792458*10^8;

(* ======================= *)

(* changing unit *)

gyr = 3.15576 10^16;

hunit = 10^(-19)/3.086;

H0 = 70.2 hunit;

In[13]:= (* Test for "Gold" SN Ia data from Reiss 2003

--using only observed data from the year 1997-2003 *)

m[1] = 42.57; (* SN 1997aw *)

m[2] = 41.64; (* SN 1997as *)

m[3] = 42.10; (* SN 1997am *)

m[4] = 43.85; (* SN 1997ap *)

m[5] = 42.86; (* SN 1997af *)

m[6] = 41.76; (* SN 1997bh *)

m[7] = 42.83; (* SN 1997bb *)

m[8] = 40.92; (* SN 1997bj *)

m[9] = 42.74; (* SN 1997cj *)

m[10] = 42.08; (* SN 1997ce *)
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m[11] = 43.81; (* SN 1997ez *)

m[12] = 44.03; (* SN 1997ek *)

m[13] = 42.66; (* SN 1997eq *)

m[14] = 45.53; (* SN 1997ff *)

m[15] = 42.91; (* SN 1998I *)

m[16] = 43.61; (* SN 1998J *)

m[17] = 42.62; (* SN 1998M *)

m[18] = 41.83; (* SN 1998ac *)

m[19] = 43.35; (* SN 1998bi *)

m[20] = 42.36; (* SN 1998ba *)

m[21] = 42.56; (* SN 1999Q *)

m[22] = 42.75; (* SN 1999U *)

m[23] = 41.00; (* SN 1999fw *)

m[24] = 44.25; (* SN 1999fk *)

m[25] = 43.99; (* SN 1999fm *)

m[26] = 43.76; (* SN 1999fj *)

m[27] = 42.29; (* SN 1999ff *)

m[28] = 44.19; (* SN 1999fv *)

m[29] = 42.38; (* SN 1999fn *)

m[30] = 42.75; (* SN 2000dz *)

m[31] = 42.41; (* SN 2000eh *)

m[32] = 42.74; (* SN 2000ee *)

m[33] = 41.96; (* SN 2000eg *)

m[34] = 42.77; (* SN 2000ec *)

m[35] = 42.68; (* SN 2000fr *)

m[36] = 43.75; (* SN 2001fs *)

m[37] = 43.12; (* SN 2001fo *)

m[38] = 43.97; (* SN 2001hy *)

m[39] = 43.88; (* SN 2001hx *)
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m[40] = 43.55; (* SN 2001hs *)

m[41] = 43.90; (* SN 2001hu *)

m[42] = 40.71; (* SN 2001iw *)

m[43] = 40.89; (* SN 2001iv *)

m[44] = 42.88; (* SN 2001iy *)

m[45] = 43.05; (* SN 2001ix *)

m[46] = 42.77; (* SN 2001jp *)

m[47] = 44.23; (* SN 2001jh *)

m[48] = 44.09; (* SN 2001jf *)

m[49] = 43.91; (* SN 2001jm *)

m[50] = 42.14; (* SN 2002dc *)

m[51] = 44.06; (* SN 2002dd *)

m[52] = 45.27; (* SN 2002fw *)

m[53] = 43.01; (* SN 2002hr *)

m[54] = 44.70; (* SN 2002hp *)

m[55] = 43.09; (* SN 2002kd *)

m[56] = 44.84; (* SN 2002ki *)

m[57] = 45.20; (* SN 2003az *)

m[58] = 45.30; (* SN 2003ak *)

m[59] = 43.19; (* SN 2003bd *)

m[60] = 43.07; (* SN 2003be *)

m[61] = 45.05; (* SN 2003dy *)

m[62] = 44.28; (* SN 2003es *)

m[63] = 43.86; (* SN 2003eq *)

m[64] = 43.64; (* SN 2003eb *)

m[65] = 43.87; (* SN 2003lv *)

(* the last 10 data are obtained before the whole 65 data *)

m[66] = 43.04; (* SN 1997F *)

m[67] = 42.56; (* SN 1997H *)
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m[68] = 39.79; (* SN 1997I *)

m[69] = 39.98; (* SN 1997N *)

m[70] = 42.46; (* SN 1997P *)

m[71] = 41.99; (* SN 1997Q *)

m[72] = 43.27; (* SN 1997R *)

m[73] = 42.10; (* SN 1997ai *)

m[74] = 41.45; (* SN 1997ac *)

m[75] = 42.63; (* SN 1997aj *)

(*---------------------------------------------------------*)

(* redshift *)

z[1]=0.440;z[2]=0.508;z[3]=0.416;z[4]=0.830;z[5]=0.579;z[6]=0.420;

z[7]=0.518;z[8]=0.334;z[9]=0.500;z[10]=0.440;z[11]=0.778;z[12]=0.860;

z[13]=0.538;z[14]=1.755;z[15]=0.886;z[16]=0.828;z[17]=0.630;

z[18]=0.460;z[19]=0.740;z[20]=0.430;z[21]=0.460;z[22]=0.500;

z[23]=0.278;z[24]=1.056;z[25]=0.949;z[26]=0.815;z[27]=0.455;

z[28]=1.19;z[29]=0.477;z[30]=0.500;z[31]=0.490;z[32]=0.470;

z[33]=0.540;z[34]=0.470;z[35]=0.543;z[36]=0.873;z[37]=0.771;

z[38]=0.811;z[39]=0.798;z[40]=0.832;z[41]=0.882;z[42]=0.340;

z[43]=0.397;z[44]=0.570;z[45]=0.710;z[46]=0.528;z[47]=0.884;

z[48]=0.815;z[49]=0.977;z[50]=0.475;z[51]=0.95;z[52]=1.30;

z[53]=0.526;z[54]=1.305;z[55]=0.735;z[56]=1.140;z[57]=1.265;

z[58]=1.551;z[59]=0.67;z[60]=0.64;z[61]=1.340;z[62]=0.954;

z[63]=0.839;z[64]=0.899;z[65]=0.94;

(* the last 10 data are obtained before the whole 65 data *)

z[66]=0.580;z[67]=0.526;z[68]=0.172;z[69]=0.180;z[70]=0.472;

z[71]=0.430;z[72]=0.657;z[73]=0.450;z[74]=0.320;z[75]=0.581;
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(*----------------------------------------------------------*)

(* Errors of relative magnitude *)

err[1]=0.40;err[2]=0.35;err[3]=0.19;err[4]=0.19;err[5]=0.19;

err[6]=0.23;err[7]=0.30;err[8]=0.30;err[9]=0.20;err[10]=0.19;

err[11]=0.35;err[12]=0.30;err[13]=0.18;err[14]=0.35;err[15]=0.81;

err[16]=0.61;err[17]=0.24;err[18]=0.40;err[19]=0.30;err[20]=0.25;

err[21]=0.27;err[22]=0.19;err[23]=0.41;err[24]=0.23;err[25]=0.25;

err[26]=0.33;err[27]=0.28;err[28]=0.34;err[29]=0.21;err[30]=0.24;

err[31]=0.25;err[32]=0.23;err[33]=0.41;err[34]=0.21;err[35]=0.19;

err[36]=0.38;err[37]=0.17;err[38]=0.35;err[39]=0.31;err[40]=0.29;

err[41]=0.30;err[42]=0.27;err[43]=0.30;err[44]=0.31;err[45]=0.32;

err[46]=0.25;err[47]=0.19;err[48]=0.28;err[49]=0.26;err[50]=0.19;

err[51]=0.26;err[52]=0.19;err[53]=0.27;err[54]=0.22;err[55]=0.19;

err[56]=0.30;err[57]=0.20;err[58]=0.22;err[59]=0.28;err[60]=0.21;

err[61]=0.25;err[62]=0.31;err[63]=0.22;err[64]=0.25;err[65]=0.20;

(* the last 10 data are obtained before the whole 65 data *)

err[66]=0.21;err[67]=0.18;err[68]=0.18;err[69]=0.18;err[70]=0.19;

err[71]=0.18;err[72]=0.20;err[73]=0.23;err[74]=0.18;err[75]=0.19;

(*----------------------------------------------------------*)

DL[m_]:=H(P)10^(m/5)/v;

DL’[m]

Table[{z[j],H0(3.086 * 10^17)10^(m[j]/5)/c},{j,75}];

Table[{err[k]},{k,75}];

In[242]:= Table["ErrorBar"[err[l]],{l,75}];

ErrTable = Table[{{z[j],H0(3.086 * 10^17)10^(m[j]/5)/c},
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ErrorBar[H0 (3.086 * 10^17)2^(m[j]/5)5^(-1+m[j]/5)err[j]/c]},{j,75}];

In[244]:= Needs["ErrorBarPlots‘"]

errPlot=ErrorListPlot[Table[{{z[j],H0(3.086 * 10^17)

10^(m[j]/5)/c},ErrorBar[H0 (3.086 * 10^17)2^(m[j]/5)5^(-1+m[j]/5)

err[j]/c]},{j,75}], AxesOrigin->{0,0},PlotStyle->{Black}] ;

LogerrPlot=ErrorListPlot[Table[{{z[j],Log[10,H0(3.086 * 10^17)

10^(m[j]/5)/c]},ErrorBar[Log[10,H0(3.086 * 10^17)10^(m[j]/5)/c+H0

(3.086 * 10^17)2^(m[j]/5)5^(-1+m[j]/5)err[j]/c]-Log[10,H0(3.086

* 10^17)10^(m[j]/5)/c]]},{j,75}],AxesOrigin->{0,0},

PlotStyle->{Black}] ;

In[247]:= Show[dLPlot, errPlot]

Out[247]=
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C.4 Code for secondary fitted parameters in Chapter 4
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In[172]:= (* Fundamental constants *)

c = 2.99792458*10^8; (* The speed of light *)

g = 6.674*10^-11; (* Gravitational constant *)

hbar = 1.055*10^-34; (* Planck’s constant *)

(* ==================== *)

mp = Sqrt[(hbar*c)/(8Pi*g)]; (* Reduced Planck mass *)

(* ======================= *)

(* changing unit *)

gyr = 3.15576 10^16; (* Gigayear -> second *)

hunit = 10^(-19)/3.086; (* Hubble parameter in [time]^{-1} unit *)

(* ================================================================= *)

(* Observational parameter *)

(* 1 for WMAP7+BAO+H0, 2 for WMAP7 alone *)

hzero1 = 70.2 hunit; (* Hubble parameter *)

hzero2 = 71.4 hunit;

omegab1 = 0.0455; (* baryonic density parameter*)

omegab2 = 0.0445;

omegac1 = 0.227; (* cold dark mater density parameter*)

omegac2 = 0.217;

omegadust1 := omegab1+omegac1; (* cold dark mater density parameter*)

omegadust2 := omegab2+omegac2;

tzero1 := 13.78 gyr; (* the present time *)

tzero2 := 13.71 gyr;

w = -1.12; (* Equation-of-state parameter *)

(* ================================================================= *)

(* The Big Rip time *)
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trip1 = tzero1-(2/3 ) 1/(1+w)*hzero1^-1*(1-omegadust1)^(-1/2);

trip2 = tzero2-(2/3 ) 1/(1+w)*hzero2^-1*(1-omegadust2)^(-1/2);

tripgyrunit1= trip1/gyr;(* The Big Rip time in unit of billion years *)

tripgyrunit2= trip2/gyr;

rhoc1 = (3 hzero1^2)/(8 Pi g); (* Critical density *)

rhoc2 = (3 hzero2^2)/(8 Pi g);

rhom1 = omegadust1 rhoc1; (* Matter density *)

rhom2 = omegadust2 rhoc2;

q1 = -hzero1 (trip1-tzero1) ; (* Power-law exponent *)

q2 = -hzero2 (trip2-tzero2) ;

d1 = omegadust1 rhoc1; (* Density constant *)

d2 = omegadust2 rhoc2;

alpha1= Sqrt[(-2mp^2c q1)/hbar]; (* definition for simplicity *)

alpha2= Sqrt[(-2mp^2c q2)/hbar];

In[203]:= (* For WMAP7+BAO+H0 dataset *)

d1

tzero1

q1

rhom1

rhoc1

tripgyrunit1

(* ----------------------------------- *)

Out[203]= 2.52199*10^-27

Out[204]= 4.34864*10^17

Out[205]= -6.51345

Out[206]= 2.52199*10^-27

Out[207]= 9.25502*10^-27
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Out[208]= 104.513

(* ================================================================= *)

In[209]:= (* For WMAP7 dataset alone *)

d2

tzero2

q2

rhom2

rhoc2

tripgyrunit2

(* ----------------------------------- *)

Out[209]= 2.50364*10^-27

Out[210]= 4.32655*10^17

Out[211]= -6.46476

Out[212]= 2.50364*10^-27

Out[213]= 9.57414*10^-27

Out[214]= 102.251

(* ================================================================= *)

In[215]:= (* phantom potential *)

V1[t_]:=(mp^2 c)/hbar *((3 q1^2+q1)/(trip1-t)^2)

- d1 c^2 (trip1-tzero1)^(3 q1)/(2(trip1-t)^(3 q1));

V2[t_]:=(mp^2 c)/hbar *((3 q2^2+q2)/(trip2-t)^2)

- d2 c^2 (trip2-tzero2)^(3 q2)/(2(trip2-t)^(3 q2));

V1[t]

V2[t]

Out[217]= 6.47059*10^27/(3.29818*10^18-t)^2
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-2.516125664325231*10^-371 (3.29818*10^18-t)^19.5403

Out[218]= 6.37163*10^27/(3.22681*10^18-t)^2

-1.993330768839323*10^-368 (3.22681*10^18-t)^19.3943

(* ----------------------------------------------------------------- *)

In[219]:= (* The time at inflection *)

FindRoot[V1’[tinflect1] == 0,{tinflect1,3*10^18}]

(tinflect1/.%)/gyr

Out[219]= {tinflect1->7.08056*10^17}

Out[220]= 22.4369

In[221]:= FindRoot[V2’[tinflect2] == 0,{tinflect2,3*10^18}]

(tinflect2/.%)/gyr

Out[221]= {tinflect2->6.94329*10^17}

Out[222]= 22.002

(* ========================== Plot V(t) =============================*)

In[233]:= (* Blue-dashed for WMAP7+BAO+H0 dataset, Red-thick for WMAP7

dataset alone *)

V1Plot :=

Plot[V1[t], {t, 0, 100 gyr}, PlotRange -> {V1[0], 3.5 10^(-8)},

Ticks -> {{{6.31152 10^17, "20"}, {1.2623 10^18,

"40"}, {1.89346 10^18, "60"}, {2.52461 10^18,

"80"}, {3.15576 10^18, "100"}}, Automatic},

PlotStyle -> {Thick, Dashed, Blue}];

V2Plot :=

Plot[V2[t], {t, 0, 100 gyr},

Ticks -> {{{6.31152 10^17, "20"}, {1.2623 10^18,
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"40"}, {1.89346 10^18, "60"}, {2.52461 10^18,

"80"}, {3.15576 10^18, "100"}}, Automatic},

PlotStyle -> {Thick, Red}];

In[225]:= Show[V1Plot,V2Plot]

Out[225]=
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In[226]:= (* ======================================================= *)

(* Phantom scalar field solution (approximation) *)

Phi1[t_]:= Integrate[Sqrt[-((2 mp^2 c)/hbar *(q1/(trip1-t)^2))],t];

Phi2[t_]:= Integrate[Sqrt[-((2 mp^2 c)/hbar *(q2/(trip2-t)^2))],t];

Phi1[t]

Phi2[t]

Out[228]= -2.64197*10^13 Sqrt[1/(3.29818*10^18-1. t)^2]

(3.29818*10^18-1. t) Log[3.29818*10^18-1. t]

Out[229]= -2.63208*10^13 Sqrt[1/(3.22681*10^18-1. t)^2]

(3.22681*10^18-1. t) Log[3.22681*10^18-1. t]
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(* ----------------------------------------------------------------- *)

(* It has some problem for t = 0, we must define new "phi"

(lowercase p) *)

phi1[t_]:= -2.641971739656076‘*^13

*Sqrt[1/(3.2981831931995136‘*^18-1.‘ t)^2]

*(3.2981831931995136‘*^18-1.‘ t) Log[3.2981831931995136‘*^18-1.‘ t];

phi2[t_]:= -2.6320782249292344‘*^13

*Sqrt[1/(3.226806228094449‘*^18-1.‘ t)^2]

*(3.226806228094449‘*^18-1.‘ t) Log[3.226806228094449‘*^18-1.‘ t];

(* ================================================================= *)

In[232]:= (* ====================== V(Phi) ====================== *)

(* Using "v" lowercase for v(\[Phi]) and "V" uppercase for V(t)

--- Indeed they are similar phantom potential *)

v1[Phi_]:= ((mp^2 c)/hbar)((3 q1^2 + q1)/Exp[(-2 Phi/alpha1)])

- d1 c^2 (trip1-tzero1)^(3 q1)/(2 Exp[((-3 q1) Phi/alpha1)]);

v2[Phi_]:= ((mp^2 c)/hbar)((3 q2^2 + q2)/Exp[(-2 Phi/alpha2)])

- d2 c^2 (trip2-tzero2)^(3 q2)/(2 Exp[((-3 q2) Phi/alpha2)]);

v1[\[Phi]]

v2[\[Phi]]

Out[234]= -2.516125664325231*10^-371 Exp[(-7.39612*10^-13 Phi)]

+ 6.47059*10^27 Exp[(7.5701*10^-14 Phi)]

Out[235]= -1.993330768839323*10^-368 Exp[(-7.36843*10^-13 Phi)]
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+ 6.37163*10^27 Exp[(7.59856*10^-14 Phi)]

In[236]:= (* ================== Plot v(\[Phi]) ===================== *)

(* Blue-dashed for WMAP7+BAO+H0 dataset,

Red-thick for WMAP7 dataset alone *)

v1Plot:= Plot[v1[Phi],{Phi,phi1[0], phi1[100 gyr]},

PlotRange->{V1[0],3.5 10^(-8)},PlotStyle->{Thick,Dashed,Blue}]

v2Plot:= Plot[v2[Phi],{Phi,phi2[0], phi2[100 gyr]},

PlotStyle->{Thick,Red}];

Show[v1Plot,v2Plot]

Out[238]=
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(* ================================================================= *)

In[239]:= (* energy density and pressure in the function of z *)

rhoz1[z_]:= (mp^2 c)/hbar *(3 q1^2 (1+z)^(2/q1))/(trip1-tzero1)^2
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- d1 c^2(1+z)^3 ;

rhoz2[z_]:= (mp^2 c)/hbar *(3 q2^2 (1+z)^(2/q2))/(trip2-tzero2)^2

- d2 c^2(1+z)^3 ;

pz1[z_]:= -((mp^2 c)/hbar) *((3 q1^2-3q1)/(trip1-tzero1)^2)(1+z)^(2/q1)

-(d1 c^2(1+z)^3 )/2;

pz2[z_]:= -((mp^2 c)/hbar) *((3 q2^2-3q2)/(trip2-tzero2)^2)(1+z)^(2/q2)

-(d2 c^2(1+z)^3 )/2;

(* ================ w(z) ================== *)

wz1[z_]:=pz1[z]/rhoz1[z];

wz2[z_]:=pz2[z]/rhoz2[z];

(* ---------------------------------------- *)

In[245]:= wz1[z]

wz2[z]

Out[245]= (-(9.59505*10^-10/(1+z)^0.307057)

-1.13333*10^-10 (1+z)^3)/(8.318*10^-10/(1+z)^0.307057

-2.26666*10^-10 (1+z)^3)

Out[246]= (-(9.93584*10^-10/(1+z)^0.30937)

-1.12508*10^-10 (1+z)^3)/(8.60481*10^-10/(1+z)^0.30937

-2.25016*10^-10 (1+z)^3)

In[247]:= (* =============== At the Big Rip time ============== *)

Limit[wz1[z],{z->-1}]

Limit[wz2[z],{z->-1}]

Out[247]= {-1.15353}

Out[248]= {-1.15468}
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(* ========================== End code ========================= *)

C.5 Code for estimation of error bars

In[1]:= (* Fundamental constants *)

c = 2.99792458*10^8;

g = 6.674*10^-11;

hbar = 1.055*10^-34;

(* ============================= *)

(* Reduced Planck mass *)

mp = Sqrt[(hbar*c)/(8Pi*g)];

(* ============================= *)

(* changing unit *)

gyr = 3.15576 10^16;

hunit = 10^(-19)/3.086;

(* ============================================================= *)

(* Observational parameter *)

(* --------- 1 for WMAP7+BAO+H0, 2 for WMAP7 alone ------------- *)

hzero1=70.2 hunit; (* Hubble parameter *)

delhzero1Up = 1.3 hunit; (* Error of H (upper and lower) *)

delhzero1Lo = 1.4 hunit;

hzero2=71.4 hunit;

delhzero2 = 2.5 hunit;

omegab1 = 0.0455 ; (* baryonic density parameter*)

delOmgb1 = 0.0016 ; (* Error of \Omaga_b *)



73

omegab2 = 0.0445;

delOmgb2 = 0.0028 ;

omegac1 = 0.227; (* cold dark mater density parameter*)

delOmgc1 = 0.014 ; (* Error of \Omaga_{CDM} *)

omegac2 = 0.217;

delOmgc2 = 0.026 ;

omegadust1:= omegab1+omegac1;(* cold dark mater density parameter*)

delOmgdust1:= Sqrt[(delOmgb1)^2+(delOmgc1)^2];(* Error of \Omg_m *)

omegadust2:=omegab2+omegac2;

delOmgdust2:= Sqrt[(delOmgb2)^2+(delOmgc2)^2];

tzero1:=13.78 gyr; (* the present time *)

deltzero1 = 0.11 gyr; (* Error of t_0 *)

tzero2:=13.71 gyr;

deltzero2 = 0.13 gyr;

(* ============================================================= *)

rhoc1 = (3 hzero1^2)/(8 Pi g); (* Critical density *)

rhoc2 = (3 hzero2^2)/(8 Pi g);

rhom1 = omegadust1 rhoc1; (* Matter density *)

rhom2 = omegadust2 rhoc2;

w = -1.12; (* Equation-of-state parameter *)

(* ========================================================*)

(* The Big Rip time *)

trip1 = tzero1-(2/3 ) 1/(1+w)*hzero1^-1*(1-omegadust1)^(-1/2);

trip2 = tzero2-(2/3 ) 1/(1+w)*hzero2^-1*(1-omegadust2)^(-1/2);

tripgyrunit1 = trip1/gyr;

tripgyrunit2 = trip2/gyr;
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q1 = -hzero1 (trip1-tzero1) ; (* Power-law exponent *)

q2 = -hzero2 (trip2-tzero2) ;

(* ============================================================= *)

In[39]:= (* Calculate error bar of trip *)

(* Changing variables, trip => ts[t0,H0,Omgm]

where ts->tzero, H0->hzero and Omgm->Omega_m0 *)

ts1[t01_,H01_,Omgm1_]:=t01-(2/3 ) 1/(1+w)*H01^-1*(1-Omgm1)^(-1/2);

Dt01:= Derivative[1,0,0][ts1][tzero1,hzero1,omegadust1];

DH01:= Derivative[0,1,0][ts1][tzero1,hzero1,omegadust1];

DOmgm1:= Derivative[0,0,1][ts1][tzero1,hzero1,omegadust1];

ts2[t02_,H02_,Omgm2_]:=t02-(2/3 ) 1/(1+w)*H02^-1*(1-Omgm2)^(-1/2);

Dt02:= Derivative[1,0,0][ts2][tzero2,hzero2,omegadust2];

DH02:= Derivative[0,1,0][ts2][tzero2,hzero2,omegadust2];

DOmgm2:= Derivative[0,0,1][ts2][tzero2,hzero2,omegadust2];

In[47]:= (* -------------------------------------- *)

(* Upper error bar of trip1 *)

deltrip1Up:= Sqrt[(Dt01 deltzero1)^2+(DH01 delhzero1Up)^2

+(DOmgm1 delOmgdust1)^2];

(* Lower error bar of trip1 *)

deltrip1Lo:= Sqrt[(Dt01 deltzero1)^2+(DH01 delhzero1Lo)^2

+(DOmgm1 delOmgdust1)^2];
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deltrip1Up

deltrip1Up/gyr

deltrip1Lo

deltrip1Lo/gyr

Out[49]= 5.99383*10^16

Out[50]= 1.89933

Out[51]= 6.35751*10^16

Out[52]= 2.01457

In[53]:= (* -------------------------------------- *)

(* error bar of trip2 *)

deltrip2 := Sqrt[(Dt02 deltzero2)^2+(DH02 delhzero2)^2

+(DOmgm2 delOmgdust2)^2];

deltrip2

deltrip2/gyr

Out[54]= 1.09708*10^17

Out[55]= 3.47642

In[56]:= (* ================================================== *)

(* Calculate error bar of rhoc *)

(* -------------- rhoc1 -------------- *)

rhocrit1[H01_]:= (3 H01^2)/(8 Pi g);

Drhoc1:= rhocrit1’[hzero1];

delrhoc1Up:= Sqrt[(Drhoc1 delhzero1Up)^2];

delrhoc1Lo:= Sqrt[(Drhoc1 delhzero1Lo)^2];
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delrhoc1Up

delrhoc1Lo

Out[60]= 3.42779*10^-28

Out[61]= 3.69146*10^-28

In[62]:= (* --------------- rhoc2 -------------- *)

rhocrit2[H02_]:= (3 H02^2)/(8 Pi g);

Drhoc2:= rhocrit2’[hzero2];

delrhoc2:= Sqrt[(Drhoc2 delhzero2)^2];

delrhoc2

Out[65]= 6.70458*10^-28

In[66]:= (* ==================================================== *)

(* Calculate error bar of rhom *)

(* -------------- rhom1 -------------- *)

delrhom1Up:= Sqrt[(rhoc1 delOmgdust1)^2+(omegadust1 delrhoc1Up)^2];

delrhom1Lo:= Sqrt[(rhoc1 delOmgdust1)^2+(omegadust1 delrhoc1Lo)^2];

delrhom1Up

delrhom1Lo

Out[68]= 1.60414*10^-28

Out[69]= 1.64701*10^-28

In[70]:=
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delrhom2:=Sqrt[(rhoc2 delOmgdust2)^2+(omegadust2 delrhoc2)^2];

delrhom2

Out[71]= 3.05651*10^-28

In[72]:= (* ==================================================== *)

(* Calculate error bar of power-law exponent (q->beta )*)

(* -------------- q1 -------------- *)

delq1Up:= Sqrt[((tzero1-trip1)delhzero1Up)^2

+(-hzero1 deltrip1Up)^2+(hzero1 deltzero1)^2];

delq1Lo:= Sqrt[((tzero1-trip1)delhzero1Lo)^2

+(-hzero1 deltrip1Lo)^2+(hzero1 deltzero1)^2];

delq1Up

delq1Lo

Out[74]= 0.182214

Out[75]= 0.194553

In[76]:= (* -------------- q2 -------------- *)

delq2:=Sqrt[((tzero2-trip2)delhzero2)^2+(-hzero2 deltrip2)^2

+(hzero2 deltzero2)^2];

delq2

Out[77]= 0.340229
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