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Chapter 1

Introduction

1.1 Background

In Quantum Mechanics, few problems can be solved exactly. Accordingly other approaches
exist in order to solve problems approximately. One of the popular ways is Rayleigh-Schrödinger
Perturbation Theory (RSPT). It is just a special case of Brillouin-Wigner Perturbation Theory
(BWPT), the more accurate way for calculating the energies. However, there exists another way to
calculate energy eigenvalues, the Shooting Method, where the energies are tried and the Schrödinger
equation is solved numerically for the corresponding wave function.

1.2 Principles, theories, reasoning, and hypotheses

The aim of this work is to calculate ground-state energies and wave functions of a particle
under anharmonic potential. Rayleigh-Schrödinger Perturbation Theory (RSPT) is a popular way to
calculate the ground-state energy. It is the part of Brillouin-Wigner Perturbation Theory (BWPT).
According to BWPT, the perturbed energy (En) is given by [8]

En = εn + λ〈n|Ĥ1|n〉+ λ2
∑

m1 6=n

〈n|Ĥ1|m1〉〈m1|Ĥ1|n〉
En − εm1

+ ...

+λj+1
∑

m1 6=n

∑

m2 6=n

∑

mj 6=n

〈n|Ĥ1|m1〉〈m1|Ĥ1|m2〉...〈mj |Ĥ1|n〉
(En − εm1)(En − εm2)...(En − εmj )

+ ...

1.3 The purposes of this project

1) To study and understand numerical technique for calculating ground-state
energies for the Gaussian double-well potential by using 2nd-order Brillouin-Wigner and Shooting
Method.

2) To study and understand BWPT in a special problem.
3) To use RSPT as the basis of BWPT.
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4) To compare the results of the ground-state energies between BWPT and
Shooting Method.

1.4 Literature reviews

1) Brillouin-Wigner perturbation theory and the generalized eigenvalue equation
Abstract

A Brillouin-Wigner perturbation expansion is derived for the generalized eigenvalue equation
(F0 + F1)Ψ = µAΨ . The theory is applied through second order to calculate the ground-state
energies of the helium atom and the hydrogen molecular ion. The results are compared with the
corresponding Rayleigh-Schrödinger expansion. For the examples we consider, the Brillouin-Wigner
results through second order are generally superior to the Rayleigh-Schrödinger ones.

2) Continued fractions and upper and lower bounds in the Brillouin-Wigner per-
turbation scheme
Abstract

A derivation of approximants to a continued fraction development of the energy is presented. It
is based on the techniques of infinite order perturbation theory and inner projection of operators.
The approximants have been introduced before; here their formal nature is clarified and conditions
under which they exhibit extremal properties are presented. The oscillatory behaviour about the
true eigenvalue, observed previously in the Mathieu problem, is explained.

3) Brillouin-Wigner perturbation methods for coupled oscillators
Abstract

We study the use of Brillouin-Wigner perturbation theory (BWPT) coupled with Padé approxi-
mant summation techniques to solve problems formulated as coupled (diabatic, adiabatic, “mixed”)
channels. Several iterative BWPT schemes are examined. BW perturbation series demonstrate
better convergence properties, making them more practical and efficient than traditional Rayleigh-
Schrödinger perturbation series. Obtaining proof of power-law solution.

4) Variational Solutions to Brillouin-Wigner Perturbation Differential Equations
Abstract

The usual Brillouin-Wigner (BW) perturbation theory series expansions for the energy and wave
function of a perturbed system are replaced by a set of perturbation differential equations. Thus it
seems probable that many of the developments of Rayleigh-Schrodinger (RS) perturbation theory
which depend largely on the RS perturbation differential equations should carry over to BW theory.
A variational method, analogous to the Hylleraas principle in RS6theory, is derived which can be
used to obtain approximate solutions to the n-th order BW perturbation equation for systems in the
lowest energy state of a given symmetry. The BW energy to (2n)-th order obtained in this manner
is an upper bound to the exact BW energy to (2n)-th order if the (n-1)-th order wave function
is known exactly. This is usually true for n=1 only. It is shown, however, that these variational
techniques give an upper bound to the total energy even if the (n-1)-th order BW wave function
is unknown. A convenient matrix method of applying the variational principles is suggested and a
method of using this formulation of BW perturbation theory is discussed formally.

5) Comparison of Rayleigh-Schrödinger and Brillouin-Wigner Perturbation Theo-
ries
Abstract

Parallel derivations of Rayleigh-Schrödinger and Brillouin-Wigner Perturbation Theory are pre-
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sented, using the Dirac formalism. The relative advantages and disadvantages of the two are com-
pared with the goal of smoothing the transition between elementary qantum mechanics and advanced
approximation theory.

6) Energy Splitting in Symmetric Double-Well Potentials
Abstract

We extend the analytical transfer matrix method to solve the energy splitting in an arbitrary
symmetric double-well potential. Dispersion equations corresponding to the split energy levels are
presented in a very explicit form. Numerical calculation shows that the proposed method can give
extremely accurate results for symmetric double-well potentials.

7) Solution of the Schr?dinger Equation with One and Two Dimensional Double-
Well Potential
Abstract

The Schrödinger equation with one and two dimensional potentials are solved in the framework
of the sl2(R) Lie algebra. Eigenfunctions of the Schrödinger equation for various asymmetric double-
well potentials have been determined and the eigenstates are expressed in terms of the orthogonal
polynomials. The solution of the double-well potential in two dimension have been analyzed.

1.5 Regulation Researches

1) Allow 4 months to study the project in overall.
2) Study the project.
3) Study BWPT and shooting method.
4) Study numerical and Mathematica program.
5) Collect the data and study from related articles.
6) Fix the heading and the way to study.
7) Summarize and analyse.
8) Check the correctness.

1.6 Limit of the research

Study the numerical solution of double-well potential modified from single-well potential.

1.7 Instrument for the project

1) Textbooks and related documents
2) Computer
3) Mathematica program
4) Microsoft Office program
5) Math-Type program

1.8 The advantages of this study

1) Knowing more Anharmonic Oscillation in Quantum Mechanics.
2) Knowing about how to use BWPT and Shooting method to calculate the ground-state energies.

3



3) Enhancing the skill to use program such as Mathematica, Microsoft Office, and Math Type.
4) Trending to study in the future.
5) Being worthy for anyone wishing to study further.
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Chapter 2

Perturbation Theory

2.1 Time-independent perturbation theory for a non-degenerate

energy level

The eigenvalue problem we wish to solve is of the Schrödinger form:

ĤΨn = EnΨn (2.1)

From Rayleigh-Schrödinger perturbation theory, suppose that the time-independent Hamiltonian Ĥ
of a system can be expressed as

Ĥ = Ĥ0 + λĤ ′ (2.2)

Ĥ = time− independent Hamiltonian
Ĥ0 = unperturbed Hamiltonian
Ĥ ′ = a small perturbation

By solving the time-independent Schrödinger Equation

Ĥ0Ψ(0)
n = E(0)

n Ψ(0)
n

where Ψ(0)
n is an unperturbed wave function which can be solved exactly,

one obtains a complete set of orthonormal eigenfunctions,Ψ(0)
n , which may also be expressed as an

eigenstate,|Ψ(0)
n 〉 , such that

〈Ψ(0)
n |Ψ(0)

m 〉 = δnm

where δnm is a Kronecker delta defined by δnm = {1, n=m
0, n 6=m

We can write Ψn and En as power series in λ , i.e.

Ψn = Ψ(0)
n + λΨ(1)

n + λ2Ψ(2)
n + ... (2.3)

En = E(0)
n + λE(1)

n + λ2E(2)
n + ... (2.4)
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By substituting Eq.’s (2.2), (2.3), (2.4) into Eq.(2.1), we obtain

(Ĥ0 + λĤ ′)[Ψ0
n + λΨ1

n + λ2Ψ2
n + ...] = (E0

n + λE1
n + λ2E2

n + ...)[Ψ0
n + λΨ1

n + λ2Ψ2
n + ...]

Ĥ0Ψ0
n + λ(Ĥ0Ψ1

n + Ĥ ′Ψ0
n) + λ2(Ĥ0Ψ2

n + Ĥ ′Ψ1
n) + ...

= E0
nΨ0

n + λ(E0
nΨ1

n + E1
nΨ0

n) + λ2(E0
nΨ2

n + E1
nΨ1

n + E2
nΨ0

n) + ...

The lowest order in λ , λ0 , yields

Ĥ0Ψ0
n = E0

nΨ0
n

The first order in λ , λ1 , yields

Ĥ0Ψ1
n + Ĥ ′Ψ0

n = E0
nΨ1

n + E1
nΨ0

n (2.5)

The second order in λ , λ2 , yields

Ĥ0Ψ2
n + Ĥ ′Ψ1

n = E0
nΨ2

n + E1
nΨ1

n + E2
nΨ0

n (2.6)

2.2 First-Order Perturbation Theory

Taking the inner product of Eq.(2.5) with Ψ0
n , what follows is

〈Ψ0
n|Ĥ0|Ψ1

n〉+ 〈Ψ0
n|Ĥ ′|Ψ0

n〉 = E0
n〈Ψ0

n|Ψ1
n〉+ E1

n〈Ψ0
n|Ψ0

n〉
Since Ĥ0 is Hermitian, so

〈Ψ0
n|Ĥ0|Ψ1

n〉 = 〈H0Ψ0
n|Ψ1

n〉 = 〈E0
nΨ0

n|Ψ1
n〉 = E0

n〈Ψ0
n|Ψ1

n〉

Noting that 〈Ψ0
n|Ψ0

n〉 = 1 , we then obtain

E1
n = 〈Ψ0

n|Ĥ ′|Ψ0
n〉 (2.7)

By conclusion, the first-order correction to the energy is the expectation value of the perturbation
over the unperturbed state.

2.3 Second-Order Energies

Taking the inner product of the second-order equation with Ψ0
n yields

〈Ψ0
n|Ĥ0|Ψ2

n〉+ 〈Ψ0
n|Ĥ ′|Ψ1

n〉 = E0
n〈Ψ0

n|Ψ2
n〉+ E1

n〈Ψ0
n|Ψ1

n〉+ E2
n〈Ψ0

n|Ψ0
n〉

By exploiting the Hermiticity of Ĥ0 , we get

〈Ψ0
n|Ĥ0|Ψ2

n〉 = 〈H0Ψ0
n|Ψ2

n〉 = E0
n〈Ψ0

n|Ψ2
n〉

Taking, 〈Ψ0
n|Ψ0

n〉 = 1 , we get

E2
n = 〈Ψ0

n|Ĥ ′|Ψ1
n〉 − E1

n〈Ψ0
n|Ψ1

n〉

6



but

〈Ψ0
n|Ψ1

n〉 =
∑

m 6=n

c(n)
m 〈Ψ0

n|Ψ0
m〉 = 0

so

E2
n = 〈Ψ0

n|Ĥ ′|Ψ1
n〉 =

∑

m 6=n

c(n)
m 〈Ψ0

n|Ĥ ′|Ψ0
m〉 =

∑

m 6=n

〈Ψ0
m|Ĥ ′|Ψ0

n〉〈Ψ0
n|Ĥ ′|Ψ0

m〉
E0

n − E0
m

finally , we have

E2
n =

∑

m6=n

〈Ψ0
m|Ĥ ′|Ψ0

n〉2
E0

n − E0
m

(2.8)

We can find the energy eigenvalue of Brillouin-Wigner Perturbation Theory (BWPT) by solving this
equation [8],

En = εn + λ〈n|Ĥ1|n〉+ λ2
∑

m1 6=n

〈n|Ĥ1|m1〉〈m1|Ĥ1|n〉
En − εm1

+ ...

+λj+1
∑

m1 6=n

∑

m2 6=n

...
∑

mj 6=n

〈n|Ĥ1|m1〉〈m1|Ĥ1|m2〉...〈mj |Ĥ1|n〉
(En − εm1)(En − εm2)...(En − εmj )

+ ...
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Chapter 3

Gaussian Oscillator Problem

In Classical Mechanics, the total mechanical energy of a particle is called Hamiltonian, i.e.

H(x, p) =
p2

2m
+ V (x)

where

H = Hamiltonian
p = linear momentum
V = potential energy

In Quantum Mechanics, each quantity is changed to the operator such as in one
dimension

p̂ =
~
i

d
dx

Ĥ = − ~
2

2m

d2

dx2
+ V (x)

From time independent-Schrödinger equation in one dimension

ĤΨ(x) = EΨ(x)

or, equivalently,

− ~2

2m

d2Ψ(x)
dx2

+ V (x)Ψ(x) = EΨ(x) (3.1)

Our potential energy of interest in this project is the double-well potential represented by

V (x) =
1
2
mω2x2 + ae−bx2

where

a, b are positive real constants
ω is the angular frequency
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so the Schrödinger equation becomes

− ~2

2m

d2Ψ(x)
dx2

+
(

1
2
mω2x2 + ae−bx2

)
Ψ(x) = EΨ(x)

At first, we used BWPT to calculate the 2nd-order energy eigenvalues. The result was not con-
vergent, ( see the calculation of using BWPT for calculating energy eigenvalues at the Appendix B
). Then we turned to employ shooting method to calculate the ground-state energy eigenvalues.

Multiplying the Schrödinger equation by − 2m
~2 gives

d2Ψ(x)
dx2

− m2ω2x2

~2
Ψ(x)− 2mae−bx2

~2
Ψ(x) +

2mE

~2
Ψ(x) = 0

d2Ψ(x)
dx2

+

(
2mE

~2
− m2ω2x2

~2
− 2mae−bx2

~2

)
Ψ(x) = 0 (3.2)

Substituting x = αξ into Eq.(3.2), we obtain

1
α2

d2Ψ(ξ)
dξ2

+

[
2mE

~2
− m2ω2

~2
(α2ξ2)− 2mae−b(α2ξ2)

~2

]
Ψ(ξ) = 0

multiplying by α2 , we get

d2Ψ(ξ)
dξ2

+

[
2mE

~2
α2 − m2ω2

~2
(α4ξ2)− 2maα2e−b(α2ξ2)

~2

]
Ψ(ξ) = 0 (3.3)

from Eq.(3.3), we set

m2ω2α4

~2
= 1

so

α4 =
~2

m2ω2

So that Eq.(3.3) becomes

d2Ψ(ξ)
dξ2

+
[
2E

~ω
− ξ2 − 2a

~ω
e−b( ~

mω ξ2)

]
Ψ(ξ) = 0 (3.4)

By setting

ε =
2E

~ω
and

m, ~, ω = 1

we arrive at

d2Ψ(ξ)
dξ2

+ [ε− ξ2 − 2ae−bξ2
]Ψ(ξ) = 0 (3.5)

9



We can find the numerical solutions to Eq.(3.5) by deviding ξ into many small segments, each of ∆ξ
in length.
The second derivative in Eq.(3.5) can be approximated in finite difference form as follows [3],

d2Ψ(ξ)
dξ2

≈ Ψi+1 + Ψi−1 − 2Ψi

(∆ξ)2
(3.6)

substituting Eq.(3.6) into Eq.(3.5), we have

Ψi+1 = 2Ψi −Ψi−1 − (∆ξ)2(ε− ξ2 − 2ae−bξ2
)Ψi, i = 2, 3, 4, ... (3.7)

where

∆ξ = ξi − ξi−1 or ∆ξ = ξi+1 − ξi

10



Chapter 4

Calculation

Let us introduce new variables for using in calculating the ground-state energy eigenvalues and
wave function of the Gaussian double-well potential.

1. ξmin is the initial position in the study range.
2. ξmax is the final position in the study range.
3. ξ is any position in the study range.
4. N is a number of grids in the study range.
5. ∆ξ is the length of grid such that

∆ξ =
ξmax − ξmin

N

4.1 Calculation steps

1. Input the initial position ( ξmin ) and the final position ( ξmax).
2. Input the period amount.
3. Input the initial condition from Eq.(3.7)

Ψi+1 = 2Ψi −Ψi−1 − (∆ξ)2(ε− ξ2 − 2ae−bξ2
)Ψi, i = 2, 3, 4, ...

Find the initial value for calculation. Input the initial condition by setting Ψ1 = 0 for the position
imprisons and set dΨ

dξ = 1 from the slope of position 1 and position 2.

dΨ
dξ

≈ Ψ2 −Ψ1

∆ξ

Hence,

1 ≈ Ψ2 − 0
∆ξ

which is equivalent to

Ψ2 ≈ ∆ξ

11



By inputting Ψ1 and Ψ2 as two initial values for calculation, we can find Ψ3 from Eq.(3.7). In
the same way, we can find Ψ4 by substituting Ψ2 and Ψ3 in the equation. Keep doing this, we can
findΨn .

4. Try 1 value of into Eq.(3.7) until Ψ(ξmax) approaches zero at an acceptable order ( such as ).
That value of ε is considered correct.

5. Plot wave function by the graph related to i .
6. Change wave function corresponding to any position ξ .

12



Chapter 5

Results (Tables)

5.1 Table displaying the ground-state energy eigenvalues of

Gaussian double-well potential

ground-state energy via first excited-state energy spacing between

b shooting method via shooting method 2 lowest

(E0) (E1) energy eigenvalues

500 1.48356037030 2.998600963 1.515040593

1000 1.45282024180 2.998062431 1.545242190

5000 1.45149691830 2.998039484 1.546542565

Table 5.1: The energy eigenvalues of double-well potential from shooting method

by setting a = 6, n = 0 and N = 100 at range 4 (ξmax = 4).

(All energies are in the ~ω
2 unit.)
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ground-state energy via 1st-order P.T. difference

b shooting method energy eigenvalues between

(E0) energy eigenvalues

500 1.48356037030 1.26806 0.21550

1000 1.45282024180 1.18964 0.26318

5000 1.45149691830 1.08484 0.36665

Table 5.2: The ground-state energy eigenvalues of double-well potential from shooting

method and 1st-order energy eigenvalues by setting a = 6, n = 0 and N = 100

at range 4 (ξmax = 4).

(All energies are in the ~ω
2 unit.)

ground-state energy via first excited-state energy spacing between

b shooting method via shooting method 2 lowest

(E0) (E1) energy eigenvalues

500 1.54682531737936 2.9970527075350 1.450227390

1000 1.54053846991773 2.9968727092930 1.456334240

5000 1.54049571048570 2.9968714873100 1.456375777

Table 5.3: The energy eigenvalues of double-well potential from shooting method

by setting a = 6, n = 0 and N = 100 at range 5 (ξmax = 5).

(All energies are in the ~ω
2 unit.)
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ground-state energy via 1st-order P.T. difference

b shooting method energy eigenvalues between

(E0) energy eigenvalues

500 1.54682531737936 1.26806 0.27876

1000 1.54053846991773 1.18964 0.35089

5000 1.54049571048570 1.08484 0.45565

Table 5.4: The ground-state energy eigenvalues of double-well potential from shooting

method and 1st-order energy eigenvalues by setting a = 6, n = 0 and N = 100

at range 5 (ξmax = 5).

(All energies are in the ~ω
2 unit.)
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ground-state energy via first excited-state energy spacing between

a shooting method via shooting method 2 lowest

(E0) (E1) energy eigenvalues

0.1 1.00933250270 - -

0.2 1.01900002616 - -

0.3 1.02860423416 - -

0.4 1.03814551760 - -

0.5 1.04762426650 - -

0.6 1.05704086992 - -

0.7 1.06639571600 - -

0.8 1.07568919170 - -

0.9 1.08492168320 - -

1.0 1.09409357550 - -

1.1 1.10320525266 2.9981426750 1.894937423

1.2 1.11225709740 2.9981520500 1.885894953

1.3 1.12124949160 2.9981614250 1.876911934

1.4 1.13018281580 2.9981707980 1.867987983

1.5 1.13905744950 2.9981801710 1.859122722

1.6 1.14787377100 2.9981895430 1.850315772

1.7 1.15663215730 2.9981989130 1.841566756

1.8 1.16533298420 2.9982082830 1.832875299

1.9 1.17397662640 2.9982176520 1.824241026

2.0 1.18256345710 2.9982270200 1.815663563

3.0 1.26538830760 2.9983206460 1.732932339

4.0 1.34293244700 2.9984141790 1.655481732

5.0 1.41554535720 2.9985076180 1.582964046

6.0 1.48356100010 2.9986009630 1.515039963

Table 5.5: The energy eigenvalues of double-well potential from shooting method

by setting b = 500, n = 0 and N = 100 at range 4 (ξmax = 4).

(All energies are in the ~ω
2 unit.)
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ground-state energy via 1st-order P.T. difference

a shooting method energy eigenvalues between

(E0) energy eigenvalues

0.1 1.00933250270 1.00447 0.00486

0.2 1.01900002616 1.00894 0.01006

0.3 1.02860423416 1.01340 0.01520

0.4 1.03814551760 1.01787 0.02027

0.5 1.04762426650 1.02234 0.02528

0.6 1.05704086992 1.02681 0.03023

0.7 1.06639571600 1.03127 0.03512

0.8 1.07568919170 1.03574 0.03994

0.9 1.08492168320 1.04021 0.04471

1.0 1.09409357550 1.04468 0.04941

1.1 1.10320525266 1.04914 0.05406

1.2 1.11225709740 1.05361 0.05864

1.3 1.12124949160 1.05808 0.06316

1.4 1.13018281580 1.06255 0.06763

1.5 1.13905744950 1.06702 0.07203

1.6 1.14787377100 1.07148 0.07639

1.7 1.15663215730 1.07595 0.08068

1.8 1.16533298420 1.08042 0.08491

1.9 1.17397662640 1.08489 0.08908

2.0 1.18256345710 1.08935 0.09321

3.0 1.26538830760 1.13403 0.13135

4.0 1.34293244700 1.17871 0.16422

5.0 1.41554535720 1.22338 0.19216

6.0 1.48356100010 1.26806 0.21550

Table 5.6: The ground-state energy eigenvalues of double-well potential from shooting

method and 1st-order energy eigenvalues by setting b = 500, n = 0 and

N = 100 at range 4 (ξmax = 4).

(All energies are in the ~ω
2 unit.)
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ground-state energy via first excited-state energy spacing between

a shooting method via shooting method 2 lowest

(E0) (E1) energy eigenvalues

0.1 1.01077303151888 - -

0.2 1.02208216422660 - -

0.3 1.03330267674510 - -

0.4 1.04443523657135 - -

0.5 1.05548050896693 - -

0.6 1.06643915689838 - -

0.7 1.07731184097890 - -

0.8 1.08809921941133 - -

0.9 1.09880194793249 - -

1.0 1.10942067975870 - -

1.1 1.11995606553275 - -

1.2 1.13040875327210 2.9969077536450 1.866499000

1.3 1.14077938831840 2.9969107753368 1.856131387

1.4 1.15106861328848 2.9969137969506 1.845845183

1.5 1.16127706802637 2.9969168184870 1.835639750

1.6 1.17140538955700 2.9969198399454 1.825514450

1.7 1.18145421204093 2.9969228613270 1.815468649

1.8 1.19142416673056 2.9969258826316 1.805501716

1.9 1.20131588192760 2.9969289038580 1.795613022

2.0 1.21112998294193 2.9969319250076 1.785801943

3.0 1.30513756608160 2.9969621322430 1.691824566

4.0 1.39204798753092 2.9969923317410 1.604944344

5.0 1.47243214769530 2.9970225235040 1.524590376

6.0 1.54682531737936 2.9970527075350 1.450227390

Table 5.7: The energy eigenvalues of double-well potential from shooting method by

setting b = 500, n = 0 and N = 100 at range 5 (ξmax = 5).

(All energies are in the ~ω
2 unit.)
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ground-state energy via 1st-order P.T. difference

a shooting method energy eigenvalues between

(E0) energy eigenvalues

0.1 1.01077303151888 1.00447 0.00630

0.2 1.02208216422660 1.00894 0.01314

0.3 1.03330267674510 1.01340 0.01990

0.4 1.04443523657135 1.01787 0.02656

0.5 1.05548050896693 1.02234 0.03314

0.6 1.06643915689838 1.02681 0.03962

0.7 1.07731184097890 1.03127 0.04604

0.8 1.08809921941133 1.03574 0.05235

0.9 1.09880194793249 1.04021 0.05859

1.0 1.10942067975870 1.04468 0.06474

1.1 1.11995606553275 1.04914 0.07081

1.2 1.13040875327210 1.05361 0.07679

1.3 1.14077938831840 1.05808 0.08269

1.4 1.15106861328848 1.06255 0.08851

1.5 1.16127706802637 1.06702 0.09425

1.6 1.17140538955700 1.07148 0.09992

1.7 1.18145421204093 1.07595 0.10550

1.8 1.19142416673056 1.08042 0.11100

1.9 1.20131588192760 1.08489 0.11642

2.0 1.21112998294193 1.08935 0.12177

3.0 1.30513756608160 1.13403 0.17110

4.0 1.39204798753092 1.17871 0.21333

5.0 1.47243214769530 1.22338 0.24905

6.0 1.54682531737936 1.26806 0.27876

Table 5.8: The ground-state energy eigenvalues of double-well potential from shooting

method and 1st-order energy eigenvalues by setting b = 500, n = 0 and

N = 100 at range 5 (ξmax = 5).

(All energies are in the ~ω
2 unit.)
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Chapter 6

Results (Graphs)

6.1 Comparing the wave function of Gaussian double-well

potential from shooting method by setting a = 6, n = 0,

N = 100, varying b at range 4 (ξmax = 4) and range 5

(ξmax = 5).

(All energies are in the ~ω
2 unit)
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Figure 6.1: Ground-state energy via shooting method (E0), b = 500 at range 4 (ξmax = 4.)

Figure 6.2: First excited-state energy via shooting method (E1), b = 500 at range 4 (ξmax = 4.)

Figure 6.3: Ground-state energy via shooting method (E0), b = 1000 at range 4 (ξmax = 4.)
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Figure 6.4: First excited-state energy via shooting method (E1), b = 1000 at range 4 (ξmax = 4.)

Figure 6.5: Ground-state energy via shooting method (E0), b = 5000 at range 4 (ξmax = 4.)

Figure 6.6: First excited-state energy via shooting method (E1), b = 5000 at range 4 (ξmax = 4.)
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Figure 6.7: Ground-state energy via shooting method (E0), b = 500 at range 5 (ξmax = 5.)

Figure 6.8: First excited-state energy via shooting method (E1), b = 500 at range 5 (ξmax = 5.)

Figure 6.9: Ground-state energy via shooting method (E0), b = 1000 at range 5 (ξmax = 5.)
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Figure 6.10: First excited-state energy via shooting method (E1), b = 1000 at range 5 (ξmax = 5.)

Figure 6.11: Ground-state energy via shooting method (E0), b = 5000 at range 5 (ξmax = 5.)

Figure 6.12: First excited-state energy via shooting method (E1), b = 5000 at range 5 (ξmax = 5.)
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Chapter 7

Analysis and Conclusion

7.1 Analysis

7.1.1 In case of using BWPT to calculate the energy-eigenvalues

The result when we use 2nd-order BWPT and Mathematica program to calculate the energy-
eigenvalues was not accomplished, the P.T. series becomes divergent, ( see the calculation of using
BWPT for calculating energy eigenvalues at the Appendix B ).

7.1.2 In case of using Shooting Method to calculate the energy-eigenvalues

The energy eigenvalues at range 4 ( ξmax = 4 ) and at range 5 ( ξmax = 5 ) are in harmony.

By setting a = 6, and varying b = 500, 1000, 5000, we obtain the followings :

1. The ground-state energy eigenvalues in case of small b is larger than those in case of large
b ’s.

2. The spacing between ground-state energy eigenvalues ( E0) and first excited-state (E1 ) in
case of small b is smaller than those in case of large b ’s.

3. The difference between energy eigenvalues and 1st-order P.T. energy eigenvalues in case of
small b is smaller than those in case of large b ’s.

By setting b = 500, and varying a = 0.1, 0.2, 0.3,, 6 we see that

1. The ground-state energy eigenvalues in case of small b is smaller than those in case of large
b ’s.

2. The spacing between ground-state energy eigenvalues ( E0) and first excited-state (E1 ) in
case of small b is larger than those in case of large b ’s.

3. The difference between energy eigenvalues and 1st-order P.T. energy eigenvalues in case of
small b is smaller than those in case of large b ’s.
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7.2 Conclusions

1. We may not use 2nd-order BWPT to calculate the ground-state energies since the BWPT
series is divergent. ( see the calculation of using BWPT for calculating energy eigenvalues at the
Appendix B ).

2. Similarly, we cannot use BWPT to calculate higher-order energy eigenvalues.
3. We can, however, calculate energy eigenvalues by using 1st-order BWPT which is equivalent

to the 1st-order RSPT since it is of non-series form.
4. Unlike BWPT, the shooting method is applicable. We can, in principle, calculate higher

excited-state energies via this method.
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Appendix A

One dimensional double-well

potential

A.1 Introduction

The importance of the double-well potentials in Quantum Mechanics, Condensed Matter Physics,
Statistical Physics or Field Theory can hardly be overestimated. The Schrödinger equation has no
exact, analytical solution with double-well potentials. It can be solved by using approximate methods
or numerical methods. On the other hand, in Quantum Mechanics there exist potentials for which
it is possible to find a number of eigenvalues and associated eigenfunctions exactly and in a closed
form. These systems are said to be Quasi-Exactly Solvable (QES) and this property is ultimately
connected with the existence of a hidden dynamical algebra.

A.2 Double-well potential

A double-well consists of two wells identical to Fig. A.1 (a), separated by a distance somewhat
larger than the width of each well ( Fig. A.1 (b) ). Consider first the lowest,even energy state
in the single-well. We see that to match slopes at the edges of the well the wave function on the
inside must match the falling, exponential curves on both sides outside the well. This determines
the rate at which the exponential falls, and which thus determines the binding energy. If we look at
the double-well, the wave function must be symmetric about the midpoint between the two wells.
However, this does not prevent the wave function inside the well on the right, for example, from
dropping quite a bit more on the far right side, and still connecting to a fairly flat curve between the
wells, as shown in Fig. A.1 (b). Thus a double-well can bind a particle much more strongly than a
single-well, not because two wells are somewhat stronger than one well,but rather because one can
maintain an almost constant wave function between the two potentials. This means that the bound
particle has a high probability of being anywhere between the two wells.
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Figure A.1: (a) Wave function for the lowest bound state in a single square well potential.

(b) Wave function for the lowest bound state in a double well. Note that the wave functions

at the inner edges of the wells do not have to fall off as rapidly to satisfy the continuity

condition for u(x) and du(x)
dx

, allowing for a large wave function between the wells and

a steeper drop-off at the outer edges.

For the first-excited state ( odd under reflection ), the wave function must go through zero at
the midpoint, so that it matches on to a flatter falling curve at the outer edges of the wells. This
implies a smaller binding, as expected. When the wells are very far apart, then, roughly speaking, a
particle bound on the right side does not know that there is a well on the left. If the wave functions
for the two case are uR(x) and uL(x) , then the symmetric wave function is

ueven(x) =
1

Ne
(uR(x) + uL(x))

while the antisymmetric wave function, corresponding to the first excited state, is

uodd(x) =
1

N0
(uR(x)− uL(x))

The normalization factors differ slightly because of the nonvanishing overlap of the uR(x) and uL(x)
. If the wells were so far apart that there was no overlap, then the normalization constants would
each be 1

√
2 . Because of the small overlap, the eigenvalues are not quite the same. Thus the

uR(x) and the uL(x) do not represent stationary states. For example, the wave function of aparticle
localized on the right will be approximately given by

u(x) ≈ C (ueven(x) + uodd(x))

If we start with a particle ” on the right ” at time t = 0, then at a later time the wave function will
be

u(x, t) = C
(
ueven(x)e−iEet/~ + uodd(x)e−iE0t/~

)

= Ce−iEet/~(ueven(x) + uodd(x)e−i(E0−Ee)t/~)
≡ Ce−iEet/~(ueven(x) + uodd(x)e−i∆Et/~)
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Now after a time t such that e−i∆Et/~ = -1 that is, after a time

t =
~π
∆E

=
~π

E0 − Ee

That wave function becomes one that is approximately localized on the left side. The particle thus
oscillates between the two wells with a period 2t that is, with an angular frequency

ω =
∆E

~
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Appendix B

The calculation of using BWPT for

calculating energy eigenvalues

30



Appendix C

Example of Mathematica program

Example of writing ground-state energy eigenvalues calculation and wave function program by
using shooting method and perturbation theory.

Example 1 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 500, n = 0 and N = 100 at range 4 ( ξmax = 4 ).
(All energies are in the ~ω

2 unit. )

Example 2 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 1000, n = 0 and N = 100 at range 4 ( ξmax = 4 ).
(All energies are in the ~ω

2 unit. )

Example 3 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 5000, n = 0 and N = 100 at range 4 ( ξmax = 4 ).
(All energies are in the ~ω

2 unit. )

Example 4 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 500, n = 0 and N = 100 at range 5 ( ξmax = 5 ).
(All energies are in the ~ω

2 unit. )

Example 5 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 1000, n = 0 and N = 100 at range 5 ( ξmax = 5 ).
(All energies are in the ~ω

2 unit. )

Example 6 The ground-state energy eigenvalues of double-well potential from shooting method
by setting a = 6, b = 5000, n = 0 and N = 100 at range 5 ( ξmax = 5 ).
(All energies are in the ~ω

2 unit. )
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