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Chapter 1

Introduction

1.1 Background

Recently, present accelerating expansion of the universe has been confirmed with ob-

servations via cosmic microwave background anisotropies [1, 2], large scale galaxy

surveys [3] and type IA supernovae [4, 5]. However, the problem is that the accel-

eration can not be understood in the regime of standard cosmology. This motivates

many groups of cosmologists to find out the answers. Proposals to explain this accel-

eration made till today could be, in general, categorized into three ways of approach

[6]. In the first approach, in order to achieve acceleration, we need some form of

scalar fluid so called dark energy with equation of state P = wρ where w < −1/3.

Various types of models in this category have been proposed and classified (for a

recent review see Ref. [7, 8]). The other two ways are that accelerating expansion is

an effect of backreaction of cosmological perturbations [10] or late acceleration is an

effect of modification in action of general relativity. This modified gravity approach

includes braneworld models (for review, see [11]). Till today there has not yet been

truly satisfied explanation of the present acceleration expansion.

Considering dark energy models, precise observational data analysis (combining

CMB, Hubble Space Telescope, type Ia Supernovae and 2dF datasets) allows equation

of state P = wρ with constant w value between -1.38 and -0.82 at the 95 % of

confidence level [12]. The interpretation of various data bring about a suggestion

that dark energy should be in the form of phantom field-a fluid with w < −1 which

violates dominant energy condition, ρ ≥ |P |, rather than quintessence field [13]. The
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phantom equation of state P < −ρ can be attained by negative kinetic energy term

of the phantom field. However there are some types of braneworld model [14] as well

as Brans-Dicke scalar-tensor theory that can also yield phantom energy [17]. There

has been investigation on dynamical properties of the phantom field in the standard

FRW background with exponential and inverse-power law potentials by [20, 21] and

with other forms of potentials by [22, 23]. These studies describes fate of the phantom

dominated universe with different steepness of the potentials.

A problem for phantom field dark energy in standard Friedmann-Robertson-

Walker (FRW) cosmology is that it leads to singularity. Fluid with w less than

-1 can end up with future singularity so called the Big Rip [24] which is of type I

singularity according to classification by [26, 27]. The Big Rip singularity corresponds

to a → ∞, ρ → ∞ and |p| → ∞ at finite time t → ts in future. Choosing particular

class of potential for phantom field enables us to avoid future singularity. However,

the avoidance does not cover general classes of potential [22]. In addition, alternative

model in which two scalar fields appear with inverse power-law and exponential po-

tentials can also avoid the Big Rip singularity [28]. Nevertheless, nature of the scalar

field is still an open question.

In this thesis, a fundamental background theory in which we are interested is

Loop Quantum Gravity (LQG). This theory is a non-perturbative type of quanti-

zation of gravity and is background-independent [29, 30]. It has been applied in

cosmological context as seen in various literatures where it is known as Loop Quan-

tum Cosmology (LQC) (for review, see Ref. [32]). Effective loop quantum modifies

standard Friedmann equation by adding a correction term −ρ2/ρlc into the equation

[33, 34, 35, 31, 36]. When this term becomes dominant, the universe begins to bounce

and then expands backwards. A merit of LQG is the resolution of singularity problem

in various situations [37, 30, 33, 38]. Nice feature of LQC is avoidance of the future

singularity from the correction quadratic term −ρ2/ρlc in the modified Friedmann

equation of LQC [39] as well as the singularity avoidance at semi-classical regime

[40]. The early-universe inflation has been also studied in the context of LQC at

semi-classical limit [41, 42, 36, 43, 44, 45, 47]. Investigation of phantom field dynam-

ics and its late time behavior in the loop quantum cosmological context could reveal

some interesting features of the model.
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1.2 Objectives

We wish to study the cosmological dynamics of the phantom field dark in the LQC

energy background. Such model of dark energy in standard cosmology can produce

future singularity so-called the Big Rip singularity at the late time. Our hypothesis,

is the Big Rip singularity can be avoided by the quantum-geometrical effect from

LQC.

1.3 Frameworks

• To study acceleration of the universe via the scalar field model of dark energy.

• To explain the Big Rip singularity in the standard model of the universe.

• To obtain the effective Friedmann equation from LQC.

• To use the dynamical system for doing analysis dynamics of the phantom field

dark energy in LQC background.

• To understand the nature of singularity and dark energy in context of LQC.

1.4 Expected Use

• To obtain the effective friedmann equation from LQC.

• To avoid the Big Rip singularity from the LQC effect.

• A derived-in-detailed report for those who interest with thoroughly calculation

from the 3 + 1 ADM formulation, the Ashtekar variables and the LQC.

1.5 Tools

• Text books in physics and mathematics.

• A high efficiency personal computer.

• Software e.g. LATEX, WinEdit , Mathematica and Photoshop.
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1.6 Procedure

• Studying basic theory of the LQG.

• Studying quantization of the Friedmann-Robertson-Walker (FRW) spacetime.

• Extracting the effective Friedmann equation from the LQC.

• Studying dynamical system in cosmology.

• Setting the autonomous system from the effective Friedmann equation in the

phantom dark energy background.

• Finding the critical points and demonstrating their stabilities.

• Concluding cosmological consequence from the dynamical system.

1.7 Outcome

• Understanding of basic ideas of LQG, LQC and nature of dark energy.

• Understanding behavior of phantom dynamics under LQC background.
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Chapter 2

Related Theory :

Standard and Loop Quantum

Cosmology

2.1 Standard Cosmology and Dark Energy

In the first section of this chapter we will briefly review on the standard model of

cosmology, evidence of the accelerating universe and the scalar field model of dark

energy.

2.1.1 The Standard Model of Cosmology and the Evidence

of the Accelerating Universe

The hot big bang universe

The standard model of cosmology is the hot big bang theory which based on general

relativity [48, 49, 50] (for readable review see [52]). The hot big bang universe is

confirmed by the existence of cosmic microwave background (CMB) radiation [53] .

General relativity has strongly suggested the universe must be created from the ex-

plosion of primordial singularity. The cosmological solutions from general relativity

also give the non-static or expanding universe [54] . The cosmological model is based
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Figure 2.1: Curvature and fate of the universe (expand forever or re-collapse) from

[52] .

on the cosmological principle i.e. the universe is homogeneous and isotropic (more

detail see [52]) at the very large scale. From such principle it implies the geometrical

line element of the universe,

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dθ2 + r2 sin θdφ2

]
(2.1)

where a(t) is the scale factor which implies size of the universe and k is the curvature

parameter, such parameter has values as −1 for open universe, 0 for flat universe, 1

for close universe (see figure 2.1).

Let us start by considering the dynamical equation of the universe. The Einstein

field equation can be written as [49]

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν (2.2)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci or curvature

scalar, G is the Newton’s gravitational constant and Tµν is the energy-momentum

tensor. The energy-momentum tensor for the perfect fluid is given by

Tµν = (ρ + P )uµuν + Pgµν (2.3)
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where ρ is energy density, P is pressure and uµ is four-velocity.

The FRW line element gives the Ricci tensor and scalar as

R00 = −3
ä

a
(2.4)

Rij = (aä + 2ȧ2 + 2k)δij (2.5)

R = 6

(
ä

a
+

ȧ2

a2
+

k

a2

)
. (2.6)

The (0, 0) component of the Einstein field equation, using above three equations and

equation in (2.3) also, we obtain

H2 =
8πG

3
ρ +

k

a2
(2.7)

where H ≡ ȧ/a is the Hubble parameter, this parameter mean the rate of expansion

of the universe. For the (i , j) component, we obtain

ä

a
= −4πG

3
(ρ + 3P ) . (2.8)

The equation (2.7) is known as the Friedmann equation describing the dynamics of

the universe. The equation (2.8) is known as the acceleration equation or the sec-

ond Friedmann equation. From the covariant conservation of the energy-momentum

tensor i.e. (∇µTµν = 0), we obtain

ρ̇ + 3H(ρ + P ) = 0 . (2.9)

The Friedmann equation (2.7) can be written as

Ω− 1 =
k

a2H2
(2.10)

where Ω ≡ ρ/ρc is the density parameter, ρc ≡ 3H2/8πG is the critical density. The

density parameter Ω can be determined the geometry of the universe as

k = 0 ⇒ Ω = 1

k = −1 ⇒ Ω < 1

k = 1 ⇒ Ω > 1 .

The precise cosmological observation of CMB strongly suggested that our universe is

nearly flat [55] . Using equations (2.7) , (2.8) and (2.9) to solve the flat-Friedmann

7



equation k = 0, we obtain

H =
2

3(1 + w)t
(2.11)

a = a0 t
2

3(1+w) (2.12)

ρ = ρ0 a−3(1+w) (2.13)

where a0, ρ0 are the arbitrary constants and w ≡ P/ρ is the equation of state of the

perfect fluid. For the dust matter has w = 0 and the radiation matter has w = 1/3 .

Let us consider the acceleration equation in (2.8) . We can use this equation

regardless of the geometry of the universe because this equation does not contain

factor k. When we neglect the small value of the cosmological constant, the equation

of state has value w < −1/3 fluid (the dark energy hypothesis) with P < −ρ/3 . Thus

ä is positive value and the universe is in acceleration.

The Evidence of the Accelerating Universe

In 1998 there were project to study supernovae type Ia, by two groups of physi-

cists, Supernova Cosmology Project and the High-z Supernova Team. These groups

discovered important results that make physicists alert. These are,

• The redshift spectrum measurement from supernovae type Ia has higher values

than the redshift predicted in the open universe model (k = −1) . This fact

tells us that the expansion of universe is speeding up rather than slowing down.

• The component of the universe measurement found that the CMB results tell us

the universe is flat. Such model must have the total density equal to the critical

density. However the realistic CMB measurement found the total component

of the universe equal to one-third of the critical density. It rise to gives critical

question, why the 2/3 times of the critical density component are missing in

the CMB measurement?

The acceleration expansion of the universe is most directly provided by the supernovae

Ia observation and also strongly supported by many astronomical and cosmological

phenomena e.g. CMB measurement, gravitational lensing, redshift galaxy survey

and the large scale structure formation. After discovery these puzzles give doubt

to physicists, and cosmologists. To solve the situation, they need to introduce the

existence of some mystery fluid with negative pressure. The mystery fluid is known

8
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Figure 2.2: Hubble diagram from the Supernova Cosmology Project [56]. The bottom

plot shows the number of standard deviations of each point from the best-fit curve.

as dark energy. The dark energy also give new questions, why the universe is

accelerating, expansion? what dark energy actually is, and etc. Next section we will

discuss about the resolutions of these problems.

2.1.2 The Scalar Field Models of Dark Energy

This section we introduce the resolution of the accelerating expansion of the universe.

The most interesting and quite successful explanation of these problems is the dark

energy hypothesis. Here we discuss the cosmological constant and some simple the

scalar field models (the quintessence and the phantom dark energy) .

The Cosmological constant

After the cosmological solutions are obtained by many physicist from general relativity

and the cosmological principle. Such the solutions told us that the universe model

is dynamics. Einstein who is the father of general relativity was not happy with the

dynamic universe models. He added some constant by hand into the Einstein field

9
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[56].

equation as

Rµν − 1

2
gµνR + Λgµν = 8πGTµν (2.14)

where the constant Λ is known as the cosmological constant. The cosmological so-

lution of modified Einstein field equation with adding Λ gives static universe model.

We can rewrite the above equation as

Rµν − 1

2
gµνR = 8πG(Tµν + TΛ

µν) (2.15)

where TΛ
µν is given by

TΛ
µν ≡ ρΛ gµν =

Λ

8πG
gµν . (2.16)

We re-interpret the cosmological constant Λ as the energy density ρΛ .

Until Edwin Hubbles discovered the the redshift of the galaxy in 1929 , this phe-

nomenon obviously indicates that universe is expanding. Then Einstein must drop

his cosmological constant and said deathless phrase “It’s my greatest blunder!” . The

cosmological constant was ignored by physicist for almost 70 years.

The reborn of the cosmological constant become the first candidate of the dark
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of the parameters in an expanding universe from [9].

energy model (vacuum energy) for solving the accelerating universe problem. The

cosmological constant is the simplest model of dark energy, it also provides a best

agreement with astronomical and cosmological observations.

Let us consider the Friedmann equation with k = 0 of the field equation in (2.15) ,

we obtain

H2 =
8πG

3
(ρ + ρΛ) . (2.17)

We can reduce the energy density and the pressure of both matter and the cosmolog-

ical constant with ρ → ρ + ρΛ and P → P + PΛ . We also use the conservation of the

matter-(perfect fluid) in equation (2.9) , it is easy to show that

ρ̇Λ + 3H(ρΛ + PΛ) = 0 . (2.18)

Since ρΛ is constant, that implies

ρΛ = −PΛ ⇒ wΛ = −1 . (2.19)

As we know, if the equation of state of any perfect fluid is less than 1/3 , such perfect

fluid (here our perfect fluid is the cosmological constant) can drive the acceleration

expansion. The cosmological constant also passes this condition, then the cosmolog-

ical constant can be candidate of dark energy model.
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Although the cosmological constant is best fitted with the observational data so-

called lambda cold dark matter (ΛCDM) model, but unfortunately the cosmological

constant causes the theoretical inconsistency problem i.e. the prediction values of the

cosmological constant from quantum field theory are very larger than the observa-

tional values allowed (in level 120 orders of magnitude ρΛ theory/ρΛ obs ∼ 10120 ). This

unsolved problem in particle physics is known as the cosmological constant problem.

The Quintessential Dark Energy

The scalar field model becomes the candidate of dark energy model instead the cos-

mological constant because the the cosmological constant has the fine tuning problem

and it also gives the constant equation of state w = −1 . While the scalar field model

has the time variation equation of state i.e. w = w(t) . The scalar field has a good

motivation on particle physics including string theory. Then the scalar field can be-

have like dark energy in various ways. We will follow Ref. [7] .

The quintessence is the ordinary scalar field φ , such field is non minimally coupled

to gravity. We begin with the action of the quintessence given by

S =

∫ √−g

(
−1

2
∂µφ∂µφ− V (φ)

)
d4x , (2.20)

where V (φ) is the potential of the quintessence. In the flat FRW metric, the Klein-

Gorgon equation can be written as1

φ̈ + 3Hφ̇ + V ′ = 0 . (2.21)

The energy-momentum tensor of the quintessence is defined by

Tµν = − 2√−g

δS

δgµν
, (2.22)

we obtain

Tµν = ∂µφ∂νφ− gµν

(
1

2
∂αφ∂αφ + V (φ)

)
. (2.23)

Comparing the above equation with the standard form of energy-momentum tensor

of the perfect fluid in (2.3), we obtain the energy density and the pressure density of

quintessence as

ρ = T 0
0 =

1

2
φ̇2 + V (φ) , (2.24)

P = T a
a =

1

2
φ̇2 + V (φ) . (2.25)

1For detail calculation see [15].
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Using the definition of the energy density and the pressure density of quintessence

substitute into equations (2.7) and (2.8), we obtain

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
(2.26)

and
ä

a
= −8πG

3

(
φ̇2 − V (φ)

)
. (2.27)

We take time derivative in (2.26) and using (2.21) also, we get

Ḣ = −4πGφ̇2 . (2.28)

We can express the the potential V (φ) and field φ in terms of H and Ḣ as

V =
3H2

8πG

(
1 +

Ḣ

3H2

)
(2.29)

φ =

∫ (
− Ḣ

4πG

)1/2

dt . (2.30)

The equation of state of quintessence is defined by

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (2.31)

Let us consider the potential of the quintessence, which gives the exact solution (power

law inflation’s potential), i.e. the exponential potential take form

V (φ) = V0 exp

(
−

√
16πG

p
φ

)
. (2.32)

Substituting this potential in equation (2.21), (2.26) and (2.28). The solution from

the exponential potential can be written as

a(t) ∝ tp . (2.33)

The acceleration expansion occurs when p > 1 . Thus the quintessence with exponen-

tial potential may provide dark energy. For more details on the several types of the

quintessence potentials see [7] .
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The Phantom Field Dark Energy

The kinetic energy scalar field dark energy is known as the phantom field, was pro-

posed by Ref. [13, 24] . Such fields were motivated from observational constraint

that may be allows equation of state w < −1 with constant w value between -1.38

and -0.82 at the 95 % of confidence level [12] , from S-brane construction in string/M

theory [16] and from the scalar-tensor gravity [17] . This model also violated the

null dominated energy condition in classical general relativity. Actually, the phantom

fields were first proposed by Fred Hoyle, he introduced the creation (C)-field to recon-

cile the observational expanding universe with the steady state universe model. The

C-field will create new matter and making universe to be homogeneity [18]. Later the

C-field is extended to the Hoye-Narlikar theory of gravity [19].

The phantom fields are non-minimally coupling with gravity, the action can be

written as

S =

∫ √−g

(
1

2
∂µφ∂µφ− V (φ)

)
d4x (2.34)

In the same way as the case of quintessence, we obtain

ρ = −1

2
φ̇2 + V (φ) (2.35)

P = −1

2
φ̇2 − V (φ) . (2.36)

The equation of state of the phantom fields is given by

w ≡ P

ρ
=

φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
(2.37)

from this fact we have w < −1 when φ̇2 ¿ V (φ) . Recalling the solution of the energy

density in term of scale factor in (2.13) gives

ρ ∝ a−3(1+w) .

When the phantom fields dominated universe at late time the equation of state will

be w < −1 . This obviously indicates that the energy density will approach infinite.

The fields of the phantom fields will roll up the potential instead of rolling down like

ordinary scalar field, then the energy of field will diverge (i.e. for the exponential

potential). Such phenomena is known as the Big Rip singularity, that implies that

at the late time everything in the universe must be ripped apart. But if the shape of

potentials of the phantom field have peak of the potential (finite maximum values of
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the potential) the field will oscillate around the peak, so the energy of phantom field

can not diverge. This is a good strategy was propose by Ref. [25] to avoid the Big

Rip singularity. Unfortunately we do not know what is the actual shape of the dark

energy potential. This mechanism can not generally avoid the Big Rip singularity in

the phantom field dark energy.

2.2 Loop Quantum Cosmology

2.2.1 The Ashtekar Variables in General Relativity

This section we review in the Ashtekar variables. We have shown the 3 + 1 ADM

formulation in general relativity at appendix B. The Hamiltonian in general relativity

is based on phase space with the dynamical variables the spatial 3-dimensional metric

qab and canonical conjugate momentum πab. But the Ashtekar variables is formulated

by the densititized triad Ea
i and the su(2) connection Ai

a [57] .2 The su(2) connection

Ai
a and the densititized triad Ea

i is obtained by canonical transformation of the 3 + 1

ADM formulation. The features of the Ashtekar variables are the standard model

of particle physics cannot written in term of metric tensor [58] and bringing general

relativity closer contact to the gauge theory where the gauge theory is the available

theory to quantization [60]. The Ashtekar variables is understood in the Einstein-

Cartan geometry without matter which equivalence to general relativity (for more

detail see [58]) . Such variables also provide the polynomial of the constraints in the

canonical variables.

This section we will follow [60] . Considering the 3-dimensional metric relate to

the triad ea
i as follow

qab = ea
i e

b
jδ

ij (2.38)

and for the co-triad ei
a

qab = ei
ae

j
bδij . (2.39)

The densitized triad Ea
i can be written in the form of co-triad ei

a as

Ea
i =

1

2
εijkε

abcej
be

k
c . (2.40)

2For conventions in this section and thesis see at appendix.
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Using equations (2.39) and (2.40), we obtain the relation between the densitized triad

and the 3-dimensional tensor as

Ea
i Edi =

(
1

2
εijkε

abcej
be

k
c

) (
1

2
εilmεdfheflehm

)

=
1

4
δlm
jk εabcεdfhej

be
k
ceflehm =

1

4
(δl

jδ
m
k − δl

kδ
m
j )εabcεdfhej

be
k
ceflehm

=
1

4

(
εabcεdfhej

be
k
cefjehk − εabcεdfhej

be
k
cefkehj

)

=
1

4

(
εabcεdfhqbfqch − εabcεdfhqbhqcf

)
=

1

2
εabcεdfhqbfqch

=
1

2
εabcεdfhqbfqch

δa
a

3
=

1

6
εabcεdfhqbfqchqabq

ab

= | q| qab (2.41)

we used identities εijkε
ilm = δlm

jk where δlm
jk = δl

jδ
m
k − δl

kδ
m
j is generalized Kronecker

delta, ea
i e

j
a = δj

i , eaie
i
b = qab and | q| = (1/3!)εabcεdfhqbfqchqab is determinant of metric

qab . We have the relation between the jacobian of qab and ea
i , using equation (2.38)

or (2.39) , we obtain

qab = ei
aebi

det (qab) = det (ei
aebi)

q = det (ei
a) det (ebi)

q = e2 . (2.42)

Using equations (2.41) and (2.42) , then we obtain

Ea
i =

√
e ea

i . (2.43)

The densitized triad Ea
i have carried information in the 3-dimensional hypersurface

Σt from the 3-dimensional metric qab .

Next we consider the spin connection ωi
a . The compatible of the spin connection

with the co-triad ei
a is satisfied by condition

∂[ae
i
b] + ωi

[aje
j
b] = 0 . (2.44)

We can solve above equation and giving the explicit form of the spin connection ωi
a

as (see detail derivation at appendix C.1)

ωi
aj =

1

2
ek

a

(
eb

ke
c
j∂[be

i
c] + ebiec

k∂[bec]j − eb
je

ci∂[bec]k

)
(2.45)
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for any antisymmetric quantity of two 3d indices i , j can be represent in one index

via

vi =
1

2
εi

jkv
jk , vij = εij

kv
k . (2.46)

From this fact, we can represent the spin connection in term of one index form as

ωi
a = −εijkeb

j(∂[aeb]k +
1

2
ec

ke
l
a∂[ceb]l) (2.47)

Certainly the spin connection also preserves information in the 3-dimensional hy-

persurface Σt via the relation between triad, co-triad and 3-dimensional metric i.e.

ea
i e

bi = qab and ei
aebi = qab . The extrinsic curvature one-form K i

a is defined by

K i
a = Kabe

bi . (2.48)

The su(2) connection Aa
i is defined by a sum of the spin connection and the extrinsic

curvature one-form i.e.

Ai
a = ωi

a + χK i
a (2.49)

where χ is the Barbero-Immirzi parameter. Such parameter is play important role in

the level spacing geometric eigenvalues and set by the black hole thermodynamics in

LQG, as χ ∼ 0.2375 . As we seen like the densitized triad Ea
i , the su(2) connection also

preserve the information of the 3-dimensional hypersurface Σt via the spin connection

ωi
a and the extrinsic curvature K i

a in explicitly way.

After we have shown how the Ashtekar variables come from, we can be written the

densitized triad and the su(2) connection in the Poisson bracket like the canonical

dynamical variables (B.33) in 3 + 1 ADM formulation as

{Aj
b , Ea

i } = 8πGχδa
b δ

j
i δ

3(x , y) (2.50)

where G is the Newton’s gravitational constant.

Using the Ashtekar variables is the canonical dynamics variables. The gravitational

action of the 3+1 ADM formulation under the Legend transformation, we obtain the

Holst action as [61, 62] (see detail calculation at appendix C.2)

SGR[E, A, λ, Na, N ] =

∫ ∫ ( −1

8πGχ
Ea

i £tA
i
a − (λiGi + NaCa + NCGR)

)
d3x dt

(2.51)

where λi ≡ Ai
t , the polynomial set of the constraints are given by

Gi = DaE
a
i = ∂aE

a
i + ε k

ij Aj
aE

a
k (2.52)
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where Da is the covariant derivative operator compatible with co-triad i.e. D[aeb]i = 0 ,

the constraint Gi is known as the Gauss constraint. Such constraint additional arise

from the Ashtekar variables.

Ca =
1

8πGχ
Eb

i F
i
ab −

(
1 + χ2

χ

)
Ki

aGi (2.53)

the constraint Ca is the diffeomorphisms constraint like the 3 + 1 ADM formulation.

CGR =
1

16πG
√

q
Ea

i Eb
j

(
εij

kF
k
ab − (1 + χ2)Ki

[aK
j
b]

)
(2.54)

the constraint CGR is the Hamiltonian constraint like the 3+1 ADM formulation also.

The quantity F i
ab is the curvature of the su(2) connection is defined by

F i
ab = ∂[aAb] + εi

jkA
j
aA

k
b . (2.55)

Thus we can be obtained the total gravitational Hamiltonian in the Ashtekar variables

as

HGR =

∫
(λiGi + NaCa + NCGR)d3x . (2.56)

As in the 3 + 1 ADM formulation, the total Hamiltonian is a sum of the Gi, Ca

and CGR, but the total Hamiltonian in the Ashtekar variables have raising the ad-

ditional constraint i.e. the Gauss constraint Gi . This is feature of the Ashtekar

variables when it is used in the canonical theory. The Gauss constraint Gi can be

generated the su(2) rotational property of the densitized triad Ea
i and the connection

Ai
a . The diffeomorphisns constraintt Ca can be generated diffeomorphisms along the

3-dimensional hypersurface Σt . The Hamiltonian constraintt CGR can be determined

dynamics and generated the time evolution of the 3-dimensional hypersurface Σt .

The Hamiltonian CGR also separately consider as

CGR = −CE + CL (2.57)

where CE is known as the Euclidean part, given by

− CE =
1

16πG
√

q
Ea

i Eb
jε

ij
kF

k
ab (2.58)

and CL is known as the Lorentz part, given by

CL = − 1

16πG
√

q
(1 + χ2)Ea

i Eb
jK

i
[aK

j
b] . (2.59)
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When we quantize the Hamiltonian constraint. The Euclidean part is the first quan-

tized separately to be the operator. The Lorentz part is quantized later by using the

operator of the Euclidean constraint.

The equation of motions of general relativity in the (canonical) Ashtekar variables

are obtained by analogy the 3 + 1 ADM formulation’s equation of motion as

Ȧi
a = {Ai

a , HGR} = 8πGχ
δHGR

δEa
i

(2.60)

and

Ėa
i = {Ea

i , HGR} = −8πGχ
δHGR

δAi
a

. (2.61)

2.2.2 The Isotropic Hamiltonian of the flat FRW spacetime

This section we will construct the form of isotropic the densitized triads and the su(2)

connection for the flat FRW spacetime (k = 0) . This type of solution can be obtained

in the Bianchi I model , we obtain the FRW line element following

ds2 = −N2(t)dt2 + a2(t)(dx2 + dy2 + dz2) (2.62)

where N(t) is lapse function and a(t) is a scale factor. The homogeneous connection

and triads can be decomposed by using the basis one-form and vector fields as [63]

Ai
a = ci

j(t) θj
a

Ea
i = pj

i (t) Xa
j (2.63)

where θi
a , Xa

i are the one-form and vector fields basis respectively and ci
j(t) , pj

i (t) are

relating dynamical quantities with the metric. For an isotropic case, the connection

take the form [63]

Ai
a = c̃ (t) θi

a (2.64)

and the densitized triad take the form

Ea
i =

√
0q p̃ (t) Xa

i (2.65)

where c̃(t) is the dynamical component of the connection Ai
a p̃(t) is the dynamical

component of the densitized triad after symmetry reduction [63] , 0q is determinant
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of the fiducial background metric 3 0qab = θi
aθbi

The 3-dimensional metric qab is given by

qab = a2(t)θaiθ
i
b = a2(t) 0qab . (2.66)

We will use equation (2.41) to determine the relation between p̃(t) and a(t) , we obtain

Ea
i Ebi =

√
qqab

√
0q p̃ (t) Xa

i

√
0q p̃ (t) Xbi = (a6(t) 0q)

δab

a2(t)

p̃ 2(t)δa
i δ

bi = a4(t)δab

| p̃ (t)| = a2(t) . (2.67)

The triad oppose to the scale factor. An orientation of the triad can be determined

by the sign of p̃ i.e. p̃ allow both positive and negative values. Here we denote “the

sign of p̃ ≡ sgn(p̃ )” . The triad in term of both p̃ and a using equations (2.43) and

(2.67), we obtain

ea
i = sgn(p̃ )a−1Xa

i . (2.68)

Let us consider the spin connection ωi
a following the definition in (2.47) . The spin

connection is identically vanish in the flat FRW line element due to the basis vector

fields Xa
i is orthogonal coordinate (or in flat space). Using the definition of extrinsic

curvature Kab in equation (B.24) with FRW metric, we obtain

Kab =
1

2N
( ˙qab −DaNb −DbNa)

=
1

2N

(
d

dt
(a2(t)θaiθ

i
b)−Da(0)−Db(0)

)

= N−1aȧ θaiθ
i
b . (2.69)

We use above equation and the definition of triad in equation (2.68), the extrinsic

curvature one-form is given by

Ki
a = Kabe

bi

= N−1aȧ θj
aθbj sgn(p̃ )a−1Xbi

= sgn(p̃ )N−1ȧ θi
a . (2.70)

3The fiducial metric for the flat FRW line element is given by θaiθ
i
bdxadxb = dx2 + dy2 + dz2 .
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we also used identity θaiX
aj = δj

i . We directly obtained the su(2) connection Ai
a by

using the facts from above as

Ai
a = ωi

a + χK i
a

= χ sgn(p̃ )N−1ȧ θi
a . (2.71)

We use the homogeneous and isotropic connection in (2.64) and densitized triad in

(2.65) substituting to the gravitational action in (2.51) , we obtain

Ea
i £tA

i
a = Ea

i (tb∂bA
i
a + Ai

b∂at
b)

=
√

0q p̃Xa
i θi

a

(
dxb

dt
∂bc̃

)

= 3
√

0q p̃ ˙̃c . (2.72)

For the Gauss constraint will identically vanish due to the basis vector fields Xa
i is

orthogonal basis in the Bianchi I model i.e.

∂aE
a
i + ε k

ij Aj
aE

a
k = ∂a(p̃ Xa

i ) + ε k
ij c̃ p̃ θj

aX
a
k

= ε k
ij c̃ p̃ δj

k

= ε j
ij c̃ p̃ = 0 . (2.73)

The curvature F i
ab can easy calculation, we obtain

F i
ab = ∂[a(c̃ θi

b]) + εi
jkA

j
aA

k
b

= εi
jkc̃ θj

ac̃ θk
b

= εi
jkc̃

2θj
a θk

b . (2.74)

For the diffeomorphisms constraint, we use the curvature F i
ab in above equation and

the fact Gi = 0 from Gauss constraint, substituting in equation (2.53) we obtain

1

8πGχ
Eb

i F
i
ab −

(
1 + χ2

χ

)
K i

aGi =
1

8πGχ

√
0q p̃ θb

i ε
i
jkc̃

2θj
a θk

b

=

√
0q

8πGχ
p̃ c̃ 2εi

jkX
b
i θ

j
a θk

b =

√
0q

8πGχ
p̃ c̃ 2εi

jkδ
k
i θj

a

=

√
0q

8πGχ
p̃ c̃ 2εi

ji θ
j
a = 0 . (2.75)
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For the Hamiltonian constraint CGR The Euclidean part is given by

− CE =
1

16πGχ
√

q
εij

kE
a
i Eb

jF
k
ab

=
1

16πGχ
√

0q
√

p̃ 3
εij

kε
k
lm

√
0q p̃Xa

i

√
0q p̃Xb

j c̃ 2 θl
a θm

b

=
1

16πG

√
0q

√
p̃ c̃ 2 δij

lm Xa
i Xb

j θl
a θm

b

=
1

16πG

√
0q

√
p̃ c̃ 2 (δi

lδ
j
m − δi

mδj
l ) Xa

i Xb
j θl

a θm
b

=
1

16πG

√
0q

√
p̃ c̃ 2 (δi

lδ
j
m Xa

i Xb
j θl

a θm
b − δi

mδj
l Xa

i Xb
j θl

a θm
b )

=
1

16πG

√
0q

√
p̃ c̃ 2 (δi

lδ
j
mδl

iδ
m
j − δi

mδj
l δ

l
iδ

m
j ) =

1

16πG

√
0q

√
p̃ c̃ 2 (δi

iδ
j
j − δi

i)

=
3

8πG

√
0q

√
p̃ c̃ 2 (2.76)

and the Lorentzian term CL , for the fact ωi
a = 0 and using equation (2.70), we get

CL = − 1

8πG
√

q
(1 + χ2)Ea

i Eb
jK

i
[aK

j
b] = −(1 + χ2)

8πG
√

q
Ea

i Eb
j

(
1

2

)
(K i

aK
j
b −Ki

bK
j
a)

= − (1 + χ2)

16πG
√

0q
√

p̃ 3

√
0q p̃Xa

i

√
0q p̃ Xb

j

× (
sgn(p̃ )N−1ȧ θi

asgn(p̃ )N−1ȧ θj
b − sgn(p̃ )N−1ȧ θi

bsgn(p̃ )N−1ȧ θj
a

)

= −(1 + χ2)

16πG

√
0q

√
p̃ (sgn(p̃ )2N−2ȧ2)( θi

aθ
j
bX

a
i Xb

j − θi
bθ

j
aX

a
i Xb

j )

= −(1 + χ2)

16πG

√
0q

√
p̃

(
c̃ 2

χ2

)
(δa

aδ
b
b − δa

a)

= − 3

8πG
(1 + χ−2)

√
0q

√
p̃ c̃ 2 . (2.77)

Using above two equation, the total Hamiltonian constraint is given by

CGR = −CE + CL =
3Ω

8πGχ2

√
p̃ c̃ 2 . (2.78)

where Ω =
∫

d3x
√

0q is the fiducial volume.

Using all the constraint values insert to the gravitational action of the homogeneous

and isotopic include the action of matter field SM , we get

SGR[N, p̃ , c̃ , matter] =

∫
dt

[
3Ω

8πGχ
p̃ ˙̃c + N

(
3Ω

8πGχ2

√
p̃ c̃ 2

)]
+ SM (2.79)
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Comparing this action with action in classical mechanics, we obtain the total Hamil-

tonian as

HGR = N

(
− 3Ω

8πGχ2

√
p̃ c̃ 2

)
+ HM (2.80)

and we immediately write the poisson bracket relation between c̃ and p̃ as

{c̃ , p̃ } =
8πGχ

3Ω
(2.81)

The equations (2.80) and (2.81) are known as the symmetry reduction. The hamil-

tonian in (2.80) and the Poisson bracket in (2.81) are the preparation of the homo-

geneous and isotopic for flat-FRW spacetime to be quantization process.

For simplifying, we can be dropped the fiducial volume factor Ω by changing the new

variables to absorb this factor following

p ≡ Ω2/3 p̃

c ≡ Ω1/3 c̃ . (2.82)

Using these variables, we obtain the action as

SGR =

∫ (
3

8πGχ
p ċ + c2N

3

8πGχ2

)
dt . (2.83)

The Poisson brackets of the untilde c and p becomes

{c , p} =
8πGχ

3
. (2.84)

The Hamiltonian constraint can be written as

CGR = − 3

8πGχ2

√
|p| c2 . (2.85)

The relation between the untilde c and p and the FRW metric variables as

|p| = Ω2/3a2

c =
χ

N
sgn(p)Ω1/2ȧ . (2.86)

We will use c and p variables at the beginning to quantization. The features of

the untilde c and p variables does not for simply formalisms only, these variables also

invariant under the coordinate gauge freedom when we quantize gravity. That means,

our quantum theory of gravity will be invariant under gauge freedom.

To obtain the Hamiltonian constraint of the scalar field (here we follow above
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Figure 2.5: The notion of holonomy, figure from [58].

procedure step by step), the action of the scalar field in the flat FRW can be written

as

Sφ =

∫ √−ga3NΩ

(
φ̇2

2N2
− V (φ)

)
dt (2.87)

where V (φ) is the potential energy of the scalar field. Let us define the canonical

conjugate momentum Πφ of the scalar field as

Πφ =
a3Ω

N
φ̇ . (2.88)

Using the Legendre transformation of action in (2.87), we obtain

Sφ =

∫ [
Πφφ̇−N

(
Π2

φ

2a3Ω
− a3ΩV (φ)

)]
dt . (2.89)

Thus the Hamiltonian of the scalar field and it constraint can be written as

Hφ = N

(
Π2

φ

2a3Ω
+ a3ΩV (φ)

)
(2.90)

Cφ =
Π2

φ

2|p̃ |3/2Ω
+ |p̃ |3/2ΩV (φ) . (2.91)

2.2.3 Isotropic loop quantum cosmology

The Loop Quantized Representation

This section we present the Dirac’s quantization formalisms via Wilson’s loop ap-

proach, known as loop quantization and we will see below “why loop ?”. Dirac

quantization procedures as following [64]
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e

S

Figure 2.6: A notion of holonomy and flux as elementary conjugate variables, figure

from [65].

• Quantize the Poisson bracket of phase space variables as the commutator in the

kinematical Hilbert space i.e. { , }PB −→ −i/~ [ , ] .

• Promote the gravitation constraints in (2.52) , (2.53) , (2.54) to the self-adjoint

operator.

• Find the physical Hilbert space i.e characterize the space of the constraint so-

lutions and define the inner product that gives notion of physical probability.

• Find a complete set of gauge invariant observables (i.e. loop variables operators)

with commute to the constraints.

This strategy is very successful and powerful in the LQG and LQC as well. Such

approach also gives the background independent in our theory. In our quantization

procedure, the Hamiltonian will be ignored i.e. HGR ≈ 0 . This thesis, we especially

treat the quantization of the flat FRW spacetime (k = 0) only and using a classical

approximation to obtain the effective Friedmann equation.

Let us start from the basic configuration variable holonomies (or Wilson’s loop)

of the connection along a given edge

he(A) = P exp

(∫
(γ̇µ(s)Ai

µ(γ(s))τi)ds

)
(2.92)
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where P denotes a path order of the exponential, γ̇µ is tangent vector at the edge, and

τi = − i
2
σi is a basis of the SU(2) of the Lie algebra, with σi is Pauli spin matrices.

The holonomy of the connection Ai
a = c̃ θi

a is given by

hi(A) = exp

(∫
(c̃ θj

aX
a
i τj)ds

)

= exp(0l c̃ τi)

= cos

(
0l c̃

2

)
+ 2 sin

(
0l c̃

2

)
τi (2.93)

where 0l is the oriented edge length. We can re-write it in the untilde variables and

define new parameter µ′ = 0l/Ω1/3 , obtaining

hi(A) = cos

(
µ′c
2

)
I+ 2 sin

(
µ′c
2

)
τi (2.94)

where I is identity matrix in 2× 2 dimension and µ′ is the kinematical length of the

square loop as area of the loop is given by minimum eigenvalue of LQG area operator

[35] . The basis momentum variables are fluxes of the triad through a two-surface S

FS(E) =

∫

S

εabcE
c
i τ

if ′id
axdbx (2.95)

where f ′i is a test function. Using the fact at above, the flux of the triad is proportional

to the triad itself

FS(E) = AS, fΩ
− 2

3 p ∝ p (2.96)

where AS, f is area of S . We note that both the holonomy and flux variables do

not need a background metric to defined and the flux variable are conjugate variable

to holonomy as we see in figure 2.6 . The Poisson bracket of these variable are not

non-zero (we will see below) , if the edge of the holonomy intersect to the surface

of the flux. These variables are well defined to promote quantum operator (i.e. a

gauge invariant observables) that created a loop state. From this reason, that is why

we call loop quantization . In LQG (and LQC also) , spacetime is formed by loop

state i.e. loop state associate with respect to other loop only without refering to the

background metric. Therefore LQG is background independent (quantum gravity)

theory.

In the homogeneous and isotropy cosmological setting of Dirac’s quantization, we

can construct the algebra function to be represented on the kinematical Hilbert space
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which is defined by holonomy and flux also. The algebra almost periodic function is

constructed from a finite holonomies [30]

f(c) =
∑

j

fj exp

(
i
µ′j c

2

)
(2.97)

where j is the finite integer labeling number of edges, µ′j ∈ R (real) and fj ∈
C (complex) . We note that the almost periodic algebra function depends on c only

but it is not c directly. As we see the almost periodic algebra function, we can rep-

resent all continuous functions from the almost periodic algebra functions, like view

point of a fourier series. We have shown at above the flux of triad is proportional to

itself, therefore we can use p to be algebra function directly. We will construct the

holonomy-flux algebra function via the Poisson bracket as

{f(c)j , p} =
8πGχ

3

(
∂

∂c

(∑
j

fj exp

(
i
µ′j c

2

))
∂p

∂p

− ∂

∂p

(∑
j

fj exp

(
i
µ′j c

2

))
∂p

∂c

)

=
8πGχ

3

∑
j

fj µ′j exp

(
i
µ′j c

2

)
(2.98)

the Poisson bracket is almost periodic also, that means this algebra is closed. After, we

prepared the classical phase space the holonomy-flux algebra to be represented on the

Hilbert space already which satisfies and passes requirement from Dirac quantization.

The almost periodic algebra function can represent the constitution of an orthonomal

basis in kinematical Hilbert space, by setting

fµ = exp
(
i
µ c

2

)
. (2.99)

Analogous conventional quantum mechanics, we can write the orthonormal basis state

in bra-ket notation as

exp
(
i
µ c

2

)
= < c|µ > . (2.100)

Orthonormality of basis states is given by

< µ |µ′ >= δµµ′ . (2.101)

A general state |Ψ > in kinetic Hilbert space can write as

|Ψ >=
∑

µ

Ψµ |µ > . (2.102)
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Inner product of a general state becomes

< Ψ |Ψ′ >=
∑

µ

Ψ∗
µ Ψ′

µ (2.103)

where Ψ∗
µ is the complex conjugate of Ψµ . From requirement of state kinematical

Hilbert space must have finite norm that gives,
∑

µ

Ψ∗
µ Ψ′

µ < ∞ . (2.104)

Next, we will promote f(c) and p to be the operators which satisfy

{f(c)j , p} = − i

~
[f̂(c) , p̂ ] . (2.105)

The configuration variables (holonomy) f(c) , is promoted to be operator as

f̂(c) ≡ êiµ c/2 . (2.106)

The eigenvalue equation for holonomies operators is given by

f̂(c)|µ >= |µ + µ′ > . (2.107)

The conjugate momentum variables (flux) p is also promoted to be operator as

p̂ ≡ − i 8πG χ~
3

d

dc
. (2.108)

The eigenvalue equation for holonomies operator is given by

p̂ |µ >=
4πG χ~µ

3
|µ > . (2.109)

where |µ > is orthonormal eigenstate in the kinetic Hilbert space and we will demon-

strate its representation the commutator relation by using (2.107) and (2.109) , we

get

[f̂(c) , p̂ ] = −4πGχ~µ

3
êiµ c/2 . (2.110)

Comparing this result with respect to (2.98) , we found that it satisfies quantization

procedure in (2.105) .

This section we have briefly introduced the (first-look) loop quantization in cos-

mological setting (i.e. LQC) and have shown how to construct LQC from classical

theory at the beginning of this theory. We will stop here because LQC is still on

progress to go on and not explicitly complete. For comprehensive reviews, more

details, applications and literatures of LQC see [30, 32, 60, 61, 66] .
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The Effective Friedmann Equation in LQC

LQC naturally gives rise to inflationary phase of the early universe with graceful exit,

however the same mechanism leads to a prediction that present-day acceleration must

be very small [41]. At late time when universe and at large scale, the semi-classical

approximation in LQC formalisms can be used [46]. This section we will derive the

effective Friedmann equation from LQC following [34] which is main material of this

thesis. The classical Hamiltonian constraint of the flat FRW in (2.111) with matter

part is given by

CGR = − 3

8πGχ2

√
|p| c2 + Cm . (2.111)

The effective Friedman equation can be obtained by using an effective Hamiltonian

with loop quantum modifications [34, 39, 47]:

Ceff = − 3

κ2χ2µ′ 2
a sin2(µ′c) + Cm (2.112)

where κ2 = 8πG . The matter part4 of effective Hamiltonian is given by substituting

the equation (2.82) into equation (2.91) . we obtain

Cm = Cφ =
1

2

Π2
φ

p3/2
+ p3/2V (φ) (2.113)

where Πφ/p
3/2 ≡ φ̇ is obtained by using the the Hamilton’s equation of motion. We

can rewrite above equation in function of energy density of the scalar field as

Cm = p3/2

(
1

2
φ̇2 + V (φ)

)
= p3/2ρ . (2.114)

The Hamilton’s equation of motion is

ṗ = {p, Ceff} = −κ2χ

3

∂Ceff

∂c
. (2.115)

where c and p are respectively conjugate connection and triad satisfying {c, p} =

κ2χ/3 as we have discussed in chapter 2 . These are two variables in the simplified

phase space structure under FRW symmetries [32] and relates the two variables to

scale factor as p = a2 and c = χȧ that we have demonstrated in above. Substituting

the effective Hamiltonian constraint in (2.112) into the Hamilton’s equation of motion

4Considering the matter part constitute the scalar fields only.
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in (2.115) we get

ṗ = −κ2χ

3

∂

∂c

(
− 3

κ2χ2µ′ 2
a sin2(µ′c) +

1

2

Π2
φ

p3/2
+ p3/2V (φ)

)

=
2a

χµ′
sin(µ′c) cos(µ′c) (2.116)

we use the relation ṗ = 2aȧ with the above equation, therefore the time derivative of

the scale factor is given by

ȧ =
1

χµ′
sin(µ′c) cos(µ′c) (2.117)

Using the Equations (2.114) and (2.115) with constraint from realization that loop

quantum correction of effective Hamiltonian Ceff is small at large scale, Ceff ≈ 0

[32, 35, 34, 39], i.e.

Ceff = − 3

κ2χ2µ′ 2
a sin2(µ′c) + Cm = 0

sin2(µ′c) =
κ2χ2µ′ 2

3a
Cm =

κ2χ2µ′ 2p
3

ρ . (2.118)

Let us consider the minimum eigenvalue of the area operator in LQG is α′`2
p where

`2
p ≡ G~ and α′ are the Planck length and the order unity respectively. Comparing

with the area of the loop in the flat FRW geometry i.e. A = µ′ 2|p| , then we get

equality of the minimum eigenvalue of the area operator between LQG and LQC [34]

as

µ′ 2a2 = α′`2
p . (2.119)

We can obtain (effective) modified Friedmann equation by using (2.117), (2.118) and

(2.119) as

H2 =

(
ȧ

a

)2

=
(1/χµ′ sin(µ′c) cos(µ′c))2

a 2
=

(1/χµ′)2 sin(µ′c)2(1− sin(µ′c)2)

p

=
κ2χ2µ′ 2p ρ (1− κ2χ2µ′ 2p ρ/3)

3α2µ′ 2p
=

κ2

3
ρ

(
1− κ2χ2µ′2α′`2

m

3µ′2
ρ

)

=
κ2

3
ρ

(
1− ρ

ρlc

)
(2.120)

where ρlc = 3/(α′κ2χ2`2
m) .

The effective Friedmann equation of LQC rises the correction term ρ2 from the

discrete quantum geometric effect in classical regime. This equation was first derived
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in [34] recently, such equation is more similar to the effective Friedmann equation

in the Randall-Sumdrum (RS II) [67, 68, 69] brane-world cosmology model which is

motivated by M/String theory but in the RS II model has + sign in ρ2 term. In the

high energy regime i.e. ρ À ρlc the ρ2 term will dominate in this equation and in the

low energy regime i.e. ρ ¿ ρlc the effective Friedmann equation will reduce to the

Friedmann equation in standard GR. We note that the effective Friedmann equation

in (2.120) gives the bouncing universe in this frame work due to the − sign of the

ρ2 term in the left hand side of this equation, it also identical to the bouncing in

brane-world [14] . The Hubble parameter H2 will be equal to 0 when ρ = ρlc . From

this situation the universe will stop expanding when the energy density ρ grow equal

to the critical energy density ρlc and then the universe will turn from the expansion

phase to the collapsing phase and vice versa. Featuring of the bouncing universe from

both LQC and brane-world avoid many singularities in cosmology [33, 37, 38, 39, 14] .

The dualities of the effective Friedmann equation and their cosmological consequences

between LQC and brane-world give impressive signal of the quantum gravity theory.

We will use the effective Friedmann equation inspired by LQC to analyze the

future fate of the universe in the Phantom field DE via the the standard dynamical

system in chapter 4 in this thesis.
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Chapter 3

Methodology:

Dynamical System in Cosmology

This chapter, we will begin brief introduction to the dynamical system in view point

of the first order non-linear differential equation. Later we enter the dynamical system

to the cosmological analysis of the scalar field in the standard cosmology.

3.1 Introduction to the Dynamical System

At the end of the nineteenth century the French mathematician Henri Poincare intro-

duced a new approach to the study of differential equation. Realizing that analytic

solution were unattainable for most nonlinear equation, he focused his efforts on find-

ing descriptive properties of solutions of differential equation. This approach is known

as the qualitative theory of differential equation. For example, in the qualitative the-

ory, one would like to know the limiting behavior of all solution of the equation as

t → ±∞ . Does the solution approach a constant, a periodic cycle, infinity, or some-

thing else? There are very important questions, since many phenomena live in their

limiting behavior. In many systems transient solution approach zero so rapidly that

only limiting behavior is observed.

The cornerstone of the Poincare qualitative approach is the phase plane, which

often reveal many important properties of solutions of the differential equation, even

when solution is unknown. The use of the phase plane gives the qualitative theory of
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differential equation a more geometric flavor rather than analytic flavor.

Let us consider the system of two first-order differential equations follow as

ẋ = f(x, y)

ẏ = g(x, y) (3.1)

where ˙ ≡ d/dt , f and g are continuous function of x and y with continuous first

partial derivative. If function f and g in system (3.1) do not depend explicitly on t ,

this system is known as the autonomous system. The values of x and y define a point

(x, y) in the phase space, so-called the state vector.

The simplest trajectories are those that settle down to a steady equilibrium. A points

(x0, y0) is known as the critical points or fixed points i.e.

ẋ = f(x0, y0) = 0

ẏ = g(x0, y0) = 0 . (3.2)

The critical points are points where the motion of the state vector is at rest.

Next we will study the shapes of the trajectories of the two-dimensional nonlinear

autonomous that we mentioned in (3.1). It is possible to approximate the trajectory

of nonlinear system. Nearly the critical points (x0, y0) with the trajectories of the

linear system. To find the linear system that approximates the nonlinear in (3.1),

make the substitution

x = x0 + δx , y = y0 + δy . (3.3)

From the original variables (x, y) to new variables (δx, δy) , which gives rise to

d

dt

(
δx

δy

)
= M

(
δx

δy

)
(3.4)

where M is given by

M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

(x=x0,y=y0)

. (3.5)

This possesses two eigenvalues µ1 and µ2. The general solution for the evolution of

linear perturbations can be written as

δx = C1e
µ1N + C2e

µ2N , (3.6)

δy = C3e
µ1N + C4e

µ2N , (3.7)
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where C1, C2, C3, C4 are integration constants. Thus the stability around the fixed

points depends upon the nature of the eigenvalues. One generally uses the following

classification [7] :

• (i) Stable node: µ1 < 0 and µ2 < 0.

• (ii) Unstable node: µ1 > 0 and µ2 > 0.

• (iii) Saddle point: µ1 < 0 and µ2 > 0 (or µ1 > 0 and µ2 < 0).

• (iv) Stable spiral: The determinant of the matrix M is negative and the real

parts of µ1 and µ2 are negative.

A fixed point is an attractor in the cases (i) and (iv), but it is not so in the cases

(ii) and (iii).

3.2 Dynamical System in Standard Cosmology

The dynamical system has played important role in cosmology for study the dynamics

of inflaton field (scalar field) and inflation attractor properties at the early time for

the first proposed [70, 71] . Such approach has many features in cosmology such as

it does not emphasize the initial value of the universe at the very early time, having

well physically interpret asymptotical behavior of the universe at both early and late

time, giving a suitable and viable to explain the evolution of expansion history in our

universe and also free from the fine-tuning problem etc.

From the many features of the dynamical system in cosmology as we mention in

above leading many authors use this approach to study the scalar field model of DE

(for the quintessence model at first and see [7] for review and reference in there) . The

dynamical system may solve the coincidences problem1 via the scaling solution.

This section we will briefly review on the dynamics of the scalar field models of DE

with the exponential potential follow [7, 71] in the flat FRW metric background.

1This problem was posed by the question from observational data, why the cosmological constant

(or DE) and the (dark)-matter fluid are emerge at the same time scale? We will discuss on the

resolution of this problem below.
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3.2.1 Dynamics of Scalar Field in the FRW Cosmology

The Autonomous system and Scaling Solution in Cosmology

Let us recall the Friedmann equation (with the matter), the Klein-Gordon equation

and the acceleration equation in the previous chapter follow as,

H2 =
κ2

3

(
1

2
φ̇2 + V (φ) + ρm

)
(3.8)

φ̈ = −3Hφ̇− V ′ (3.9)

Ḣ = −κ2

2

(
φ̇2 + (1 + wm)ρm

)
(3.10)

where ρm and wm are the energy density and the equation of state of matter respec-

tively. We will define the new dimensionless parameter as [71]

x ≡ κφ̇√
6H

, y ≡ κ
√

V√
3H

λ ≡ − V ′

κV
, Γ ≡ V V ′′

V ′ 2 (3.11)

we will discuss the physical meaning of the variables λ and Γ below. Using the system

of equation of the universe that we shown in above (3.8) , (3.9) and (3.10) , then we

get the autonomous system of equation as

dx

dN
= −3x +

√
6

2
λy2 +

3

2
x

(
(1− wm)x2 + (1 + wm)(1− y2)

)
(3.12)

dy

dN
= −

√
6

2
λxy +

3

2
y

(
(1− wm)x2 + (1 + wm)(1− y2)

)
(3.13)

dλ

dN
= −

√
6λ2(Γ− 1)x (3.14)

where N ≡ da/a is the e-folding number. We also get the constraint equation of the

new variables from the Friedmann equation is

x2 + y2 +
κ2ρm

3H2
= 1 . (3.15)

We can rewrite the equation of state and the energy of the scalar filed in the new

dimensionless variables following

wφ =
x2 − y2

x2 + y2
(3.16)

Ωφ = x2 + y2 . (3.17)
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The acceleration equation of the universe in the present of the matter can be written

as

ä

a
= −κ2

6
(ρφ + ρm + 3(Pφ + Pm))

= −κ2

6
(1 + 3weff)ρeff (3.18)

where weff ≡ Peff/ρeff = (Pφ + Pm)/(ρφ + ρm) is equation of state of the effective fluid

(the total energy density and the total pressure of the scalar field and the matter).

From the acceleration equation in (3.18) , it easily see that the universe has to the

accelerating expansion (ä > 0) when the effective equation of state is weff < −1/3 .

Here we will discuss the viable resolution for the coincidence problem via the scal-

ing solution as we mention at above. From many observational data have strongly

indicated our universe have component of dark matter ∼ 30 % and DE ∼ 70 % ap-

proximately. From observations also tell us the current value of the density of the

cosmological constant (or DE) and the density of the matter are the same order

(ρφ ∼ ρmatter). Now there is a problem so called the coincidence problem. The

density of the DE is subdominant during the radiation and matter dominated eras.

The possible resolution of this problem is giving the energy density of scalar field

DE (quintessence model) mimics the background matter (and radiation) fluid energy

density [77] characterized by

ρφ

ρmatter

= constant . (3.19)

The energy density of scalar field DE also decrease proportion to the energy density

of the background matter fluid dominated eras or otherwise the scalar field DE and

matter density rapidly evolve as

Ωφ

Ωmatter

∝ a3 . (3.20)

Such cosmological solutions are called scaling solution i.e. the two fluids (both

scalar field DE and ordinary matter) have same scaling with time. Therefore a viable

DE models must be existed the scaling solution. The scaling solution is the attractor

solution, in the sense of the dynamical system.

In this section, we will consider the exponential potential2 of the scalar field i.e.

V (φ) = V0e
−κλφ , (3.21)

2 For comprehensive analysis in other type of potential see [7, 78] .
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Name x y Existence Stability Ωφ γφ

(a) 0 0 All λ and γ Saddle point for 0 < γ < 2 0 -

(b1) 1 0 All λ and γ Unstable node for λ <
√

6 1 0

Saddle point for λ <
√

6

(b2) −1 0 All λ and γ Unstable node for λ > −√6 1 2

Saddle point for λ < −√6

(c) λ√
6

√
1− λ2

6
λ2 < 6 Stable node for λ2 < 3γ 1 λ2

3

Saddle point for 3γ < λ2 < 6

(d)
√

3
2

γ
λ

√
3γ(2−γ)

2λ2 0 Stable node for 3γ < λ2 < 24γ2

(9γ−2)
3γ
λ2 γ

Stable spiral for λ2 > 24γ2

(9γ−2)

Table 3.1: The properties of the critical points for the autonomous system in Eq. (3.12),

(3.13) and (3.14) .

such potential type has well motivation from many theories e.g. particle physics,

supersymmetry, supergravity, string theory, scalar-tensor gravity and etc. The expo-

nential potential provide a accelerating expansion of the universe with the scale factor

evolve proportion to the power of time (power law inflation) [72] . This potential also

give the exact solution of the Friedmann, the Klein-Gordon and the acceleration equa-

tion (see in more detail in [76]).

The critical (or fixed) points of the autonomous system of equation in (3.12) ,

(3.13) and (3.14) can be obtained following the definition in (3.2) i.e. dx/dN =

dy/dN = dλ/dN = 0 . The lists of critical points and its properties were shown in

table (3.1) . Here the λ ≡ −V
′
/κV variable play role of the slope of the potential.

For the exponential potential give the λ is the constant (dλ/dN = 0) , this potential

will simply for analysis in our autonomous system i.e. our autonomous system reduce

to 2 variables.

The eigenvalues of linear perturbation each the critical points can be obtained by

using equations (3.4) and (4.23) as

• Point (a):

µ1 = −3

2
(2− γ) , µ2 =

3

2
γ . (3.22)
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• Point (b1):

µ1 = 3−
√

6

2
λ , µ2 = 3(2− γ) . (3.23)

• Point (b2):

µ1 = 3 +

√
6

2
λ , µ2 = 3(2− γ) . (3.24)

• Point (c):

µ1 =
1

2
(λ2 − 6) , µ2 = λ2 − 3γ . (3.25)

• Point (d):

µ1,2 = −3(2− γ)

4

[
1±

√
1− 8γ(λ2 − 3γ)

λ2(2− γ)

]
. (3.26)

Next we will briefly analyze and clarify the properties of the five critical points3 was

shown in table 3.1 .

From the classification of the eigenvalues that we have discussed at last in previous

section, this shows that the point (a) , (b1) and (b2) are not the attractor points

because their eigenvalues are once more than zero and another once more than zero

which shown at the first three equations in (3.26) . The points (b1) and (b2) are

called the kinetic dominated solution, this type of solution can be interpreted as the

universe will collapse in this phase. The point (c) is stable node for λ2 < 3γ and

it is a saddle point for 3γ < λ2 < 6 it also give the scalar field dominated universe

(Ωφ = 1) . The effective equation of state of this point is given by weff = −1 + λ2/3 .

This point also satisfied the acceleration condition i.e. λ2 < 2 , then the universe

will accelerately expand at the late time and the value of the effective equation of

state may well pass from observations. Thus this point is suitable for the physical

attractor point of this system i.e. all the solutions will approach to the point (c).

Although the point (d) also has a stable node in this case but it is not suitable for

explain the accelerating expansion at the late time because this point is not satisfied

the condition Ωφ ≤ 1 , when point (d) is saddle point for λ2 < 3γ . However the point

(d) have provided the scaling regime before the universe pass to the scalar field (DE)

dominated and accelerated expansion at the late time. To obtain the scaling solution

via the new effective equation of state γφ defined by

γφ ≡ 1 + wφ =
ρφ + Pφ

ρφ

=
2φ̇2

φ̇2 + 2V (φ)
=

2x2

x2 + y2
. (3.27)

3 For detail analysis and calculation see [79] .
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For any critical points on phase plane give the solutions of scale factor evolve with

power of time as

a ∼ tp , p =
2

3γφ

. (3.28)

Next chapter we will perform following this dynamical systematic analysis for the

phantom scalar field DE in the effective LQC background.
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Chapter 4

Results:

The Phantom Field Dynamics in

Loop Quantum Cosmology

4.1 Dynamical Analysis

This section we will derive the cosmological equations in LQC for using in the au-

tonomous system that we will see below. We also define the new dimensionless vari-

ables for analysis the fate of the universe at the late time of the phantom field DE

background in LQC via the dynamical system approach.

Differentiating the equation (2.120) and using the fluid equation (2.9), we obtain

Ḣ = −(ρ + p)

2M2
P

(
1− 2ρ

ρc

)
(4.1)

where M2
P ≡ κ−2 ≡ 8πG is the Planck mass. We will use such convenient throughout

chapters 4 and 5 . The equation (2.120) , (2.9) and (4.1), in domination of the phantom
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field, the evolution equations of the flat FRW universe in LQC become

H2 =
1

3M2
P

(
− φ̇2

2
+ V

)(
1− ρ

ρc

)
(4.2)

ρ̇ = −3Hρ

(
1 +

φ̇2 + 2V

φ̇2 − 2V

)
(4.3)

Ḣ =
φ̇2

2M2
P

(
1− 2ρ

ρc

)
. (4.4)

Now we have the key equation for study the dynamics of the phantom field and

analyze the future fate of the universe in context of LQC. We define dimensionless

variables following the style of [71]

X ≡ φ̇√
6MPH

, Y ≡
√

V√
3MPH

, Z ≡ ρ

ρc

(4.5)

λ ≡ −MPV ′

V
, Γ ≡ V V ′′

(V ′)2 ,
d

dN
≡ 1

H

d

dt
(4.6)

where N ≡ ln a . Using new variables in equation (4.2), we obtain a constraint

equation as

1 = (−X2 + Y 2)(1− Z) . (4.7)

Using the equation (4.4) and the new defined variables above, the acceleration con-

dition,
ä

a
= Ḣ + H2 > 0, (4.8)

becomes
Y 2

X2
> 1− 3

(1− Z)

(1− 2Z)
. (4.9)

We will use above condition for check each a critical points that giving the universe

to accelerating expansion.

4.1.1 Autonomous System

We will use the cosmological equation in LQC that we have obtained in previous

section for set up the autonomous system of equation in LQC. We use the new di-

mensionless variables which play important role for analyze the cosmological conse-

quence in context of LQC that we have defined at above. Differential equations of
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new variables with respect to the e-folding number (N ≡ ln a) in our autonomous

system are

dX

dN
= −3X −

√
3

2
λY 2 − 3X3 (1− 2Z) (4.10)

dY

dN
= −

√
3

2
λXY − 3X2Y (1− 2Z) (4.11)

dZ

dN
= −3Z

(
1 +

X2 + Y 2

X2 − Y 2

)
(4.12)

dλ

dN
= −

√
6(Γ− 1)λ2X . (4.13)

We use exponential potential in the form

V = V0 exp

(
− λ

MP

φ

)
. (4.14)

The potential is known to yield power-law inflation in standard cosmology with canon-

ical scalar field with slow-roll parameter ε = η/2 = 1/p where λ =
√

2/p and p > 1

[72, 73]. Although the potential has been applied to the quintessence scalar field with

tracking behavior [74], the quintessence field can not dominate the universe due to

constancy of the ratio between densities of matter and quintessence field (see discus-

sion in pages 37-38 of [7]). In case of phantom field in standard cosmology, the stable

node is a scalar-field dominated solution with the equation of state, w = −1 − λ2/3

[23, 21, 75]. In our LQC phantom domination context, we begin our analysis from

equation (4.13) where we can see that for the exponential potential, Γ = 1. This

yields trivial value of dλ/dN and therefore λ is a constant which is non-zero other-

wise the potential is flat. Let f ≡ dX/dN, g ≡ dY /dN and h ≡ dZ/dN . We can

find critical points of the autonomous system under condition:

( f , g , h ) |(Xc , Yc , Zc)= 0 . (4.15)

The critical points of this system are

• Point (a) :

(
−λ√

6
,

√
1 +

λ2

6
, 0

)
(4.16)

• Point (b) :

(
−λ√

6
,−

√
1 +

λ2

6
, 0

)
. (4.17)
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Name X Y Z Existence Stability w Acceleration

(a) − λ√
6

√
1 + λ2

6
0 All λ Saddle point −1− λ2

3
For all λ

for all λ (i.e. λ2 > −2)

(b) − λ√
6

−
√

1 + λ2

6
0 All λ Saddle point −1− λ2

3
For all λ

for all λ (i.e. λ2 > −2)

Table 4.1: Properties of fixed points of phantom field dynamics in LQC background under

the exponential potential Eq.(4.14) .

4.1.2 Fixed points

Let f ≡ dX/dN, g ≡ dY /dN and h ≡ dZ/dN . We can find fixed points of the

autonomous system under condition:

( f , g , h ) |(Xc , Yc , Zc)= 0 . (4.18)

The are two real fixed points of this system: 1

• Point (a) :

(
−λ√

6
,

√
1 +

λ2

6
, 0

)
, (4.19)

• Point (b) :

(
−λ√

6
,−

√
1 +

λ2

6
, 0

)
. (4.20)

4.2 Stability Analysis

Suppose that there is a small perturbation δX, δY and δZ about the fixed point

(Xc, Yc, Zc), i.e.,

X = Xc + δX , Y = Yc + δY , Z = Zc + δZ . (4.21)

1The other two imaginary fixed points (i, 0, 0) and (−i, 0, 0) also exist. However they are not

interesting here since we do not consider model that includes complex scalar field.
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Figure 4.1: Three dimensional phase space of X,Y and Z. The saddle points (a)

(-0.40825, 1.0801, 0) and (b) (-0.40825, -1.0801, 0) appear in the figure. λ is set to

1. If the initial condition points are under Z = 0 plane (i.e. Z < 0 which is non

physical), Z approaches −∞ when X and Y approach 0. The solutions in this region

are marked with red and blue colours. The green lines (class I solution) are in region

Z ≥ 0 but also non physical since they yields imaginary value of H. The only physical

solutions are the black lines (class II solution) above (a) and (b) of which H is real

(see section 4.3.2).

From Eqs. (4.10), (4.11) and (4.12), neglecting higher order term in the perturbations,

we obtain first-order differential equations:

d

dN




δX

δY

δZ


 = M




δX

δY

δZ


 . (4.22)

The matrix M defined at a fixed point (Xc, Yc, Zc) is given by

M =




∂f
∂X

∂f
∂Y

∂f
∂Z

∂g
∂X

∂g
∂Y

∂g
∂Z

∂h
∂X

∂h
∂Y

∂h
∂Z




(X=Xc,Y =Yc,Z=Zc)

. (4.23)
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X

class II solutions

(black lines-physical solutions)

Figure 4.2: Phase space of the kinetic part X and potential part Y (top view). The

saddle points (a) (-0.40825, 1.0801) and (b) (-0.40825, -1.0801) are shown here. The

blue lines and red lines are in the region Z < 0 which is not physical. Green lines are

of class I solutions which yields imaginary H. Only class II solutions shown as black

lines are physical.

We find eigenvalues of the matrix M for each fixed point:

• At point (a):

µ1 = λ2 , µ2 = −λ2 , µ3 = −3− λ2

2
. (4.24)

• At point (b):

µ1 = λ2 , µ2 = −λ2 , µ3 = −3− λ2

2
. (4.25)

From the two fixed points in TABLE 4.1, we found only two physical fixed points

which are both saddle points. There is no any stable node in the system. Location of

the points depends on only λ and exists for all values of λ. Both points correspond to
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the equation of state −1−λ2/3, that is to say, it has phantom equation of state for all

values of λ 6= 0. Since there is no any attractor in the system, the phase trajectory is

very sensitive to initial conditions given to the system. At late time, therefore, there

is no singularity.

4.3 Numerical Results

Numerical results from the autonomous set (4.10), (4.11) and (4.12) are presented

in Figs. 4.1 and 4.2 where we set λ = 1. Locations of the two saddle points are:

point (a) (Xc = −0.40825, Yc = 1.0801, Zc = 0) and point (b) (Xc = −0.40825, Yc =

−1.0801, Zc = 0) which match our analytical results. Since there is no any stable node

and the solutions are sensitive to initial conditions, we need to make classification of

solutions and analyze them separately. Note that the condition, Z ≥ 0 must hold

for physical solutions since the density can not be negative, i.e. ρ ≥ 0, therefore the

physical solutions must be in the region Z ≥ 0. The blue lines and red lines are

solutions in the region Z < 0 hence not physical and will no longer be of our interest.

From now on we consider only the region Z ≥ 0. There are two separatrices satisfying

equation |X| = |Y |. The separatices determine borders of solutions into four regions

of XY plane. In regions with |X| > |Y |, the solutions therein are green lines (hereafter

classified as class I). The other regions with |Y | > |X| contain solutions seen as black

line (classified as class II).

4.3.1 Class I solutions

Consider the Friedmann equation (4.2), the Hubble parameter, H takes real value

only if

1

3M2
P

(
− φ̇2

2
+ V

)(
1− ρ

ρlc

)
≥ 0 . (4.26)

Divided by 3M2
PH2 on both sides, the expression above becomes

(−X2 + Y 2)(1− Z) ≥ 0 . (4.27)

It is clear from (4.27) that, in order to obtain real value of H, class I solutions (green

line) must obey both conditions |X| > |Y | and Z ≥ 1 together. As we consider
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1- 2
- 6
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4

- 4
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class II solutions 

(black lines

  -physical solutions) 

Figure 4.3: Phase space of Y and Z. Figure shown explicit classification between

class I and class II solution. All solutions of the blue lines and red lines will converge

to the region Z < 0 which is not physical. Green lines are not physical solutions

when Z > 1 . Only class II solutions shown as black lines are physical and physical

solutions are bounded at range 0 < Z < 1 .

Z = ρ/ρlc with ρ = −(φ̇2/2) + V , we can rewritten it as

ρlcZ

3M2
PH2

= −X2 + Y 2 . (4.28)

Imposing |X| > |Y | to Eq. (4.28), we obtain Z < 0 instead, hence contradict to

Z ≥ 1. Therefore this class of solutions does not possess any real values of H and

hence not physical solutions.

4.3.2 Class II solutions

As we proceed the same analysis as done for class I, we found that in order for H

to be real, class II solutions must obey both |Y | > |X| and 0 ≤ Z ≤ 1 together. In
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Figure 4.4: Evolution of H with time of a class II solution. Set values are λ = 1, ρlc =

1.5, V0 = 1 and MP = 2. The universe undergoes acceleration from the beginning until

reaching turning point at ρ = ρlc/2 = 0.75 where H = Hmax = 0.17678. Beyond this

point, the universe expands with deceleration until halting (H = 0) at ρ = ρlc = 1.5.

After halting, it undergoes contraction until H bounces. The oscillating in H goes

on forever.

Eq. (4.28), when imposing |Y | > |X|, we obtain Z > 0. Therefore as we combine

both results, it is concluded that class II solutions can possess real H in the region

|Y | > |X| and 0 < Z ≤ 1. This implies 0 < ρ ≤ ρlc as in the case of standard

non-phantom field in LQC [81]. The class II is therefore only class of physical solu-

tions. We consider another set of autonomous equations from which the evolution of

cosmological variables are conveniently obtained by using numerical approach. In the

new autonomous set, instead of using N [80] , which could decrease after bouncing

from LQC effect, we use time as independent variable. We define new variable as

φ̇ = S . (4.29)

The Eqs. (2.21) and (4.4) are therefore rewritten as

Ḣ =
S2

2M2
P

[
1− 2

ρlc

(
−S2

2
+ V (φ)

)]
, (4.30)

Ṡ = −3HS + V ′ . (4.31)
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Figure 4.5: Time evolution of potential energy density (P.E.), kinetic potential energy

(K.E.) and ρ = K.E. + P.E. of the field for a class II solution. K.E. is always negative

and, at late time, it goes to −∞ while P.E. is always positive. ρ is maximum when

ρ = ρlc = 1.5. Other features are discussed as in Fig. 4.4.

The Eqs. (4.29), (4.30) and (4.31) form another closed autonomous system. Numer-

ical integrations from the new system yields result plotted in Figs. 4.4 and 4.5 in

which set values are λ = 1, ρlc = 1.5, V0 = 1 and MP = 2. From Eq. (2.120) the slope

of H with respect to ρ, dH/dρ, is flat when ρ = ρlc/2 [81]. Another fact is

(
d2H

dρ2

)

ρ=ρlc/2

=
−2

MP

√
3ρ3

lc

< 0 , (4.32)

hence, as ρ = ρlc/2, H takes maximum value Hmax =
√

ρlc/12M2
P. This result is

valid in LQC scenario regardless of types of fluid. We use set parameters given above

in Figs. 4.4 and 4.5. As ρ = ρlc/2 = 0.75, H is maximum and Hmax = 0.17678.

When H = 0 i.e. ρ = ρlc = 1.5, the expansion halts. After halting, H turns negative

(contracting of scale factor) after that it bounces forward and backward faster and

faster in time. The fast bounce in H is an effect from the bounce in ρ as illustrated

in Fig. 4.5 where the red line represents potential energy density V (φ), the green

line represents kinetic energy density −φ̇2/2 and the blue line is total energy density
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ρ. The negative magnitude of kinetic energy density becomes very large as the field

rolling faster and faster up the potential. The exponential potential energy density

increases more and more in positive axis. However magnitude of potential part is

always greater than kinetic part, therefore sum of them, ρ, is positive. Oscillation of

ρ affects in H oscillation.
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Chapter 5

Conclusion

A dynamical system of phantom canonical scalar field evolving in background of loop

quantum cosmology is considered and analyzed in this work. Exponential potential is

used in the system. The analytical dynamical analysis of autonomous system renders

two real fixed points (−λ/
√

6,
√

1 + λ2/6 , 0 ) , (−λ/
√

6,−
√

1 + λ2/6 , 0 ) which are

saddle points corresponding to equation of state, w = −1− λ2/3. (Note that in case

of standard cosmology, this fixed point is Big Rip attractor at (−λ/
√

6,
√

1 + λ2/6)

with the same equation of state, w = −1−λ2/3 [21].) Due to absence of stable nodes,

the late time behavior depends very much on initial conditions given. Therefore we

do numerical plots to investigate solutions of the system and classify the solutions. A

physical solution must locate in region Z ≥ 0 i.e. ρ ≥ 0. Within this Z ≥ 0 region, we

call solutions satisfying |X| > |Y | and Z ≥ 1 as class I. In order to obtain real value of

H in class I, Z must be negative which, however, contradicts to Z ≥ 1. Then the class

I are non physical. Class II solutions identified by |Y | > |X| and 0 < Z ≤ 1 are the

only physical solutions. The universe with class II solution undergoes acceleration

from the beginning until ρ = ρlc/2 where H = Hmax =
√

ρlc/12M2
P. After that

the universe decelerates until it stops expansion (H = 0, ρ = ρlc). Accelerating

contraction happens right after halting, however the accelerating contraction does

not go on forever but turn to decelerating contraction. The universe bounces again

and turn to expand accelerately. This oscillation goes on and on forever.
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Appendix A

Conventions

Throughout of this thesis except appendix B. We used the convention following [60] .

Indices notations

The middle of Greek alphabet i.e. µ , ν , σ , ... = 0, 1, 2, 3 are 4 dimensional

spacetime coordinate indices.

The middle of the upper Latin alphabet i.e. I , J , K , ... = 0, 1, 2, 3 are 4 dimen-

sional local Lorentz frame indices.

The beginning of the lower Latin alphabet i.e. a , b , c , ... = 1, 2, 3 are 3 dimen-

sional spatial coordinate indices.

The middle of the lower Latin alphabet i.e. i , j , k , ... = 1, 2, 3 are 3 dimensional

spatial local Lorentz frame indices.

We also used the signature (−, +, +, +) for gµν and ηij spacetime and local Lorentz

frame metric respectively and setting the velocity of light equal to 1 .

Symmetrization and Antisymmetrization of Tensors

For symmetry tensor is defined as

T(ab) = Tab + Tba (A.1)

and for antisymmetry tensor is defined as

T[ab] = Tab − Tba . (A.2)

Definition of the curvature tensor 1

1 We use convention following [85] .
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The curvature (Riemann) tensor of the affine connection Γρ
µν (or Christoffel symbol)

with torsion free i.e. Γρ
µν = Γρ

νµ , is defined by

∇[µ∇ν]tρ = R σ
µνρ tσ (A.3)

and given by

R σ
µνρ = ∂[µΓσ

ν]ρ + Γσ
α[µΓα

ν]ρ (A.4)

where tµ is vector field on 4-dimensional spacetime coordinate. We also manifest the

curvature tensor of the spin connection as [49]

R J
µν I = ∂[µω

J
ν]I + ω J

[µ K ω K
ν]I . (A.5)

Multiplying tetrad eI
µ into (A.3) and using identity tµ = eI

µtI , we get

eρ
IR

σ
µνρ tσ = R σ

µνρ eρ
Ie

J
σ tJ = R J

µν I tJ . (A.6)

Therefore we can express The curvature tensor in other form as

R J
µν I = R σ

µνρ eρ
Ie

J
σ . (A.7)

The curvature F J
µν I of SU(2) spin connection AIJ

µ is defined by

F J
µν I = ∂[µA

J
ν]I + A J

[µ KA K
ν]I . (A.8)

The Levi-civita symbol

The Levi-civita symbol ε µ1... µn and εµ1... µn are total asymmetric density tensor

weight 1 and −1 respectively of n dimensional spacetime. Properties of The Levi-

civita are as follows

• ε µ1... µn =





1 , for even permutation arranging indices

−1 , for odd permutation arranging indices

0 , for otherwise .

(A.9)

• εµ1... µn =
1

g
gµ1 ν1 ... gµnνn ε ν1... νn (A.10)

for any non-degeneracy metric tensor gµν , where g is determinant of metric tensor

gµν , and g is defined by

g ≡ det (gµν) =
1

n!
ε µ1... µn ε ν1... νn gµ1 ν1 ... gµnνn .
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• ε µ1... µn ε ν1... νn = δ[µ1
ν1

δµ2
ν2

... δµn]
νn

(A.11)

Let us examine the properties of the Levi-civita symbol from above in 4 dimensional

spacetime as

− ε 0123 = ε 0123 = 1

−ε 1023 = ε 1023 = −1

ε 1123 = ε 1123 = 0

εµνσρ =
1

g
gµαgνβgσγgρλ εαβγλ

g ≡ det (gµν) =
1

4!
gµαgνβgσγgρλ εµνσρ εαβγλ

εµνσρ εµβγλ = δ[β
ν δγ

σδλ]
ρ

εµνσρ εµνγλ = 2! δ[γ
σ δλ]

ρ

εµνσρ εµνσλ = 3! δλ
ρ

εµνσρ εµνσρ = 4!
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Appendix B

3 + 1 ADM and Hamiltonian

Formalisms in GR

1

B.1 The 3 + 1 ADM Formulation in General Rela-

tivity

The Hamiltonian formulation of GR is very powerful tool applications in frontiers

theoretical physics. For beautiful discussions in this topic see [49] and more easier [84].

Certainly LQC also require the Hamiltonian of FRW for quantization. This section

we will brief review The 3 + 1 ADM formulation following [49] . This formalisms was

formulated by Arnowitt, Deser and Misner [83]. Considering the 4-dimensional global

spacetime (M, g) where M is 4-dimension manifold and g is spacetime metric on M .

We can split 4-dimensional spacetime into the 3-dimensional spatial hepersurfaces

Σt and foliated by 1 dimensional timelike curve vector field. The Σt hypersurface

parameterized by a global time function t. Let na is the normal unit vector field2 on

the hypersurface Σt. We introduce the metric qab on each the hypersurface Σt. This

1 We use notations and conventions following [49] in appendix B only.
2We impose the dot produce of the normal unit vector field is nana = −1. That means na

perpendicular to every points of spacelike hypersurface and propagate in timelike curve.
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N idt

nµ

dx i

x +i dx i
x i

dτ = Ndt

Σ
t+dt

Σ
t

Figure B.1: The evolution of the 3-dimensional hypersurface evolve with time (3 + 1

formalisms). The dynamics of spacetime is illustrated by the lapse function N and

the shift vector Ni, figure from [51].

variable is induce by the spacetime metric gab, the qab is given by

qab = gab + nanb (B.1)

and the inverse of qab is given by

qab = gab + nanb . (B.2)

Since the 3-dimensional metric qab are perpendicular to the normal unit vectior field

na i.e.

qabn
a = (gab + nanb)n

a

= nb + (−1)nb = 0 (B.3)

we also use relations gabn
a = nb and nan

a = −1 in the first line. The lapse function

N of Σt . That meaning of N is the normal part of the Σt , given by

N = −tana = (na∇at)
−1 (B.4)
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where ta is vector field3 on M and satisfied by ta∇at = 1 . We also gives ∇a is the

covariant derivative on 4-dimensional spacetime which compatible with the gab metric

i.e. ∇cgab = 0 . Next we will introduce the shift vector Na, given by

Na = habt
b . (B.5)

The shift vector is tangential part of the Σt. The lapse function N and shift vector

Na represent how to move forward on time of hypersurface Σt in the manifold.

After we split 4-dimensional spacetime (or manifold) to 3 + 1 (3-space + 1-time)

spacetime. The view of spacetime in ADM formalisms is the time evolution of gab

metric on a fixed 3-dimensional manifold. Thus we can respect the metric qab on

hypersurface Σt. We will introduce the notion of extrinsic curvature as representing

the bending of hypersursurface Σt which embeding in spacetime manifold M . The

extrinsic curvature is defined by

Kab = ∇anb (B.6)

where the extrinsic curvature Kab is symmetric tensor i.e. K[ab] = 0. The extrinsic

curvature can rising and lower indices via contraction of qab metric (e.g. Kb
a = qacK

bc).

We also express the extrinsic curvature via the time coordinate derivative from the

covariant derivative of any vector field which is normal to hypersurface Σt.

Kab = qc
a∇cnb

=
1

2
£nqab . (B.7)

From these relations we can reconstruct the 3+1 spacetime manifold in GR. Now

we have new manifold which consist three dynamical variables (Σ, qab, Kab) where Σ

is the 3-dimensional manifold, qab is the metric on Σ and Kab is the symmetric tensor

field on Σ . We will establish the relation between the 3-dimensional metric qab and

it’s covariant derivative compatible Da on hypersurface i.e.

Dcqab = qd
c q

e
aq

f
b∇d(gef + nenf ) = 0 (B.8)

since we also used equation (B.3) and ∇cgab = 0 . let T a1...ak
b1...bl

is the 4-dimensional

tensor, we can project 4-dimensional tensor on manifold M to the hypersurface Σ .

By using qab metric follow as

T a1... ak
b1... bl

= qa1
c1

...qak
ck

qd1
b1

...qdl
bl

T c1... ck
d1... dl

(B.9)

3We can represent the vector field ta is the flow of time throughout the 4-dimension spacetime.
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Let us continually construct the 4-dimensional curvature Rd
abc by expression of

the 3-dimensional curvature Rd
abc and the extrinsic curvature Kab . We analogue

definition of the 4-dimensional curvature Rd
abc then the 3-dimensional curvatureRd

abc

given by

Rd
abc = D[aDb]ωc . (B.10)

After use equations (B.3) , (B.6) , (B.8) , (B.9) and (B.10) , after simple calculation

but quite lengthly manipulation, we obtain

Rd
abc = qe

aq
f
b qk

c q
d
j R

j
efk −KacK

d
b + KbcK

d
a . (B.11)

and

DaK
a

b −DbK
a

a = Racn
cqa

b . (B.12)

We so-called equations (B.11) and (B.12) as the Gauss-Codacci relations.

We consider the 4-dimensional Einstein field equation in vacuum case reads

Gab = 0 (B.13)

where Gab = Rab − 1
2
gabR is the Einstein tensor. Contracting the Einstein tensor by

qab and na , we obtain the initial value constraint in vacuum case as

0 = Gbcq
b
an

c = Rbcq
b
an

c = DbK
a
a −DaK

a
b (B.14)

In addition, we have relation between contraction of the 4-dimensional curvature by

3-dimensional metric and contraction of the Einstein tensor by normal unit vector as

Rabcdq
acqbd = Rabcd(g

ac + nanc)(gbd + nbnd)

= R + 2Racn
anc

= 2Gacn
anc (B.15)

we use the identity Rabcdn
anbncnd = 0 from page 78 of [84] at the second line. We

also use the first Gauss-Codacci relation in (B.11) into above equation, we obtain

0 = Gabn
anb

=
1

2

(R+ (Ka
a)2 −KabK

ab
)

. (B.16)

The equations (B.14) and (B.16) are the initial value constraint equations of general

relativity in the vacuum case.
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B.2 Hamiltonian Formalisms in General Relativ-

ity

As we saw in previous section. We have shown the splitting the 4-dimensional space-

time manifold to the 3-dimensional hypersurface and timelike curve. We have new

view point of spacetime is 3-dimensional surface slicing each a time evolution. This

view point is suitable in the classical mechanics formulation i.e. Hamiltonian for-

malisms. This section we will formulate the Hamiltonian in general relativity.

Before we reconstruct of the Hamiltonian formalisms. We will discuss on the re-

lation between 4-dimensional world volume and 3-dimensional world volume. The

4-dimensional world volume element eabcd at a fixed time on each hypersurface gives

the relation (3)eabc = eabcdt
d on Σt where (3)eabc is 3-dimensional world volume. Using

this fact we obtain the weight of Jacobian of qab from gab is

√−g = N
√

q (B.17)

where q is the spatial (space) component of qab and N is lapse function that we have

defined. We can express the normal unit vector in term of the vector field ta , lapse

function N and shift vector Na as

na =
1

N
(ta −Na) . (B.18)

Using above equation the inverse metric gab has form

gab = qab −N−2(ta −Na)(tb −N b) . (B.19)

In the langauge of 3 + 1 spacetime, we can write the gravitational Lagrangian in

the expression of function (qab, N, Na) and their time and space derivative. Let us

start from the contraction of the Einstein field equation with normal unit vector na ,

we obtain

R = 2(Gabn
anb −Rabn

anb) . (B.20)

We recall second constraint equation in (B.16) , we have

Gabn
anb =

1

2

(R+ (Ka
a)2 −KabK

ab
)

. (B.21)
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Considering the second term in equation (B.20) . We use definition of the Riemanian

curvature tensor, we get

Rabn
anb = Rc

acbn
anb

= −na(∇a∇c −∇c∇a)n
c

= (∇an
a)(∇cn

c)− (∇an
c)(∇cn

a)−∇a(n
a∇cn

c) +∇c(n
a∇an

c)

= (Ka
a)2 −KacK

ac . (B.22)

The last two terms in the third line are divergence term and these terms vanish at

the boundary. Using equations (B.17) , (B.20) , (B.21) and (B.22) . The lagrangian

density of the gravitational action is

LGR = N
√

q(R+ KabK
ab −K2) (B.23)

The relation between the extrinsic curvature Kab and the time derivative of qab or

˙qab ≡ £tqab is given by

Kab =
1

2
£nqab =

1

2
(nc∇cqab + qac∇bn

c + qbc∇an
c)

=
1

2N
(Nnc∇cqab + qac∇b(Nnc) + qbc∇a(Nnc)− qacn

c∇bN − qbcn
c∇aN)

=
1

2N
(Nnc∇cqab + qac∇b(Nnc) + qbc∇a(Nnc))

=
1

2N
(£tqab −£nqab)

=
1

2N
( ˙qab −DaNb −DbNa) . (B.24)

The last two term in the second line will vanish from qabn
b = 0 and using equations

(B.18) and (B.19) in the third line.

Let us consider the canonical conjugate momentum πab of qab is given by

πab ≡ ∂LGR

∂ ˙qab

=
∂Kab

∂ ˙qab

∂LGR

∂Kab

=

(
∂

∂ ˙qab

(2N)−1 ( ˙qab −DaNb −DbNa)

)(
∂

∂Kab

N
√

q(R+ KabK
ab −K2)

)

=
√

q(Kab − qabK) (B.25)

we also use equations (B.23) and (B.24) to obtain the canonical conjugate momentum.

Conversely we can write the extrinsic curvature Kab in term of the canonical conjugate
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momentum πab follow as4

πab =
√

q(Kab − qabK)

qabπ
ab =

√
qqab(K

ab − qabK)

π =
√

q(K − 3K)

K = − π

2
√

q
. (B.26)

Using the above equation substitute to the definition of the canonical conjugate mo-

mentum in equation (B.25), we get

πab =
√

qKab +
1

2
qabπ

Kab =
1√
q

(
πab − 1

2
qabπ

)
. (B.27)

Following the definition of the Hamiltonian in the classical mechanics. The Hamilto-

nian density in general relativity is given by

HGR = πab ˙qab − LGR

= πab(2NKab + DaNb + DbNa)−N
√

q(R+ KabK
ab −K2)

=
2Nπab

√
q

(
πab − 1

2
qabπ

)
+ πab(DaNb + DbNa)

−N
√

q

(
R+

1

q

(
πab − 1

2
qabπ

)(
πab − 1

2
qabπ

)
−

(
− π

2
√

q

)2
)

= −N
√

qR+
N√
q

(
πabπ

ab − 1

2
π2

)
+ 2πabDaNb

=
√

q

(
N

(
−R+

1

q
πabπ

ab − 1

2q
π2

)
− 2NbDa

(
πab

√
q

)
+ Da

(
2Nbπ

ab

√
q

))
.

(B.28)

The last term in the above equation is also a divergent term which vanishes at the

boundary where HGR =
∫ HGR

(3)e . Varying the Hamiltonian HGR with respect to

N and Na gives what follows

C ≡ −√q

(
R− 1

q
πabπ

ab +
1

2q
π2

)
= 0 (B.29)

4The canonical conjugate momentum πab is the symmetric tensor like the extrinsic curvature Kab

i.e. πab = πba . The contraction of it is πabq
ab = πa

a = π .
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and

Ca ≡ −√qDb

(
πab

√
q

)
= 0 . (B.30)

The first constraint C is known as the Hamiltonian constraint and the second con-

straint Ca is known as the diffeomorphisms constraint. We can re-write the Hamilto-

nian formulation of general relativity in the sum of two above constraints as

HGR =

∫
(NC + NaCa) (3)e . (B.31)

Following classical mechanics, the Hamilton’s equation of motion is given by

ẋ = {x , HGR} (B.32)

for any phase space variable x . The dynamical variables qab and πab are canonically

related by the Poisson’s bracket i.e.

{qab(x) , πcd(y)} = δc
(aδ

d
b)δ(x , y) . (B.33)

The Hamilton’s equation of motion of general relativity is given by

˙qab = {qab , HGR} =
δHGR

δπab

=
2N√

q

(
πab − 1

2
qabπ

)
+ 2D(aNb) (B.34)

and

˙πab = {πab , HGR} = −δHGR

δqab

= −N
√

q

(
Rab − 1

2
qabR

)
+

1

2
√

q
Nqab

(
πabπ

ab − 1

2
π2

)

−2N√
q

(
πacπb

c −
1

2
ππab

)
+
√

q(DaDbN − qabDcDcN)

+
√

qDc

(
N cπab

√
q

)
− 2πc(aDcN

b) (B.35)

The equation of motions in (B.34) and (B.35) is known as the 3+1 ADM formulation

[83] . Such formalism is based on dynamical variables qab and πab . The 3 + 1 ADM

formulation is very powerful to study quantum cosmology and semi-classical theory

of general relativity. The quantization of this formalisms is known as the Wheeler-

DeWitt quantization. Although the Wheeler-DeWitt quantization success to study

quantum cosmology. But non-perturbative of such theory is not realized and difficult

due to complicated form of constraint in equations (B.29) and (B.30) .
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Appendix C

Detailed calculation

C.1 Derivation of the Spin Connection

We begin with co-triad (eb i) compatible with respect to the covariant derivative (Da)

on spatial coordinate as

D[aeb]i = ∂[aeb]i + ωl
[a ieb]l = 0 . (C.1)

Multiplying the the cyclic permutation indices i.e. i , j , k of twice co-triads into

equation (C.1) as follow

ea
je

b
k(∂[aeb]i + ωl

[a ieb]l) = 0 (C.2)

ea
i e

b
j(∂[aeb]k + ωl

[a keb]l) = 0 (C.3)

ea
ke

b
i(∂[aeb]j + ωl

[a jeb]l) = 0 . (C.4)

Adding equation (C.2), (C.3) and subtracting (C.4) together, we get

ea
je

b
k∂[aeb]i + ea

je
b
kω

l
[a ieb]l + ea

i e
b
j∂[aeb]k + ea

i e
b
jω

l
[a keb]l − ea

ke
b
i∂[aeb]j − ea

ke
b
iω

l
[a jeb]l

= ea
je

b
k∂[aeb]i + ea

je
b
keb lω

l
a i − ea

je
b
kea lω

l
b i + ea

i e
b
j∂[aeb]k + ea

i e
b
jeb lω

l
a k − ea

i e
b
jea lω

l
b k

− ea
ke

b
i∂[aeb]j − ea

ke
b
ieb lω

l
a j − ea

ke
b
iea lω

l
b j =

ea
je

b
k∂[aeb]i + ea

i e
b
j∂[aeb]k − ea

ke
b
i∂[aeb]j − 2ea

jωa ik = 0 (C.5)

therefore solution of the spin connection can write in form

2ea
jωa ik = ea

je
b
k∂[aeb]i + ea

i e
b
j∂[aeb]k − ea

ke
b
i∂[aeb]j

ωa ik =
1

2
ej

a

(
ea

je
b
k∂[aeb]i + ea

i e
b
j∂[aeb]k − ea

ke
b
i∂[aeb]j

)
(C.6)
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or equivalently to

ωk
a i =

1

2
ej

a

(
ea

i e
b
j∂[ae

k
b] + ea

je
b k∂[aeb]i − ea keb

i∂[aeb]j

)
. (C.7)

C.2 Derivation of the Holst Action

We perform a detail derivation following the original paper [62] . We begin with the

Holst’s modification of Palatini action as

S =
1

2

∫
eeI

µe
J
ν (R IJ

µν − α ∗R IJ
µν ) d4x

=
1

2

∫
eeI

µe
J
ν (R IJ

µν − α

2
εIJ

KLR KL
µν ) d4x (C.8)

where e ≡ det eI
µ =

√−g is determinate of tetrad, we used the self-dual identity i.e.
∗R IJ

µν = 1
2
εIJ

KLR KL
µν and ∗∗R IJ

µν = −R IJ
µν . For simply we set 8πG = 1 . Let us

define new quantity following as

F̃ IJ
µν ≡ R IJ

µν − α

2
εIJ

KLR KL
µν (C.9)

Before we perform the 3 + 1 ADM decomposition, we will decompose the co-tetrad

eI
µ as

eI
µ =

(
N Naei

a

0 ei
a

)
(C.10)

and for the tetrad eµ
I as

eµ
I =

(
1/N 0

−Na/N ea
i

)
. (C.11)

where N and Na are lapse funtion and shift vector as we discussed in appendix B.

For convenient, we will use indices µ = t and I = 0 as the time component of

the spacetime coordinate and the local Lorentz frame respectively. From above two

equations, we get

e0
t = N , ei

t = Naei
a , e0

a = 0 , ei
a = ei

a (C.12)

and

et
0 =

1

N
, ea

0 = −Na

N
, et

i = 0 , ea
i = ea

i . (C.13)
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The 3 + 1 ADM decomposition of the Holst action can be written as

S =
1

2

∫
eeI

µe
J
ν (R IJ

µν − α

2
εIJ

KLR KL
µν ) d4x

=
1

2

∫
eeI

µe
J
ν F̃ IJ

µν d4x

=
1

2

∫
e(et

0e
t
0F̃

00
tt + et

0e
t
iF̃

0i
tt + et

ie
t
0F̃

i0
tt + et

ie
t
jF̃

ij
tt + et

0e
a
0F̃

00
ta

+ et
0e

a
i F̃

0i
ta + et

ie
a
0F̃

i0
ta + et

ie
a
j F̃

ij
ta + ea

0e
t
0F̃

00
at

+ ea
0e

t
iF̃

0i
at + ea

i e
t
0F̃

i0
at + ea

i e
t
jF̃

ij
at + ea

0e
b
0F̃

00
ab

+ ea
0e

b
i F̃

0i
ab + ea

i e
b
0F̃

i0
ab + ea

i e
b
jF̃

ij
ab ) d4x

=

∫
N
√

q (et
0e

a
i F̃

i0
at + ea

i e
b
0F̃

i0
ab +

1

2
ea

i e
b
jF̃

ij
ij ) dtd3x

=

∫ √
q(ea

i F̃
i0

at + N bea
i F̃

i0
ab +

1

2
Nea

i e
b
jF̃

ij
ab ) dtd3x , (C.14)

we used antisymmetry tensor of F̃ IJ
µν i.e. F̃ IJ

µν = −F̃ JI
µν and F̃ IJ

µν = −F̃ IJ
νµ .

Therefore any components of F̃ IJ
µµ = F̃ II

µν = 0 . We also used e = N
√

q as we

discuss in appendix B.

The non vanish component of F̃ IJ
µν in (C.14) are given by

F̃ i0
at = R i0

at − α

2
ε i0
JK R JK

at

= ∂[aω
i0

t] + ω i
[aJ ω J0

t] − α

2
ε i0
JK

(
∂[aω

JK
t] + ω JL

[a ω K
t]L

)

= ∂[aω
i0

t] + ω i
[a0 ω 00

t] + ω i
[aj ω j0

t] − α

2
ε i0
00

(
∂[aω

00
t] + ω 0L

[a ω 0
t]L

)

− α

2
ε i0
j0

(
∂[aω

j0
t] + ω jL

[a ω 0
t]L

)
− α

2
ε i0
0k

(
∂[aω

0k
t] + ω 0L

[a ω k
t]L

)

− α

2
ε i0
jk

(
∂[aω

jk
t] + ω jL

[a ω k
t]L

)

= ∂aω
i0

t − ∂tω
i0

a + ω i
aj ω j0

t − ω i
tj ω j0

a − α

2
ε i
jk ∂aω

jk
t +

α

2
ε i
jk ∂tω

jk
a

− α

2
ε i
jk ω j0

a ω k
t0 − α

2
ε i
jk ω jl

a ω k
tl +

α

2
ε i
jk ω j0

t ω k
a0 +

α

2
ε i
jk ω jl

t ω k
al

(C.15)
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F̃ i0
ab = R i0

ab − α

2
ε i0
JK R JK

ab

= ∂[aω
i0

b] + ω i
[aJ ω J0

b] − α

2
ε i0
JK

(
∂[aω

JK
b] + ω JL

[a ω K
b]L

)

= ∂[aω
i0

b] + ω i
[a0 ω 00

b] + ω i
[aj ω j0

b] − α

2
ε i0
00

(
∂[aω

00
b] + ω 0L

[a ω 0
b]L

)

− α

2
ε i0
j0

(
∂[aω

j0
b] + ω jL

[a ω 0
b]L

)
− α

2
ε i0
0k

(
∂[aω

0k
b] + ω 0L

[a ω k
b]L

)

− α

2
ε i0
jk

(
∂[aω

jk
b] + ω jL

[a ω k
b]L

)

= ∂aω
i0

b − ∂bω
i0

b + ω i
aj ω j0

b − ω i
bj ω j0

a − α

2
ε i
jk ∂aω

jk
b +

α

2
ε i
jk ∂bω

jk
a

− α

2
ε i
jk ω j0

a ω k
b0 − α

2
ε i
jk ω jl

a ω k
bl +

α

2
ε i
jk ω j0

b ω k
a0 +

α

2
ε i
jk ω jl

b ω k
al

(C.16)

F̃ ij
ab = R ij

ab − α

2
ε ij
KL R KL

ab

= ∂[aω
ij

b] + ω i
[aKω Kj

b] − α

2
ε ij
KL

(
∂[aω

KL
b] + ω KM

[a ω L
b]M

)

= ∂[aω
ij

b] + ω i
[a0 ω 0j

b] + ω i
[ak ω kj

b] − α

2
ε ij
00

(
∂[aω

00
b] + ω 0M

[a ω 0
b]M

)

− α

2
ε ij
k0

(
∂[aω

k0
b] + ω kM

[a ω 0
b]M

)− α

2
ε ij
0l

(
∂[aω

0l
b] + ω 0M

[a ω l
b]M

)

− α

2
ε ij
kl

(
∂[aω

kl
b] + ω jM

[a ω l
b]M

)

(C.17)

= ∂aω
ij

b − ∂bω
ij

b + ω i
ak ω kj

b − ω i
bk ω kj

a − α

2
ε ij
k ∂aω

k0
b +

α

2
ε ij
k ∂bω

k0
a

− α

2
ε ij
k ω k0

a ω 0
b0 − α

2
ε ij
k ω km

a ω 0
bm +

α

2
ε ij
k ω k0

b ω 0
a0 +

α

2
ε ij
k ω km

b ω 0
am

− α

2
ε ij
l ∂aω

0l
b − α

2
ε ij
l ∂bω

0l
a − α

2
ε ij
l ω 00

a ω l
b0 − α

2
ε ij
l ω 0m

a ω l
bm

+
α

2
ε ij
l ω 00

b ω l
a0 +

α

2
ε ij
l ω 0m

b ω l
am

= ∂aω
ij

b − ∂bω
ij

b + ω i
ak ω kj

b − ω i
bk ω kj

a − α

2
ε ij
k ∂aω

k0
b +

α

2
ε ij
k ∂bω

k0
a

− α

2
ε ij
k ω km

a ω 0
bm +

α

2
ε ij
k ω km

b ω 0
am − α

2
ε ij
l ∂aω

0l
b − α

2
ε ij
l ∂bω

0l
a

− α

2
ε ij
l ω 0m

a ω l
bm +

α

2
ε ij
l ω 0m

b ω l
am (C.18)

where we have used the time gauge [62] i.e. ε i0
jk = ε i

jk (other terms of Levi-civita

vanish due to their properties that is shown in appendix A) and using antisymmetry

identity of spin connection 1-form i.e. ω IJ
µ = −ω JI

µ , then any ω II
µ = 0 .
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We will introduce new variables following definition in (C.9) as

(+)Ai
a = ω0i

a +
1

2
εi

jkω
jk
a (C.19)

(−)Ai
a = ω0i

a −
1

2
εi

jkω
jk
a . (C.20)

and their inverse as

ω0i
a =

1

2
((+)Ai

a +(−) Ai
a) (C.21)

ωjk
a =

1

2α
ε jk
i ((+)Ai

a −(−) Ai
a) (C.22)

Using (C.21) and substitute (C.22) into (C.15) , (C.16) and (C.18) , we obtain

F̃ i0
at = −∂t

(−)Ai
a + ∂a

(
ω i0

t − α

2
εi

jkω
jk

t

)
+

(α2 + 1)

α
εi

jkω
0j

t
(+)Ak

a

+
(α2 − 1)

α
εi

jkω
0j

t
(−)Ak

a − ω i
tj

(−)Aj
a (C.23)

F̃ i0
ab = ∂[a

(−)Ai
b] −

(α2 + 1)

2α
εi

jk
(+)Aj

[a
(+)Ak

b] −
(α2 − 3)

2α
εi

jk
(−)Aj

[a
(−)Ak

b]

− (α2 + 1)

α
εi

jk
(+)Aj

[a
(−)Ak

b] (C.24)

F̃ ij
ab = 2

(α2 + 1)

α
εij

k ∂[a
(+)Ak

b] + 2
(α2 − 1)

α
εij

k ∂[a
(−)Ak

b] −
(α2 + 1)

α2
(+)Ai

[a
(+)Aj

b]

(3α2 − 1)

α2
(−)Ai

[a
(−)Aj

b] + 4
(α2 + 1)

α2
(+)A

[i
[a

(−)A
j]
b] . (C.25)

Using some identity of densitized triad i.e.

1

2
εabcε ijke

j
be

k
c =

1

(2)(3)
εabcε ijke

a
i e

i
ae

j
be

k
c =

√
q ea

i ≡ Ea
i (C.26)

and a important identity was shown by [62] i.e.

(+)Ai
a = (−)Ai

a − 2α ωi
a (C.27)
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where ωi
a = 1

2
ei

jkω
jk

a . Substituting (C.27) into (C.23) (C.24) and (C.25) and plug-

ging these results in the Holst action at (C.14) , we obtain

S =

∫ √
q
[
ea

i

(
− ∂t

(−)Ai
a + ∂a

(
ω i0

t − α

2
εi

jkω
jk

t

)

+
(α2 + 1)

α
εi

jkω
0j

t ( (−)Ai
a − 2α ωi

a) +
(α2 − 1)

α
εi

jkω
0j

t
(−)Ak

a − ω i
tj

(−)Aj
a

)

+ N bea
i

(
∂[a

(−)Ai
b] −

(α2 + 1)

2α
εi

jk(
(−)Aj

[a
(−)Ak

b] − 2α (−)Aj
[aω

k
b] − 2α ωj

[a
(−)Ak

b]

+ 4α2ωj
[aω

k
b] )−

(α2 − 3)

2α
εi

jk
(−)Aj

[a
(−)Ak

b]

− (α2 + 1)

α
εi

jk(
(−)Aj

[a
(−)Ak

b] − 2α ωj
[a

(−)Ak
b]

) )

+
1

2
Nea

i e
b
j

(
2
(α2 + 1)

α
εij

k ( ∂[a
(−)Ak

b] − 2α∂[aω
k
b] ) + 2

(α2 − 1)

α
εij

k ∂[a
(−)Ak

b]

− (α2 + 1)

α2

(
(−)Ai

[a
(−)Aj

b] − 2α (−)Ai
[aω

j
b] − 2α ωi

[a
(−)Aj

b] + 4α2ωi
[aω

j
b]

)

+
(3α2 − 1)

α2
(−)Ai

[a
(−)Aj

b] + 4
(α2 + 1)

α2

(
(−)A

[i
[a

(−)A
j]
b] − 2α ω

[i
[a

(−)A
j]
b]

) )]
dtd3x

=

∫ [
− Ea

i (∂t
(−)Ai

a)− α(α ω i0
t − 1

2
εi

jkω
jk

t )(∂aE
a
i +

1

α
ε k
ij

(−)Aj
aE

a
k )

+ NaEb
i

(
∂[a

(−)Ai
b] +

1

α
εi

jk
(−)Aj

[a
(−)Ak

b]

)
+

1

2
NEa

i Eb
j

(
α εij

k ( ∂[a
(−)Ak

b]

+ ε k
ij

(−)Ai
[a

(−)Aj
b])− (1 + α2)εij

k(∂[aω
k
b] + ε k

ij ωi
[aω

j
b])

) ]
dtd3x

=

∫ [
− α Ea

i (£t
(−)Ai

a)− α (−)Ai
tDaE

a
i + NaEb

i
(−)F̃ i

ab

+
1

2
√

q
εij

k NEa
i Eb

j

(
α (−)F̃ k

ab − (1 + α2)R k
ab

) ]
dtd3x

(C.28)

where (−)F̃ i
ab = ∂

(−)
[a Ai

b] + α−1εi
jk

(−)Aj
[a

(−)Ak
b] and R i

ab = ∂[aω
i
b] + εi

jkω
j
[aω

k
b] . We

neglect any surface integral terms e.g.
∫

Da[(ω
i0

t − α
2

εi
jkω

jk
t )Ea

i ]d3x ≈ 0 . The Lie

derivative £t of the local Lorentz frame indices will be ignored. Using definition of

Ashtekar variable (−)Ai
a ≡ ωi

a + αK i
a substitute at R i

ab term in (C.28) and Barbero-

Immirzi parameter given by χ = 1/α [62] . After simple manipulation but quite
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tediously, we obtain

S =

∫ [
− 1

χ
Ea

i £t
(−)Ai

a −
1

χ
(−)Ai

tDaE
a
i + NaEb

i
(−)F̃ i

ab

+
1

2
√

q
εij

k NEa
i Eb

j

[ 1

χ
(−)F̃ k

ab − (1 + χ−2)
(
∂[a

(−)Ak
b] −

1

χ
∂[aK

k
b]

+ ε k
ij ( (−)Ai

[a
(−)Aj

b] −
1

χ
K i

[aK
j
b] )

) ] ]
dtd3x

=

∫ [
− 1

χ
Ea

i £t
(−)Ai

a −
1

χ
(−)Ai

tDaE
a
i + NaEb

i
(−)F̃ i

ab

+
1

2
√

q
εij

k NEa
i Eb

j

[
2

χ
(−)F̃ k

ab − 2

χ
(1 + χ−2)

(
χ∂[a

(−)Ak
b] − ∂[aK

k
b]

+ ε k
ij

(
χ (−)Ai

[a
(−)Aj

b] −K i
[aK

j
b]

)) ] ]
dtd3x

=

∫ [
− 1

χ
Ea

i £t
(−)Ai

a −
1

χ
(−)Ai

tDaE
a
i + Na

( 1

χ
Eb

i
(−)F̃ i

ab − χ(1 + χ−2)Ki
a DaE

a
i

)

+
1

2
√

q
NEa

i Eb
j

(
εij

k

1

χ
(−)F̃ k

ab − χ(1 + χ−2)Ki
[aK

j
b]

) ]
dtd3x

=

∫ [
− 1

χ
Ea

i £tA
i
a −

1

χ
Ai

tDaE
a
i + Na

( 1

χ
Eb

i F
i

ab −
(1 + χ2)

χ
K i

a DaE
a
i

)

+
1

2
√

q χ
NEa

i Eb
j

(
εij

k F k
ab − (1 + χ2)Ki

[aK
j
b]

) ]
dtd3x

=

∫ [
− 1

χ
Ea

i £tA
i
a − Ai

tDaE
a
i + NaCa + NCGR

]
dtd3x (C.29)

we used the by part technique in the ∂[aK
i
b] term and neglected any surface terms like

above. These results gives equivalent to the constraints in (2.52) , (2.53) and (2.54)

as we seen at chapter 2 , if we set 8πG = 1 , (−)F̃ i
ab = F i

ab and (−)Ai
a = Ai

a .
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C.3 Determination of the Perturbation Matrix

and their Eigenvalues in Section 4.1.1

In the λ = constant case. Equations for our autonomous system are reduced to

dX

dN
≡ f = −3X −

√
3

2
λY 2 − 3X3 (1− 2Z)

dY

dN
≡ g = −

√
3

2
λXY − 3X2Y (1− 2Z)

dZ

dN
≡ h = −3Z

(
1 +

X2 + Y 2

X2 − Y 2

)
.

Following the definition of the perturbation matrix in (4.23) , we obtain

M =




−3− 9X2
c (1− 2Zc) −√6Yc 6X3

c

−
√

3
2
λYc − 6XcYc(1− 2Zc) −

√
3
2
λXc − 3X2

c (1− 2Zc) 6X2
c Yc

−3Zc

(
2Xc

X2
c−Y 2

c
− 2Xc(X2

c +Y 2
c )

(X2
c−Y 2

c )2

)
−3Zc

(
2Yc

X2
c−Y 2

c
+ 2Yc(X2

c +Y 2
c )

(X2
c−Y 2

c )2

)
−3

(
1 + X2

c +Y 2
c

X2
c−Y 2

c

)


 .

(C.30)

• The perturbation matrix at point (a) :

(
− λ√

6
,
√

1 + λ2

6
, 0

)
is given by

M =




−3− 3
2
λ2 −λ

√
6 + λ2 − λ3√

6(
−

√
3
2

+
√

6
)

λ
√

1 + λ2

6
0 λ2

√
1 + λ2

6

0 0 λ2


 .

(C.31)

The cubic equation of the eigenvalues µ for point (a) as

(µ + 3 +
3

2
λ2)(µ)(µ− λ2)− (µ− λ2)(−3λ2)

(
1 +

λ2

6

)
= 0 .

The solutions for eigenvalues µ are given by

µ1 =
λ2

2
, µ2 = −λ2 , µ3 = −3− λ2

2
. (C.32)

• The perturbation matrix at point (b) :

(
− λ√

6
,−

√
1 + λ2

6
, 0

)
is given by

M =




−3− 3
2
λ2 λ

√
6 + λ2 − λ3√

6(√
3
2
−√6

)
λ
√

1 + λ2

6
0 −λ2

√
1 + λ2

6

0 0 λ2


 .

(C.33)
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The cubic equation of the eigenvalues µ for point (b) as

(µ + 3 +
3

2
λ2)(µ)(µ− λ2)− (µ− λ2)(−3λ2)

(
1 +

λ2

6

)
= 0 .

The solutions for eigenvalues µ are given by

µ1 =
λ2

2
, µ2 = −λ2 , µ3 = −3− λ2

2
. (C.34)

71



Bibliography

[1] C. L. Bennett et al., Observations: Astrophys. J. Suppl. 148, 1 (2003)

[arXiv:astro-ph/0302207]; D. N. Spergel et al. [WMAP Collaboration], Astro-

phys. J. Suppl. 148 (2003) 175 [arXiv:astro-ph/0302209].

[2] S. Masi et al., Prog. Part. Nucl. Phys. 48, 243 (2002) [arXiv:astro-ph/0201137].

[3] R. Scranton et al. [SDSS Collaboration], [arXiv:astro-ph/0307335].

[4] A. G. Riess et al. [Supernova Search Team Collaboration], Universe and a As-

tron. J. 116, 1009 (1998) [arXiv:astro-ph/9805201]; A. G. Riess, arXiv:astro-

ph/9908237; J. L. Tonry et al. [Supernova Search Team Collaboration], Astro-

phys. J. 594, 1 (2003) [arXiv:astro-ph/0305008].

[5] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Supernovae,”

Astrophys. J. 517, 565 (1999) [arXiv:astro-ph/9812133]; G. Goldhaber et al.

[The Supernova Cosmology Project Collaboration], arXiv:astro-ph/0104382.

[6] N. Straumann, Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231].

[7] E. J. Copeland, M. Sami and S. Tsujikawa, arXiv:hep-th/0603057.

[8] T. Padmanabhan, Curr. Sci. 88, 1057 (2005) [arXiv:astro-ph/0411044]; T. Pad-

manabhan, arXiv:astro-ph/0603114.

[9] S. M. Carroll, Living Rev. Rel. 4, 1 (2001) [arXiv:astro-ph/0004075].

[10] E. W. Kolb, S. Matarrese, A. Notari and A. Riotto, arXiv:hep-th/0503117;

E. W. Kolb, S. Matarrese and A. Riotto, arXiv:astro-ph/0506534.

[11] S. Nojiri and S. D. Odintsov, arXiv:hep-th/0601213.

72



[12] A. Melchiorri, L. Mersini-Houghton, C. J. Odman and M. Trodden, Phys. Rev.

D 68, 043509 (2003) [arXiv:astro-ph/0211522].

[13] R. R. Caldwell, Phys. Lett. B 545, 23 (2002) [arXiv:astro-ph/9908168].

[14] V. Sahni and Y. Shtanov, JCAP 0311, 014 (2003) [arXiv:astro-ph/0202346];

V. Sahni and Y. Shtanov, Int. J. Mod. Phys. D 11, 1515 (2000) [arXiv:gr-

qc/0205111].

[15] S. Pantian, Tachyonic Cosmological Dynamics, M.S. thesis Naresuan University,

(2007).

[16] C. M. Chen, D. V. Gal’tsov and M. Gutperle, Phys. Rev. D 66, 024043 (2002);

P. K. Townsend and M. N. R. Wohfarth, Phys. Rev. Lett. 91, 061302 (2003);

N. Ohta, Prog. Theor. Phys. 110, 269 (2003).

[17] E. Elizalde, S. Nojiri and S. D. Odintsov, Phys. Rev. D 70, 043539 (2004)

[arXiv:hep-th/0405034].

[18] F. Hoyle, Mon. Not. Roy. Astron. Soc. 108, 372 (1948); Mon. Not. Roy. Astron.

Soc. 109, 365 (1949).

[19] F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. Lond. A282, 191 ; Mon. Not. Roy.

Astron. Soc. 115, 305 (1972).

[20] X. z. Li and J. g. Hao, Phys. Rev. D 69, 107303 (2004) [arXiv:hep-th/0303093];

J. g. Hao and X. z. Li, Phys. Rev. D 67, 107303 (2003) [arXiv:gr-qc/0302100];

L. A. Urena-Lopez, JCAP 0509, 013 (2005) [arXiv:astro-ph/0507350].

[21] J. G. Hao and X. z. Li, Phys. Rev. D 70, 043529 (2004) [arXiv:astro-ph/0309746].

[22] P. Singh, M. Sami and N. Dadhich, Phys. Rev. D 68, 023522 (2003) [arXiv:hep-

th/0305110].

[23] M. Sami and A. Toporensky, Mod. Phys. Lett. A 19, 1509 (2004) [arXiv:gr-

qc/0312009].

[24] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91,

071301 (2003) [arXiv:astro-ph/0302506]; S. Nesseris and L. Perivolaropoulos,

Phys. Rev. D 70, 123529 (2004) [arXiv:astro-ph/0410309].

73



[25] S. M. Carroll, M. Hoffman and M. Trodden, Phys. Rev. D 68, 023509 (2003)

[arXiv:astro-ph/0301273].

[26] J. D. Barrow, Class. Quant. Grav. 21, L79 (2004) [arXiv:gr-qc/0403084].

[27] S. Nojiri, S. D. Odintsov and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)

[arXiv:hep-th/0501025].

[28] H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005) [arXiv:astro-ph/0509328].

[29] T. Thiemann, Lect. Notes Phys. 631, 41 (2003) [arXiv:gr-qc/0210094];

[30] A. Ashtekar, M. Bojowald and J. Lewandowski, Adv. Theor. Math. Phys. 7, 233

(2003) [arXiv:gr-qc/0304074].

[31] G. Date and G. M. Hossain, Class. Quant. Grav. 21, 4941 (2004) [arXiv:gr-

qc/0407073].

[32] M. Bojowald, Living Rev. Rel. 8, 11 (2005) [arXiv:gr-qc/0601085].

[33] A. Ashtekar, T. Pawlowski and P. Singh, arXiv:gr-qc/0604013.

[34] P. Singh, Phys. Rev. D 73, 063508 (2006) [arXiv:gr-qc/0603043].

[35] A. Ashtekar, arXiv:gr-qc/0605011.

[36] G. M. Hossain, Class. Quant. Grav. 21, 179 (2004) [arXiv:gr-qc/0308014];

K. Banerjee and G. Date, Class. Quant. Grav. 22, 2017 (2005) [arXiv:gr-

qc/0501102].

[37] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001) [arXiv:gr-qc/0102069]; M. Bo-

jowald, G. Date and K. Vandersloot, Class. Quant. Grav. 21, 1253 (2004)

[arXiv:gr-qc/0311004]; G. Date, Phys. Rev. D 71, 127502 (2005) [arXiv:gr-

qc/0505002].

[38] A. Ashtekar, T. Pawlowski and P. Singh, Phys. Rev. Lett. 96, 141301 (2006)

[arXiv:gr-qc/0602086]

[39] M. Sami, P. Singh and S. Tsujikawa, arXiv:gr-qc/0605113.

[40] P. Singh and A. Toporensky, Phys. Rev. D 69, 104008 (2004) [arXiv:gr-

qc/0312110].

74



[41] M. Bojowald, Phys. Rev. Lett. 89, 261301 (2002) [arXiv:gr-qc/0206054].

[42] M. Bojowald and K. Vandersloot, Phys. Rev. D 67, 124023 (2003) [arXiv:gr-

qc/0303072]; G. Calcagni and M. Cortes, arXiv:gr-qc/0607059.

[43] S. Tsujikawa, P. Singh and R. Maartens, Class. Quant. Grav. 21, 5767 (2004)

[arXiv:astro-ph/0311015].

[44] E. J. Copeland, J. E. Lidsey and S. Mizuno, Phys. Rev. D 73, 043503 (2006)

[arXiv:gr-qc/0510022].

[45] M. Bojowald and M. Kagan, arXiv:gr-qc/0606082.

[46] M. Bojowald, Class. Quant. Grav. 18, L109 (2001) [arXiv:gr-qc/0105113].

[47] P. Singh and K. Vandersloot, Phys. Rev. D 72, 084004 (2005) [arXiv:gr-

qc/0507029].

[48] G. Gamow, Phys. Rev. 70, 572 (1946); R. A. Alpher, H. Bethe and G. Gamow,

Phys. Rev. 73, 803 (1948).

[49] R. M. Wald, General Relativity, The University of Chicago Press (1984).

[50] S. M. Carroll, Spacetime and Geometry: An introduction to General Relativity,

Addison Wesley (2004).

[51] D. L. Wiltshire, arXiv:gr-qc/0101003.

[52] B. Gumjudpai, arXiv:astro-ph/0305063.

[53] A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).

[54] A. Friedman, Z. Phys. 10, 377 (1922) [Gen. Rel. Grav. 31, 1991 (1999)].

[55] P. de Bernardis et al. [Boomerang Collaboration], Nature 404, 955 (2000)

[arXiv:astro-ph/0004404]; S. Hanany et al., Astrophys. J. 545, L5 (2000)

[arXiv:astro-ph/0005123]; A. Balbi et al., Astrophys. J. 545, L1 (2000) [Erratum-

ibid. 558, L145 (2001)] [arXiv:astro-ph/0005124]; P. de Bernardis et al., Astro-

phys. J. 564, 559 (2002) [arXiv:astro-ph/0105296]; C. L. Bennett et al., As-

trophys. J. Suppl. 148, 1 (2003) [arXiv:astro-ph/0302207]; D. N. Spergel et

al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003) [arXiv:astro-

ph/0302209].

75



[56] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys.

Journ. 517, 565 (1999) [astro-ph/9812133].

[57] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); A. Ashtekar, Phys. Rev. D 36,

1587 (1987)

[58] C. Rovelli, Quantum Gravity, Cambridge university press (2004).

[59] C. Rovelli, Class. Quant. Grav. 8, 1613 (1991).

[60] K. Vandersloot, Loop Quantum Cosmology, PhD thesis, on-line avaliable at

http://igpg.gravity.psu.edu/archives/thesis/2006/kevin.pdf , cited on 1 Decem-

ber 2006.

[61] A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004) [arXiv:gr-

qc/0404018].

[62] S. Holst, Phys. Rev. D 53, 5966 (1996) [arXiv:gr-qc/9511026].

[63] M. Bojowald and H. A. Kastrup, Class. Quant. Grav. 17, 3009 (2000) [arXiv:hep-

th/9907042].

[64] A. Perez, arXiv:gr-qc/0409061.

[65] H. Nicolai and K. Peeters, arXiv:hep-th/0601129.

[66] A. Ashtekar, arXiv:gr-qc/0702030.

[67] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-

th/9906064].

[68] T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000)

[arXiv:gr-qc/9910076].

[69] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477, 285

(2000) [arXiv:hep-th/9910219]; E. E. Flanagan, S. H. H. Tye and I. Wasserman,

Phys. Rev. D 62, 044039 (2000) [arXiv:hep-ph/9910498].

[70] P. G. Ferreira and M. Joyce, Phys. Rev. Lett. 79, 4740 (1997) [arXiv:astro-

ph/9707286]; P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503 (1998)

[arXiv:astro-ph/9711102].

76



[71] E. J. Copeland, A. R. Liddle and D. Wands, Phys. Rev. D 57, 4686 (1998)

[arXiv:gr-qc/9711068].

[72] F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).

[73] A. R. Liddle, Phys. Lett. B 220, 502 (1989).

[74] T. Barreiro, E. J. Copeland and N. J. Nunes, Phys. Rev. D 61, 127301 (2000)

[arXiv:astro-ph/9910214]; S. C. C. Ng, N. J. Nunes and F. Rosati, Phys. Rev. D

64, 083510 (2001) [arXiv:astro-ph/0107321].

[75] J. Kujat, R. J. Scherrer and A. A. Sen, arXiv:astro-ph/0606735.

[76] For detail of slow-roll approximation and relate topics see: Andrew R. Liddle and

David H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge

University Press (2000) .

[77] I. Zlatev, L. M. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

[arXiv:astro-ph/9807002].

[78] S. C. C. Ng, N. J. Nunes and F. Rosati, Phys. Rev. D 64, 083510 (2001)

[arXiv:astro-ph/0107321]; A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59,

023509 (1999) [arXiv:astro-ph/9809272].

[79] E. Aonkaew, Dynamics of Scalar Field with Cosmological Barotropic Fluid under

Exponential Potential, B.S. Independent Study Report, Naresuan University,

(2007). Avilable on http://www.sci.nu.ac.th/tptp/centralOutstandinglists.htm

[80] G. N. Felder, A. V. Frolov, L. Kofman and A. V. Linde, Phys. Rev. D 66, 023507

(2002) [arXiv:hep-th/0202017].

[81] P. Singh, K. Vandersloot and G. V. Vereshchagin, Phys. Rev. D 74, 043510

(2006) [arXiv:gr-qc/0606032].

[82] J. Brunnemann and T. Thiemann, Class. Quant. Grav. 23, 1395 (2006) [arXiv:gr-

qc/0505032].

[83] R. Arnowitt, S. Deser and C. W. Misner, “The dynamics of general relativity,”

Gravitation: an introduction to current research, Louis Witten ed. (Wilew 1962),

arXiv:gr-qc/0405109.

77



[84] E. Poisson, A Relativist’s Toolkit: The Mathematic of Black-Hole Mechanics,

Cambridge University Press (2004).

[85] P. Peldan, Class. Quant. Grav. 11, 1087 (1994) [arXiv:gr-qc/9305011].

78


