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Abstract

We study hyperfine structure of atomic hydrogen in context of electrodynamics
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Chapter 1

Introduction

1.1 Background

The electron and the proton in atomic hydrogen constitute tiny magnetic dipoles,
whose interaction energy varies according to the relative orientation of their dipole
moment. If the spins are parallel (or, more precisely,if they are in the triplet state), the
energy is somewhat higher than it is when the spins are antiparallel (the single state).
The difference is not large, amounting to a mere 6 × 10−6 eV, as compared with a
binding energy of 13.6 eV and typical fine structure splitting on the order of 10−4 eV[1].
Nevertheless, this hyperfine splitting is of substantial interest - indeed,before the
discovery of the 3◦ K cosmic background radiation[2], the 21 - cm line resulting from
hyperfine transitions in atomic hydrogen was widely regarded as the most pervasive
and distinctive radiation in the universe[3].

Hyperfine structure is not usually seem in elementary quantum mechanics text.
Although the calculation is quite simple and more accurately than fine structure.
The reason for avoiding it probably has to do with a rather subtle point in classical
electrodynamics, to wit, the calculation of energy of interaction between two magnetic
dipoles.Therefore undergraduate students can’t accessible in this part. A study of
hyperfine structure in detail serves as a nice application both of electrodynamics and
of quantum theory[4].

1.1.1 The hydrogen atom

The hydrogen atom consists of a heavy, essentially motionless proton (we may
put it at the origin), of charges +e, together with a much lighter electron (charges
−e) that orbits around it, bound by the mutual attraction of opposite charges (see
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-e
(Electron)

(Proton)
+e

Figure 1.1: The hydrogen atom

Fig. 1.1) from Coulomb’s law, the potential energy is

V (r) = −
e2

4πǫ0

1

r
(1.1)

where r is the hydrogen atom radius and e is the electron charge.
The time -independent Schrödinger equation for the hydrogen atom is written

as

−
~

2

2m
∇2ψ + V ψ = Eψ (1.2)

where E is eigenvalue or energy. With separating variable, we find that the angular
dependence of ψ is the spherical harmonics Y m

ℓ (θ, φ) . The radial part, R(r), satisfies
the equation

−
~

2

2m

1

r2

d

dr

(

r2dR

dr

)

−
e2

4πǫ0r
R +

~
2

2m

ℓ(ℓ+ 1)

r2
R = ER (1.3)

For bound states, R → 0 as r → ∞, and R is finite at the origin, r = 0. We do not
consider continuum states with positive energy. Only when the latter are included do
hydrogen wave functions from a complete set.

By use of the abbreviations (resulting from recalling r in the dimensionless
radial variable ρ)

ρ = αr with α2 = −
8me

~2
, E < 0 , λ =

me2

2πǫ0α~2
(1.4)

where m is an electron mass, ~ = 1.05457168 × 10−34 J·s is a Planck’s constant
Eq.(1.3) becomes

1

ρ2

d

dr

(

ρ
dχ(ρ)

dρ

)

+

(

λ

ρ
−

1

4
−
ℓ(ℓ+ 1)

ρ2

)

χ(ρ) = 0 (1.5)
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where χ(ρ) = R(ρ/α). A comparison with the associated Laguerre equation

d2Φk
n(x)

dx2
+

(

−
1

4
+

2n+ k + 1

2x
−
k2 − 1

4x2

)

Φk
n(x) = 0 (1.6)

for Φk
n(x) = e−x/2x(k+1)/2Lk

n , where Lk
n =

exx−k

n!

dn(e−xxn+k)

dxn
denoting a Rodrigues

representation of the associated Laguerre polynomial , shows that Eq.(1.5) is satisfied
by

ρχ(ρ) = e−ρ/2ρℓ+1L2ℓ+1
λ−ℓ−1(ρ) (1.7)

in which k is replaced by 2ℓ+ 1 and n by λ− ℓ− 1 , upon using

1

ρ2

d

dρ

(

ρ2dχ

dρ

)

=
1

ρ

d2

dρ2
(ρχ)

We must restrict the parameter λ by requiring it to be an integer n, n = 1, 2, 3, ....
This is necessary because the Laguerre function of nonintegral n would diverge as
ρneρ, which is unacceptable for our physical problem, in which

lim
r→∞

R(r) = 0

This restriction on λ, imposed by our boundary condition, has the effect of quan-
tizing the energy,

En = −
m

2n2~2

(

e2

4πǫ0

)2

(1.8)

the negative sign reflects the fact that we are dealing here with bound states (E < 0),
corresponding to an electron that is unable to escape to infinity, where the coulomb
potential goes to zero. Using this result for En , we have

α =
me2

4πǫ0~2
·
1

n
=

1

na0
(1.9)

called “Bohr formula” with the Bohr radius.

a0 =
4πǫ0~

2

me2
= 0.529 × 10−10m

Thus, the final normalized hydrogen wave function is written as

ψnℓm(r, θ, φ) =

[

(

2

na0

)3
(n− ℓ− 1)!

2n(n + ℓ)!

]1/2

e−αr/2(αr)ℓL2ℓ+1
n−ℓ−1(αr)Y

m
ℓ (θ, φ) (1.10)

Regular solutions exist for n ≥ ℓ + 1, so the lowest state with ℓ = 1 (called a 2P
state) occurs only with n = 2. The hydrogen atom ground state (ℓ = 0, m = 0) may
be described by the spatial wave function

ψ(r) =

(

1

πa0
3

)1/2

e−r/a0 (1.11)
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1.1.2 The magnetic dipole moment of the electron

m,  s

q,  s

r

Figure 1.2: A charge q smeared out around a ring of radius r

The magnetic dipole moment of a spining charge is related to its (spin) angular
momentum. Consider first a charge q smeard out around a ring of radius r (see
Fig. 1.2), which rotates about the axis with period T .

The magnetic dipole moment(md) of the ring is defined as the current
( q

T

)

times

the area (πr2).

md =
( q

T

)

· πr2 (1.12)

If the mass of the ring is m, its angular momentum is the moment of inertia (mr2)

times the angular velocity
(

2π

T

)

:

S =
(

mr2
)

·

(

2π

T

)

=
2πmr2

T
(1.13)

from γ =
md

S
=

q

2m
, then Eq.(1.12) becomes

md =
( q

2m

)

S (1.14)

The electron’s magnetic moment is twice the classical value :

me = −
e

m
· S (1.15)
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1.1.3 Hyperfine structure

As we know, the hydrogen atom of an electron setting in the neighborhood of the
proton, where it can exist in any one of a number of discrete energy states in each one
of which the pattern of motion of the electron is different. The first excited state, for
example, lie 3/4 of the Rydberg, or about 10 eV, above the ground state. But even
the so-called ground state of hydrogen is not really a single, definite - energy state,
because of the spins of the electron and proton. These spins are responsible for the
“hyperfine structure” in the energy levels, which splits all the the energy levels into
several nearly equal levels.

The electron can have its spin either “up” or “down” and, the proton can have its
spin either “up” or “down”. There are, therefore, four possible spin states for energy
dynamical condition of the atom. That is, when people say “the ground state” of
hydrogen, the really mean the “four ground state”, and not just the very lowest state.
The shifts are, however, much, much smaller then the 10 volts or 50 volts from the
ground state to the next state above. As a consequence, each dynamical state has its
energy split into a set of very close energy levels - the so-called hyperfine splitting.

The hyperfine splitting is due to the interaction of the magnetic moments of the
electron and proton, which gives a slightly different magnetic energy for each spin
state. These energy shifts are only about ten - millionths of an electron volt - really
very small compared with 10 volts. It is because of this large gap that we can thing
about the fact that there really many more states at higher energies. We are going
to limit ourselves here to a study of the hyperfine structure of the ground state of
the hydrogen atom. The nucleus has been assumed to interact with the electron only
through its electric field. However, like the electron, the proton has spin angular
momentum with s = 1/2, and associated with this angular momentum is an intrinsic
dipole moment.

mp = γp
e

Mc
Sp (1.16)

where M is the proton mass and γp is a numerical factor known experimentally to be
γp = 2.7928. Note that the proton dipole moment is weaker than the electron dipole
moment by roughly a factor of M/m ∼ 2000, and hence one expects the associated
effects to be small, even in comparison to fine structure, proton dipole moment will
interact with both the spin dipole moment of the electron and the orbital dipole
moment of the electron, and so there are two new contributions to the Hamiltonian,
the nuclear spin-orbit interaction and the spin-spin interaction. The derivation for the
nuclear spin-orbit Hamiltonian is the same as for the electron spin-orbit Hamiltonian,
except that the calculation is done in the frame of the proton and hence there is no
factor of 1/2 from the Thomas precession. The nuclear spin-orbit Hamiltonian is

∆Hpso =
γpe

2

mMc2r3
L · Sp (1.17)

The spin-spin Hamiltonian can be de derived by considering the field produced by
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the proton spin dipole, which can be written

B(r) =
1

r3

[

3
(mp · r)r

r2
− mp

]

+
8π

3
mpδ

3(r) (1.18)

The first term is just the usual field associated with a magnetic dipole, but the second
term requires special explanation. Normally, when are considers a dipole field, it is
implicit that one is interested in the field for from the dipole-that is, at distances
for from the source compared to the size of the current loop producing the dipole.
However, every field line outside the loop must return inside the loop, as show in
Fig. 1.3. If the size of the current loop goes to zero, then the field will be infinite at
the origin, and this contribution is what is what is reflected by the second term in
Eq.(1.18)

m

B

Figure 1.3: The field of a magnetic dipole. All B field lines cross the plane of the

dipole going up inside the loop and down outside the loop

The electron has additional energy

∆Ess = −µe · B (1.19)

due to the interaction of its spin dipole with this field, and hence the spin-spin Hamil-
tonian is

∆Hss =
γpe

2

mMc2

{

1

r3
[3(Sp · r̂)(Se · r̂) − (Sp · Se)] +

8π

3
(Sp · Se)δ

3(r)

}

(1.20)

Consider first the case ℓ = 0, since the hyperfine splitting of the hydrogen atom ground
state is of the most interest. Since the electron has no orbital angular momentum,
there is no nuclear spin-orbit effect. It can be shown that become the wave function
has spherical symmetry, only the delta function term contribution from the spin-spin
Hamiltonian.
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First order perturbation theory yields

∆Ehf =
8πγpe

2

3mMe2
(Sp · Se)|ψ(0)|2 (1.21)

Fig. 1.4. Shows a revised version of the structure of the hydrogen atom, including
the Lamp shift and hyperfine structure.

Figure 1.4: Some low - energy states of the hydrogen atom, including fine structure,

hyperfine structure, and the lamb shift.

1.2 Objectives

To study the hyperfine structure of atomic hydrogen, By using electrodynamics
and quantum theory to explain this system.
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1.3 Frameworks

- Atomic hydrogen single system.

- By using to the electric field and the magnetic field action to system.

- By using to the electrodynamics and quantum theory to find the level of energy.

1.4 Expected use

- Can find the level of energy.

- Analyse graphs of energy.

- The explain effect in frame of electrodynamic.

- The explain effect in frame of quantum theory.

1.5 Tools

- Text books in physics and mathematics.

- A high efficiency personal computer.

- Software e.g. LATEX, WinEdit, Maple, Mayura Draw and Photoshop.

1.6 Procedure

- Research data and reference to related with the hyperfine structure.

- Find electric field of electric dipole, by using the gradient of electric potential.

- Find magnetic field of magnetic dipole, by using the curl of magnetic potential.

- Find a value of interaction energy between spin of nucleus and spin of electron
that related the orientation of dipole moment, by applying both of electrody-
namics and of quantum theory.

- Analyzing level - energy and conclusion.
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1.7 Outcome

- Obtaining the energy gap between the singlet state and the triplet state, in
which the spins are antiparallel, carries a somewhat lower energy than the triplet
combination.

- Show that the interaction energy is maximum value when angles occurs at θ = 0
and θ = π; if they free to rotate then, the compass needles will tend to line up
parallel to one another, along the common axis.

- Show that the interaction energy between spin of nucleus and spin of electron
relate to the orientation of dipole moment.
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Chapter 2

Field of an electric dipole

The electron and the proton in atomic hydrogen constitute tiny magnetic dipole.
Unfortunately, we can not directly calculate magnetic dipole. In general, we calculate
electric dipole easier than the magnetic dipole. This chapter, we begin with a calcu-
lation of the electric field of an electric dipole. With considering system what consist
of two charges of equal magnitude but of opposite sign, so called electric dipole. We
then calculate the electric field of an electric dipole.

2.1 Field of an electric dipole

+q

−q

s/2

s/2

r

θ

rb

ra

P

Figure 2.1: An elementary charge-pair dipole that have opposite sign each situated a

distant s from the origin, which is taken to lie on the line connecting.

Let us first consider an elementary example of a static system of charges. Our

10



system will consist (see Fig. 2.1) of two charges of equal magnitude, but of opposite
sign, each situated a distant s from the origin O, which is taken to lie on the line
connecting the charges. Such a system of charges is the simplest example of an electric

dipole. The potential at the point P (r, θ, φ) is given by

V =
q

4πǫ0

(

1

rb

−
1

ra

)

(2.1)

where ra and rb are the distance from +q (−q) to the point of the potential. we
wish,however,to express the potential in terms of the magnitude of the vector r(|r| =
r) and the angle θ (Because the charge distribution is axially symmetric, clearly the
potential must be independent of the azimuthal angle φ.). In order to do this, we
first express ra and rb as functions of r and θ. Using the cosine law, we may write

r2
a = r2 +

(s

2

)2

+ 2r
(s

2

)

cos θ

(

r

ra

)2

=
1

1 +
(

s
2r

)2
+

(

s
r

)

cos θ

r

ra
=

1
[

1 +
(

s
2r

)2
+

(

s
r

)

cos θ
]

1

2

r

ra
=

[

1 +
( s

2r

)2

+
(s

r

)

cos θ

]

−
1

2

(2.2)

By applying a power series, is given by

(1 + x)m = 1 +mx+
m(m− 1)x2

2!
+
m(m− 1)(m− 2)x3

3!
+ ... (2.3)

and giving in term of a distant s, is written as

x = (
s

2
)2 + (

s

2
) cos θ (2.4)

giving m = 1/2 and Eq.(2.3)

(1 + x)1/2 = 1 +

(

−
1

2

)

(x) +
(−1

2
)(−1

2
− 1)x2

2!
+

(−1
2
)(−1

2
− 1)(−1

2
− 2)x3

3!
+ ...

= 1 −
1

2

[

( s

2r

)2

+
(s

r

)

cos θ

]

+
3

8

[

( s

2r

)2

+
(s

r

)

cos θ

]2

−
5

16

[

( s

2r

)2

+
(s

r

)

cos θ

]3

= 1 −
1

2

(

s2

4r2
+
s

r
cos θ

)

+
3

8

(

s2

4r2
+
s

r
cos θ

)2

−
5

6

(

s2

4r2
+
s

r
cos θ

)3

(2.5)

11



If we neglect terms of order higher than s2/r2, Eq.(2.2) becomes

r

ra
= 1 −

s

2r
cos θ +

s2

4r2

3 cos2 θ − 1

2
(2.6)

Finally, we obtain

1

ra
=

1

r
−

s

2r2
cos θ +

s2

4r3

3 cos2 θ − 1

2
(2.7)

Where we have assumed s << r in order to expand the radial. We shall restrict our
often to field point P that are at distances large compared with the dimension of the
dipole. Therefore, we are an approximately

1

ra

=
1

r
−

s

2r2
cos θ +

s2

4r3

3 cos2 θ − 1

2
(2.8)

Similarly,

1

rb
=

1

r
+

s

2r2
cos θ +

s2

4r3

3 cos2 θ − 1

2
(2.9)

where the minus sign in expression for
1

ra

arises from cos(π − θ) = − cos θ. Thus the

potential becomes approximately

V = q

(

1

rb
−

1

ra

)

=
q

4πǫ0

[(

1

r
−

s

2r2
cos θ +

s2

4r3

3 cos2 θ − 1

2

)

−

(

1

r
+

s

2r2
cos θ +

s2

4r3

3 cos2 θ − 1

2

)]

=
q

4πǫ0

s

r2
cos θ (2.10)

The potential due to a dipole therefore decreases with distance as
1

r2
, where as

the potential due to a single decreases as
1

r
. It is reasonable that the potential due

to a dipole should decrease with distance more rapidly than the potential due to a
single charge because,as the observation point P is moved father and farther away,
the dipole charge distribution appears more and to be simply a small unit with zero
charge.

We define the electric dipole moment of the pair of equal charges as the product
of q and separation 2s :

p = qs (2.11)
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The dipole moment is a vector whose direction is defined as the direction from
negative to the positive charge (see Fig. 2.1). The dipole potential may be expressed
as

V =
1

4πǫ0

p · r̂

r2
(2.12)

The electric field vector E for the dipole is give by the negative of the gradient of
scalar potential (V )

E = −∇V (2.13)

The spherical component of E may be calculated most easily by referring to
Eq.(2.13). Writing p = qs, we have

Er =
q

4πǫ0

2s

r3
cos θ (2.14)

Eθ =
q

4πǫ0

s

r3
sinθ (2.15)

Eφ = 0 (2.16)

(see Fig. 2.2) show some lines of equal potential and some electric field - lines. Both
sets of curves are symmetric about the polar axis so that the equipotential surfaces
may be obtained by rotating the curves of (see Fig. 2.2) about the symmetry axis.
The potential of an ideal electric dipole is given by[5]

Figure 2.2: Dipole equipotential and field lines

V (r) =
1

4πǫ0

p · r̂

r2
(2.17)
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where p is the dipole moment and r is the vector from the dipole to the point of
observation. From Eqs.(2.10), (2.12) and (2.13), we have

E(r) = −∇V

= −
∂V (r)

∂r

= −
∂

∂r

q

4πǫ0

s

r2
cos θr̂

= −
1

4πǫ0
cos θ

∂

∂r

p · r̂

r2

= −
1

4πǫ0
cos θ

[

r2 ∂
∂r

(p · r̂) − 2r(p · r̂)

r4

]

= −
1

4πǫ0
cos θ

1

r3

[

r2 ∂
∂r

(p · r̂) − 2r(p · r̂)

r

]

= −
1

4πǫ0
cos θ

1

r3

[

r
∂

∂r
(p ·

r

r
) − 2r(p · r̂)

]

= −
1

4πǫ0
cos θ

1

r3

[

rp
∂

∂r
(r−1 · r) − 2r(p · r̂)

]

= −
1

4πǫ0
cos θ

1

r3
[(p · r̂) − (p · r̂) − 2(p · r̂)]

= −
1

4πǫ0
cos θ

1

r3
[(p · r̂ − 3(p · r̂)]

=
1

4πǫ0
cos θ

1

r3
[3(p · r̂) − (p · r̂)]

=
1

4πǫ0

1

r3
[3(p · r̂)r̂ − p] (2.18)

Taking the gradient of V , we obtain the dipole field.

E(r) =
1

4πǫ0

1

r3
[3(p · r̂)r̂ − p] (2.19)

But this familiar result[6] cannot be correct, for it is incompatible with the following
general theorem[7], which applies to all static charge configurations.
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Theorem 1. The average electric field over a spherical volume of radius R , due
to an arbitrary distribution of stationary charges within the sphere, is

Eav = −
1

4πǫ0

p

R3
(2.20)

where p is the total dipole moment with respect to the center of the sphere.

A

~r
~S

dτ

Figure 2.3: Average field, over a sphere, due to a point charge at A.

Eav =
1

τ

∫

Ezdτ

=
1

τ

1

4πǫ0

∫

q

r2
r̂dτ (2.21)

The average field due to a single charge q located at point A within the sphere
(Fig. 2.3) is given by

Eav =
1

τ

∫

Ezdτ

=
1

τ

1

4πǫ0

∫

q

r2
r̂dτ

where τ =
4

3
πR3 is the volume of sphere, we have dτ = r2 sin θdrdθdφ and Ez =

q

4πǫ0r
cos θêz, Eq.(2.21) is written as

Eav =
1

τ

q

ǫ0

∫ θ=π

θ= π

2

∫ r=−2s cos θ

r=0

1

2

1

r2
cos θr2 sin θdrdθêz
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=
1

τ

q

ǫ0

∫ θ=π

θ= π

2

(

−
s cos θ

3

)

cos θ sin θdθêz

=
1

τ

(

−
qs

3ǫ0

)

[

−

∫ θ=π

θ= π

2

cos2 θd cos θ

]

êz

=
1

τ

(

qs

3ǫ0

) [

cos3 θ

3

]π

π

2

êz

=
1

τ

(

qs

3ǫ0

)

(−1)êz

=
3

4πR3

(

−
qs

3ǫ0

)

êz

= −
qs

4πǫ0R3
; s = sêz (2.22)

For an arbitrary distribution of charges within the sphere, qs is replaced by

Σqisi = p (2.23)

(the total dipole moment of sphere) and the theorem is proved and written as

Eav = −
1

4πǫ0

p

R3
(2.24)

Let us apply this theorem to the simplest possible case: an ideal dipole at the
origin, pointing in the z direction (see Fig. 2.4) if we take the dipole field in Eq.(2.24)
as it stands, we have

Eav =
1

τ

1

4πǫ0
p

∫ ∫

1

r3
(3 cos2 θ − 1)r2 sin θdrdθdφ (2.25)

But the integral give zero , while the r infinite so the result is indeterminate. Evidently
in Eq.(2.19) is incorrect or at best ambiguous. Because the source of the problem
is the point r = 0, where the potential of the dipole is singular. Our formula for
the field is unobjectionable everywhere else, but at that one point we must be more
careful.

An ideal dipole is, after all, the point limit of a real (extended), dipole, so let us
approach it from that perspective. The usual model - equal and opposite charges ±q
separated by displacement s, with p = qs - is Cumbersome, for our present purposed.
Most tractable is a uniformly polarized sphere, of radius a, polarization P, and dipole
moment.

p =
4

3
πa3P (2.26)

16



x

~P

z

y

Figure 2.4: Average field, over a sphere, due to a point charge at A.

It is well know[9] that the field outside such a sphere is given precisely by Eq.(2.19):

Eout(r) =
1

4πǫ0

1

r3
[3(p · r̂)r̂− p] for r > a (2.27)

while (surprisingly) the field inside the sphere is uniform (Fig. 2.5)

Ein(r) = −
1

4πǫ0

p

a3
for r < a (2.28)

Figure 2.5: Field of a uniformly polarized sphere.

In the ideal dipole limit (a→ 0)the interior region shrinks to zero, and one might
suppose that this contribution disappears altogether. However, Ein itself blows up,

17



in the same limit, and in just such a way that its integral over the sphere.
∫

Eindτ =

(

−
1

4πǫ0

p

a3

) (

4

3
πa3

)

= −
p

3ǫ0
(2.29)

remains constant, no matter how small the sphere become. We recognize here the
defining conditions for a Dirac delta function; evidently, as a the field inside the sphere
goes to

E(r) =
1

4πǫ0

1

r3
[3(p · r̂)r̂ − p] −

1

3ǫ0
pδ3(r) (2.30)

on the understanding that the first term applies only to the region outside an in-
finitesimal sphere about the point r = 0. With the radial integral thus truncated,
Eq.(2.19) now yields zero unambiguously but there is an extra contribution to Eav ,
coming from the delta function :

E(r) = −
1

3ǫ0
pδ3(r) (2.31)

which is exactly what Theorem 1 requires. Although the delta function only af-
fects the field at the point r = 0, it is crucial in establishing the consistency of the
theory[10].
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Chapter 3

Field of a magnetic dipole

In this chapter, we shall deal with the magnetic field of a magnetic dipole. This
familiar result is identical in form to the electric field of an electric dipole seen (Chap-
ter 2). We start with the calculation of the vector potential A. We then calculate
the magnetic field of a magnetic dipole.

3.1 Field of a magnetic dipole

r
r

r’
o

dr’=dlI

P

Figure 3.1: The vector potential of a localized current distribution

We shall now show that a small loop of wire of area S, situated at the origin
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in a plane perpendicular to the z - axis and carrying a current I. The vector A at
the point P (r, θ, φ) is directed in the azimuthal direction. is given by

A =
µ0I

4π

∮

1

r′
dlêφ (3.1)

Since the dl vectors have no z component, A can only have x and y components. A
little thought will show that, for any given value of r′. If a is the radius of the loop,
then

A =
µ0I

4π

∫ 2π

0

a cosφ

r′
dφêφ (3.2)

We must now express r′ in terms of r and of φ, in the form of a power series in
1

r′

r′2 = r2 + a2 − 2ar cosφ (3.3)

by rewriting Eq.(3.3), we have
( r

r′

)2

=
1

1 −
(

a
r′

)2
+ (2ar

r′2
) cosφ

r

r′
=

1

[1 −
(

a
r′

)2
+

(

2ar
r′2

)

cosφ]
1

2

=

[

1 −
( a

r′

)2

+

(

2ar

r′2

)

cosφ

]

−
1

2

= 1 −
a2

2r2
+
a

r
cosφ

thus
1

r′
=

1

r
−

a2

2r3
+
a

r2
cosφ (3.4)

We make the assumption that a << r. Since r
r′

≈ 1, we have substituted for r′

in the two correction terms on the right - hand side. Thus the potential becomes
approximately

A =
µ0I

4π

∫ 2π

0

a cosφ

r′
dφêφ

=
µ0I

4π

a2π

r2
sin θêφ (3.5)

we define the magnetic dipole moment of circular loop of wire carrying a current I,
except that πa2 must be replaced by the area S of the loop.

m = IS (3.6)
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The magnetic dipole potential may be expressed as[11]

A =
µ0

4π

m × r̂

r2
(3.7)

Where m is the dipole moment. The magnetic field vector B for dipole is give by the
curl of the potential A,

B = ∇ × A (3.8)

By using formula :

∇ × [C × D] = (D · ∇)C − (C · ∇)D + C(∇ ·D) − D(∇ · C) (3.9)

∇ × [∇ × A] =
µ0

4π
∇×

[

m ×
r̂

r3

]

=
µ0

4π

[(

r̂

r3
· ∇

)

m − (m · ∇)
r̂

r3
+ m

(

∇ ·
r̂

r3

)

−
r̂

r3
(∇ · m)

]

(3.10)

But the term m

(

∇ ·
r̂

r3

)

equal zero, therefore, Eq.(3.10) becomes

∇ × [∇ × A] =
µ0

4π

[

(
r̂

r3
· ∇)m− (m · ∇)

r̂

r3
−

r̂

r3
(∇ · m)

]

=
µ0

4π

1

r3
[(r̂ · ∇)m − (m · ∇)r̂ − r̂(∇ · m)] (3.11)

by using formula

(∇)i
xj

r3
=
δij
r3

−
3xixj

r5
(3.12)

Hence

(∇ × A)j =
r2mj − 3xj(m · r̂)

r5

=
3(m · r̂)r̂ − r2m

r5

=
1

r3
[3(m · r̂)r̂ − m] (3.13)

thus

B(r) = ∇ × A =
µ0

4π

1

r3
[3(m · r̂)r̂ − m] (3.14)
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Finally, the magnetic field by the curl yields

B(r) =
µ0

4π

1

r3
[3(m · r̂)r̂− m] (3.15)

This familiar result[12] is identical form to the electric field of an electric dipole
Eq.(2.19), and once again it cannot be correct, for it is incompatible with the following
general theorem[13].

Let us first consider the vector potential of an ideal magnetic dipole is given by

A(r) =
µ0

4π

m × r̂

r3
(3.16)

The spherical component of B may be calculated most easily by referring to Eq.(3.8),
we do find that

Br =
µ0

4π

2m

r3
cos θ (3.17)

Bθ =
µ0

4π

m

r3
sin θ (3.18)

Bφ = 0 (3.19)

Theorem 2 the average magnetic field over a spherical volume of radius R, due to
an arbitrary configuration of steady currents within the sphere, is

Bav =
µ0

4π

2m

R3
(3.20)

where m is the total dipole moment of the sphere.
By definition

Bav =
1

τ

∫

Bdτ (3.21)

where τ =
4

3
πR3, as before. Writing B as the curl of A, and invoking the vector

indentity[14]
∫

volume

(∇ × A)dτ = −

∫

surface

A × da (3.22)

Therefore, Eq.(3.21) becomes

Bav = −
1

τ

∫

A × da (3.23)

where da is an infinitesimal element of area at the surface of the sphere, pointing in
the radial direction. Now, the vector potential is itself an integral one the current
distribution[15].

A =
µ0

4π

∫

J

r
dτ (3.24)
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~da

dτ
r

~s~R

Figure 3.2: The vector potential of a localized current distribution

and hence
Bav = −

1

τ

µ0

4π

∫ ∫

1

r
(J × da)dτ (3.25)

We propose to do the surface integral first, setting the polar axis along the vector
(s) from the center to dτ (Fig. 3.2), so that

r = (R2 + S2 − 2Rs cos θ)1/2

da = R2 sin θdθdφR̂

and therefore
∫

1

r
da =

∫

(

R2 + s2 − 2Rs cos θ
)

−
1

2 × R2 sin θ cos θdθdφŝ

=
4

3
πs (3.26)

Finally, the volume integral yields

Bav = −
1

τ

µ0

4π

∫

4

3
π(J × ŝ)dτ

= −
µ0

4πR3

∫

(J × ŝ)dτ (3.27)

given by

m =
1

2

∫

(ŝ× J)dτ (3.28)
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where m is the total dipole moment of the sphere[16]. we have

Bav = −
µ0

4πR3

(

−2

∫

(J × ŝ)dτ

)

=
µ0

4π

2m

R3
(3.29)

Suppose we wish Theorem 2 for the simplest possible case : an ideal magnetic dipole
m at origin. If we attempt to calculate the average magnetic field, using Eq.(3.28),
while the r integral is infinite so the result is indeterminate. This familiar result in
form to the electric field, Eq.(2.19). Once again, the source of the problem is the point
r = 0 ; there is an extra delta - function contribution to the field, which Eq.(3.28)
ignores. In order to obtain this extra term, we treat the ideal dipole as the point limit
of a uniformly magnetized sphere, of radius a, magnetization M, and dipole moment

m =
4

3
πa3M (3.30)

outside such a sphere is given precisely by Eq.(3.15)

Bout =
µ0

4π

1

r3
[3(m · r̂)r̂ −m] for r > a (3.31)

while field inside the sphere is uniform[17]

Bin =
µ0

2π

m

a3
for r < a (3.32)

In the ideal dipole limit (a→ 0) the interior region shrinks to zero, but the field goes
to infinity : their product remains constant :

∫

Bindτ =
(µ0

2π

m

a3

)

(

4

3
πa3

)

=
2

3
µ0m (3.33)

As a→ 0, therefore, the field inside the sphere goes to a delta function

Bin(r) =
2

3
µ0mδ3(r) (3.34)

The magnetic field of an ideal dipole can thus be written

B(r) =
µ0

4π

1

r3
[3(m · r̂)r̂ − m] +

2

3
µ0mδ3(r) (3.35)
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with the understanding that the first term applies only to the region outside an
infinitesimal sphere at the origin. The average field (over sphere of radius R) comes
exclusively from the delta - function term :

Bav =
1

τ

∫

Bindτ

=
1

τ

∫
[

2

3
µ0mδ3(r)

]

dτ

=
µ0

2π

m

R3
(3.36)

which is exactly what Theorem 2 requires. Once again, although it only affect the
one point r = 0, the delta - function contribution is essential for the consistency of
the theory[18].
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Chapter 4

Hyperfine structure in the ground

state of hydrogen

In this chapter, are work out the formula for the interaction energy of two magnetic
dipole. Up to this point the calculation lies entirely within the real in of classical elec-
trodynamics; The quantum mechanics enters only in the final step, where the classical
interaction energy is interpreted as the hyperfine structure hamiltonian, and the en-
ergies of the singlet and triplet spin states are evaluated in first - order perturbation
theory.

4.1 The Hamiltonian

The electron in orbit around the nucleus. This orbiting positive charge sets up
a magnetic field B in the electron frame, which exerts a torque on the spinning
electron, tending to align its magnetic moment (m) along the direction of the field.
The Hamiltonian is[19]

H = −m ·B (4.1)

In particular, the energy of one magnetic dipole (m1) in the field of another magnetic
dipole (m2) is

H = −m · B (4.2)

= −m1 ·

(

µ0

4π

1

r3
[3(m2 · r̂)r̂ − m2] −

2

3
µ0m2δ

3(r)

)

= −
µ0

4π

1

r3
[3(m1 · r̂)(m2 · r̂) − m1 · m2] −

2

3
µ0(m1 · m2)δ

3(r)

26



= −
µ0

4π

1

r3
[3(m1 cos θ)(m2 cos θ) −m1 · m2] −

2

3
µ0(m1 ·m2)δ

3(r)

= −
µ0

4π

1

r3
(m1 · m2)(3 cos2 θ − 1) −

2

3
µ0(m1 · m2)δ

3(r) (4.3)

where r is their separation. The formula is symmetric in its treatment of m1 and
m2, as of course it should be it represents the energy of interaction of the two dipole.
In most applications m1 and m2 are physically separated, and the delta-function
term can be ignored ; however, it is precisely this part which accounts for hyperfine
splitting in the ground state of hydrogen.

In first-order perturbation theory, the change in energy of a quantum state is given
by the expectation value of the perturbing Hamiltonian[20]. The ground-state wave
function for atomic hydrogen is[21]

ψ0 = (πa3)−
1

2 e−
r

a |s > (4.4)

where a = 0.5291770 Å is the Bohr radius[22] and |s > denotes the spin of the
electron.
Treating the dipole-dipole interaction Eq.(4.3) as a perturbation, the energy of the
ground state is shifted by an amount

E =

∫

ψ∗

0Hψ0dτ

=

∫

ψ∗

0 [−
µ0

4π

1

r3
(m1 · m2)(3 cos2 θ − 1) −

2

3
µ0(m1 ·m2)δ

3(r)ψ0dτ

= −
µ0

4π
m1 · m2

∫

|ψ0|
2 1

r3
(3 cos2 θ − 1)dτ −

2

3
µ0(m1 ·m2)

∫

|ψ0|
2δ3(r)dτ (4.5)

Because ψ0 (and indeed any ℓ = 0 state) is spherically symmetrical[23], the θ integral
gives zero, just as it did in Eq.(2.25). Accordingly

E = −
µ0

4π
m1 · m2

∫

|ψ0|
2 1

r3
(3 cos2 θ − 1)dτ

= 0 (4.6)

Thus

E = −
2

3
µ0(m1 ·m2)

∫

|ψ0|
2δ3(r)dτ

= −
2

3
µ0(m1 ·m2)

∫

1

πa3
δ3(r)dτ

= −
2

3
µ0(m1 ·m2)

1

πa3

∫

δ3(r)dτ
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E = −
2

3

µ0

πa3
(m1 · m2) (4.7)

Here m1 is the magnetic dipole moment of the proton and m2 is that of the electron;
they are proportional to the respective spins:

m1 = γpSp , m2 = −γeSe (4.8)

where γ is are the two gyromagnetic ratios[24].Thus

E =

(

2

3

µ0

πa3

)

γeγp (Se · Sp) (4.9)

In the presence of such “spin - spin coupling” the z components of Se and Sp are
no longer separately conserved; the quantum numbers for the system are rather the
eigenvalues of the total angular momentum.

J = Se + Sp (4.10)

J2 = (Se + Sp)
2 (4.11)

J2 = S2
e + S2

p + 2Se · Sp (4.12)

so that

Se · Sp =
1

2
(J2 − S2

e − S2
p) (4.13)

The electron and proton carry spin–
1

2
, so the eigenvalues of S2

e and S2
p are

3

4
~

2. The

two spins combine to form a spin–1 , so called a triplet state (J2 = 2~
2) and a spin–0,

so called a singlet state (J2 = 0)[25].Thus

(Se · Sp) =
1

4
~

2 (triplet) (4.14)

(Se · Sp) = −
3

4
~

2 (singlet) (4.15)

and hence

E =

(

2

3

µ0

πa3

)

γeγp

(

1

4
~

2

)

(triplet) (4.16)

E =

(

2

3

µ0

πa3

)

γeγp

(

−
3

4
~

2

)

(singlet) (4.17)

Evidently the singlet state, in which the spins are antiparallel, carries a some what
lower energy than the triplet combination (Fig. 4.1). The energy gap is

∆E = Etrip. − Esing. (4.18)
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=

(

2

3

µ0

πa3

)

γeγp

(

1

4
−

(

−
3

4

))

(4.19)

thus

∆E =

(

2

3

µ0

πa3

)

γeγp (4.20)

Now, the gyromagnetic ratios are given by

γ =
( e

2m

)

g (4.21)

where e is the proton charge, m is the mass of the particle, and g is its “g factor”
(2.0023 for the electron, 5.5857 for the proton). So, finally[26]

∆Ehyd =

(

µ0~
2e2

6πa3

)

gegp

memp

(4.22)

=

[

(14.680812× 1050NA−2kg−2)(1.68960995 × 10−53J · s · C2)

4.4445541342× 10−31m3

]

=

[

(14.680812× 1050( N

A2
·kg2 ))(2.854781783× 10−106J2 · s2 · C2)

4.4445541342× 10−31m3

]

= 9.427539063× 10−25m5 · kg
m3 · s2

= 9.427539561× 10−25N · m

= 9.427539561× 10−25J

= 5.88420775× 10−6eV (4.23)

The frequency of the photon emitted in a transition from the triplet to the singlet
state is then

ν =
∆E

h

= 1422.8 MHz (4.24)

and its wavelength is then

λ =
c

ν

= 21.07 cm (4.25)
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The experimental value is[27]

ν = 1420.4057517667 MHz (4.26)

the 0.2% discrepancy is attributable to quantum electrodynamical corrections[28].
It is instructive to express the hyperfine splitting Eq.(4.23) in terns of the binding
energy (R = 13.6058 eV) of the ground state :

∆Ehyd =
8

3

(

R2

mpc2

)

gegp (4.27)

By contrast, the fine structure goes like (R2/mec
2), and is therefore typically greater

by a factor on the order of (mp/me) = 1836. In the case of positronium, where the
proton is replaced by a positron, the fine and hyperfine splittings are roughly equal
in size. If we apply Eq.(4.23) to positronium cussing the reduced mass, of course, in
calculating the “Bohr radius”, we obtain

∆Epos =
1

8

(

1 +
me

mp

)3 (

ge

gp

) (

mp

me

)

× ∆Ehyd

= 4.849 × 10−4 eV (4.28)

as compared with an experimental value of 8.411×10−4 eV[29]. The large discrepancy
is due primarily to pair annihilation, which splits the levels by an additional amount,
3

4
∆Epos[30], and does not occur, of course, in hydrogen. Muonium (in which a muon

substitutes for the proton) offers a cleaner application of Eq.(4.23). The g factor of
the muon is 2.0023[22], (identical, up to corrections of very high order, with that of
the electron), so

∆Emuon =

(

1 +me/mp

1 +me/mp

)3
gµ

gp

mp

mµ

∆Ehyd

= 1.8493 × 10−5 eV (4.29)

which compares very well with the experimental value[31] 1.845885 × 10−5 eV the
0.2% discrepancy in, a quantum electrodynamical correction[32]. Incidentally, the
hyperfine splitting in muonic hydrogen (muon substitutions for electron) would be
“gigantic”

∆Emuon =

(

1 +mp/me

1 +mp/mµ

)3
gµ

ge

me

mµ
∆Ehyd

= 1.8493 × 10−5 eV (4.30)

which corresponds to a wavelength of 67800 Å, in the infrared region. however, as for
as we know this quantity has not yet been measured directly in thee laboratory[33].
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unperturbed

triplet

singlet

△E

Figure 4.1: Hyperfine splitting in the ground state of hydrogen.
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Chapter 5

Analysis

5.1 Why is the singlet level lower?

In the singlet state, the proton and electron spins are antiparallel, which is to say
that their magnetic moments are parallel. Why should this be the configuration of
lowest energy ? On a formal level, it is a consequence of that sign of the delta-function
term in the interaction energy in Eq.(5.2); electric dipole, by contrast, would line up
antiparallel compare Eqs.(2.28) and (3.34). But we would like to understand this on
a more intuitive basis.

Imagine two compass needles, held a distance ris substantially greater than the
length of each needle, they interact essentially as ideal magnetic dipoles, and the
energy of the system is given by the first term in Eq.(5.2):

m

r

m1

1
2

2

Figure 5.1: Interaction of two magnetic dipole

H = −m ·B (5.1)
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= −m1 ·

(

µ0

4π

1

r3
[3(m2 · r̂) − m2] −

2

3
µ0m2δ

3(r)

)

= −
µ0

4π

1

r3
[3(m1 · r̂)(m2 · r̂) −m1 · m2] −

2

3
µ0(m1 · m2)δ

3(r) (5.2)

From Fig. 5.1, yields

m1 · r̂ = m1 cos θ1 (5.3)

m2 · r̂ = m2 cos θ2 (5.4)

m1 · m2 = m1m2 cos(θ1 − θ2) (5.5)

Finally, the energy of the system is given by the first term in Eq.(5.2)

H = −
µ0

4π
[3m1 cos θ1m2 cos θ2 −m1m2 cos(θ1 − θ2)] (5.6)

thus

W =
µ0

4π

1

r3
m1m2[cos(θ1 − θ2) − 3cosθ1cosθ2] (5.7)

By using Eq.(5.7), we simulate the interaction energy that varies according to the
relative orientation of their dipole moment. when we fix m1, but m2 is free to rotate
(see Fig. 5.2), and we consider two case of the magnetic dipole setting. The fist case,
the spins are parallel (or the magnetic dipoles are antiparallel), so called the triplet
state. We found that the interaction energy varies according to the relative orientation
of their dipole moment (see Fig. 5.2) the second case, the spins are antiparallel (or the

Figure 5.2: Interaction energy of two magnetic dipole

magnetic dipoles are parallel), so called “the singlet state”. Similarly, the interaction
energy varies according to the relative orientation of their dipole moment (see Fig. 5.3)
It is easy to show that the minimum occurs at θ1 − θ2 = 0 (or, equivalently, at
θ1 = θ2 = π); if they are free to rotate,then, the compass needles will tend to line
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Figure 5.3: Interaction energy of two magnetic dipole

up parallel to one another, along the common axis. And the same goes for electric
dipoles.

Consider first the case of electric dipoles. Plus and minus charges separated by a
distance s. As long as r is greater than s, they line up along the axis (Fig. 5.4). But
when the positive end of one meets the negative end of the other, these ends stick
together and move off the line of centers (Fig. 5.5). Until finally, as r → 0, the two
dipole are oriented antiparallel to one another, and perpendicular to the line joining
them (Fig. 5.6).

- + - +

r

ss

Figure 5.4: Stable configuration for electric dipoles : r > s

- +

+ -

r

Figure 5.5: Stable configuration for electric dipoles : r < s

If we now repeat the process with magnetic dipoles represent by circular current
loops of diameter d no such reversal occurs. Since parallel currents attract, there will
occur a time when the circles tilt over to touch one another (Fig. 5.7). But as r → 0
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r

Figure 5.6: Stable configuration for electric dipoles : r → 0

the loops come together with their currents in the same direction (Fig. 5.8). The
stable configuration for superimposed magnetic dipole, then, is one in which they lie
parallel to each other, and to the line joining them.

r

d

Figure 5.7: Stable configuration for magnetic dipoles : r > d

r

Figure 5.8: Stable configuration for magnetic dipoles : r < d
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Figure 5.9: Stable configuration for magnetic dipoles : r → 0
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Chapter 6

Conclusion

A study of the hyperfine structure of atomic hydrogen. That there is the electron
and the proton. They constitute tiny magnetic dipole, whose interaction energy varies
according to the relative orientation of their dipole moments. We found the spins are
parallel (or the magnetic dipoles are antiparallel), so called the triplet state, the
energy is high that it is when the spins are antiparallel (or the magnetic dipoles are
parallel), so called the singlet state. The difference of the energy, or the energy gap,
is 5.884 × 10−6 eV.

We approach a study of the hyperfine structure with the advantage of the classical
electrodynamics and the quantum theory. With the classical electrodynamics, we
obtain the electric field of an ideal dipole as follows.

E(r) =
1

4πǫ0

1

r3
[3(p · r̂)r̂ − p] −

1

3ǫ0
p · δ3(r) (6.1)

where p is the dipole moment, r is the vector from the dipole to the point of obser-
vation ( r is its magnitude and r̂ =

r

r
), ǫ0 = 8.854187817 × 10−12 F

m
is permittivity

of free space. On the understanding that the first term applies only to the region
outside an infinitesimal sphere about the point r = 0. With the radial integral thus
the first term yields zero unambiguously - but there is an extra contribution to the
average electric field, Eav, coming from only the second term :

Eav = −
1

4πǫ0

p

R3
(6.2)

where R is the radial of a spherical volume.
We then are the advantage of electric field of an electric dipole to calculate. The

magnetic field of an ideal dipole can be written :

B(r) =
µ0

4π

1

r3
[3(m · r̂)r̂ − m] +

2

3
µ0mδ3(r) (6.3)
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where m is the dipole moment and µ0 = 4π × 10−7 N · A−2 is permeability of free

space. With the understanding that the first term applies only to the region outside
an infinitesimal sphere at the origin. The average field ( over a sphere of radius R )
come from the second term :

Bav =
µ0

2π

m

R3
(6.4)

The quantum mechanics enter in the final step, where the energy of a magnetic
dipole m, in the presence of a magnetic field B, is given by the familiar formula

H = −m ·B (6.5)

In particular, the energy of one magnetic dipole (m1) in the field of another magnetic
dipole (m2) is

H = −
µ0

4π

1

r3
[3(m1 · r̂)(m2 · r̂) −m1 · m2] −

2

3
µ0m1 · m2δ

3(r) (6.6)

where r is their separation, and the classical interaction energy is interpreted as the
hyperfine structure Hamiltonian, and the energies of the singlet and triplet spin one
evaluated in first - order perturbation theory Hamiltonian. The ground - state wave
function for atomic hydrogen.is

ψ0 = (πa3)−1/2e−r|s > (6.7)

where a = 0.52917706 Å is the bohr radius and |s > denotes the spin of the electron.
Treating the dipole - dipole interaction (see in Eq.(6.6)) as a perturbation, the energy
of the general state is shifted :

E =
2

3

µ0~
2

πa2
γeγp (6.8)

where the γ are the two gyromagnetic ratios, ~ = 1.05457168× 10−34 J · s is Planck’s
constant. The energy gap is

∆E =
2

3

(

µ0~
2

πa3

)

γeγp

= 5.884 × 10−6 eV (6.9)

From this result, the frequency(ν) of the photon emitted in a transition from the
triplet to the singlet state equals 1422.8 MHz, which differ from the experimental
value about 0.2% that is attributable to quantum electrodynamical corrections, and
its wavelength(λ) approximates 21 cm.

The observation of the 21-cm wavelength line (or called the 21 cm line) of hydrogen
marked the birth of spectral-line radio astronomy. It was first observed in 1951 by
Harold Ewen and Edward M. Purcell at Harvard, followed soon afterward by observers
in Holland and Australia. The prediction that he 21 cm line should be observable in
emission was made in 1944 by Dutch astronomer H. C. van de Hulst.
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