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In second-order scalar-tensor theories we study how the Vainshtein mechanism works in a

spherically symmetric background with a matter source. In the presence of the field coupling Fð�Þ ¼
e�2Q� with the Ricci scalar R we generally derive the Vainshtein radius within which the general

relativistic behavior is recovered even for the coupling Q of the order of unity. Our analysis covers the

models such as the extended Galileon and Brans-Dicke theories with a dilatonic field self-interaction.

We show that, if these models are responsible for the cosmic acceleration today, the corrections to

gravitational potentials are generally small enough to be compatible with local gravity constraints.
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I. INTRODUCTION

The observational discovery of the late-time cosmic
acceleration [1] poses one of the most serious problems
in modern cosmology. Within the framework of general
relativity (GR) it is possible to realize the accelerated
expansion of the Universe by taking into account a
‘‘dark’’ component of a matter source. The representative
model of this class is quintessence, in which the source of
dark energy comes from the potential energy of a scalar
field � [2]. However, it is generally difficult to accommo-
date an extremely tiny mass required for the cosmic
acceleration today (m� � 10�33 eV) in the framework of

particle physics [3].
An alternative approach to the dark energy problem is

the modification of gravity at large distances [4]. One of
the simplest examples is the so-called fðRÞ gravity, in
which the Lagrangian f is a general function of the Ricci
scalar R [5]. The functions fðRÞ are required to be carefully
designed to satisfy cosmological and local gravity con-
straints [6–10]. In viable dark energy models based on
fðRÞ gravity the mass of a scalar degree of freedom
is large in high-density regions, so that the chameleon
mechanism [11] can be at work to suppress the propagation
of the fifth force. Nevertheless, in the cosmological con-
text, such models are plagued by the fine tuning of initial
conditions associated with the oscillating mode of field
perturbations [7,9,12,13]. This property generally persists
for the chameleon models of dark energy which are de-
signed to pass both cosmological and local gravity con-
straints [14,15].

Another representative model of dark energy based on
the modification of gravity is the Dvali-Gabadadze-Porrati
(DGP) braneworld scenario [16], in which the cosmic
acceleration is realized by a gravitational leakage to the
extra dimension. Although this model contains a ghost
mode [17] in addition to the incompatibility with
observational data [18], it has a nice feature to recover

GR in a local region through the Vainshtein mechanism
[19]. This property comes from the field self-interaction of
the form ðr�Þ2h�, which appears as a mixture of the
transverse graviton with a brane-bending mode [20]. The
nonlinear field interaction suppresses the propagation of
the fifth force for the distance smaller than the so-called
Vainshtein radius rV .
The Vainshtein mechanism was originally proposed in

the context of a Lorentz-invariant massive spin-2 Pauli-
Fierz theory [21]. The quadratic Pauli-Fierz theory
possesses the van Dam-Veltman-Zakharov (vDVZ) dis-
continuity [22] with which the linearized GR is not
recovered in the limit that the mass of the graviton is
zero. Vainshtein showed that in the nonlinear version of
the Pauli-Fierz theory there is a well-behaved expansion
valid within a radius rV [19]. Although the nonlinearities
that cure the vDVZ discontinuity problem typically give
rise to the so-called Boulware-Deser ghost in massive
gravity [23], it is possible to construct nonlinear massive
gravitational theories free from the ghost problem in the
decoupling limit [24]. Recently the Vainshtein mecha-
nism was applied to the (new) massive gravity models
[25] and also to Galileon models [26,27].
In Galileon gravity the field Lagrangian is constructed

to satisfy the Galilean symmetry @�� ! @��þ b� in

the limit of flat spacetime [28]. The nonlinear field self-
interaction Xh�, where X ¼ �ðr�Þ2=2, appears as one
of those terms [29]. The cosmology based on Galileon
gravity has been extensively studied recently in the
context of dark energy [26,30,31] and inflation [32].
For the covariant Galileon there exists a de Sitter solu-
tion with a constant field velocity. Thus the cosmic
acceleration can be driven by the field kinetic energy
without a potential. Moreover there are some viable
parameter spaces in which the ghosts and Laplacian
instabilities are absent [30].
Galileon gravity can be viewed as one of the specific

theories having second-order field equations. The general
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action of scalar-tensor theories with second-order
equations was first derived by Horndeski [33] in the con-
text of Lovelock gravity. This issue was recently revisited
by Deffayet et al. [34] as an extension of Galileon gravity
(see also Ref. [35]). The general D-dimensional action
derived in Ref. [34] reproduces the Horndeski’s action in
four dimensions [36]. The Galileon term Xh�, for
example, can be promoted to the form Gð�;XÞh�, where
G is an arbitrary function with respect to � and X. In
fact, the dynamics of dark energy in the presence of the
term Gð�;XÞh� have been studied by a number of
authors [37].

The Horndeski’s action involves the Lagrangians
of the forms L2 ¼ Pð�;XÞ, L3 ¼ �Gð�;XÞh�,
L4 ¼ G4ð�;XÞRþG4;X � ðfield derivativesÞ, and L5 ¼
G5ð�; XÞG��ðr�r��Þ þ ðG5;X=6Þ � ðfield derivativesÞ,
where R is the Ricci scalar, G�� is the Einstein tensor, and

Gi;X ¼ @Gi=@X (i ¼ 4, 5). For the functions G4 that de-

pend on � alone, e.g., G4 ¼ Fð�Þ=2, the Lagrangian L4

reduces toL4 ¼ Fð�ÞR=2. For the choice F ¼ M2
pl, where

Mpl is the reduced Planck mass, L4 corresponds to the

Einstein-Hilbert Lagrangian.
In this paper we shall study the Vainshtein mechanism in

a spherically symmetric background for the Horndeski’s
second-order theories with G4 ¼ Fð�Þ=2 and G5 ¼ 0. We
do not take into account the effects of the term G5 as well
as the X-dependence in G4, but the presence of the non-
linear field interaction Gð�;XÞh� can allow us to under-
stand how the Vainshtein mechanism works in the presence
of the nonminimal coupling Fð�ÞR=2. Our analysis covers
a wide range of gravitational theories such as (extended)
Galileon, dilaton gravity, and Brans-Dicke (BD) theories
with the nonlinear field interaction.

This paper is organized as follows. In Sec. II we derive
the equations of motion for the action (1) given below in a
spherically symmetric background. Under certain approx-
imations we also obtain the simplified equations for the
field as well as the gravitational potentials. In Sec. III we
clarify how the Vainshtein mechanism works in general
and constrain the forms of the action. In Sec. IV the general
results derived in Sec. III are applied to specific models.
We also estimate the corrections to the gravitational po-
tentials coming from the modification of gravity. Section V
is devoted to conclusions.

II. FIELD EQUATIONS IN A SPHERICALLY
SYMMETRIC BACKGROUND

We start with the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1
2Fð�ÞRþ Pð�;XÞ �Gð�;XÞh�

�
þ Smðg��;�mÞ; (1)

where g is the determinant of the metric g��, R is the

Ricci scalar, Fð�Þ is a function of the scalar field �,
Pð�;XÞ and Gð�;XÞ are functions of � and X ¼
�g��@��@��=2, and Sm is the matter action. We as-

sume that the matter fields �m do not have direct
couplings with the field �.
We derive the equations of motion in the spherically

symmetric background with the line element

ds2 ¼ �e2�ðrÞdt2 þ e2�ðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ;
(2)

where �ðrÞ and �ðrÞ are functions with respect to
the distance r from the center of symmetry. For the
matter action Sm we consider a perfect fluid with the
energy-momentum tensor T�

� ¼ diagð��m; Pm; Pm; PmÞ.
The (00), (11), (22) components of the equations of
motion derived from the action (1) are given, respec-
tively, by

�
2F

r
þ F0 � 2�0XG;X

�
�0 þ F

r2
ðe2� � 1Þ � F00

� 2F0

r
þ�02G;� þ 2�00XG;X

¼ e2�ð�m � PÞ; (3)

�
2F

r
þ F0 � 2�0XG;X

�
�0 � F

r2
ðe2� � 1Þ

þ 2F0

r
þ�02G;� � 4

r
�0XG;X

¼ e2�ðPm þ P� 2XP;XÞ; (4)

F

�
�00 þ

�
1

r
þ F0

F

�
ð�0 ��0Þ þ�02 ��0�0

�

þ F00 þ F0

r
��02G;� � 2ð�00 ��0�0ÞXG;X

¼ e2�ðPm þ PÞ; (5)

where X ¼ �e�2��02=2, a prime represents the de-
rivative with respect to r, and a comma corresponds
to the partial derivative in terms of � or X (e.g.,
G;� ¼ @G=@�). The equation of motion for the field

� is
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�00
�
P;X þ 2XP;XX � 2ðG;� þ XG;�XÞ � 2e�2��0ðG;X þ XG;XXÞ

�
2

r
þ�0

��
þ e2�P;�

þ�0
�
P;X

�
2

r
þ�0 ��0

�
þ�0P;�X � 2�0XP;XX

�
þ F;�

�
e2� � 1

r2
��00 � 2

r
ð�0 ��0Þ þ�0�0 ��02

�

þ 2XG;X

�
2

r2
� 3�0�0 þ�02 þ�00 � 6

r
�0 þ 4

r
�0

�
� 4X2G;XX�

0
�
2

r
þ�0

�
� 2�0G;�

�
2

r
þ�0 ��0

�

��02G;�� þ 2�0XG;�X

�
2

r
þ�0 þ�0

�
¼ 0: (6)

The continuity equation for the matter fluid is

P0
m þ�0ð�m þ PmÞ ¼ 0: (7)

This equation can be also derived by combining
Eqs. (3)–(6).

In the following we focus on the weak gravitational
background characterized by the conditions j�j � 1 and
j�j � 1. Then the dominant contribution in Eq. (3) is of
the order of ðF=r2Þ�. In order to make comparisons be-
tween each term in Eqs. (3) and (4) relative to F=r2, we
introduce the following quantities

�F� � F;��
0r

F
; �GX � e�2�G;X�

03r
F

;

�G� � G;��
02r2

F
; �P � e2�Pr2

F
;

�PX � P;X�
02r2

F
; �P� � e2�P;��

0r3

F
;

�Pm � e2�Pmr
2

F
;

(8)

and

�F�� � F;���
0r

F;�

; �PX � XP;XX

P;X

;

�PX� � P;X��
0r

P;X

; �GXX � XG;XX

G;X

;

�G�X � XG;�X

G;�

; �G�� � G;���
0r

G;�

:

(9)

The matter density �m is of the order of ðF=r2Þ�. From the
continuity Eq. (7) one has Pm=�m �� in the weak gravi-
tational background, so that �Pm ��2. In the following we
employ the approximation that all the terms in Eq. (8) are
much smaller than 1. For the consistency with local gravity
experiments we require that these quantities are at most of
the order of � and �.
From Eqs. (3) and (4) we can express�0 and�0 in terms

of �m, �, and (the derivatives of) the field �. Substituting
these relations into Eq. (5) and neglecting the second-order
terms �2i relative to �i, it follows that

h� ¼ �1�m þ�2h�þ�3; (10)

where h � ðd2=dr2Þ þ ð2=rÞðd=drÞ, and

�1 ’ e2�

4F
ðe2� þ 1� e2��F� � e2��GX

� �G� þ �P þ �PX þ �PmÞ; (11)

�2 ’ � ð3� e2�Þð�F� þ �GXÞ
4�0r

; (12)

�3 ’ � 1� 2e2� þ e4�

2r2

� 4ðe2� � 2Þ�P � ð5� 3e2�Þ�PX þ 2ð1� e2�Þðe2��F� þ e2��GX þ �G�Þ þ ð3� e2�Þð�F���F� � 3�PmÞ
4r2

:

(13)

Expanding the gravitational potential � further and picking up the dominant contributions, we have

�1 ’ 1

4F
ð2þ 6�� �F� � �GX � �G� þ �P þ �PX þ �PmÞ; (14)
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�2 ’ � �F� þ �GX

2�0r
¼ �F;�

2F
þ XG;X

F
; (15)

�3 ’ � 4�2 þ �F���F� � 2�P � �PX � 3�Pm

2r2
: (16)

Since fj�j; j�ijg � 1, Eq. (14) gives �1 ’ 1=ð2FÞ. In GR
one has F ¼ M2

pl ¼ 1=ð8�GNÞ (GN is the Newton’s gravi-
tational constant), so that�1 ¼ 4�GN . If�2 � 0, then the
field Laplacian term h� gives rise to the modification to
the gravitational constant. This comes from the fact that
Eq. (6) contains the matter density �m after replacing the
term �0 by using Eq. (3). Equation (15) shows that the
gravitational constant is subject to change for the theories
characterized by

F;� � 0; or G;X � 0: (17)

The right hand side (r.h.s.) of Eq. (10) is of the order of
�=r2. Provided that the condition j�2�

0=rj � j�3j is
satisfied, the contribution of the third term on the r.h.s.
of Eq. (10) can be neglected relative to the second
term. This amounts to the condition fj�F�j; j�GXjg �
f�2; j�F���F�j; j�Pj; j�PXj; j�Pmjg.

We combine Eq. (6) with Eqs. (3)–(5) to derive the
closed-form equation for �. Picking up the dominant
terms, we obtain

h� ¼ �4�m þ�5; (18)

where

�4 ’
�0re2�ð	þ �GX þ �F�Þ

2F	
; (19)

�5 ’ ��0f½2e2�ð1� �GXXÞ þ ðe4� � 15Þð1þ �GXXÞ��GX

þ 2ð2e2� � 8�G�X þ �G�� � 2Þ�G�

� 2ð�PXe
2� þ �PX� þ e2� � 1� 5�PXÞ�PX

� 2�P�g=ð2r	Þ; (20)

and

	 � ð1þ �GXXÞðe2� þ 3Þ�GX þ 2ð1þ �G�XÞ�G�

� ð1þ 2�PXÞ�PX: (21)

Using the original variables with the approximation e2� ’
1 in Eqs. (19) and (20), we have

�4 ’ � rðF;� ��0
þ�02G;XÞ
2F


; (22)

�5 ’ �P;�r
2 þ 4Xð2G;�X � P;XXÞ�0rþ ½ðP;�X �G;��Þr2 þ 6G;X þ 8XG;XX��02

r

; (23)

where


 � ðP;X þ 2XP;XX � 2G;� � 2XG;�XÞr� 4ðG;X þ XG;XXÞ�0: (24)

Substituting Eq. (18) into Eq. (10), it follows that

h� ¼ 4�Geff�m þ�3 þ�2�5; (25)

where

Geff � 1

4�
ð�1 þ�2�4Þ

’ 1

8�F

�
1þ

�
F;�

2F
� XG;X

F

�
rðF;� ��0
þ�02G;XÞ



þ 3�� 1

2
ð�F� þ �GX þ �G� � �P � �PX � �PmÞ

�
: (26)

Equation (25) corresponds to the modified Poisson equa-

tion. The second term on the r.h.s. of Eq. (26) is crucially

important for estimating the modification of gravity. For

the theory in which P ¼ X and G ¼ 0, the second term

includes the contribution of the order of F2
;�=ð2FÞ. In the

presence of the dilatonic coupling of the form F ¼
M2

ple
�2Q�=Mpl , where Q is a constant of the order of 1

and Mpl is the reduced Planck mass, this contribution

reduces to 2Q2 for j�=Mplj � 1, so that the gravitational

coupling is strongly modified relative to GR. In this case

the model is in contradiction with local gravity experi-

ments, but the situation is different in the presence of the

term Gð�;XÞ. How this modification works will be the
topic of the next section.

III. VAINSHTEIN MECHANISM

We study how the Vainshtein mechanism works in the
presence of the nonlinear field self-interaction
Gð�;XÞh�. In doing so, we need to specify the forms of
the functions F, P, G at some point. Still, we aim to keep
the analysis as general as possible, so that it can cover a
wide range of scalar-tensor theories.
First of all, let us consider the form of nonminimal

couplings Fð�Þ with the Ricci scalar R. If we take the
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power-law function Fð�Þ / �p, the parameter �F� re-

duces to �F� ¼ p�0r=�. Suppose that there is a solution

characterized by � / rq. Since �F� ¼ pq in this case, the

approximation j�F�j � 1 breaks down for p and q of the

order of unity.
For example, let us consider Brans-Dicke theory [38]

characterized by the functions Fð�Þ ¼ � (i.e., p ¼ 1) and
P ¼ !BDX=�, in the presence of the X-dependent term
GðXÞ. For those large values of the radius characterized by
the condition jP;Xrj � j4ðG;X þ XG;XXÞ�0j the term 
 in

Eq. (24) is given by
 ’ !BDr=�, so that�4 is constant for
the power-law solution � / rq. In fact, as we will see
shortly, there is a solution with � / r�1 for constant �4.
In the regime jP;Xrj � j4ðG;X þ XG;XXÞ�0j the field

Eq. (18) is approximately given by

d

dr
ðr2�0Þ ’ �4�mr

2: (27)

We introduce the Schwarzschild radius rg of the source, as

rg � 1

M2
pl

Z r

0
�m~r

2d~r; (28)

which leads to the relation �mr
2 ¼ M2

pldrg=dr. Then

Eq. (27) is integrated to give

�0ðrÞ ’ �4M
2
plrg

r2
: (29)

For the values of r, for which the function rg is almost

constant, one has�0ðrÞ / r�2 (implying �mr
2 ! 0), which

in turn leads to �F� ¼ �1. Hence the validity of the

approximation used in Sec. II breaks down for the coupling
Fð�Þ ¼ �. This problem can be avoided by rescaling the

field� with the form of the exponential coupling, i.e.� !
M2

ple
�2Q ~�=Mpl , where Q is constant. In this case the re-

scaled field ~� is related with a dilaton field appearing in
low-energy effective string theory [39]. As we will see in
Sec. IVB, after this rescaling, the kinetic term in Brans-

Dicke theory reduces to the standard one P ¼
�g��@ ~��@ ~��=2 in the limit Q ! 0. We treat the field

� with the exponential coupling

Fð�Þ ¼ M2
ple

�2Q�=Mpl (30)

as a more fundamental one rather than the field � with a
power-law coupling Fð�Þ / �p. In this case one has
�F� ¼ �2Q�0r=Mpl, so that j�F�j can be much smaller

than 1 even for the power-law solution like �0ðrÞ / r�2.
In the following we focus on the theories with the

coupling (30). In doing so, we shall study two different
cases: Q � 0 and Q ¼ 0, separately.

A. Q � 0

When we discuss the case of nonzero values ofQ, we are
primarily interested in the theories where jQj is of the order
of unity. In this case the term F;� in Eq. (22) provides an

important contribution to the field equation. From Eqs. (22)
and (23) we find that the qualitative behavior of solutions is
different depending on the radius r. The behavior of solu-
tions changes at the radius rV characterized by

jBðrVÞrV j ¼ j4ðG;X þ XG;XXÞðrVÞ�0ðrVÞj; (31)

where

B � P;X þ 2XP;XX � 2G;� � 2XG;�X: (32)

Here rV is the so-called Vainshtein radius [19] below which
the general relativistic behavior can be recovered in the
presence of the term Gð�;XÞh�.
In what follows we focus on the theories described by

the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Fð�ÞRþ fð�ÞX� gð�ÞM1�4nXnh�

�
þ Smðg��;�mÞ; (33)

where Fð�Þ is given by Eq. (30) andM is a constant having
a dimension of mass. In this case Pð�;XÞ ¼ fð�ÞX and
Gð�;XÞ ¼ gð�ÞM1�4nXn, where fð�Þ; gð�Þ are functions
of � and n is a positive integer (n 	 1). We assume that
fð�Þ and gð�Þ are slowly varying dimensionless functions
of the order of unity, such that

jMplf;�=fj & 1; jMplg;�=gj & 1: (34)

If fð�Þ and gð�Þ are proportional to Fð�Þ ¼
M2

ple
�2Q�=Mpl , the conditions (34) are satisfied for jQj & 1.

For the action (33) Eq. (18) yields

d

dr
ðr2�0Þ ¼ r½2QF=Mpl þ ff� 2ðnþ 1ÞM1�4ng;�X

ng�0r� 2nð4nþ 1ÞM1�4ngXn�
2F½ff� 2ðnþ 1ÞM1�4ng;�X

ngr� 4n2M1�4ngXn�1�0� �mr
2

� f;�Xr
2 þ 8nM1�4ng;�X

n�0rþ fðf;� �M1�4ng;��X
nÞr2 þ 2nð4n� 1ÞM1�4ngXn�1g�02

ff� 2ðnþ 1ÞM1�4ng;�X
ngr� 4n2M1�4ngXn�1�0 r: (35)

The qualitative behavior of the solutions to Eq. (35) is different depending on whether r is larger than rV or not. Moreover
the solution is subject to change for r smaller than r
, where r
 is the radius at which the contribution of the density
dependent term in Eq. (35) becomes comparable to the last term in Eq. (35) around a spherically symmetric body. Hence
there should be three different regimes: (a) r � rV , (b) r
 � r � rV , and (c) r � r
. In the following we shall derive the
solutions to Eq. (35) in each regime.
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1. r � rV

As long as the condition jF;�j � j�0
j is satisfied in the
regime r � rV , the term�4 in Eq. (22) can be estimated as
�4 ’ Q=ðMplBÞ. As we will see below, the field behaves as
�0ðrÞ ’ ðQMpl=BÞðrg=r2Þ in the regime r � rV for B ’
constant. In this case the condition jF;�j � j�0
j is in fact
satisfied. For the theories given by (33) the term �4�m is
the dominant contribution to the r.h.s. of Eq. (18) for r �
rV . This is known by deriving the solution of Eq. (18)
without the term �5 and by substituting the solution into
Eqs. (22) and (23). Then, in the regime r � rV , the field
Eq. (35) reduces to

d

dr
ðr2�0Þ ’ Q

MplB
�mr

2; (36)

where B ¼ f� 2ðnþ 1ÞM1�4ng;�X
n ’ f. As long as

fð�Þ is a slowly varying function, B is nearly constant.
In general, for k-essence theories in which P includes
nonlinear terms in X [40], B depends on r. Provided that
the term of the form P ¼ fð�ÞX corresponds to the domi-
nant contribution to B, one can also employ the approxi-
mation that B is nearly constant. Using the Schwarzschild
radius defined in Eq. (28), Eq. (36) is integrated to give

�0ðrÞ ’ QMpl

B

rg

r2
: (37)

Here we neglected the solution of the homogeneous dif-
ferential equation as this is equivalent to the renormaliza-
tion of rg. Under the approximation that the solution (37) is

valid at r ¼ rV , it follows that

r3V ’
��������4QMplrg

BðrVÞ2
ðG;X þ XG;XXÞðrVÞ

��������: (38)

For the function G ¼ X=M3 the Vainshtein radius is

known to be rV ¼ j4QMplrg=ðBðrVÞ2M3Þj1=3. If the term

G;X þ XG;XX depends on X, we need to use Eq. (37) again

to derive the closed-form expression of rV .

2. r
 � r � rV

In the regime r
 � r � rV the G-dependent terms are
the dominant contributions to 
. As long as the solution is
described by �0ðrÞ / r�p with 0< p< 1, one can ap-
proximate 
 ’ �4ðG;X þ XG;XXÞ�0ðrÞ. For the function

G ¼ gð�ÞM1�4nXn (n 	 1) the solution derived later be-

haves as �0ðrÞ / r�1=ð2nÞ, so that the approximation given
above is justified. In the regime r
 � r � rV the terms
ð6G;X þ 8XG;XXÞ�02 in the numerator of �5 in Eq. (23)

provide the dominant contribution to the field equation,
and hence

d

dr
ðr2�0Þ ’ 3G;X þ 4XG;XX

2ðG;X þ XG;XXÞ r�
0 ¼ 4n� 1

2n
r�0: (39)

Since �GXX ¼ XG;XX=G;X ¼ n� 1, the coefficient in

front of the term r�0 in Eq. (39) is constant for the function
G ¼ gð�ÞM1�4nXn. Equation (39) is integrated to give

�0ðrÞ ¼ Cr�1=ð2nÞ: (40)

The coefficient C is approximately known by matching

two solutions (37) and (40) at r ¼ rV , which gives C ¼
QMplrgr

1=ð2nÞ�2
V =BðrVÞ. Then Eq. (40) reduces to

�0ðrÞ ’ QMplrg

BðrVÞr2V
�
r

rV

��1=ð2nÞ
: (41)

Compared to the solution (37) the field derivative varies
more slowly in the regime r
 � r � rV . This is the region
in which the Vainshtein mechanism is at work. The solu-
tion (41) is compatible with the approximations we made
to find Eq. (39), e.g., jg;�g�1�0rj � 1.

The solution (41) diverges in the limit r ! 0. To avoid
this divergent behavior we expect that �0ðrÞ behaves in a
different way for the radius smaller than r
. In order to find
the radius r� below which the approximation we used
breaks down, we compute the variables defined in Eq. (8):

�F� ’ � 2Q2

BðrVÞ
rg
rV

�
r

rV

�
1�1=ð2nÞ

;

j�GXj ’
M2

pl

8nFð�Þ
rg
r
j�F�j;

j�G�j ’
jQ3�gð�ÞM2

plj
8n2BðrVÞ2Fð�Þ

�
rg
rV

�
3
�
r

rV

�
1�1=n

;

�PX ¼ �2�P ’ fð�ÞQ2M2
pl

BðrVÞ2Fð�Þ
�
rg
rV

�
2
�
r

rV

�
2�1=n

;

�P� ’ fð�Þ�fð�ÞQ3M2
pl

2BðrVÞ3Fð�Þ
�
rg
rV

�
3
�
r

rV

�
3�3=ð2nÞ

;

(42)

where �fð�Þ ¼ Mplf;�=f and �gð�Þ ¼ Mplg;�=g. As

long as Fð�Þ=M2
pl, fð�Þ, gð�Þ do not change significantly

and they remain of the order of unity, the quantities given
in Eq. (42), apart from j�GXj, are much smaller than 1 for

r � rV . The variable �GX is proportional to r�1=ð2nÞ, which
diverges in the limit r ! 0. The validity of the approxima-
tion j�GXj � 1 breaks down for the radius r < r�, where

r� ¼ rV

� M2
plQ

2

4nFðr�ÞjBðrVÞj
r2g

r2V

�
2n
: (43)

For jQj, jBðrVÞj, and Fðr�Þ=M2
pl of the order of unity one

has r�=rg � ðrg=rVÞ4n�1. This shows that, for n 	 1 and

rg � rV , r� is extremely small even compared to rg. As we

will see in Sec. IV the typical Vainshtein radius for the Sun
(rg � 105 cm) is around rV � 1020 cm for the models

relevant to dark energy. When n ¼ 1 one has r� �
10�40 cm, which is even smaller than the Planck length.
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As we will see in Sec. IV the typical value of r
 is about the
radius of the Sun ( � 1010 cm), so that the solution (41) is
trustable for r > r
.

3. r � r

Let us derive the solution to the field equation in the

regime where the density dependent term on the r.h.s. of
Eq. (35) becomes important around the spherical symmet-
ric body. For the regularity of solutions the boundary
conditions should satisfy �0ð0Þ ¼ 0 and j�00ð0Þj<1 at
the origin. These two conditions lead to �0ðrÞ / rm (m 	
1), as r ! 0. We also impose that the density �m ap-
proaches a constant value �c in the limit r ! 0.

For the theories with n ¼ 1, i.e., G ¼ gð�ÞM�3, Eq.
(35) around r ¼ 0 reads

d

dr
ðr2�0Þ ’ M3Q�m

MplðrM3fc � 4gc�
0Þ r

3 � 6�02gc
rM3fc � 4gc�

0 r;

(44)

where fc ¼ fð�cÞ and gc ¼ gð�cÞ with �c being the field
value at the origin. On using �m ’ �c ¼ constant, there is a
solution characterized by �0ðrÞ ¼ br. The coefficient b is
known by substituting�0ðrÞ ¼ br into Eq. (44). This leads
to the following solution

�0ðrÞ ’ M3fc
4gc

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8Q�cgc

3MplM
3f2c

s �
r: (45)

If the condition jQ�cgcj � MplM
3f2c is satisfied, Eq. (45)

is approximately given by

�0ðrÞ ’ �
�jQjM3�c

6Mplgc

�
1=2

r; (46)

whose existence requires that Q< 0 for gc > 0. The sign
of Eq. (46) is fixed by matching this solution with the one
in the regime r � r
. When BðrVÞ> 0 and BðrVÞ< 0 the
sign of Eq. (46) is negative and positive, respectively, for
Q< 0.

While we derived the solution (46) around the center of
the star, this is also valid for the star where �m is approxi-
mately constant. Matching the two solutions (41) and (46)
at the radius r
 for n ¼ 1, it follows that

r
 ’
�
6jQgcj
B2ðrVÞ

r2g

�cr
3
V

�
1=3 Mpl

M
; (47)

at which the two terms on the r.h.s of Eq. (35) are the same
order. The matching radius r
 depends onM as well as �c.
For the models relevant to the cosmic acceleration today, r

for the Sun is typically around its radius (provided that the
density of the Sun is assumed to be nearly constant).

For n > 1 the field equation satisfying the boundary
conditions at r ¼ 0 reduces to

d

dr
ðr2�0Þ ’ Q�c

Mplfc
r2: (48)

This is integrated to give

�0ðrÞ ’ Q�c

3Mplfc
r; (49)

where we used �0ð0Þ ¼ 0. In order to match this solution
with (41) we require that BðrVÞ> 0.

4. Corrections to the gravitational potentials

We estimate the modifications to the Newtonian gravi-
tational potentials in the regime r
 � r � rV . First of all,
let us see how the Vainshtein mechanism suppresses the
additional gravitational coupling appearing in Eq. (26).
Since j�GXj � j�F�j for r
 � r � rV , the term XG;X=F

can be neglected relative to F;�=ð2FÞ. Using the solution

(41) and the definition of rV given in Eq. (38), it follows

that j
j ’ j4ðG;X þ XG;XXÞ�0j ’ jBðrVÞjrVðrV=rÞ1�1=ð2nÞ.
Then the second term in the square bracket of Eq. (26)
can be estimated as��������

�
F;�

2F
� XG;X

F

�
rðF;� ��0
þ�02G;XÞ




��������
’
��������rF2

;�

2F


��������’ 2Q2

M2
pl

��������Fð�Þ
BðrVÞ

��������
�
r

rV

�
2�1=ð2nÞ

; (50)

which is much smaller than 1 for r � rV . Hence the
presence of the term Gð�;XÞ in 
 can lead to the recovery
of GR within the Vainshtein radius.
Using the estimation (42) and picking up the dominant

contributions in Eqs. (3) and (4), it follows that

2F

r
�0 þ 2F

r2
�� F00 � 2F0

r
’ �m; (51)

2F

r
�0 � 2F

r2
�þ 2F0

r
’ 0: (52)

Substituting the solution (41) into Eq. (51), we obtain

d

dr

�
r�� rg

2

�
’ ð1� 4nÞQ2rg

2nBðrVÞr2�1=ð2nÞ
V

r1�1=ð2nÞ: (53)

Integration of this equation leads to

� ’ rg
2r

�
1� 2Q2

BðrVÞ
�
r

rV

�
2�1=ð2nÞ�

; (54)

where we neglected the homogeneous solution, as it cor-
responds to the renormalization of rg. Plugging this solu-

tion into Eq. (52), we get

� ’ � rg
2r

�
1� 4n

2n� 1

Q2

BðrVÞ
�
r

rV

�
2�1=ð2nÞ�

: (55)
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Clearly the second terms on the r.h.s. of the square brackets
of Eqs. (54) and (55) are much smaller than unity in the
regime r � rV , so that the fifth force is suppressed.

We define the post-Newtonian parameter �, as

� � ��=�: (56)

The present tightest experimental bound on � is j�� 1j<
2:3� 10�5 [41]. Using the solutions (54) and (55) this
constraint translates into

2Q2

2n� 1

1

jBðrVÞj
�
r

rV

�
2�1=ð2nÞ

< 2:3� 10�5: (57)

For r much less than rV the bound (57) can be satisfied
even for jQj ¼ Oð1Þ.

In the regime r � r
 the corrections to the gravitational
potentials are even more suppressed than those estimated
by Eqs. (54) and (55). This comes from the fact that, as r
approaches 0, the quantities such as j�F�j and j�GXj
decrease.

B. Q ¼ 0

Let us study the theories given by the action (33) with
F ¼ M2

pl. Even for Q ¼ 0 there is an additional correction

term XG;X=F in Eq. (26), so it is not clear whether such a

correction is suppressed or not. We discuss two different
cases: (i) n ¼ 1 and (ii) n > 1.

1. n ¼ 1

This case corresponds to the function G ¼ gð�ÞM�3X.
The qualitative behavior of solutions changes at the
radius rV characterized by the condition jfVrV j ¼
j4M�3gV�

0ðrVÞj, where fV and gV are the values of f
and g at r ¼ rV , respectively.

For r � rV the term �4�m dominates over �5 in
Eq. (18), where �4 ’ �0r=ð2M2

plÞ. It then follows that

d

dr
ðr2�0Þ ¼ �0r

2

drg
dr

: (58)

The solution to this equation can be written in the form

�0ðrÞ ¼ C

r2
exp

�
1

2M2
pl

Z r

rV

�mð~rÞ~rd~r
�
; (59)

where C is an integration constant. For the local matter
density we assume that the integral

R1 �mð~rÞ~r2d~r is finite.
Then, for large r, we require �m ’ br�2�q, with q > 1 (b is
a constant). In this case Eq. (59) yields

�0ðrÞ ¼ C

r2
exp

�
� b

2M2
plq

ðr�q � r�q
V Þ

�
’ C1

r2
; (60)

where C1 is another constant which absorbs the exponen-
tial term (which is nearly constant for large r). Note that
this relation is valid even for the weaker bound q > 0.

Let us consider the regime r is smaller than rV . Around
the center of the spherical symmetry there should be the
change of solutions at some radius r
, so we first derive
the solution in the regime r
 � r � rV . Since 
 ’
�4M�3g�0, �4 ’ 5�0r=ð8M2

plÞ, and �5 ’ 3�0=ð2rÞ in

this region, the field equation is

d

dr
ðr2�0Þ ¼ �0r

�
5

8

drg
dr

þ 3

2

�
: (61)

Under the condition jdrg=drj � 1 (which corresponds to

�mr
2 ! 0 for large r) we have the approximate solution

�0ðrÞ ’ C2ffiffiffi
r

p ; (62)

where C2 is an integration constant. The solution (62)
cannot be trusted up to r ! 0.
Finally we study the behavior of the solution in the

region r � r
. For the regularity at the origin the field
derivative should take the form �0ðrÞ / rm, where m 	 1.
Since �m ¼ �c þOðr2Þ in this regime, the field Eq. (35) is
approximately given by

d

dr
ðr2�0Þ ’ 6M�3gc�

02r
4M�3gc�

0 � fcr
: (63)

Assuming the solution of the form �0 ¼ br and substitut-
ing it into Eq. (63), we find the following solution

�0ðrÞ ’ fc
2gc

M3r: (64)

Let us match Eq. (64) with Eq. (62) at the radius r ¼ r
.
We caution that, if the density �m differs from �c at r ¼ r
,
the correction to the solution (64) should be taken into

account. Since C2 ¼ fc=ð2gcÞM3r3=2
 after the matching,
the solution in the regime rg < r � rV is

�0ðrÞ ’ fc
2gc

M3r

�
r

r

�
1=2

: (65)

Finally we match Eq. (65) with Eq. (60) at r ’ rV . This
leads to the following solution in the regime r � rV :

�0ðrÞ ’ fc
2gc

M3r

�
r

rV

�
1=2

�
rV
r

�
2
: (66)

The Vainshtein radius rV is defined by the condition
jfVrV j ’ j4M�3gV�

0ðrVÞj. This gives

rV ’
��������2fcgVfVgc

��������2=3

r
: (67)

For jfj and jgj of the order of unity, Eq. (67) implies that rV
is the same order as r
. This means that there is no
intermediate regime r
 < r < rV characterized by the so-
lution (65). Moreover the matching radius rV cannot be
fixed completely.
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Let us consider the regime r < rV with the solution (64).
Then the second term in the square bracket of Eq. (26) can
be estimated as


 �
��������
�
F;�

2F
� XG;X

F

�
rðF;� ��0
þ�02G;XÞ




��������
� j�GXj � M6r4

M2
pl

: (68)

If the same model is responsible for the late-time cosmic
acceleration, the mass M is related with today’s Hubble
parameter H0 as M3 � MplH

2
0 . Using this relation one

has 
 � ðr=H�1
0 Þ4, which means that the correction is

significantly suppressed on solar-system scales. The
G-dependent terms appearing in Eqs. (3) and (4) are the
orders of ðF=r2Þ�GX and ðF=r2Þ�G�. For the radius r < rV
we have j�G�j � ðr=H�1

0 Þ6, which is even much smaller

than j�GXj. Then the corrections to the gravitational poten-
tials coming from the term Gð�;XÞh� are strongly sup-
pressed on solar-system scales.

In the regime r > rV the field derivative �0ðrÞ is a
decreasing function with respect to r, so the correction 

becomes maximum around r ¼ rV . As long as rV � H�1

0 ,


ðrVÞ � ðrV=H�1
0 Þ4 is much smaller than 1. Of course, if

r
ð�rVÞ is significantly away from the origin, we need to
take into account the correction to the solution (64) coming
from the change of the matter density. Still the small cubic
mass term M3 appearing in Eq. (64) would affect the
solutions in the regime r > rV [as it happens in Eqs. (65)
and (66)], so that the term 
 should be suppressed as well.

2. n> 1

We proceed to the case in which n > 1. Let us study the
behavior of solutions around the origin. For the regularity
we need to assume the form �0ðrÞ / rm (m 	 1) and
�m ! �c, as r ! 0. Then Eq. (35) yields

d

dr
ðr2�0Þ ¼ �c

2M2
pl

r3�0 � f;�ð�cÞ
2fð�cÞ r

2�02: (69)

For the theories in which f is constant the solution to

Eq. (69) is given by �0ðrÞ / e�cr
2=ð4M2

pl
Þ=r2, which is sin-

gular at r ¼ 0. If f depends on �, we obtain the following
solution

�0ðrÞ ’ � 2fð�cÞ
f;�ð�cÞ

1

r
; (70)

which is again singular at r ¼ 0. In both cases the solutions
cannot satisfy the regularity condition at the origin. The
theories with n > 1 and Q ¼ 0 are not viable because of
the above mentioned property.

IV. APPLICATION TO CONCRETE MODELS

In this section we apply our formulas given in Sec. III to
a number of concrete models.

A. Extended Galileon

We first study the theories characterized by

Fð�Þ ¼ M2
ple

�2Q�=Mpl ; PðXÞ ¼ �X;

GðXÞ ¼ �M1�4nXn;
(71)

where � ¼ �1, n is a positive integer (n 	 1), and � is a
constant of the order of unity (which can be either positive
or negative). In this case the functions fð�Þ and gð�Þ in
Eq. (33) are strictly constant, i.e., fð�Þ ¼ � and gð�Þ ¼ �.
The covariant Galileon model, which recovers the

Galilean symmetry @�� ! @��þ b� in the limit of

Minkowski spacetime, corresponds to n ¼ 1 [28,29].
Note that in the DGP model the field self-interaction of
the form �M�3Xh� arises from a brane-bending mode.
For general n the background expansion of the Universe is
the same as that of the Dvali-Turner model [42]. When
� ¼ �1, Q ¼ 0, and � > 0 there is a de Sitter attractor

along which _� ¼ constant. If this solution is responsible
for the cosmic acceleration today, the mass M is related to
the today’s Hubble radius rc ¼ H�1

0 � 1028 cm via

M � ðM1�2n
pl r2nc Þ1=ð1�4nÞ [42,43].

Let us consider the case Q � 0. Using Eq. (37), the
Vainshtein radius rV defined in Eq. (38) reads

rV ¼ ð23�nn2j�jÞ1=ð4n�1Þ ðjQjMplrgÞð2n�1Þ=ð4n�1Þ

M

� ðjQjMplrgÞð2n�1Þ=ð4n�1Þ

M
: (72)

If the mass M has an approximate relation M �
ðM1�2n

pl r2nc Þ1=ð1�4nÞ (as in the case of Q ¼ 0), one has

rV � ðjQjr2n�1
g r2nc Þ1=ð4n�1Þ. When n ¼ 1 this reduces

to rV � ðjQjrgr2cÞ1=3, which recovers the Vainshtein radius

rV � ðrgr2cÞ1=3 in the DGP model for jQj ¼ Oð1Þ. For the
Sun (rg � 105 cm) one has rV � 1020 cm for jQj ¼ Oð1Þ.
From Eqs. (37) and (41) the solutions in the regimes

r � rV and r
 � r � rV are given, respectively,

by �0ðrÞ ’ QMplrg=ð�r2Þ and �0ðrÞ ’ QMplrg=ð�r2VÞ�
ðr=rVÞ�1=ð2nÞ. If we consider the case n ¼ 1 and � > 0
with the condition jQ�c�j � MplM

3, the solution in the

regime r � r
 is �0ðrÞ ’ �½jQjM3�c=ð6Mpl�Þ�1=2r
for � ¼ þ1 and �0ðrÞ ’ ½jQjM3�c=ð6Mpl�Þ�1=2r for

� ¼ �1, respectively (where in both cases Q< 0).
For n ¼ 1, the matching radius r
 given in Eq. (47) can

be estimated as

r

rg

’
�
6jQ�j
�cr

4
V

rV
rg

M3
pl

M3

�
1=3

: (73)
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If the mass M is related to rc via M3 � Mplr
�2
c then

the ratio (73) yields r
=rg � ½2jQ�jðrV=rgÞð�0=�cÞ�
ðrc=rVÞ4�1=3, where �0 � 3M2

pl=r
2
c � 10�29 g=cm3 is the

cosmological density today. For the Sun (�c � 102 g=cm3)
one has r
 � 105rg � 1010 cm for jQ�j ¼ Oð1Þ, which is

the same order as the radius of the Sun. The distance r�
given in Eq. (43) is very much smaller than r
, so that the
solutions derived in Sec. III are trustable. We caution that
around r ¼ r
 there is a correction to the solution (46)
coming from the varying matter density, but still r
 cannot
be smaller than r�.

When n > 1, matching two solutions in the regimes
r � r
 and r
 � r � rV requires that BðrVÞ> 0 and
hence � > 0. However the existence of a late-time de

Sitter solution ( _� ¼ constant) requires � < 0, which
means that there are no solutions with appropriate bound-
ary conditions around the origin. While the model with
positive � may be irrelevant to dark energy, it does not
possess the discontinuous behavior.

If n ¼ 1, the gravitational potentials (54) and (55) in the
regime r
 � r � rg are given by

� ’ rg
2r

�
1� 2Q2

�

�
r

rV

�
3=2

�
;

� ’ � rg
2r

�
1� 4Q2

�

�
r

rV

�
3=2

�
:

(74)

When jQj & 1 the experimental bound (57) on the post-
Newtonian parameter � is satisfied for r < 5� 10�4rV . If
the relationM3 � Mplr

�2
c holds, this bounds translates into

r < 1017 cm for the Sun and r < 1015 cm for the Earth.
Note that for the radius r � r
 the corrections to� and�
are much smaller than those given in Eq. (74). Hence the
model is compatible with the experimental bound on the
solar-system scales.

When Q ¼ 0 we showed in Sec. III B that the correc-
tions to the gravitational potentials are extremely tiny for
n ¼ 1, so that the model can pass the solar-system con-
straints. The models with n > 1 are plagued by the prob-
lem of the singularity of �0ðrÞ at the origin. We note that
this situation may change in the presence of other nonlinear
field corrections appearing as the forms of L4 and L5 in
Galileon gravity [28,29].

B. Brans-Dicke theories with a universal
dilatonic coupling

The BD theory [38] is characterized by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
�R�!BD

2�
ðr�Þ2 þ � � �

�
; (75)

where � is the scalar field coupled to R, and!BD is the BD

parameter. Introducing the field � in the form � ¼
M2

ple
�2Q�=Mpl , the action (75) can be written as [14]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Fð�ÞRþ ð1� 6Q2ÞFð�Þ

M2
pl

X þ � � �
�
;

(76)

where

Fð�Þ ¼ M2
ple

�2Q�=Mpl ; X ¼ � 1

2
ðr�Þ2;

Q2 ¼ 1

2ð3þ 2!BDÞ :
(77)

If we define the field ’ as ’ ¼ 2Q�, the square bracket

in Eq. (76) is expressed as L ¼ M2
ple

�’=Mpl½R�
!BDðr’Þ2�=2þ � � � . This means that dilaton gravity
[39] corresponds to!BD ¼ �1. Motivated by dilaton grav-
ity, we shall consider the theories in which the field� has a

universal coupling Fð�Þ ¼ M2
ple

�2Q�=Mpl with Xh� as

well:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Fð�ÞRþ ð1� 6Q2ÞFð�Þ

M2
pl

X

� �Fð�Þ
M3M2

pl

Xh�

�
; (78)

where � is a constant of the order of unity. The last term
appears as the 	0 correction in low-energy effective string
theory [44]. We assume that the coupling Q is of the order
of unity with Q2 � 1=6. The action (78) corresponds to
the theories with fð�Þ ¼ ð1� 6Q2ÞFð�Þ=M2

pl, gð�Þ ¼
�Fð�Þ=M2

pl, and n ¼ 1 in Eq. (33). We consider the case

in which the field satisfies the boundary condition
j�ð0Þj � Mpl at the origin. Since the field derivative

�0ðrÞ is small, the condition j�ðrÞj � Mpl is satisfied for

r > 0. From Eq. (77) dilaton gravity (!BD ¼ �1) corre-
sponds to Q2 ¼ 1=2.
From Eq. (38) the Vainshtein radius is given by

rV �
� j4Q�j
ð1� 6Q2Þ2

Mplrg

M3

�
1=3

; (79)

where we used the approximations F � M2
pl and B � 1�

6Q2. If the model (78) is responsible for the late-time
cosmic acceleration, one can show that there is a de

Sitter solution characterized by _� ¼ constant with M3 �
Mplr

�2
c . For jQj and j�j of the order of unity the Vainshtein

radius (79) is estimated as rV � ðrgr2cÞ1=3.
Under the condition jQ�c�j � MplM

3ð1� 6Q2Þ2, the
solution in the regime r � r
 is given by �0ðrÞ ’
�½jQjM3�c=ð6Mpl�Þ�1=2r for Q2 < 1=6 and �0ðrÞ ’
½jQjM3�c=ð6Mpl�Þ�1=2r for Q2 > 1=6. The matching ra-

dius r
 given in Eq. (47) can be estimated as

r

rg

�
�

2jQ�j
ð1� 6Q2Þ2

rV
rg

�0

�c

�
rc
rV

�
4
�
1=3

; (80)
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where we used the relations M3 � Mplr
�2
c and �0 �

3M2
pl=r

2
c. The radius r
 is the same order as Eq. (73) for

jQ�j ¼ Oð1Þ, so that the solutions to the field equation
derived in Sec. III are again trustable.

Equations (54) and (55) show that, in the regime r
 �
r � rV , the gravitational potentials can be estimated as

� ’ rg
2r

�
1� 2Q2

1� 6Q2

�
r

rV

�
3=2

�
;

� ’ � rg
2r

�
1� 4Q2

1� 6Q2

�
r

rV

�
3=2

�
:

(81)

The experimental bound (57) translates into�
r

rV

�
3=2

< 2:3� 10�5 j1� 6Q2j
2Q2

: (82)

In dilaton gravity (Q2 ¼ 1=2), for example, this constraint
is satisfied for r < 10�3rV � 1017 cm for the Sun. This
upper bound is much larger than the solar-system scales.

V. CONCLUSIONS

In this paper we have studied the Vainshtein mechanism
in second-order scalar-tensor theories given by the action
(1). In a spherically symmetric background the full equa-
tions of motion were derived in the presence of a barotropic
perfect fluid. Introducing the small parameters �i defined in
Eq. (8) and picking up the dominant contributions in the
weak gravitational background, we obtained the closed-
form equations for the field � and for the gravitational
potential �. The approximation employed in Sec. II is
valid under the conditions j�ij � 1, which is required for
the consistency with solar-system experiments.

The general theories in which the Vainshtein mechanism
can be at work are given by the action (33) with the non-

minimal coupling Fð�Þ ¼ M2
ple

�2Q�=Mpl . This action cov-

ers a wide range of modified gravitational theories such as
the (extended) Galileon, dilaton gravity, and Brans-Dicke
theories with the nonlinear field interaction. In such theo-
ries we derived the general formula (38) for the Vainshtein
radius rV .

For Q � 0 the solution to the field equation in the
regime r � rV is given by Eq. (37), which leads to
the large modification to the gravitational potentials. In
the regime r
 � r � rV the solution changes to

Eq. (41), so that the modification of gravity is
suppressed even for jQj ¼ Oð1Þ. In this regime we
derived the analytic solutions for the gravitational po-
tentials and showed that the experimental bound on the
post-Newtonian parameter � can be satisfied under the
condition (57). In the regime r � r
 the solution to the
field equation for Q � 0 is given by �0ðrÞ / r, which
satisfies the regularity condition �0ð0Þ ¼ 0 at the center
of the spherical symmetry.
When Q ¼ 0 and n ¼ 1, if the same model is re-

sponsible for the late-time cosmic acceleration, the
corrections to the gravitational potentials are extremely
tiny on solar-system scales. For Q ¼ 0 and n > 1 we
showed that the solution around the origin is not regu-
lar and hence this theory cannot be regarded as a viable
one.
We applied our general results to concrete theories such

as extended Galileon and Brans-Dicke theory with a dila-
tonic coupling. For the theories with Q � 0 and n ¼ 1

there is a correction of the order of ðr=rVÞ3=2 relative to
the Newtonian gravitational potentials in the regime r
 �
r � rV , such that the local gravity constraints can be
satisfied on solar-system scales. Note that for Q ¼ 0 and
n ¼ 1 the corrections to the gravitational potentials are
even much smaller. If the extended Galileon theory with
Q � 0 and n > 1 is responsible for the cosmic acceleration
today, we found that there is a problem of the matching at
r ¼ r
.
It will be of interest to see how the Vainshtein mecha-

nism works in the Horndeski’s most general scalar-tensor
theories having the termG5 as well as the X-dependence in
G4. The construction of viable dark energy models satisfy-
ing recent experimental and observational bounds will be
also interesting. In particular the constraint coming from
the variation of the Newton constant (j _G=Gj< 0:02H0 can
provide tight bounds on such models [45]. We leave these
issues for future work.
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