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Abstract

General relativity theory is a theory for gravity which Galilean relativity fails to
explain. Variational principle is a method which is powerful in physics. All physical
laws is believed that they can be derived from action using variational principle.
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Chapter 1

Introduction

1.1 Background

Classical mechanics is useful to explain physical phenomena but it fails to explain

gravity. General relativity (GR) is proposed to be a satisfactory theory for gravity.

Studying GR leads to the Einstein’s field equation which can be derived in standard

way. Our interest is to apply variation principle to derive the field equation in GR.

1.2 Objectives

To study general relativity and tensor calculus which is applied to derive, with vari-

ational principle, Einstein’s field equation and Israel junction condition.

1.3 Frameworks

• To explain failure of Newtonian mechanics, special relativity.

• To study general relativity.

• To use variational principle for Einstein’s field equation and for Israel junction

condition.
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1.4 Expected Use

• To obtain Einstein’s field equation from variational method and to obtain junc-

tion condition by including of surface term in action.

• A derived-in-detailed report for those who interest with thoroughly calculation

from variational method in general relativity.

• Attaining understanding of concept of general relativity and having skills on

tensor calculus.

1.5 Tools

• Text books in physics and mathematics.

• A high efficiency personal computer.

• Software e.g. LATEX, WinEdit and Photoshop

1.6 Procedure

• Studying special relativity.

• Studying tensor analysis and calculation skills.

• Studying concepts of general relativity.

• Studying Einstein’s field equation by evaluating coupling constant.

• Studying Einstein’s field equation by variational principle.

• Including surface term in action and deriving junction condition.

• Making conclusion and preparing report and other presentation.
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1.7 Outcome

• Understanding of basic ideas of classical mechanics, special relativity and gen-

eral relativity.

• Attaining skills of tensor calculation.

• Understanding in detail of the variation method in general relativity.
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Chapter 2

Failure of classical mechanics and

introduction to special relativity

2.1 Inertial reference frames

Newton introduced his three laws of motion as axioms of classical mechanics. These

laws have successfully explained motion of most objects known to us. The Newton’s

first law states that a body remains at rest or in uniform motion. This law introduces

a frame of reference called inertial frame. All proceeded dynamical laws base on this

law. But what and where is it?

To know or to measure velocity of a particle, we need a frame of reference. For

example when we measure speed of a car, a particular spot on ground is inertial

frame. The ground is on the Earth and is not really inertial frame due to gravity.

Furthermore, all stars in the universe possess gravity therefore nowhere is really locate

on true inertial frame! However we will discuss about inertial frame again in chapter 3.

2.2 Failure of Galilean transformation

In Newtonian mechanics, the concept of time and space are completely separable.

Furthermore time is assumed to be absolute quantity and independent of any ob-

servers. Consider inertial frames of reference moving with constant velocity to each

other. In classical mechanics there is transformation law between two inertial frames.
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v

vt (x, y, z, t),

(x’, y’, z’, t’)

Figure 2.1: Relative velocity of two inertial frames

That is so called Galilean transformation:

x′ = x− vt

y′ = y

z′ = z

t′ = t. (2.1)

Newton’s laws are invariant with respect to Galilean transformation

Fi = mẍi = mẍ′i = F ′
i (2.2)

The principle of Galilean transformation yields that the velocity of light in two dif-

ferent inertial frames is measured with different values

u′ = c− u and u = c. (2.3)

However the Galilean transformation fails to explain electromagnetic wave equation;

electromagnetic wave equation is not invariant under Galilean transformation. Con-

sider electromagnetic wave equation:

∇2φ =
1

c2

∂2φ

∂t2

or
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
− 1

c2

∂2φ

∂t2
= 0. (2.4)
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Figure 2.2: Illustration of four-dimensional spacetime, time axis is orthogonal to all

three-dimensional spatial axes

Using chain rule and equation (2.1) to transform coordinate, the wave equation

becomes

c2 − v2

c2

∂2φ

∂x′2
+

2v

c2

∂2φ

∂t′∂x′
+

∂2φ

∂y′2
+

∂2φ

∂z′2
− 1

c2

∂2φ

∂t′2
= 0. (2.5)

This equation contradicts to Einstein’s postulates in special relativity that physical

laws should be the same in all inertial frames. Therefore we require new transforma-

tion law, Lorentz transformation which we shall discuss in the next section.

2.3 Introduction to special relativity

In framework of Newtonian mechanics we consider only three-dimensional space and

flat geometry while in special relativity we consider space and time as one single entity

called spacetime. We do not separate time from space and we have four dimensions

of spacetime. Considering four-dimensional spacetime, time axis is orthogonal to all

axes of space (x, y, z ).

The mathematical quantity which represents space and time is components of

spacetime coordinates

xa = (x0, x1, x2, x3)

= (ct, x, y, z) in Cartesian coordinate (2.6)

Special Relativity (SR) is a theory for physics in flat spacetime called Minkowski

spacetime. If we are talking about spacetime, we must have events. Any events

6



Figure 2.3: Lightcone and trajectory of a particle in four-dimensional spacetime

possess four coordinates describing where and when the particle is. Trajectories of

particles in four-dimensional spacetime form a set of particles’ worldline. If we reduce

to one dimensional space, we will have two spatial dimensions left. Plotting these two

spatial coordinate axes versus time, we have spacetime diagram as shown in Fig. 2.2

The electromagnetic wave equation introduces speed of light in vacuum which

is c = 1/
√

µ0ε0, where µ0 and ε0 are permeability and permittivity of free space

respectively. The value c is independent to all reference frame. This statement is

confirmed by Michelson-Morley experiment. Einstein’s principle of special relativity

states that

• The law of physical phenomena are the same in all inertial reference frames.

• The velocity of light is the same in all inertial reference frames.

The spacetime interval or line-element in four dimensional spacetime is

ds2 = −c2dt2 + dx2 + dy2 + dz2. (2.7)

We can see that if ds2 = 0, this equation becomes equation of spherical wave of light

with radius cdt. We can classify four-vectors into 3 classes namely spacelike, lightlike

and timelike vectors. Any line elements are called

spacelike if they lie in region ds2 < 0

lightlike or null if they lie in region ds2 = 0

timelike if they lie in region ds2 > 0.

7



equation (2.7) can be expressed in general form as

ds2 = dxadxa =
3∑

a,b=0

gabdxadxb = gabdxadxb. (2.8)

We use Einstein’s summation convention. In this convention we do not need to use

summation symbol in equation (2.8). If upper indies and lower indies of four-vectors

are similar (repeated) in any terms, it implies sum over that indices. The symmetrical

tensor gab is called metric tensor. When considering flat Minkowski spacetime, we

write ηab instead of gab,

gab = ηab =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2.9)

The line element can be computed in matrix form,

ds2 =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







dx0

dx1

dx2

dx3







T 


dx0

dx1

dx2

dx3




= −(dx2)2 + (dx1)2 + (dx2)2 + (dx3)2

= −cdt2 + dx2 + dy2 + dz2. (2.10)

Coordinate transformation law in SR is Lorentz transformation, a translation or

boosts in one direction between two inertial frames moving relative to each other

with constant velocity.

In relativity, time is not an absolute quantity. Time measured in each reference

frame are not equal. Time measured in one inertial frame by observer on that frame

is called proper time. Since speed of light is the same in all inertial frames, then the

transformation law between two frames is written as

cdt′ = γ(dt− vdx/c)

dx′ = γ(dx− vdt)

dy′ = dy

dz′ = dz. (2.11)
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This set of equations is Lorentz transformation. The symbol γ is Lorentz factor,

γ =
1√

1− v2/c2
. (2.12)

Lorentz transformation can also be written in general form,

dxa = Λa
bdxb. (2.13)

where Λa
b is Lorentz matrix,

Λa
b =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


 . (2.14)

Here we define1 β ≡ v/c and γ ≡ 1/
√

1− β2. Therefore equation (2.13) is



cdt′

dx′

dy′

dz′


 =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







cdt
dx
dy
dz


 . (2.15)

Using equation (2.10) and equation (2.11), we obtain

−c2dt2 + dr2 = −c2dt′2 + dr′2

or − c2dt2 + dx2 = −c2dt′2 + dx′2 (2.16)

Therefore ds2 = ds′2 (2.17)

where dr2 = dx2 + dy2 + dz2 and dr′2 = dx′2 + dy′2 + dz′2. Equation ( 2.16) is

rotational transformation in (x, ct) space. Values of β and γ range in 0 ≤ β ≤ 1 and

1 ≤ γ ≤ ∞ respectively. If we introduce new parameter ω and write β and γ in term

of this new variables as

β = tanh ω

γ = cosh ω, (2.18)

where ω in the angle of rotation in this (x, ct) space, then Lorentz transformation

becomes 


ct′

x′

y′

z′


 =




cosh ω − sinh ω 0 0
− sinh ω cosh ω 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 . (2.19)

1β is speed parameter. For photon β = 1.
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We can see that the Lorentz boost is actually rotation in (x,ct) space by angle ω.

Lorentz transformation yields two important phenomena in SR. These are time dila-

tion and length contraction. The dilation of time measured in two inertial reference

frames is described by

∆t = ∆t0γ (2.20)

and length contraction of matter measured in two inertial reference frames is described

by

L =
L0

γ
(2.21)

where ∆t0 and L0 are proper time and proper length respectively.

10



Chapter 3

Introduction to general relativity

3.1 Tensor and curvature

In last chapter, we consider physical phenomena based on flat space which is a spa-

cial case of this chapter. In this chapter is curved space is of interest. A physical

quantity needed here is tensors which are geometrical objects. Tensor is invariant in

all coordinate systems. Vectors and scalars are subsets of tensors indicated by rank

(order) of tensors i.e. vector is tensor of rank 1, scalar is zeroth-rank tensor. Any

tensors are defined on manifold M which is n-dimensional generalized object that

it locally looks like Euclidian space Rn.

3.1.1 Transformations of scalars, vectors and tensors

In general relativity, vectors are expressed in general form, X = Xaea where Xa is

a component of vector and ea is basis vector of the component. Here Λa
b is general

transformation metric. Contravariant vector or tangent vector Xa transforms

like

X ′a =
∂x′a

∂xb
Xb = Λa

bX
b (3.1)

or can be written in chain rule,

dx′a =
∂x′a

∂xb
dxb.

We define Kronecker delta, δa
b as a quantity with values 0 or 1 under conditions,

δa
b =

{
1 if a = b
0 if a 6= b.

11



Therefore
∂x′a

∂x′b
=

∂xa

∂xb
= δa

b. (3.2)

Another quantity is scalar φ which is invariant under transformation,

φ′(x′a) = φ(xa). (3.3)

Consider derivative of scalar field φ = φ(xa(x′)) with respect to x′a, using chain rule,

we obtain
∂φ

∂x′a
=

∂xb

∂x′a
∂φ

∂xb
.

Covariant vector or 1-form or dual vector Xa in the xa-coordinate system, trans-

forms according to

X ′
a(x

a) =
∂xb

∂x′a
Xb(x

a) = Λb
aXb(x

a). (3.4)

There is also a relation

Λa
bΛ

b
c = δa

c. (3.5)

For higher rank tensor transformation follows

T ′k′1k′2...k′k
l′1......l′l =

∂x′k
′
1

∂xk1
......

∂x′k
′
k

∂xkk

∂xl1

∂x′l′1
......

∂xll

∂x′l
′
l

T k1k2......kk
l1......ll

= Λk′1
k1 ......Λ

k′k kk
Λl1

l′1 ......Λ
ll

l′lT
k1k2......kk

l1......ll . (3.6)

The metric tensor

Any symmetric covariant tensor field of rank 2 such as gab, defines a metric ten-

sor. Metrics are used to define distance and length of vectors. The square of the

infinitesimal distance or interval between two neighboring points (events) is defined

by

ds2 = gabdxadxb. (3.7)

Inverse of gab is gab. The metric gab is given by

gabg
ac = δb

c. (3.8)

We can use the metric tensor to lower and raise tensorial indices,

T ... ...
...a... = gabT

...b...
... ... (3.9)

and

T ...a...
... ... = gabT ... ...

...b.... (3.10)

12



3.1.2 Covariant derivative

Consider a contravariant vector field Xa defined along path xa(u) on manifold at a

point P where u is free parameter. There is another vector Xa(xa + δxa) defined at

xa + δxa or point Q. Therefore

Xa(x + δx) = Xa(x) + δXa. (3.11)

We are going to define a tensorial derivative by introducing a vector at Q which is

parallel to Xa. We can assume the parallel vector differs from Xa by a small amount

denoted by δ̄Xa(x). Because covariant derivative is defined on curved geometry,

therefore parallel vector are parallel only on flat geometry which is mapped from

manifold. We will explain about it in next section.

The difference vector between the parallel vector and the vector at point Q illus-

trated in Fig. 3.1 is

[Xa(x) + δXa(x)]− [Xa(x) + δ̄Xa(x)] = δXa(x)− δ̄Xa. (3.12)

We define the covariant derivative of Xµ by the limiting process

∇cX
a = lim

δxc→0

1

δxc

{
Xa(x + δx)− [

Xa(x) + δ̄Xa(x)
]}

= lim
δxc→0

1

δxc

[
δXa(x)− δ̄Xa

]
.

δ̄Xa(x) should be a linear function on manifold. We can write

δ̄Xa(x) = −Γa
bc(x)Xb(x)δxc (3.13)

where the Γa
bc(x) are functions of coordinates called Cristoffel symbols of the second

kind. In flat space Γa
bc(x) = 0. But in curved space it is impossible to make all the

Γa
bc(x) vanish over all space. The Cristoffel symbols of second kind are defined by

Γa
bc =

1

2
gad

(
∂gdc

∂xb
+

∂gbd

∂xc
− ∂gcb

∂xd

)
. (3.14)

Following from the last equation that the Cristoffel symbols are necessarily symmetric

or we often called it that torsion-free, i.e.

Γa
bc = Γa

cb. (3.15)

13



a
X

a a
X X

a a
X X

( )a
x u

P

Q

a
X

a
X

Figure 3.1: Vector along the path xa(u)

We now define derivative of a vector on curved space. Using equation (3.13) and

chain rule, we have

∇cX
a = lim

δxc→0

1

δxc

[
∂Xa(x)

∂xc
δxc + Γa

bc(x)Xb(x)δxc

]
.

Therefore the covariant derivative is

∇cX
a = ∂cX

a + Γa
bcX

b. (3.16)

The notation ∂c is introduced by ∂c ≡ ∂/∂xc. We next define the covariant derivative

of a scalar field φ to be the same as its ordinary derivative (prove of this identity is

in Appendix A),

∇cφ = ∂cφ. (3.17)

Consider

∇cφ = ∇c(XaY
a)

= (∇cXa)Y
a + Xa(∇cY

a)

= (∇cXa)Y
a + Xa(∂cY

a + Γa
bcY

b)

and

∂cφ = (∂cXa)Y
a + Xa(∂cY

a).

From equation (3.17), we equate both equations together:

(∂cXa)Y
a + Xa(∂cY

a) = (∇cXa)Y
a + Xa(∂cY

a + Γa
bcY

b).

14



Renaming a to b and b to a for the last term in the right-hand side of the equation

above because they are only dummy indices therefore,

(∇cXa)Y
a = (∂cXa)Y

a + (∂cXa − Γb
acXb)Y

a.

Covariant derivative for covariant vector is then

∇cXa = ∂cXa − Γb
acXb. (3.18)

The covariant derivative for tensor follows

∇cT
a....
b.... = ∂cT

a....
b.... + Γa

cdT
d....
b.... + ....− Γd

cbT
a....
d.... − ..... (3.19)

The last important formula is covariant derivative of the metric tensor,

∇cgab = 0 (3.20)

and

∇cg
ab = 0. (3.21)

The proves of these two identities are in Appendix A.

3.1.3 Parallel transport

The concept of parallel transport along a path is in flat space. A parallel vector

transporting from a point to another point maintains its unchange in magnitude and

direction. In curve space, components of a vector are expected to change under

parallel transport in different way from the case of flat space. Consider the parallel

transport along a curve xa(τ) with a tangent vector Xa = dxa/dτ where τ is a

parameter along the curve. Beginning from the formula of the covariant derivative

Xa∇aX
b = 0, (3.22)

we get

dxa

dτ

(
∂a

dxb

dτ
+ Γb

ac

dxc

dτ

)
= 0

dxa

dτ

∂

∂xa

dxb

dτ
+ Γb

ac

dxa

dτ

dxc

dτ
= 0

d

dτ

(
dxb

dτ

)
+ Γb

ac

dxa

dτ

dxc

dτ
= 0.
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Figure 3.2: Parallel transport of vectors on curved space

We rename a to b and b to a, then

d2xa

dτ 2
+ Γa

bc

dxb

dτ

dxc

dτ
= 0. (3.23)

This equation is known as the geodesic equation. The geodesic distance between

any two points is shortest. The geodesic is a curve space generalization of straight

line in flat space.

3.1.4 Curvature tensor

We now discuss the most important concepts of general relativity, That is concept the

of Riemannian geometry or curved geometry which is described in tensorial form.

We will introduce the Riemann tensor by considering parallel transport along an

infinitesimal loop illustrated in Fig. 3.3. The Riemann curvature tensor Ra
bcd is

defined by the commutator of covariant derivatives,

Ra
bcdX

b = (∇c∇d −∇d∇c)X
a. (3.24)

16
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x
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a a
x x d

a
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Figure 3.3: Transporting Xa around an infinitesimal loop

Consider

(∇c∇d −∇d∇c)X
a = ∇c∇dX

a −∇d∇cX
a

= ∇c(∂dX
a + Γa

dbX
b)−∇d(∂cX

a + Γa
cbX

b).

∇dX
a is a tensor type(1, 1). Using equation (3.19) we get

(∇c∇d −∇d∇c)X
a = ∂c(∂dX

a + Γa
dbX

b)− Γe
cd(∂eX

a + Γa
ebX

b) + Γa
ce(∂dX

e + Γe
dbX

b)

−∂d(∂cX
a + Γa

cbX
b) + Γe

dc(∂eX
a + Γa

ebX
b)− Γa

de(∂cX
e + Γe

cbX
b)

= ∂c∂dX
a + Γa

db∂cX
b + ∂cΓ

a
dbX

b − Γe
cd∂eX

a − Γe
cdΓ

a
ebX

b

+Γa
ce∂dX

e + Γa
ceΓ

e
dbX

b − ∂d∂cX
a − Γa

cb∂dX
b − ∂dΓ

a
cbX

b

+Γe
dc∂eX

a + Γe
dcΓ

a
ebX

b − Γa
de∂cX

e − Γa
deΓ

e
cbX

b.

We rename e to b in the terms Γa
ce∂dX

e and Γa
de∂cX

e. Assuming torsion-free condition

of Cristoffel symbols and using equation (3.24), we have Riemann tensor expressed

in terms of Cristoffel symbols:

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed. (3.25)

Ra
bcd depends on the metric and the metric’s first and second derivatives. It is

anti-symmetric on its last pair of indices,

Ra
bcd = −Ra

bdc. (3.26)

The last equation introduces identity:

Ra
bcd + Ra

dbc + Ra
cdb = 0. (3.27)
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Lowering the first index with the metric, the lowered tensor is symmetric under

interchanging of the first and last pair of indices. That is

Rabcd = Rcdab. (3.28)

The tensor is anti-symmetric on its first pair of indices as

Rabcd = −Rbacd. (3.29)

We can see that the lowered curvature tensor satisfies

Rabcd = −Rabdc = −Rbacd = Rcdab

and Rabcd + Radbc + Racdb = 0. (3.30)

The curvature tensor satisfies a set of differential identities called the Bianchi iden-

tities:

∇aRbcde +∇cRabde +∇bRcade = 0. (3.31)

We can use the curvature tensor to define Ricci tensor by the contraction,

Rab = Rc
acb = gcdRdacb. (3.32)

Contraction of Ricci tensor then also defines curvature scalar or Ricci scalar R

by

R = gabRab. (3.33)

These two tensors can be used to define Einstein tensor

Gab = Rab − 1

2
gabR, (3.34)

which is also symmetric. By using the equation (3.31), the Einstein tensor can be

shown to satisfy the contracted Bianchi identities

∇bGab = 0 (3.35)

3.2 The equivalence principle

In chapter 2, we introduced some concepts about inertial frames of reference. We will

discuss about its nature in this chapter.

An inertial frame is defined as one in which a free particle moves with constant

velocity. However gravity is long-range force and can not be screened out. Hence an
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purely inertial frame is impossible to be found. We can only imagine about. According

to Newtonian gravity, when gravity acts on a body, it acts on the gravitational mass,

mg. The result of the force is an acceleration of the inertial mass, mi. When all bodies

fall in vacuum with the same acceleration, the ratio of inertial mass and gravitational

mass is independent of the size of bodies. Newton’s theory is in principle consistent

with mi = mg and within high experimental accuracies mi = mg to 1 in 1,000.

Therefore the equivalence of gravitational and inertial mass implies:

In a small laboratory falling freely in gravitational field, mechanical phenomena are

the same as those observed in an inertial frame in the absence of gravitational field.

In 1907 Einstein generalized this conclusion by replacing the word mechanical phe-

nomena with the laws of physics. The resulting statement is known as the principle

of equivalence. The freely-falling frames introduce the local inertial frames which

are important in relativity.

3.3 Einstein’s law of gravitation

In this section, we use Riemannian formalism to connect matter and metric that leads

to a satisfied gravitational theory.

3.3.1 The energy-momentum tensor for perfect fluids

The energy-momentum tensor contains information about the total energy density

measured by an arbitrary inertial observer. It is defined by the notation T ab. We start

by considering the simplest kind of matter field, that is non-relativistic matter or

dust. We can simply construct the energy-momentum tensor for dust by using four-

velocity ua defined as ua = (c, 0, 0, 0) for rest frame and the proper density ρ:

T ab = ρuaub. (3.36)

Notice that T 00 is the energy density.

In general relativity, the source of gravitational field can be regarded as perfect

fluid. A perfect fluid in relativity is defined as a fluid that has no viscosity and no

heat conduction. No heat conduction implies T 0i = T i0 = 0 in rest frame and energy

can flow only if particles flow. No viscosity implies vanishing of force paralleled to

the interface between particles. The forces should always be perpendicular to the
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interface, i.e. the spatial component T ij should be zero unless i = j. As a result we

write the energy-momentum tensor for perfect fluids in rest frame as

T ab =




ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 (3.37)

where p is the pressure and ρ is the energy density. Form equation (3.37), it is easy

to show that

T ab =
(
ρ +

p

c2

)
uaub + pgab. (3.38)

We simply conclude from the above equation that the energy-momentum tensor is

symmetric tensor. The metric tensor gab here is for flat spacetime (we often write

ηab instead of gab for flat spacetime). Notice that in the limit p → 0, a perfect fluid

reduces to dust equation (3.36). We can easily show that the energy-momentum

tensor conserved in flat spacetime:

∂bT
ab = 0. (3.39)

Moreover, if we use non-flat metric, the conservation law is

∇bT
ab = 0. (3.40)

3.3.2 Einstein’s field equation

Einstein’s field equation told us that the metric is correspondent to geometry and

geometry is the effect of an amount of matter which is expressed in energy-momentum

tensor. Matters cause spacetime curvature. We shall use Remannian formalism to

connect matter and metric. Since covariant divergence of the Einstein tensor Gab

vanishes in equation (3.35), we therefore write

Gab = Rab − 1

2
gabR = κTab. (3.41)

If there is gravity in regions of space there must be matter present. The proportional

constant κ is arbitrary. Contract the Einstein tensor by using the metric tensor, we

obtain

G = gabGab = κgabTab

gabRab − 1

2
gabgabR = κgabTab

R− 1

2
δa
aR = κT.
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δa
a is 4 which is equal to its dimensions. Therefore equation (3.41) can be rewritten

as

Rab = κ
(
Tab − 1

2
gabT

)
. (3.42)

We want to choose appropriate value of constant κ. Let us consider motion of particle

which follows a geodesic equation

d2xa

dτ 2
+ Γa

bc

dxb

dτ

dxc

dτ
= 0. (3.43)

In Newtonian limit, the particles move slowly with respect to the speed of light.

Four-velocity is ua ∼= u0, therefore the geodesic equation reduces to

d2xa

dτ 2
= −Γa

00

dx0

dτ

dx0

dτ
= −c2Γa

00. (3.44)

Since the field is static in time, the time derivative of the metric vanishes. Therefore

the Christoffel symbol is reduced to:

Γa
00 =

1

2
gad

(
∂0gd0 + ∂0g0d − ∂dg00

)

= −1

2
gad∂dg00. (3.45)

In the limit of weak gravitational field, we can decompose the metric into the Minkowski

metric, the equation (2.9), plus a small perturbation,

gab = ηab + hab, (3.46)

where hab ¿ 1 here. From definition of the inverse metric, we find that to the first

order in h,

gab =
1

gab

= (ηab + hab)
−1

∼= ηab − hab.

Since the metric here is diagonal matrix. Our approximate is to only first order for

small perturbation of inverse matric. Equation (3.45) becomes

Γa
00 =

1

2

(
ηad − had

)
∂dh00

∼= 1

2
ηad∂dh00. (3.47)
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Substituting this equation into the geodesic equation ( 3.44),

d2xa

dτ 2
=

c2

2
ηad∂dh00. (3.48)

Using ∂0h00 = 0 and since d2x0/dτ 2 is zero, we are left with spacelike components of

the above equation. Therefore,

d2xi

dτ 2
=

c2

2
ηij∂jh00. (3.49)

Recall Newton’s equation of motion

d2xi

dτ 2
= −∂iΦ (3.50)

where Φ is Newtonian potential. Comparing both equations above, we obtain

h00 =
2

c2
Φ. (3.51)

In non relativistic limit (dustlike), the energy-momentum tensor reduce to the equa-

tion (3.36). We will work in fluid rest frame. Equation (3.38) gives

T00 = ρc2 (3.52)

and

T = gabTab

∼= g00T00

∼= η00T00

= −ρc2. (3.53)

We insert this into the 00 component of our gravitational field equation (3.42). We

get

R00 = κ
(
ρc2 − 1

2
ρc2

)
=

1

2
κρc2. (3.54)

This is an equation relating derivative of the metric to the energy density. We shall

expand Ri
0i0 in term of metric. Since R0

000 = 0 then

R00 = Ri
0i0 = ∂iΓ

i
00 − ∂0Γ

i
i0 + Γi

ibΓ
b
00 − Γi

0bΓ
b
i0.
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The second term is time derivative which vanishes for static field. The second order of

Christoffel symbols (Γ)2 can be neglected since we only consider a small perturbation.

From this we get

R00
∼= ∂iΓ

i
00 = ∂i

[
1

2
gib

(
∂0gb0 + ∂0g0b − ∂bg00

)]

= −1

2
∂ig

ib∂bg00 − 1

2
gib∂i∂bg00

∼= −1

2
∂iη

ij∂jh00 − 1

2
ηij∂i∂jh00

= −1

2
δij∂i∂jh00

= −1

2
∇2h00. (3.55)

Substituting equation (3.51) into the above equation and using equation (3.54), we

finally obtain

∇2Φ = −1

2
κρc4. (3.56)

The connection to Newtonian theory appears when this equation is compared with

Poisson’s equation for Newtonian theory of gravity. The theory of general relativity

must be correspondent to Newton’s non-relativistic theory in limiting case of weak

field. Poisson’s equation in a Newtonian gravitational field is

∇2Φ = 4πGρ (3.57)

where G is classical gravitational constant. Comparing this with equation (3.56) gives

the value of κ,

κ =
8πG

c4
. (3.58)

From equation (3.41) then the full field equation is

Gab = Rab − 1

2
gabR =

8πG

c4
Tab. (3.59)
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Chapter 4

Variational principle approach to

general relativity

4.1 Lagrangian formulation for field equation

4.1.1 The Einstein-Hilbert action

All fundamental physical equation of classical field including the Einstein’s field equa-

tion can be derived from a variational principle. The condition required in order to

get the field equation follows from

δ

∫
Ld4x = 0. (4.1)

Of course the quantity above must be an invariant and must be constructed from

the metric gab which is dynamical variable in GR. We shall not include function

which is first the derivative of metric because it vanishes at a point P ∈ M. The

Riemann tensor is of course made from second derivative set of the metrics, and the

only independent scalar constructed from the metric is the Ricci scalar R. The well

definition of Lagrangian density is L =
√−gR, therefore

SEH =

∫ √−gR d4x (4.2)
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is known as the Einstein-Hilbert action. We derive field equation by variation of

action in equation (4.2),

δSEH = δ

∫ √−gR d4x

=

∫
d4xδ

(√−ggabRab

)

=

∫
d4x

√−ggabδRab +

∫
d4x

√−gRabδg
ab +

∫
d4xRδ

√−g.

Now we have three terms of variation that

δSEH = δSEH(1) + δSEH(2) + δSEH(3) (4.3)

The variation of first term is

δSEH(1) =

∫
d4x

√−ggabδRab. (4.4)

Considering the variation of Ricci tensor,

Rab = Rc
acb = ∂cΓ

c
ab − ∂bΓ

c
ac + Γc

cdΓ
d
ba − Γc

bdΓ
d
ac (4.5)

δRab = ∂cδΓ
c
ab − ∂bδΓ

c
ac + Γd

baδΓ
c
cd + Γc

cdδΓ
d
ba − Γd

acδΓ
c
bd − Γc

bdδΓ
d
ac

=
(
∂cδΓ

c
ab + Γc

cdδΓ
d
ba − Γd

acδΓ
c
bd − Γd

bcδΓ
c
ad

)

−
(
∂bδΓ

c
ac + Γc

bdδΓ
d
ac − Γd

baδΓ
c
cd − Γd

bcδΓ
c
ad

)

and the covariant derivative formula:

∇cδΓ
c
ab = ∂cδΓ

c
ab + Γc

cdδΓ
d
ba − Γd

acδΓ
c
bd − Γd

bcδΓ
c
ad (4.6)

and also

∇bδΓ
c
ac = ∂bδΓ

c
ac + Γc

bdδΓ
d
ac − Γd

baδΓ
c
cd − Γd

bcδΓ
c
ad (4.7)

we can conclude that

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac. (4.8)

Therefore equation (4.4) becomes

δSEH(1) =

∫
d4x

√−ggab
(
∇cδΓ

c
ab −∇bδΓ

c
ac

)

=

∫
d4x

√−g

[
∇c

(
gabδΓc

ab

)
− δΓc

ab∇cg
ab −∇b

(
gab∇bδΓ

c
ac

)
+ δΓc

ac∇bg
ab

]
.

25



Remembering that the covariant derivative of metric is zero. Therefore we get

δSEH(1) =

∫
d4x

√−ggab
(
∇cδΓ

c
ab −∇bδΓ

c
ac

)

=

∫
d4x

√−g

[
∇c

(
gabδΓc

ab

)
−∇b

(
gabδΓc

ac

)]

=

∫
d4x

√−g ∇c

[
gabδΓc

ab − gacδΓb
ab

]

=

∫
d4x

√−g ∇cJ
c

where we introduce

J c = gabδΓc
ab − gacδΓb

ab. (4.9)

If J c is a vector field over a region M with boundary Σ. Stokes’s theorem for the

vector field is ∫

M
d4x

√
|g| ∇cJ

c =

∫

Σ

d3x
√
|h|ncJ

c (4.10)

where nc is normal unit vector on hypersurface Σ. The normal unit vector nc can

be normalized by nan
a = −1. The tensor hab is induced metric associated with

hypersurface defined by

hab = gab + nanb. (4.11)

Therefore the first term of action becomes

δSEH(1) =

∫

Σ

d3x
√
|h|ncJ

c = 0. (4.12)

This equation is an integral with respect to the volume element of the covariant di-

vergence of a vector. Using Stokes’s theorem, this is equal to a boundary contribution

at infinity which can be set to zero by vanishing of variation at infinity. Therefore

this term contributes nothing to the total variation.

4.1.2 Variation of the metrics

Firstly we consider metric gab. Since the contravariant and covariant metrics are

symmetric matrices then,

gcag
ab = δc

b. (4.13)

We now consider inverse of the metric:

gab =
1

g
(Aab)T =

1

g
Aba (4.14)
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where g is determinant and Aba is the cofactor of the metric gab. Let us fix a, and

expand the determinant g by the ath row. Then

g = gabA
ab. (4.15)

If we perform partial differentiation on both sides with respect to gab, then

∂g

∂gab

= Aab. (4.16)

Let us consider variation of determinant g:

δg =
∂g

∂gab

δgab

= Aabδgab

= ggbaδgab.

Remembering that gab is symmetric, we get

δg = ggabδgab. (4.17)

Using relation obtained above, we get

δ
√−g = − 1

2
√−g

δg

=
1

2

g√−g
gabδgab. (4.18)

We shall convert from δgab to δgab by considering

δδa
d = δ(gacg

cd) = 0

gcdδgac + gacδg
cd = 0

gcdδgac = −gacδg
cd.

Multiply both side of this equation by gbd we therefore have

gbdg
cdδgac = −gbdgacδg

cd

δc
bδgac = −gbdgacδg

cd

δgab = −gacgbdδg
dc. (4.19)

Substituting this equation in to equation (4.18) we obtain

δ
√−g = −1

2

√−g gabgacgbdδg
dc

= −1

2

√−g δb
cgbdδg

dc

= −1

2

√−g gcdδg
dc.
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Renaming indices c to a and d to b, we get

δ
√−g = −1

2

√−g gabδg
ab. (4.20)

The variation of Einstein-Hilbert action becomes

δSEH =

∫
d4x

√−gRabδg
ab − 1

2

∫
d4xR

√−g gabδg
ab

=

∫
d4x

√−g
[
Rab − 1

2
gabR

]
δgab (4.21)

The functional derivative of the action satisfies

δS =

∫ ∑
i

( δS

δΦi
δΦi

)
d4x (4.22)

where {Φi} is a complete set of field varied. Stationary points are those for which

δS/δΦi = 0. We now obtain Einstein’s equation in vacuum:

1√−g

δSEH

δgab
= Rab − 1

2
gabR = 0. (4.23)

4.1.3 The full field equations

Previously we derived Einstein’s field equation in vacuum due to including only gravi-

tational part of the action but not matter field part. To obtain the full field equations,

we assume that there is other field presented beside the gravitational field. The action

is then

S =
1

16πG
SEH + SM (4.24)

where SM is the action for matter. We normalize the gravitational action so that we

get the right answer. Following the above equation we have

1√−g

δS

δgab
=

1

16πG

(
Rab − 1

2
gabR

)
+

1√−g

δSM

δgab
= 0.

We now define the energy-momentum tensor as

Tab = −2
1√−g

δSM

δgab
. (4.25)

This allows us to recover the complete Einstein’s equation,

Rab − 1

2
Rgab = 8πGTab. (4.26)
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4.2 Geodesic equation from variational principle

Consider motion of particle along a path xa(τ). We will perform a variation on this

path between two points P and Q. The action is simply

S =

∫
dτ. (4.27)

In order to perform the variation, it is useful to introduce an arbitrary auxiliary

parameter s. Here ds is displacement on spacetime. We have

dτ =
(
− gab

dxa

ds

dxb

ds

)1/2

ds (4.28)

We vary the path by using standard procedure:

δS = δ

∫
dτ

=

∫
δ
(
− gab

dxa

ds

dxb

ds

)1/2

ds

=
1

2

∫
ds

(
− gab

dxa

ds

dxb

ds

)−1/2
[
− δgab

dxa

ds

dxb

ds
− 2gab

dδxa

ds

dxb

ds

]
.

Considering the last term,

−2gab
dδxa

ds

dxb

ds
=

d

ds

[
− 2gabδx

a dxb

ds

]
+ 2

dgab

ds
δxa dxb

ds
+ 2gabδx

a d2xb

ds2
.

The two points, P and Q are fixed. We can set first term of above equation to zero.

Therefore we obtain

δS =
1

2

∫
ds

(
− gab

dxa

ds

dxb

ds

)−1/2
[
− δgab

dxa

ds

dxb

ds
+ 2

dgab

ds

dxb

ds
δxa + 2gab

d2xb

ds2
δxa

]

=
1

2

∫
dτ

ds2

dτ 2

[
− δgab

dxa

ds

dxb

ds
+ 2

dgab

ds

dxb

ds
δxa + 2gab

d2xb

ds2
δxa

]

=
1

2

∫
dτ

[
− δgab

dxa

dτ

dxb

dτ
+ 2

dgab

dτ

dxb

dτ
δxa + 2gab

d2xb

dτ 2
δxa

]
.

By using chain rule we get

δS =
1

2

∫
dτ

[
− ∂gab

∂xc

dxa

dτ

dxb

dτ
δxc + 2

∂gab

∂xc

dxc

dτ

dxb

dτ
δxa + 2gab

d2xb

dτ 2
δxa

]

=
1

2

∫
dτ

[
− ∂bgac

dxa

dτ

dxc

dτ
δxb + ∂cgba

dxc

dτ

dxa

dτ
δxb + ∂agbc

dxc

dτ

dxa

dτ
δxb + 2gba

d2xa

dτ 2
δxb

]

=

∫
dτδxb

[
1

2

(
− ∂bgac + ∂cgba + ∂agbc

)dxa

dτ

dxc

dτ
+ gba

d2xa

dτ 2

]
.
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We set the variation of action to zero, δS = 0 and multiply by gdb,

1

2
gdb

(
− ∂bgac + ∂cgba + ∂agbc

)dxa

dτ

dxc

dτ
+ δd

a

d2xa

dτ 2
= 0

We therefore recover geodesic equation:

d2xd

dτ 2
+ Γd

ac

dxa

dτ

dxc

dτ
= 0 (4.29)

4.3 Field equation with surface term

In section 4.1 we have derived field equation without boundary term which is set to

be zero at infinity. In this section, we shall generalize field equation to general case

which includes boundary term in action.

4.3.1 The Gibbons-Hawking boundary term

We begin by putting boundary term in the first part of the action in section 4.1 of

Einstein-Hilbert action,

δSEH =
1

16πG

∫

M

√−g

(
Rab − 1

2
gabR

)
δgabd4x +

1

16πG

∫

Σ

√
−hncJ

cd3x. (4.30)

Considering vector J c in the last term of equation (4.9) we have

J c = gabδΓc
ab − gacδΓb

ab.

Using formula (prove in appendix B)

δΓc
ab =

1

2
gcd

(
∇aδgbd +∇bδgad −∇dδgab

)
, (4.31)

we get

J c = gab

[
1

2
gcd

(
∇aδgbd +∇bδgad −∇dδgab

)]

−gac

[
1

2
gbd

(
∇aδgbd +∇bδgad −∇dδgab

)]

=
1

2
gabgcd∇aδgbd +

1

2
gabgcd∇bδgad − 1

2
gabgcd∇dδgab

−1

2
gacgbd∇aδgbd − 1

2
gacgbd∇bδgad +

1

2
gacgbd∇dδgab.
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Interchanging dummy indices a and b in the second term, a and d in the fourth term,

and a and d in the last term, we obtain result

J c = gabgcd
(∇aδgbd −∇dδgab

)
. (4.32)

Now our discussion is on hypersurface. Lowering index of J c with metric gce,

Jc = gab
(∇aδgbd −∇dδgab

)
. (4.33)

By using equation (4.11), we have

ncJc = nc
(
hab − nanb

)(∇aδgbd −∇dδgab

)

= nchab∇aδgbd − nchab∇dδgab − nanbnc∇aδgbd + nanbnc∇dδgab.

From boundary condition, the first term of this equation vanishes since it is projected

on hypersurface which variation of metric and induced metric vanish at Σ such as

δgab = 0, (4.34)

δhab = 0 (4.35)

and we use definition

nanbnc = 0. (4.36)

Therefore we obtain

ncJc = −nchab∇dδgab. (4.37)

Now let us consider arbitrary tensor T a1...ak
b1...bl

at P ∈ Σ. It is a tensor on the

tangent space to Σ at P if

T a1...ak
b1...bl

= ha1
c1 ...h

ak
ck

hd1
b1 ...h

dl
bl
T c1...bk

d1...dl
(4.38)

Defining ha
b∇b as a projected covariant derivative on hypersurface by using notation

Da, it satisfies

DcT
a1...ak

b1...bl
= ha1

d1 ...h
ak

dk
he1

b1 ...h
el

bl
hf

c∇fT
d1...dk

e1...ek
. (4.39)

The covariant derivative for induced metric on hypersurface automatically satisfies

Dahbc = ha
dhb

ehc
f∇d

(
gaf + nenf

)
= 0 (4.40)

since ∇dgef = 0 and habn
b = 0 (remembering nb is perpendicular to hypersurface.

Therefore its dot product with metric on hypersurface is zero). Next we introduce

extrinsic curvature in the form

Kab = ha
c∇cnb (4.41)
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and we can use contract it with induced metric,

K = habKab = habha
c∇cnb = hab∇anb. (4.42)

Variation of extrinsic curvature given by

δK = δ
(
hab∇anb

)

= δhab∇anb + hab∂aδnb − habδΓc
abnc − habΓc

abδnc

= hab∂aδnb − habΓc
abδnc − habδΓc

abnc

= hab∇aδnb − habδΓc
abnc

= hbcha
c∇aδnb − habδΓc

abnc

= Dc

(
hbcδnb

)− habδΓc
abnc

= Dc

[
δ
(
hbcnb

)− nbδh
bc
]
− habδΓc

abnc

= −habδΓc
abnc. (4.43)

Using equation (4.31),

δK = −habnc

[1

2
gcd

(∇aδgbd +∇bδgad −∇dδgab

)]

=
1

2
habnd∇dδgab. (4.44)

Notice that when substituting equation (4.37) to this equation, we obtain

δK = −1

2
ncJc. (4.45)

Considering boundary term from Einstein-Hilbert action
∫

Σ

√
−hncJ

cd3x =

∫

Σ

√
−hncJcd

3x

= −2

∫

Σ

√
−hδKd3x

= −2δ

∫

Σ

√
−hKd3x + 2

∫

Σ

δ
√
−hKd3x

and using equation (4.20),
∫

Σ

√
−hncJ

cd3x = −2δ

∫

Σ

√
−hKd3x−

∫

Σ

√
−hKhabδh

abd3x.

Since δhab vanishes at boundary. Therefore we get
∫

Σ

√
−hncJ

cd3x = −2δ

∫

Σ

√
−hKd3x. (4.46)
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Now we have variation of Einstein-Hilbert action in the form

δSEH =
1

16πG

∫

M

√−g

(
Rab − 1

2
gabR

)
δgabd4x− 1

8πG
δ

∫

Σ

√
−hKd3x. (4.47)

We generalize this equation by naming the first term as the variation of gravitational

action, δSGravity, we finally get

δSEH = δSGravity − 1

8πG
δ

∫

Σ

√
−hKd3x

δSGravity = δSEH +
1

8πG
δ

∫

Σ

√
−hKd3x

∴ SGravity =
1

16πG

∫

M

√−gRd4x +
1

8πG

∫

Σ

√
−hKd3x. (4.48)

The last term is known as Gibbons-Hawking boundary term. In next section,

we will vary this term using junction condition.

4.3.2 Israel junction condition

We begin from considering the action

SGravity = SEH + SGH

=
1

16πG

∫

M

√−gRd4x +
1

8πG

∫

Σ

√
−hKd3x.

Its variation is

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x +

1

16πG

∫

Σ

√
−hnaJ

ad3x

+
1

8πG

∫

Σ

δ
√
−hKd3x +

1

8πG

∫

Σ

√
−hδKd3x. (4.49)

In this section, we are not interested in boundary when performing variation of grav-

itational action then there is no boundary condition. Variation of K is

δK = δ
(
hb

a∇an
b
)

= δhb
a∇an

b + hb
a∂aδn

b − hb
aδΓb

acn
c + hb

aΓb
acδn

c

= δhb
a∇an

b + hb
aδΓb

acn
c + hb

a∇aδn
b. (4.50)

Considering the first term of equation (4.50),

δhb
a∇an

b = δ
(
δb

a + nanb

)∇an
b

=
(
naδnb + nbδn

a
)∇an

b.
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Using identity

δnb = nbncδn
c, (4.51)

we get

δhb
a∇an

b =
(
nanbncδn

c + nbδn
a
)∇an

b

=
(
nancδn

c + δc
aδnc

)
nb∇an

b

= nbδn
chc

a∇an
b

= nbδn
cKc

b

= 0. (4.52)

Since extrinsic curvature is associated with hypersurface then its dot product with

normal vector on Σ vanishes yielding equation (4.52). We continue to do variation of

the second term of the equation (4.50) by using formula (4.31), we then have

hb
aδΓb

acn
c =

1

2
hb

ancgbd
(
∇aδgcd +∇cδgad −∇dδgac

)
.

Therefore variation of K is

δK =
1

2
hadnc

(
∇aδgcd +∇cδgad −∇dδgac

)
+ hb

a∇aδn
b. (4.53)

Applying similar procedure to the equation (4.20) for
√−h, we obtain

δ
√
−h = −1

2

√
−hhabδh

ab. (4.54)

Using the equation (4.32), finally the gravitational action is

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x− 1

16πG

∫

Σ

√
−hhabKδhabd3x

+
1

16πG

∫

Σ

√
−hnag

cbgad
(∇cδgbd −∇dδgcb

)
d3x

+
1

16πG

∫

Σ

√
−h

[
hadnc

(
∇aδgcd +∇cδgad −∇dδgac

)
+ 2hb

a∇aδn
b

]
d3x.

Considering

nag
cbgad = nd

(
hcb + ncnb

)
= ndhcb. (4.55)

Therefore

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x− 1

16πG

∫

Σ

√
−hhabKδhabd3x

+
1

16πG

∫

Σ

√
−h

[(
ndhcb∇cδgbd − ndhcb∇dδgcb + hadnc∇aδgcd

+hadnc∇cδgad − hadnc∇dδgac

)
+ 2hb

a∇aδn
b

]
d3x.
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Interchanging dummy indices between d and c and rename b to a of the first and the

second term in bracket of the third integral term results that the first term and the

last term in bracket cancel out. So do the second and the forth term in bracket of

the third integral term. Therefore

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x− 1

16πG

∫

Σ

√
−h habKδhabd3x

+
1

16πG

∫

Σ

√
−h

(
hadnc∇aδgcd + 2hb

a∇aδn
b
)
d3x. (4.56)

Considering the first term in the third integral term

hadnc∇aδgcd = had∇a(n
cδgcd)− hadδgcd∇an

c.

Using equation (4.19), we get

hadnc∇aδgcd = had∇a(n
cδgcd) + hadgdegcfδg

ef∇an
c

= had∇a(n
cδgcd) + had(hde + ndne)gcfδg

ef∇an
c

= had∇a(n
cδgcd) + ha

eδg
ef∇anf

= had∇a(n
cδgcd) + Kefδg

ef .

Considering

δgef = δ(hef + nenf )

= δhef + nfδne + neδnf

= δhef + nfnenaδna + nenfnbδnb

= δhef . (4.57)

Therefore

hadnc∇aδgcd = had∇a(n
cδgcd) + Kefδh

ef . (4.58)

Substituting this equation in equation (4.56), we obtain

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x− 1

16πG

∫

Σ

√
−hhabKδhabd3x

+
1

16πG

∫

Σ

√
−h

[
had∇a

(
ncδgcd

)
+ Kefδh

ef + 2hb
a∇aδn

b
]
d3x

=
1

16πG

∫

M

√−gGabδg
abd4x +

1

16πG

∫

Σ

√
−h

(
Kab − habK

)
δhabd3x

+
1

16πG

∫

Σ

√
−h

[
had∇a

(
ncδgcd

)
+ 2hb

a∇aδn
b
]
d3x (4.59)
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Considering the two terms in bracket of the last integral term

had∇a(n
cδgcd) + 2hb

a∇aδn
b = had∇a

[
δ
(
ncgcd

)− gcdδn
c
]

+ 2hb
a∇aδn

b

= had∇aδnd − ha
c∇aδn

c + 2hb
a∇aδn

b

= had∇aδnd + hb
a∇aδn

b

= gbdhb
a∇aδnd + hb

a∇aδn
b

= hb
a∇a

(
gbdδnd + δnb

)

= hb
a∇a

(
gbdndncδn

c + δb
cδn

c
)

= hb
a∇a

[(
nbnc + δb

c

)
δnc

]

= Db

(
hb

cδn
c
)

(4.60)

and substituting the last equation into equation (4.59), we obtain

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x +

1

16πG

∫

Σ

√
−h

(
Kab − habK

)
δhabd3x

+
1

16πG

∫

Σ

√
−hDb

(
hb

cδn
c
)
d3x. (4.61)

Since the last term in the equation (4.61) is divergence term. It yields vanishing of

this integral with boundary at infinity on Σ. Finally, the variation of gravity is

δSGravity =
1

16πG

∫

M

√−gGabδg
abd4x

+
1

16πG

∫

Σ

√
−h

(
Kab − habK

)
δhabd3x. (4.62)

The action for matter on hypersurface is

Smat =

∫

Σ

Lmatd
3x (4.63)

and its variation is

δSmat =

∫

Σ

√
−htabδh

ab (4.64)

where the energy-momentum tensor on hypersurface is

tab = 2
1√−h

δSmat

δhab
. (4.65)

The total action is

SGravity = SEH + SGB + Smat. (4.66)
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Since we include energy-momentum tensor on hypersurface, then Einstein tensor in

the bulk vanishes.1 Therefore the total action gives the Israel junction condition

Kab − habK = −8πGtab. (4.67)

The energy-momentum tensor on hypersurface is not necessarily conserved because

energy can flow from the hypersurface to the bulk. The idea has been recently widely

applied to the research field of braneworld gravity and braneworld cosmology (see e.g.

[8] for review of application of Israel junction condition to braneworld gravity.)

1The bulk is the region of one dimension left beyond the hypersurface. The bulk and hypersurface

together form total region of the manifold.
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Chapter 5

Conclusion

Relativity begins with concept of inertial reference frame which is defined by Newton’s

first law. Therefore relative frames in one direction is considered allowing us to do

Galilean transformation for inertial frame moving not so fast. However under this

transformation, the speed of light is no longer invariant and electromagnetic wave

equations are neither invariant. Special relativity came along based on Einstein’s

principle of spacial relativity. In this theory, there is a unification of time and space

so called spacetime. It uses Lorentz transformation under which electromagnetic

wave equations are invariant. Moreover it reduces to Galilean transformation in

case of small velocity. Therefore SR implies no absolute inertial reference frame

in the universe. Einstein introduced transformation law when including effects of

gravitational field and also introduced the equivalence principle which suggest that

purely inertial reference frame is not sensible. It introduces us local inertial frame in

gravitational field. Therefore Newtonian mechanics based on inertial frame fails to

explain gravity. SR based on flat space is extended to general relativity using concept

of curved space. Curved space is indicated by Riemann tensor, Ra
bcd. This theory

attempts to explain gravity with geometry. It tells us that mass is in fact curvature

of geometry This fact is expressed in the Einstein’s field equation,

Gab = 8πGTab.

All physical laws are believed to obey principle of least action, δS = 0. The dynamical

variable in GR is gab therefore the Lagrangian density in action must be a function of

gab. We used Ricci scalar in term of second derivative of metric. We did not choose

function of first derivative of metric since it vanishes at any point on manifold. With
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the action

SEH =

∫ √−gRd4x

we can derive Einstein’s field equation by neglecting boundary term (surface term).

If including boundary term then, we must have dynamical variable on boundary or

hypersurface, Σ such as hab which is an induced metric on the hypersurface. Bounding

the manifold, we obtain extrinsic curvature K which is constructed from hab in the

action on the hypersurface. That is

SGH =

∫

Σ

√
−hKd3x.

This is called Gibbon-Howking boundary term. The result of this variation is Israel

junction condition,

Kab − habK = −8πGtab

which is shown in detail calculations in this report. This result can be applied widely

to braneworld gravity.
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Appendix A

Proofs of identities

A.1 ∇cgab = 0

The identity ∇cgab = 0 is proved by using covariant derivative to tensor type(0, 2):

∇cgab = ∂cgab − Γd
cagbd − Γd

cbgad (A.1)

Using equation (3.14), we have

∇cgab = ∂cgab − 1

2
gbdg

de
(
∂cgae + ∂agce − ∂egac

)
− 1

2
gadg

de
(
∂cgbe + ∂bgce − ∂egbc

)

= ∂cgab − 1

2
δb
e

(
∂cgae + ∂agce − ∂egac

)
− 1

2
δa
e

(
∂cgbe + ∂bgce − ∂egbc

)

= ∂cgab − 1

2

(
∂cgab + ∂agcb − ∂bgac

)
− 1

2

(
∂cgba + ∂bgca − ∂agbc

)

= 0. (A.2)

A.2 ∇cg
ab = 0

The identity ∇cg
ab = 0 is proved by using covariant derivative to tensor type(2, 0):

∇cg
ab = ∂cg

ab + Γa
cdg

bd + Γb
cdg

ad (A.3)
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Therefore

∇cg
ab = ∂cg

ab +
1

2
gbdgae

(
∂cgde + ∂dgce − ∂egcd

)
+

1

2
gadgbe

(
∂cgde + ∂dgce − ∂egcd

)

= ∂cg
ab +

1

2
gaegbd∂cgde +

1

2
gbdgae∂dgce − 1

2
gaegbd∂egcd

+
1

2
gbegad∂cgde +

1

2
gadgbe∂dgce − 1

2
gbegad∂egcd

= ∂cg
ab +

1

2
gae

[
∂c

(
gdeg

bd
)
− gde∂cg

bd

]
+

1

2
gbd

[
∂d

(
gceg

ae
)
− gce∂dg

ae

]

−1

2
gae

[
∂e

(
gcdg

bd
)
− gcd∂eg

bd

]
+

1

2
gbe

[
∂c

(
gdeg

ad
)
− gde∂cg

ad

]

+
1

2
gad

[
∂d

(
gceg

be
)
− gce∂dg

be

]
− 1

2
gbe

[
∂e

(
gcdg

ad
)
− gcd∂eg

ad

]

= ∂cg
ab +

1

2
gae

(
∂cδ

b
e − gde∂cg

bd
)

+
1

2
gbd

(
∂dδ

a
c − gce∂dg

ae
)

−1

2
gae

(
∂eδ

b
c − gcd∂eg

bd
)

+
1

2
gbe

(
∂cδ

a
e − gde∂cg

ad
)

+
1

2
gad

(
∂dδ

b
c − gce∂dg

be
)
− 1

2
gbe

(
∂eδ

a
c − gcd∂eg

ad
)

δa
c are constant then their partial derivatives vanish. Therefore we get

∇cg
ab = ∂cg

ab − 1

2
gaegde∂cg

bd − 1

2
gbdgce∂dg

ae +
1

2
gaegcd∂eg

bd − 1

2
gbegde∂cg

ad

−1

2
gadgce∂dg

be +
1

2
gbegcd∂eg

ad

= ∂cg
ab − 1

2
δa
d∂cg

bd − 1

2
gbdgce∂dg

ae +
1

2
gaegcd∂eg

bd − 1

2
δb
d∂cg

ad

−1

2
gadgce∂dg

be +
1

2
gbegcd∂eg

ad

= ∂cg
ab − 1

2
∂cg

ba − 1

2
gbdgce∂dg

ae +
1

2
gaegcd∂eg

bd − 1

2
∂cg

ab

−1

2
gadgce∂dg

be +
1

2
gbegcd∂eg

ad.

Interchanging dummy indices d and e, we get

∇cg
ab = −1

2
gbegcd∂eg

ad +
1

2
gadgce∂dg

be − 1

2
gadgce∂dg

be +
1

2
gbegcd∂eg

ad

= 0. (A.4)
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A.3 Covariant derivative for scalar field, ∇aφ

We will show that covariant derivative for scalar field is just ordinary derivative.

Considering

∇aφ = ∇a

(
XbX

b
)

= Xb∇aX
b + Xb∇aXb

= 2Xb∂aX
b + 2XbΓ

b
acX

c

= 2∂a

(
XbX

b
)− 2Xb∂aXb + XbX

cgbd
(
∂agdc + ∂cgad − ∂dgac

)

= 2∂aφ− 2Xb∂aXb + XcXd∂agdc + XcXd∂cgad −XcXd∂dgac.

Interchanging dummy indices c and d yields that the last and the forth term cancel

out. Therefore we get

∇aφ = 2∂aφ− 2Xb∂aXb + XcXd∂agdc

= 2∂aφ− 2Xb∂aXb + Xc∂a

(
gdcX

d
)−Xcgdc∂aX

d

= 2∂aφ− 2Xb∂aXb + Xc∂aXc −Xd∂aX
d

= 2∂aφ−Xb∂aXb −Xd∂aX
d

= 2∂aφ− ∂a

(
XbX

b
)

= ∂aφ (A.5)

A.4 Ra
bcd = −Ra

bdc

Proving the identity Ra
bcd = −Ra

bdc is as follows

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed

= −(− ∂cΓ
a
bd + ∂dΓ

a
bc − Γe

bdΓ
a
ec + Γe

bcΓ
a
ed

)

= −(
∂dΓ

a
bc − ∂cΓ

a
bd + Γe

bcΓ
a
ed − Γe

bdΓ
a
ec

)

∴ Ra
bcd = −Ra

bdc (A.6)
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A.5 Ra
bcd + Ra

dbc + Ra
cdb = 0

Proving the identity Ra
bcd + Ra

dbc + Ra
cdb = 0 is as follows

1. Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed

2. Ra
dbc = ∂bΓ

a
dc − ∂cΓ

a
db + Γe

dcΓ
a
eb − Γe

dbΓ
a
ec

3. Ra
cdb = ∂dΓ

a
cb − ∂bΓ

a
cd + Γe

cbΓ
a
ed − Γe

cdΓ
a
eb

∴ Ra
bcd + Ra

dbc + Ra
cdb = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed + ∂bΓ

a
dc

−∂cΓ
a
db + Γe

dcΓ
a
eb − Γe

dbΓ
a
ec + ∂dΓ

a
cb

−∂bΓ
a
cd + Γe

cbΓ
a
ed − Γe

cdΓ
a
eb

= 0 (A.7)

A.6 Bianchi identities

Considering covariant derivative of Riemann tensor evaluated in locally inertial coor-

dinate:

∇âRb̂ĉd̂ê = ∂âRb̂ĉd̂ê (A.8)

Hats on their indices represent locally inertial coordinate. Notice that for locally

inertial coordinate, Cristoffel symbols which contain first-order derivatives of metrics

must vanish at any points. But the second derivatives of metrics in Riemann tensor

do not vanish. Therefore

Rb̂ĉd̂ê = gâb̂R
â

ĉd̂ê

= gâb̂

(
∂d̂Γ

â
ĉê − ∂êΓ

â
d̂ĉ

)

= gâb̂g
âf̂

(
∂d̂∂ĉgêf̂ + ∂d̂∂êgĉf̂ − ∂d̂∂f̂gĉê − ∂ê∂d̂gĉf̂ − ∂ê∂ĉgd̂f̂ + ∂ê∂f̂gd̂ĉ

)

∴ Rb̂ĉd̂ê =
1

2

(
∂d̂∂ĉgêb̂ − ∂d̂∂b̂gĉê − ∂ê∂ĉgd̂b̂ + ∂ê∂b̂gd̂ĉ

)
. (A.9)

We therefore obtain

∇âRb̂ĉd̂ê + ∇ĉRâb̂d̂ê +∇b̂Rĉâd̂ê

=
1

2

(
∂â∂d̂∂ĉgêb̂ − ∂â∂d̂∂b̂gĉê − ∂â∂ê∂ĉgd̂b̂ + ∂â∂ê∂b̂gd̂ĉ

+∂ĉ∂d̂∂b̂gêâ − ∂ĉ∂d̂∂âgb̂ê − ∂ĉ∂ê∂b̂gd̂â + ∂ĉ∂ê∂âgd̂b̂

+∂b̂∂d̂∂âgêĉ − ∂b̂∂d̂∂ĉgâê − ∂b̂∂ê∂âgd̂ĉ + ∂b̂∂ê∂ĉgd̂â

)

= 0. (A.10)
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A.7 Conservation of Einstein tensor: ∇bGab = 0

Considering Bianchi identities,

∇eRabcd +∇dRabec +∇cRabde = 0

gaegbc
(∇eRabcd +∇dRabec +∇cRabde

)
= 0

∇aRad −∇dR +∇bRbd = 0.

Renaming indices b to a, we have

2∇aRad −∇dR = 0

∇aRad − 1

2
∇dR = 0

∇a
(
Rad − 1

2
gadR

)
= 0.

We then see that twice-contracted Bianchi identities is equivalent to

∇aGad = 0. (A.11)
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Appendix B

Detail calculation

B.1 Variance of electromagnetic wave equation un-

der Galilean transformation

Consider electromagnetic wave equation

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
− 1

c2

∂2φ

∂t2
= 0. (B.1)

Transforming t → t′,

∂φ

∂t
=

∂t′

∂t

∂φ

∂t′
+

∂x′

∂t

∂φ

∂x′
+

∂y′

∂t

∂φ

∂y′
+

∂z′

∂t

∂φ

∂z′
.

Using x′ = x− vt, y′ = y, z′ = z, t′ = t, we get

∂φ

∂t
=

∂φ

∂t′
− v

∂φ

∂x′
∂2φ

∂t2
=

∂

∂t

(
∂φ

∂t′

)
− v

∂

∂t

(
∂φ

∂x′

)

=

(
∂t′

∂t

∂2φ

∂t′2
+

∂x′

∂t

∂2φ

∂x′∂t′
+

∂y′

∂t

∂2φ

∂y′∂t′
+

∂z′

∂t

∂2φ

∂z′∂t′

)

−v

(
∂t′

∂t

∂2φ

∂t′∂x′
+

∂x′

∂t

∂2φ

∂x′2
+

∂y′

∂t

∂2φ

∂y′∂t′
+

∂z′

∂t

∂2φ

∂z′∂t′

)

=
∂2φ

∂t′2
− 2v

∂2φ

∂x′∂t′
+ v2 ∂2φ

∂x′2
. (B.2)
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Transforming x → x′

∂φ

∂x
=

∂t′

∂x

∂φ

∂t′
+

∂x′

∂x

∂φ

∂x′
+

∂y′

∂x

∂φ

∂y′
+

∂z′

∂x

∂φ

∂z′

=
∂φ

∂x′
∂2φ

∂x2
=

∂2φ

∂x′2
(B.3)

The y-axis and z-axis do not change, we have

∂2φ

∂y2
=

∂2φ

∂y′2
(B.4)

and

∂2φ

∂z2
=

∂2φ

∂z′2
. (B.5)

Substituting all equations of transformation into equations (B.1),

∂2φ

∂x′2
+

∂2φ

∂y′2
+

∂2φ

∂z′2
− 1

c2

∂2φ

∂t′2
+

2v

c2

∂2φ

∂x′∂t′
− v2

c2

∂2φ

∂x′2
,

we finally have equation (2.5):

c2 − v2

c2

∂2φ

∂x′2
+

2v

c2

∂2φ

∂t′∂x′
+

∂2φ

∂y′2
+

∂2φ

∂z′2
− 1

c2

∂2φ

∂t′2
= 0 (B.6)

B.2 Poisson’s equation for Newtonian gravitational

field

Considering a close surface S enclosing a mass M. The quantity g · ndS is defined as

the gravitational flux passing through the surface element dS where n is the outward

unit vector normal to S. The total gravitational flux through S is then given by
∫

S

g · ndS = −GM

∫

S

er · n
r2

dS. (B.7)

By definition (er · n/r2dS) = cos θ dS/r2 is the element of solid angle dΩ subtended

at M by the element surface dS. Therefore equation (B.7) becomes
∫

S

g · ndS = −GM

∫
dΩ = −4πGM.

= −4πG

∫

v

ρ(r)dV
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From application of divergence theorem, the left side of this equation can be rewritten∫

S

g · ndS =

∫

v

∇ · gdV. (B.8)

Therefore we obtain

∇ · g = −4πGρ.

Recall that

g = −∇Φ. (B.9)

We therefore have result as in equation (3.57),

∇2Φ = 4πGρ.

B.3 Variation of Cristoffel symbols : δΓa
bc

From equation (3.14) we have

Γa
bc =

1

2
gad

(
∂bgdc + ∂cgbd − ∂dgbc

)

δΓa
bc =

1

2
δgad

(
∂bgdc + ∂cgbd − ∂dgbc

)
+

1

2
gad

(
∂bδgdc + ∂cδgbd − ∂dδgbc

)
.

Considering variation of gad,

δgad = δf
dδd

fδgad

= δf
dgdeg

efδgad

= δf
dgef

[
δ
(
gdeg

ad
)− gadδgde

]

= δf
dgef

[
δ(δe

a)− gadδgde

]

= −gedgadδgde,

therefore

δΓa
bc = −1

2
gedgadδgde

(
∂bgdc + ∂cgbd − ∂dgbc

)
+

1

2
gad

(
∂bδgdc + ∂cδgbd − ∂dδgbc

)
.

= −gadΓe
bcδged +

1

2
gad

(
∂bδgdc + ∂cδgbd − ∂dδgbc

)

=
1

2
gad

(
∂bδgdc + ∂cδgbd − ∂dδgbc − 2Γe

bcδged

)

=
1

2
gad

(
∂bδgdc − Γe

bcδged − Γe
bdδgec + ∂cδgbd − Γe

bcδged − Γe
dcδgeb

−∂dδgbc + Γe
bdδgec + Γe

dcδgeb

)

∴ δΓa
bc =

1

2
gad

(∇bδgdc +∇cδgbd −∇dδgbc

)
. (B.10)
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