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Abstract

We use non-linear Schrödinger-type (NLS) formulation to describe non-flat stan-
dard Friedmann cosmology which features a barotopic perfect fluid and a canon-
ical scalar field. All cosmological dynamical quantities are expressed in term of
Schrödinger quantities as in time-independent non-relativistic quantum mechanics.
We assume the expansion of universe to be phantom type. We report all Schrödinger-
analogous quantities of the scalar field cosmology and we analyze the effective equa-
tion of state coefficient. We show that in a non-flat universe, assuming a = (ta −
t)q, q < 0, there is no fixed weff value for the phantom divide. In a closed universe,
the phantom expansion could happen with weff < −1/3 while in open universe, it
could happen even with weff > −1/3.
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Chapter 1

Introduction

1.1 Background

The present universe is in accelerating phase of expansion. This is confirmed via
several astrophysical observations and the contemporary modern cosmology now is
built based on this fact. Scalar field is believed to cause the acceleration. Although,
it is predicted by high energy physics theories, its existence has not yet been revealed
by either observations or experiments. The accelerating expansion rate, with data
from many sources, renders the field possessing phantom equation of state which
gives phantom expansion function a ∝ (ta − t)q, where q < 0 in flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) universe. The non-linear Schrödinger (NLS)-
type formulation cosmology is an alternative form of cosmological equations. There
have been a few works on using power-law and de-Sitter expansion in the NLS-type
context [2, 3]. Here we will investigate the phantom expansion in the context of
NLS-type formulation.

1.2 Objectives

• To study aspects of phantom expansion and phantom field

• To study the NLS formulation

• To express phantom expansion in both Friedmann and NLS formulations

• To analyse of effective Equation of state in both Friedmann and NLS formula-
tions
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1.3 Frameworks

• The universe is assumed to be maximally symmetric.

• The expansion is assumed to be phantom, i.e. a ∼ (ta − t)q, q < 0.

• Fluid components are canonical scalar field and cold dark matter.

• Non-zero curvature is allowed.

1.4 Expected use of the project

• Obtaining NLS - quantities for phantom expansion in FLRW universe.

• Obtaining Schrödinger wave function u(x) and Schrödinger potential P (x) for
phantom expansion.

• Obtaining the effective equation of state coefficient value for phantom expansion
in presence of barotropic fluid matter.

• Knowing effect of spatial curvature to the effective equation of state in phantom
expansion universe.

1.5 Tools

• A high efficiency personal computer.

• Software e.g. LATEX2e, WinEdit, Maple, and Photoshop.

• High-speed internet.

• Pre-print research article database (http://arxiv.org).

1.6 Procedure

• Studying concept of FLRW cosmology and topics on phantom field.

• Surveying research literatures on NLS-formulation of scalar field cosmology and
its applications.

• Re-expressing the equation of state coefficient w in NLS form.
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• Applying a = (ta − t)q in the equation of state coefficient.

• Analyzing the equation of state coefficient value.

1.7 Outcome

• Obtaining the wave function of NLS-type equation for the phantom expansion.

• Knowing behavior of the effective equation of state coefficient for the phantom
expansion.
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Chapter 2

Standard FLRW cosmology

2.1 Introduction

After Hubble’s observation in 1920s, we know that our universe are expanding.
Nowadays, major models of universe have been being developed from general rela-
tivistic theory. We assume that the universe are both isotropic and homogeneous,
which are criteria of cosmological principles. Then, the Friedmann equation and
acceleration equation describe our universe from these assumptions.

2.2 Hubble’s law

In 1929, Edwin Hubble found that our galaxies is not alone but one of hundreds
which nowadays known to be billions. Observations show that distant galaxies’s
spectra are redshifted. He announced that almost all galaxies appear to be moving
away from us, and he found an empirical law,

v = H0R. (2.1)

This law is known as Hubble’s law. It says that our universe is expanding. H0 is
Hubble constant at the present time (t0), and Hubble parameter H depends on scale
factor a(t) which implies relative size of the universe. H is time-dependent, i.e.

H =
ȧ(t)

a(t)
. (2.2)
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2.3 Cosmological principle

Large-scale observations today support the idea that the universe is both isotropic
and homogeneous. Both facts are linked to what is called the cosmological principle
which is general version of the Copernican principle but the cosmological principle has
no foundation in any particular physical model or theory, i.e. it can not be ‘proved’
in a mathematical sense. However, it has been supported by numerous observations
and has great value from purely empirical grounds.

The homogeneity states that conditions of universe and the laws of physics are
universal. The same physical laws valid here on Earth also works at distant stars,
galaxies, and all parts of the universe. Assuming that physical constants are also
unchange from place to place within the universe, and are unchange over time, im-
plying the ‘perfect’ cosmological principle. The laws of nature are unchange and
things we observe in the past are controlled under the same physics as things today.
The isotropic universe looks the same in all directions and its energy is uniformly
distributed in space. The isotropy is true only on very large scales because on smaller
scales the universe is non-uniform.

Evidence for the isotropy is the measurements of cosmic microwave background
(CMB). The CMB is smooth up to level of 10−5K, therefore supporting isotropy of
space.

2.4 Cosmological equations

2.4.1 Friedmann equation

We describe the universe in terms of four-dimensional spacetime. The geometric
structure of spacetimes is described by the FLRW metric which is both homogeneous
and isotropic. The time evolutions of spacetime is given by a scale factor a which
evolves with time according to the Friedmann equation,

(
1

a

da

dt

)2

=
8πGρ

3
− kc2

a2
. (2.3)

Here ρ is the density of the universe. G is the gravitational constant. c is the
speed of light. k is the curvature constant that appears in FLRW metric. Defining
H = ȧ/a, where ˙ denotes time-derivative, therefore,

H2 =
8πGρ

3
− kc2

a2
. (2.4)

The Friedmann equation is conservation equation of energy describing evolution of
the universe according to its matter-energy contents. The terms on the right-hand
side of Friedmann equation represent density and curvature effects on the expansion.
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2.4.2 Acceleration equation

The Einstein field equation with FLRW metric also give the fluid equation,

ä

a
= −4πG

3
(3p + ρ) . (2.5)

This equation is called the acceleration equation. It tells us how the rate of
expansion of the universe changes. Since k does not appear in this equation, therefore
acceleration equation is independent of curvature.

2.4.3 Fluid equation

The energy-momentum tensor in the FLRW universe is conserved. Then, we can
find the equation,

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0 . (2.6)

Here p is pressure. The fluids are assumed to be perfect, i.e. no heat transfer and
isotropic pressure. The equation of state of the perfect fluids is,

p = ρc2w. (2.7)

Here w is the equation of state coefficient, w = 0 is for dust, w = 1/3 is for
radiation, and w < −1/3 is for dark energy1. We set c = 1, the fluid equation can be
rewritten as,

ρ̇ + 3Hρ(1 + w) = 0. (2.8)

The fluid equation is, in fact, the conservation equation of energy and matter. The
first term shows the rate of change in density, and the second term is the kinetic
energy change due to gravitational potential energy.

For the barotropic fluid, its equation of state coefficient wm is written in term of
n. We define wm ≡ (n − 3)/3 so that n = 3(1 + wm). The fluid equation of the
barotropic fluid is written as

ρ̇m = −nHρm, (2.9)

and the solution is

ρm =
D

an
. (2.10)

The barotropic pressure is then

pm =
(n− 3)D

3an
. (2.11)

1for cosmological constant, wΛ = −1
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2.5 Types of energy and matter

The value of the equation of state coefficient represents how pressure depends
on density and it represents type of energy and matter in the universe, i.e. dust,
radiation and dark energy. we call the matters that are non-relativistic, dust, e.g.
dark matter, atom, stars and others. Dust possesses zero w, while the equation of
state coefficient of radiation is 1/3. Dark energy is a hypothetical form of energy that
permeates all over space. It increases with rate of expansion of the universe, and its
equation of state coefficient is less than −1/3. In the universe, only about 4% of the
total energy density can be observed directly. About 23% is thought to be composed
of dark matter. The remaining 73% is thought to consist of dark energy.
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Chapter 3

Scalar field dark energy

3.1 Acceleration universe

Supernovae type Ia data and cosmic microwave background observation show
strong evidence of present acceleration phase of the universe [4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15] while inflation model of the early universe is widely accepted in
cosmology [16, 17, 18, 19, 20, 21]. Causes of acceleration and of inflation are both
believed to result from scalar field with time-dependent equation of state coefficient
wφ(t) < −1/3 or cosmological constant with wΛ = −1

3.2 Phantom field

Phantom field was first introduced in Hoyle’s version of steady state theory [22, 23].
In Hoyle and Narlikar theory of gravitation, the action of the phantom field is given
by

S =

∫
d4x

√−g

[
1

2
(∇φ)2 − V (φ)

]
. (3.1)

Where (∇φ)2 = gµν∂µφ∂νφ and V (φ) is potential of the field. In flat FLRW spacetime,
variation of the action with respect to φ gives

ε
[
φ̈ + 3Hφ̇

]
+

dV

dφ
= 0 . (3.2)

When ε = −1, we call the scalar field phantom. We obtain energy density and pressure
density of the scalar field as

ρφ = ε
φ̇2

2
+ V (φ) , pφ = ε

φ̇2

2
− V (φ) . (3.3)
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We can find the equation of state of phantom field as

wφ =
pφ

ρφ

=
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (3.4)

Then we obtain wφ < −1 for φ̇2 < 2V (φ).

3.3 Cosmology with canonical scalar field

and barotropic perfect fluid

We consider that ingredients of the universe are barotropic fluid and scalar field.
The equation of state of barotropic fluid is given by

pm = wmρm , (3.5)

and
pφ = wφρφ , (3.6)

for scalar field. Total density and total pressure are

ρtot = ρm + ρφ , (3.7)

and
ptot = pm + pφ . (3.8)

The effective equation of state can be written as

weff =
ρφwφ + ρmwm

ρtot

. (3.9)

The Friedmann equation and the acceleration equation in FLRW universe are then
given by

H2 =
κ2

3
ρtot − k

a2
, (3.10)

ä

a
= −κ2

6
ρtot(1 + 3weff) , (3.11)

where κ2 ≡ 8πG = 1/M2
P, G is Newton’s gravitational constant, MP is reduced Planck

mass, and k is spatial curvature. The energy densities ρm and ρφ satisfy

ρ̇φ + 3H(1 + wφ)ρφ = 0 , (3.12)

˙ρm + 3H(1 + wm)ρm = 0 . (3.13)
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The equation of state coefficient of barotropic fluid is constant. We use equations
(2.10), (3.3), and (3.5) to calculate the scalar field potential. From the acceleration
equation, (2.5) we get

Ḣ = −κ2

2
(pm + ρm + pφ + ρφ) +

k

a2
. (3.14)

Inserting density and pressure into equation (3.14), then

Ḣ = −κ2

2

[
εφ̇2 +

D

an
+

(
n− 3

3

)
D

an

]
+

k

a2
. (3.15)

The equation (3.15) is rewritten as

εφ̇(t)2 = − 2

κ2

[
Ḣ − k

a2

]
− nD

3an
. (3.16)

From the Friedmann equation (3.10),

H2 =
κ2

3
(ρm + ρφ)− k

a2
, (3.17)

we substitute density into equation (3.17), then

H2 =
κ2

3

[
1

2
εφ̇2 + V (φ) +

D

an

]
− k

a2
. (3.18)

Using equation (3.16) into equation (3.18) gives

H2 =
κ2

3

{
1

2

[
− 2

κ2

(
Ḣ − k

a2

)
− nD

3an

]
+ V (φ) +

D

an

}
− k

a2
. (3.19)

The potential V (φ), then, can be expressed as

V (φ) =
3

κ2

[
H2 +

Ḣ

3
+

2k

3a2

]
+

(
n− 6

6

)
D

an
. (3.20)
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Chapter 4

NLS - formulation of scalar field

cosmology

Formulation of canonical scalar field cosmology with barotropic perfect fluid, can
be expressed as non-linear Ermakov-Milne-Pinney equation as shown recently [24, 25,
26, 27, 28]. However, non-Ermakov-Milne-Pinney equation (EMP) for such system
can be written in form of a non-linear Schrödinger type equation (NLS). The solution
of the NLS-type equation corresponds to solutions of the generalized EMP equation of
scalar field cosmology [29, 30]. The NLS-type formulation was concluded and shown
in case of power-law expansion in Ref. [2] where all Schrödinger-type quantities
corresponding to scalar field cosmology are worked out. NLS-type formulation also
provides an alternative way of solving for the scalar field exact solution in various
cases even with non-zero curvature [3]. The field equations (2.4) and (2.5) of canonical
scalar field with barotropic perfect fluid corresponding to non-linear Schrödinger-type
equation,

d2

dx2
u(x) + [E − P (x)] u(x) = −nk

2
u(x)(4−n)/n . (4.1)

The solution for this NLS-equation is related to scale factor in cosmology and it is
satisfied for

u(x) ≡ a(t)−
n
2 , (4.2)

E ≡ −κ2n2

12
D , (4.3)

P (x) ≡ nκ2

4
a(t)nφ̇(t)2 . (4.4)

The mapping from cosmic time t to the variable x is via,

x = σ(t), (4.5)
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such that [1-2],
σ̇(t) = u(x) , (4.6)

φ(t) = ψ(x) =
±2

κ
√

n

∫ √
P (x)

ε
dx. (4.7)

If P (x) = 0 and n = 0, the ψ(x) in equation (4.7) does not exist. Hence, P (x) and
n must not be zero at the same time. If P (x) 6= 0 and n 6= 0, then inverse function
of ψ(x) exists as ψ−1(x). Therefore x(t) = ψ−1 ◦ φ(t) and the scalar field potential,
V ◦ σ−1(x) can be written as

V (t) =
12

κ2n2

(
du

dx

)2

− 2u2

κ2n
P (x) +

12u2

κ2n2
E +

3ku4/n

κ2
. (4.8)
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Chapter 5

NLS-formulation with phantom

expansion

5.1 Phantom expansion

The phantom expansion are the expansion with a ∼ (ta − t)q when q < 0 in flat
universe. The Schrödinger wave function u(x) are related to standard cosmological
quantity by using equation (4.2), (4.5) and (4.6).

u(x) = ẋ(t) = (ta − t)−qn/2. (5.1)

Simple integration of (5.1), we found relation between x and cosmic time t as,

x(t) =

∫
(ta − t)−qn/2dt ,

= −
∫

(ta − t)−qn/2d(ta − t) ,

=

(
2

qn− 2

)
(ta − t)(2−qn)/2 .

x0 is intergrating constant and we define β ≡ (qn− 2)/2, then

x(t) =
1

β
(ta − t)−β + x0. (5.2)

13



Then, we rewrite the cosmic time, t(x). From (5.2),

x(t) =
1

β
(ta − t)−β + x0 ,

(x− x0) =
1

β
(ta − t)−β ,

β(x− x0) = (ta − t)−β ,

[β(x− x0)]
−1/β = (ta − t) ,

ta − [β(x− x0)]
−1/β = t(x).

We have the cosmic time in form of x as,

t(x) = ta − 1

[β(x− x0)]
1
β

. (5.3)

Now, the Schrödinger wave function of NLS-type equation, u(x) in equation (5.1) can
be written in term of x by using equation (5.3),

u(x) = (ta − t)−qn/2 ,

=

[
ta −

(
ta − 1

[β(x− x0)]
1
β

)]−qn/2

,

u(x) = [β(x− x0)]
qn/qn−2. (5.4)

For the phantom expansion, εφ̇(t)2 in equation (3.16) can also be rewritten in term
of cosmic time, t,

εφ̇(t)2 = − 2

κ2

[
Ḣ − k

a2

]
− nD

3an
,

= − 2

κ2

[
aä− ȧ2

a2
− k

a2

]
− nD

3an
,

= − 2

κ2

[(
ä

a

)
−

(
ȧ

a

)2

− k

a2

]
− nD

3an
,

= − 2

κ2

[(
q(q − 1)(ta − t)q−2

(ta − t)q

)
−

(
q(ta − t)q−1

(ta − t)q

)2

− k

(ta − t)2q

]
− nD

3(ta − t)nq
,

εφ̇(t)2 =
2q

κ2(ta − t)2
+

2k

κ2(ta − t)2q
− nD

3(ta − t)qn
. (5.5)
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P (t) in equation (4.4) is found by using equation (5.5),

P (t) =
nκ2

4
a(t)nεφ̇(t)2 ,

=
nκ2

4
(ta − t)nq

[
2q

κ2(ta − t)2
+

2k

κ2(ta − t)2q
− nD

3(ta − t)qn

]
,

P (t) =
qn

2
(ta − t)nq−2 +

kn

2
(ta − t)q(n−2) − κ2n2D

12
. (5.6)

Then, using equation (5.3) and (5.6) to find P (x),

P (x) =
qn

2
(ta − t)nq−2 +

kn

2
(ta − t)q(n−2) − κ2n2D

12
,

=
qn

2
[β(x− x0)]

−nq−2
β +

kn

2
[β(x− x0)]

− q(n−2)
β − κ2n2D

12
,

P (x) =
2qn

(qn− 2)2(x− x0)2
+

kn

2

[
2

(qn− 2)(x− x0)

] 2q(n−2)
(qn−2)

− κ2n2D

12
. (5.7)

The scalar field potential can be obtained from equation (3.20),

V (φ) =
3

κ2

[
H2 +

Ḣ

3
+

2k

3a2

]
+

(
n− 6

6

)
D

an
,

=
3

κ2

[
ȧ2

a2
+

1

3

(
ä

a
+

ȧ2

a2

)
+

2k

3a2

]
+

(
n− 6

6

)
D

an
,

=
3

κ2

(
2ȧ2

3a2
+

ä

3a
+

2k

3a2

)
+

(
n− 6

6

)
D

an
,

=
3

κ2

[
2q(ta − t)2q−2

3(ta − t)2q
+

q(q − 1)(ta − t)q−2

3(ta − t)q
+

2k

3(ta − t)2q

]
+

(
n− 6

6

)
D

(ta − t)nq
,

V (φ) =
q(3q − 1)

κ2(ta − t)2
+

2k

κ2(ta − t)2q
+

(
n− 6

6

)
D

(ta − t)qn
. (5.8)

Wave function of the NLS-formulation is found to be non-normalizable [2] as seen in
Fig. 5.1 for case of phantom expansion with various types of barotropic fluid. Here
q is chosen to -6.666. In flat universe q = −6.666 can be attained when weff = −1.1.
Fig. 5.2 shows P (x) plot for three cases of k with dust and radiation. In there x0 = 1,
therefore P (x) goes to negative infinity at x = 1.
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Figure 5.1: Schrödinger wave function, u(x) when assuming phantom expansion. u(x)

depends on only q, n and ta but does not depend on k. Here we set ta = 1.0 and

q = −6.666. If k = 0, q = −6.666 corresponds to weff = −1.1

.

.
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Figure 5.2: Schrödinger potential in phantom expansion case for dust and radiation

fluids with k = 0,±1. Numerical parameters are as in the u(x) plots (Fig. 5.1). x0 is

set to 1. For non-zero k, there is only on real branch of P (x).
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5.2 The effective equation of state coefficient

The effective equation of state coefficient, weff in equation (3.9), can be written in
from of the cosmic time by using the phantom formulation. Starting with rewriting
the effective equation of state coefficient in equation (3.9) as

weff =
pφ + pm

ρφ + ρm

. (5.9)

Then, inserting the density and pressure from equation (2.10), (2.11) and (3.3) into
equation (5.9) and using equation (5.5) and (5.8) to find effective equation of state
coefficient,

weff =
φ̇2

2
− V (φ) + (n−3)D

3an

φ̇2

2
+ V (φ) + D

an

=

[
q

κ2(ta−t)2
+ k

κ2(ta−t)2q − nD
6(ta−t)nq

]
−

[
q(q−1)

κ2(ta−t)2
+ 2k

κ2(ta−t)2
+ (n−6

6
) D

(ta−t)nq

]
+

(
n−3

3

)
D

(ta−t)nq[
q

κ2(ta−t)2
+ k

κ2(ta−t)2q − nD
6(ta−t)nq

]
+

[
q(q−1)

κ2(ta−t)2
+ 2k

κ2(ta−t)2
+ (n−6

6
) D

(ta−t)nq

]
+ D

(ta−t)nq

=

q−q(3q−1)
κ2(ta−t)2

+ k−2k
κ2(ta−t)2q +

(−n
6
− n−6

6
+ n−3

3

)
D

(ta−t)nq

q+q(3q−1)
κ2(ta−t)2

+ k+2k
κ2(ta−t)2q +

(−n
6

+ n−6
6

+ 1
)

D
(ta−t)nq

=

−3q2+2q
κ2(ta−t)2

+ k
κ2(ta−t)2q

3q
κ2(ta−t)2

+ 3k
κ2(ta−t)2q

=
(−3q2 + 2q)(ta − t)2q−2 − k

3q(ta − t)2q−2 + 3k
. (5.10)

There is a locus,

t = ta −
(−k

q2

)1/(2q−2)

, (5.11)

where weff becomes infinite along the locus. Hence for k = −1 the locus is t =
ta− q−1/(q−1). Hence for k = 0, the coefficient weff is infinite at q = 0 or t = ta. From
the equation above, weff does not depend on property, n or amount of the barotropic
fluid, D. If k = 0, the equation (5.10) reduces to

q =
2

3(1 + weff)
, (5.12)

and therefore the phantom condition weff < −1 implies q < 0 as it is known. This
corresponds to a condition,

wφ < −1− (1 + wm)
ρm

ρφ

. (5.13)
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Therefore for a fluid with wm > −1, wφ is always less than -1 in a flat universe. In
order to have the expansion a ∼ (ta − t)q in k = 0 universe, we must have weff < −1.
We find ρm/ρφ in term of t,

ρm

ρφ

=

D
(ta−t)nq

εφ̇2

2
+ V (φ)

,

=

D
(ta−t)nq[

q
κ2(ta−t)2

+ k
κ2(ta−t)2q − nD

6(ta−t)nq

]
+

[
q(3q−1)

κ2(ta−t)2
+ 2k

κ2(ta−t)2q +
(

n−6
6

)
D

(ta−t)nq

] ,

=

D
(ta−t)nq

3q2

κ2(ta−t)2
+ 3k

κ2(ta−t)2q − D
(ta−t)nq

,

ρm

ρφ

=
1

3q2

κ2D
(ta − t)nq−2 + 3k

Dκ2 (ta − t)(n−2)q − 1
. (5.14)

Using the equation (5.14) into (5.9), we write wφ in term of weff

wφ =

(
1 +

ρφ

ρm

)
weff − ρφ

ρm

wm ,

=


1 +

1(
3q2

Dκ2 (ta − t)nq−2 + 3k
Dκ2 (ta − t)(n−2)q − 1

)

 weff

− wm(
3q2

Dκ2 (ta − t)nq−2 + 3k
Dκ2 (ta − t)(n−2)q − 1

) ,

=

(
3q2

Dκ2 (ta − t)nq−2 + 3k
Dκ2 (ta − t)(n−2)q

)
weff −

(
n−3

3

)
(

3q2

Dκ2 (ta − t)nq−2 + 3k
Dκ2 (ta − t)(n−2)q − 1

) ,

wφ =

(
3q2

κ2 (ta − t)−2 + 3k
κ2 (ta − t)2q

)
weff −

(
n−3

3

)
D(ta − t)−qn

(
3q2

κ2 (ta − t)−2 + 3k
κ2 (ta − t)−2q −D(ta − t)−qn

) . (5.15)
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For equation (5.15), when D = 0 and k = 0, wφ = weff . Although we set only
D = 0, it gives the same result since wφ is independent of geometrical background.
However, since the expansion law is fixed, wφ is tied up with D implicitly via equation
(3.9). Note that wφ has value in range (−∞,−1] and [1,∞) so that the phantom
crossing can not happen when the scalar field is dominant. However, presence of the
dust barotropic fluid in the system gives a multiplication factor that is less than 1 to
the equation of state, i.e.

weff =

(
ρφ

ρφ + ρm

)
wφ . (5.16)

We can see that the phantom crossing from weff > −1 to weff < −1 can happen in
this situation. Fig. 5.3 presents parametric plots of the (weff , q, t) diagram for various
k values. From the figure, we see the locus in equation (5.11) where weff blows up. In
the parametric plots, the value of weff at any instance can be obtained if we know the
value of q. We need to know q from observation in order to know the realistic value
of weff or the other way around. Fig. 5.4 plotted from equation (5.7) setting ta = 1
and t = 0.7 shows that if k = ±1, q could be negative, i.e. phantom accelerating
expansion, ever when weff > −1. Regardless of ta and t,

lim
q→−∞

weff(q) = −1 and lim
q→+∞

weff(q) = −1

3
, (5.17)

for phantom expansion. In particular, for k = −1, weff > 0 could give q < 0 and weff

is infinite when lnq/ln(ta − t) + q = 1
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Figure 5.3: Parametric plots of weff for the phantom expansion a ∼ (ta− t)q in closed,

flat and open universe. Here ta is set 1.
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Figure 5.4: weff for the expansion a ∼ (ta− t)q in closed, flat and open universe. Here

ta is set to 1 and t is 0.7

22



Chapter 6

Conclusion

We consider a system of FLRW cosmology of scalar field and barrotropic fluid
assuming phantom acceleration. We have worked out cosmological quantities in the
NLS-formulation of the system for flat and non-flat curvature. The Schrödinger wave
functions are illustrated in Fig. 5.1 for various types of barotropic fluid. These
wave functions are non-normalizable. We show Schrödinger potential plots for dust
and radiation cases in closed, flat and open universe. The procedure considered
here is reverse to a problem solving in quantum mechanics in which the Schrödinger
potential must be known before solving for wave function. In NLS formulation, the
Schrödinger equation is non-linear and the wave function is expressed first by the
expansion function, a(t). Afterward, the Schrödinger potential is worked out based
on expansion function assumed. Moreover, the NLS total energy E is negative. We
also perform analysis on effective equation of state. We express weff in term of q and
k. In flat universe, there is no fixed weff value for the phantom divide. We show this
by analyzing equation (5.10) and by presenting illustrations in Fig. 5.3 and Fig. 5.4.
In these plots, even weff > −1, the expansion can still be phantom, i.e. q can be
negative. Especially, in k = −1 case, positive weff could also give q < 0. The value
of weff approaches -1 when q → (−∞) and -1/3 when q → (+∞). In open universe,
weff blows up when lnq/ln(ta − t) + q = 1.
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Appendix A

Maple code

A.1 Maple codes for Fig. 5.1

In Fig. 5.1, we use Maple 9 program to plot u(x) in there cases of curvature,
k = 0, ±1, by using following code to plot. First, we defined u(x) from equation
(5.4). Observation suggests that without assuming flat universe wφ = −1.06 then
we assume weff = −1.1 giving q = −6.66. We set q = −6.6666666666 and set
x0 = 1.0000000000. Then, we compute u(x) for each n value, n = 0, 2, 3 ,4 ,6.
Finally, we plot all u(x) together.

> restart;

> u(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));

> q:=-6.6666666666;

x0:=1.0000000000;

> n:=0;

> u0(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));

> n:=2;

> u2(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));

> n:=3;

> u3(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));
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> n:=4;

> u4(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));

> n:=6;

> u6(x):=(((n*q-2)/2)*(x-x0))^(n*q/(n*q-2));

> plot([u0(x),u2(x),u3(x),u4(x),u6(x)], x =-0.5..1.1, y=-0.2..11.5,

colour=[red,blue,black,green,orange]);

A.2 Maple codes for Fig. 5.2

In Fig. 5.2, we shown the plots of P (x) for radiation (n = 4) and dust (n = 3)
with k = 0, ±1. First, we define P (x) from equation (5.7). Then, we set q =
−6.6666666666, x0 = 1.000000000000, D = 1.0000000000 and κ = 1.000000000. We
define P (x) for radiation and dust with each k and plot them for each case.

> restart;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> q:=-6.6666666666;

x0:=1.0000000000;

d:=1.0000000000;

kappa:=1.000000000;

> k:=0.0; n:=3.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);

> k:=0.0; n:=4.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);
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> k:=1.0; n:=3.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);

> k:=1.0; n:=4.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);

> k:=-1.0; n:=3.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);

> k:=-1.0; n:=4.0;

> P(x):= ((n*q/2)*(((n*q-2)/2)*(x-x0))^(-2))+((n*k/2)*(((n*q-2)/2)*(x-x0))

^((-2*q*(n-2))/(n*q-2)))-(n*kappa)^2*d/12;

> plot(P(x),x=-4..6,y=0.2..-4.0);
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A.3 Maple codes for Fig. 5.3

We show 3-dimension plots of the effective equation of state coefficient for phantom
expansion case in open, flat and close universe. First, we define the effective equation
of state coefficient from equation (5.10) and set ta = 1.0000000000. Then, we set weff

for each curvature, k = 0, ±1, and plot them for each case.

> restart;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> ta:=1.0000000000;

> k:=0;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot3d(weff(q,t), t=0..1, q=-6..6,numpoints=2000);

> k:=-1;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot3d(weff(q,t), t=0..1, q=-6..6,numpoints=2000);

> k:=1;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot3d(weff(q,t), t=0..1, q=-6..6,numpoints=2000);
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A.4 Maple codes for Fig. 5.4

We show 2-dimension plots of effective equation of state coefficient for phantom
expansion case in open, flat and close universe with ta = 0.7. First, we define the
effective equation of state coefficient from equation (5.10) and set ta = 0.7 and ta =
1.000000000. Then, we set weff in each curvature, k = 0, ±1, and plot them for each
case.

> restart;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> ta:=1.0;

> t:=0.7;

> k:=1;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot(weff(q,t),q=-4..4,numpoints=2000);

> k:=0;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot(weff(q,t),q=-4..4,numpoints=2000);

> k:=-1;

> weff(q,t):=((-3*q^2+2*q)*(ta-t)^(2*q-2)-k)/((3*q^2)*(ta-t)^(2*q-2)+3*k);

> plot(weff(q,t),q=-4..4,numpoints=2000);
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