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We consider the Eddington-Born-Infeld (EBI) model here without assuming any cosmological constant.

The EBI scalar field is supposed to play a role of both dark matter and dark energy. Different eras in

cosmology are reconstructed for the model. A comparison is drawn with the �CDM model using

Supernova Type Ia data, WMAP7 and baryon acoustic oscillations data. It seems that the EBI field in

this form does not give a good fit to observational data in comparison to the �CDM model.
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I. INTRODUCTION

The cosmic acceleration is now considered to be one of
the frontier quests of fundamental physics. Confirmed by
observations [1,2], understanding of acceleration is yet to
be satisfied in the regime of standard general relativity
(GR). Attempts to explain the acceleration could be per-
formed by adding extra components of fluid into the
energy-momentum tensor part of the Einstein field equa-
tion. This extra component, dubbed dark energy, gives
negative pressure so that it is able to drive the acceleration,
see e.g., references in Ref. [3] for reviews. At smaller
scales, a problem of an extra attractive gravity in galaxies
and galaxy clusters shows up. Effects of extra gravity such
as the flat galactic rotational curve, gravitational lensing,
bulk velocity and structure formation are explained with
dark matter [4]. On the observation side, the simplest
model of dark matter and dark energy—the �CDM
model—is favored; however, it suffers from fine-tuning
problem. At present, the nature of dark sectors is still
unknown. There is another more radical way of acquiring
acceleration—to modify the gravity term in the action (see
Ref. [5] for recent reviews).

It is possible that dark energy and dark matter are only a
single entity which could effectively have different behav-
iors at early and late times. This unified scenario is
considered in the Chaplygin gas model [6]. The
Chaplygin gas model however cannot satisfy the cosmic
microwave background (CMB) power spectrum and struc-
ture formation [7]. Another idea of unifying dark sectors
was proposed recently by Banados [8,9]. The model, called
Eddington-Born-Infeld (EBI) gravity, can account for both
dark matter and dark energy components without addi-
tional degrees of freedom in the energy-momentum tensor.
In the model, Einstein gravity couples to Born-Infeld the-
ory giving rise to a bi-metric theory. The second metric of
the theory is generated from the Born-Infeld Christoffel
symbol, C

�
��, which is solely responsible for dark sectors.

The theory predicts a dust-like effective equation of state
at large scales, while at late times it behaves like a

cosmological constant. The theory can also accommodate
flat galactic disk-rotational curves. The model is motivated
by a combination of Eddington’s idea of purely affine
theory of gravity without using a metric [10], Born-
Infeld-Einstein action [11], and the idea of magnetic spin
symmetry breaking in the presence of an external magnetic
field. Considering that the topological manifold is invariant
under a full diffeomorphism group of transformation,
Riemannian manifolds are invariant under a smaller class
of subgroups of metric isometries. The Eddington action
which is diffeomorphism invariant hence is considered as
an unbroken state theory [12]. Moreover, it is a ghost-free
theory. Introducing g�� � 0 to the gravitational theory

would break this symmetry, similar to having an external
magnetic field applied to a random spin system. The ex-
ternal magnetic field also breaks the symmetry of the spin
system. If we let the metric couple to the Eddington action,
the result is the EBI action. In the action, there is the
Einstein-Hilbert part and the EBI part (see Refs. [8,9,13]
for a more detailed discussion). In the context of an aniso-
tropic universe with the Bianchi type I model, at late times,
the EBI gravity effectively behaves like Einstein-Hilbert
cosmology plus a cosmological constant. The EBI term is
stable at the dark matter phase but also gives rise to
anisotropic pressure and the perturbation decays oscilla-
tory in time which differs from the standard exponential
decay case [14]. Considering the dark energy phase, the
Born-Infeld as dark energy is not stable and it produces a
very strong integrated Sachs-Wolfe effect on large scales.
This suggests that for the model to be viable, a cosmologi-
cal constant is needed in the action [15]. When adding a
cosmological constant into the model, the model still pre-
dicts too large CMB fluctuations compared to WMAP5
data. However, while restricting the EBI field as dark
matter, the EBI model is a best fit with the �CDM
prediction [16]. The idea that the Eddington action is a
starting point for GR is pursued further when considering a
Born-Infeld part and a cosmological constant but without
having the Einstein-Hilbert term. The idea was investi-
gated in the Palatini formulation to include matter fields.

PHYSICAL REVIEW D 86, 043525 (2012)

1550-7998=2012=86(4)=043525(7) 043525-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.043525


For homogeneous and isotropic space-time, the model
presents a nonsingular cosmology at early times as well
as the nonsingular collapse of compact objects [17–20].
In such a scenario, the Poisson equation is modified and
the Jean length is equal to the fundamental length of the
theory. Also the critical mass for a black hole to form is
equal to the fundamental mass of the theory [21,22].

In this paper, we consider the EBI model without a
cosmological constant as originally proposed in Ref. [9].
In fact, we believe that introducing a cosmological con-
stant would make this model less attractive, as the model
was introduced as a way to explain both dark energy and
dark matter at the same time. In other words, adding a
cosmological constant by hand would mean that the model
achieves only half of the original goals it was introduced
for. We reemphasize the inviability of the original EBI
model by fitting it with WMAP7, baryon acoustic oscil-
lations (BAO) and Supernova Type Ia data. Compared to
the study of Ref. [16], where the authors studied the growth
of structure for these models (they studied the evolution of
the cosmological perturbations during radiation and matter
domination), we perform a study of the background and
look for the constraints on it coming from the most recent
data. In Sec. II, we briefly describe the EBI model as a bi-
metric theory and its cosmology. The equations of motion
are described in Sec. III. We consider the cosmological era
in Sec. IV and numerical results are shown in Sec. V. We
conclude in Sec. VI.

II. EDDINGTON-BORN-INFELD COSMOLOGY

In the EBI model studied here the action has three
variables, the metric g��, the Born-Infeld connection

C�
�� and the matter field �. The EBI action is

S½g��; C
�
��;��

¼ 1

16�G

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffi
jg��j

q
Rþ 2

�l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� � l2K��j

q �

þ
Z

d4xLmð�; g��Þ: (1)

The action above has two extra constants, the length scale l

which resembles the dimension of a length or 1=
ffiffiffiffi
R

p
, and�,

which is a dimensionless parameter. The Born-Infeld Ricci
tensor K�� is symmetric under interchanging � and �

which is a result of symmetric properties of the Born-
Infeld connection C�

��. As in standard GR,

K�� � K�
���; (2)

where

K�
��� ¼ C�

��;� þ C�
��C

�
�� � C�

��;� � C�
��C

�
��:

(3)

The conventional matter fields are included in the
Lagrangian Lm. Since the two dynamical fields g�� and

C�
�� are independent, the Born-Infeld connection can

effectively be expressed in terms of a new symmetric
metric q��ðxÞ,

C�
�� ¼ 1

2
q��ðq��;� þ q��;� � q��;�Þ; (4)

giving a version of bi-metric theory. As in the standard
case, for the new metric the covariant derivative vanishes,

D�q�� ¼ 0; (5)

where the covariant derivative is performed under the
Born-Infeld connection, i.e.,

D�q�� � @�q�� � C�
��q�� � C�

��q��: (6)

Varying the action (1) with respect to two dynamical fields,
the metric g�� and the connection C�

��, yields the follow-

ing equations of motion,

G�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� � l2Kð��Þj

jg��j

vuut g��

�
1

g� l2K

�
��
g�� þ 8�GTm

��:

(7)

Defining

ffiffiffi
q

p
q�� � � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� � l2K��j

q �
1

g� l2K

�
��
; (8)

hence (7) can be written as

G�� ¼ � 1

l2

ffiffiffiffiffiffiffiffiffiffiffi
jq��j
jg��j

vuut g��q
��g�� þ 8�GTm

��: (9)

Varying the action with respect to the connection C�
��, one

can find D�ð ffiffiffi
q

p
q��Þ ¼ 0. Taking the determinant of (8)

then we obtain

K�� ¼ 1

l2
ðg�� þ �q��Þ: (10)

The first term in Eq. (9) is a modification of the Born-Infeld
part. Tm

�� is the matter field energy-momentum tensor.

These results agree with the ones first shown in Ref. [9].
The two metrics g�� and q�� possess homogeneity and

isotropy with flat spatial curvature,

g��dx
�dx� ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; (11)

q��dx
�dx� ¼ �XðtÞ2dt2 þ YðtÞ2ðdx2 þ dy2 þ dz2Þ; (12)

gtt ¼ �1, due to the gauge freedom in time. Here XðtÞ is
the time rescaling of the metric q�� whereas aðtÞ and YðtÞ
behave like scale factors in g�� and q��, respectively. The

aðt0Þ is set to 1 so that H0 ¼ _aðt0Þ as in Ref. [9].

III. THE EQUATIONS OF MOTION

Applying the metric ansatz Eqs. (11) and (12) to the
equations of motion (9) and (10), we obtain first order
equations, which are
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H2 ¼ 1

3l2

�
Y3

a3

�
1

X
þ 8�G

3
ð%m þ %rÞ; (13)

d

dt

�
Y3

X

�
¼ 3XY3

�
a2

Y2

�
H; (14)

� _Y

Y

�
2 ¼ X2

3l2

�
�� 1

2X2
þ 3

2

a2

Y2

�
: (15)

It should be noted that l has dimensions of length (M�1),
whereas Y has dimensions of a. Finally, X is
dimensionless.

From Eq. (13), we can introduce an energy density as

%X � 1

8�l2G

Y3

Xa3
; (16)

and by taking the derivative of the Friedmann equation,
one can find an effective pressure for this dark component
as

pX ¼ wX%X; (17)

where

wX ¼ 1

3

X0

X
� Y0

Y
; (18)

and a prime denotes differentiation with respect to
N ¼ lna.

Let us now introduce the variable

�X � 8�G%X

3H2
¼ 1

3l2
Y3

H2Xa3
: (19)

In terms of this variable, the Friedmann equation can be
written as

1 ¼ �X þ�m þ�r; (20)

where we have defined, as usual,

�m � 8�G%m

3H2
; and �r � 8�G%r

3H2
; (21)

and have assumed �m / a�3, �r / a�4.
We will demand �X � 0, as �X represents an effective

matter density; otherwise �m;r could assume values larger

than unity. From Eq. (21), we find

�0
m þ 2H0

H
�m þ 3�m ¼ 0; (22)

�0
r þ 2H0

H
�r þ 4�r ¼ 0: (23)

Equation (14) can then be rewritten as

�0
X þ 3�X þ 2H0

H
�X ¼

�
3X4

l4H4

�
1=3

�1=3
X ; (24)

and Eq. (15) can be rewritten as

H2

�
1þ 2

3

H0

H
þ 1

3

�
X0

X
þ�0

X

�X

��
2

¼ 1

3l2

�
� 1

2
þ �X2 þ 1

2

�
3X4

l4H4

�
1=3

��2=3
X

�
: (25)

Therefore, we also need an equation for H. This can be
found by differentiating the Friedmann equation as

�0
X þ�0

m þ�0
r ¼ 0;

or

�0
X ¼ 2H0

H
ð1��XÞ þ 3ð1��XÞ þ�r: (26)

Therefore the dynamical autonomous equations can be
written as

�0
X ¼ 2H0

H
ð1��XÞ þ 3ð1��XÞ þ�r; (27)

�0
r ¼ � 2H0

H
�r � 4�r; (28)

�0
X ¼ �3�X � 2H0

H
�X þ

�
3X4

K4ðH=H0Þ4
�
1=3

�1=3
X ; (29)

H2

H2
0

�
1þ 2

3

H0

H
þ 1

3

�
X0

X
þ�0

X

�X

��
2

¼ 1

3K2

�
�X2 � 1

2
þ 1

2

�
3X4

K4ðH=H0Þ4
�
1=3

��2=3
X

�
; (30)

where we have introduced the dimensionless variable
K2 � H2

0l
2. This shows that the present value of H can

be reabsorbed into the free parameter K. In terms of these
variables we find

wX ¼ �1� 2

3

H0

H
� �0

X

3�X

: (31)

IV. COSMOLOGICAL ERAS

Let us consider the different eras in the cosmological
history. We can distinguish the following cases.
(1) Radiation era: We can set �r ¼ 1 and �X ¼ 0.

This fixes �m ¼ 0. All the equations of motion
are satisfied if

H0

H
¼ �2; which implies H ¼ 1

2t
; (32)

as expected.
(2) Matter era: Now we have two options:

(a) We can assume �m ¼ 1 and �r ¼ 0. In this
case �X ¼ 0. This implies that we are consid-
ering dark matter as an extra matter component
(inside �m) and not the X dark component. In
this case the equations of motion are satisfied if
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H0

H
¼ � 3

2
; that is H ¼ 2

3t
; (33)

as expected.
(b) Now we assume that the dominant dark com-

ponent behaves as dark matter, whereas �m !
�b, that is, the matter component reduces to the
baryon component and we suppose it is not the
dominant one. In this case we need to impose
�X ¼ 1 and �r ¼ 0. Since we still want that
H0=H ¼ �3=2, the equations of motion cannot
be solved at the same time. Therefore this case
shows that if the X-component gives an effec-
tive dark matter contribution in the past, it can-
not be along a fixed point solution. However,
there could be a transient solution from�X ¼ 0
and �X ¼ 1 which could still mimic a dark
matter component.

(3) Dark energy era: In this case we set �m ¼ 0 ¼ �r

together with �X ¼ 1. We look for a de Sitter so-
lution that isH0 ¼ 0. The equations of motion imply

X2

H2
dSK

2
¼ 3: (34)

Therefore, X ¼ XdS ¼ constant. Then for a de Sitter
solution we find

HdS ¼ jXdS=Kjffiffiffi
3

p : (35)

Furthermore, the equations of motion give

X2
dS ¼

1

1� �
; (36)

which implies that �< 1. We can also write

H2
dS ¼

1

3K2ð1� �Þ : (37)

(4) Dark energy for the case �> 1: Let us consider the
case when, at very late times, X=H ¼ � � constant,
�X � 1,�r � 0 � �m, but stillH

0=H ! constant,
as well as X0=X ! constant. Then, by neglecting
any constant term with respect to the X term, we
find the following two conditions which need to be
satisfied,

31=3

�4=3K4=3
� 2X0

X
� 3 ¼ 0; (38)

ffiffiffiffi
�

pffiffiffi
3

p
�K

� X0

X
� 1 ¼ 0; (39)

which imply

� ¼ 3ð31=3 � �4=3K4=3Þ2
4�2=3K2=3

: (40)

This solution is not a de Sitter solution, as in fact we
find

wX ! � 1

32=3�4=3K4=3
� �1: (41)

V. NUMERICAL DISCUSSION

Let us consider a numerical solution of Eqs. (27)–(30).
Rewriting Eq. (30) as

1þ 2

3

H0

H
þ 1

3

�
X0

X
þ�0

X

�X

�

¼ 1ffiffiffi
3

p
Hl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X2 � 1

2
þ 1

2

�
3X4

l4H4

�
1=3

��2=3
X

s
; (42)

and by allowing the constant l (or K) to also take negative
values (but K � 0), then we recover both the branches of
Eq. (30). Notice that, if K < 0, Eq. (35) implies XdS < 0,
for �< 1. This further implies that the two branches, on
their de Sitter solution, will differ by the sign of the final
value of X.

A. Initial conditions

Let us solve the equations of motion from a given
redshift (z ¼ zi � 1), such that at z ¼ zi the universe is
in the radiation era. We will set the initial condition for the
Hubble parameter, during the radiation era, as the one
given by GR, namely

Hi ¼ HðGRÞ
i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r;0e

�4Ni þ�ðGRÞ
m;0 e�3Ni þ ð1��ðGRÞ

m;0 ��r;0Þ
q

:

(43)

In what follows, we will fix the value of �r;i, during the

radiation era, at N ¼ Ni � �log10ð1þ 1:76� 105Þ, such
that �rðN ¼ 0Þ ¼ �r;0 which will be set equal to a fixed

value. In this model, we have five parameters, �m;0, Xi,

�X;i, �, K. However, we will fix the initial condition for

�X;i by requiring the condition �K;0 ¼ 1��m;0 ��r;0

to hold. Finally, the four parameters,�m;0, Xi,�,K, will be

considered to be free. In particular, since the X-component
is supposed to explain both dark matter and dark energy,
wewill set the following range 0<�m;0 � 0:4. We run the

other parameters to change over a large range, �200<
Xi < 200,�10<�< 10, and�15<K < 15. Notice that
in this parameter range, the system does not have a�CDM
limit; therefore one expects deviations from the concord-
ance model. Since this model has been introduced to
explain dark energy and dark matter at the same time,
this no-�CDM limit is in fact well motivated.
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B. Results

We have calculated the total 	2 for this model by using
WMAP7 data (the background constraints on the two CMB
shift parameters [23]), the BAO (Sloan Digital Sky Survey
Data Release 7) data (two points) [24], and Supernova
Type Ia (constitution data) [25], following the same
method followed in Ref. [26]. The minimum for the 	2 is
located at

�m;0¼0:250078; K¼8:629636; �¼2:760611;

Xi¼77:73029; where	2¼	2
min¼484:505;r (44)

where we have also fixed �r;i ¼ 0:999 827 and �X;i ¼
1:144 32� 10�6 for the reasons already explained above.
Trying to set priors on �m;0 like �m:0 ¼ �b;0 (i.e., fixing

the scalar field to be the main source of dark matter) leads
to much larger values for 	2. Furthermore, data tend to
prefer clearly the �> 1 case, as for 0<�< 1, the 	2

increases.
Nonetheless, the minimum value for 	2

min is still much

larger than �CDM’s value (	2
�CDM � 469). The 	2 for

�CDM has two free degrees of freedom (�m0, �) that
we can vary. Therefore according to the 	2-probability
distribution, at 95% confidence level, �CDM rules out
those models, at 2�, whose fit to the same data will lead
to 	2 � 	2

�CDM > 5:99. However, the models discussed

here have 	2 ¼ 484:5, so that 	2 � 	2
�CDM ¼ 15:5, which

implies that these models are excluded at 2�. This large
difference implies the model under consideration does not
fit the data, already at 2�, as well as �CDM. This is
tantamount to saying that the �CDM cosmological evolu-
tion rules out this class of models. Since the 	2 for the
model studied here is higher than the �CDM one, we can
deduce that data do not support well the evolution of the
effective equation of state plotted in Fig. 1. It should also
be pointed out that for the parameters for which 	2 ¼ 	2

min,

the scalar field, although it has in the past wX � 0, it is
anyhow a subdominant dark matter component (since
on the minimum-	2 solution, the dust-like dark matter
contributes up to�m;0 � 0:25). This implies that the scalar

field starts dominating the evolution of the universe only at
late times, that is, it contributes to the dynamics essentially
only as a dark energy field. But it is a dark energy field
which, at early times, is quite different from a cosmologi-
cal constant: this may be part of the reason why, in this
case, the model cannot fit the data well. One option would
be adding a bare cosmological constant (as also proposed
in Ref. [16]), but in this case the model loses part of the
interest as it would stop being an attractive dark energy
model. Furthermore the evolution tends to lead to a fast
transition of the effective equation of state parameter. This
may also contribute to a worse fit to the data compared to
�CDM.
It should be noted that negative values for any of Xi, �,

and K leads to very large values for 	2 (typically larger
than 1000), giving a bad fit to the data.

VI. CONCLUSIONS

We have studied the EBI scalar field which was pro-
posed to model both dark matter and dark energy at the
same time. We have solved the equations of motion and
studied the behavior of the background at different times:
at early times, indeed the scalar field behaves as a
dark matter component with equation of state parameter
wX � 0. Only at late times, the field can lead the dynamics
of the universe to an accelerated regime, which depending
on the parameters of the model, is described by either a
de Sitter solution, or a rather different dynamic described
byH=X ! constant andH0=H ! constant (where a prime
denotes differentiation with respect to the N ¼ lna)
(Fig. 2).
The fact that, at early times, the scalar field behaves as a

dust component can in principle alleviate the problem of
finding a dark matter component, as indeed the nature of

15 10 5 0
2

1

0

1

2

N

H
’

H

15 10 5 0

0.5

0.0

0.5

1.0

1.5

2.0

N

X
’

X

FIG. 2. Evolution for H0=H ¼ _H=H2 (left panel), and for the
variable X0=X (right panel). The evolution, starting from radia-
tion domination, passing through matter domination, at late
times, tends to a super-accelerating final state on the
minimum-	2 solution.
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w
X

15 10 5 0
0

5
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20
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30
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X
H

FIG. 1. Effective equation of state for the scalar field (left
panel), and plot of the ratio X=H (right panel). At early times
theEBI scalar field behaves as a darkmatter component (wX � 0);
then, at late times, it drives the evolution of the universe. This plot
shows the evolution for the parameters which minimize the 	2

given in (44). Notice that since�> 1, the final state is not de Sitter
(wX <�1); rather it tends to the solution characterized by
H0=H ! constant (Fig. 2) and X=H ! constant (right panel).

COSMOLOGICAL CONSTRAINTS FOR AN EDDINGTON- . . . PHYSICAL REVIEW D 86, 043525 (2012)

043525-5



dark matter and dark energy would have the same
explanation.

In order to see whether this model is viable or not, we
studied the cosmological constraints that its dynamics have
to pass when considering WMAP7 data, BAO and
Supernova Type Ia. For this goal, we have calculated the
	2 as a function of four free parameters, that is, K, � (two
theoretical dimensionless parameters of the model) to-
gether with �m;0 (which states how much of an extra

standard dust component is needed), and Xi, the initial
value for the time-rescaling component of the Born-
Infeld metric.

We have found that the model cannot give a good fit to
the data (compared to �CDM), and hence the model
cannot be considered viable. We have proved this state-
ment by constraining the background. This approach dif-
fers from the one followed in Ref. [16], where the authors
studied the evolution of the cosmological perturbations in
order to constrain the growth of structures. In particular, we
have used only the constraints on the background coming
from the WMAP7 data. Instead in Ref. [16], the authors
considered constraints only on the perturbations power

spectrum. It is possible, as also suggested in Ref. [16],

that introducing a cosmological constant would improve

the fit, but, on the other hand, the model would partially

lose its original motivation of explaining at the same time

both dark energy and dark matter. In particular, data prefer

the non-de Sitter solution, preferring a fast transition to

values for wX <�1. In this model, at early times, a cos-

mological constant is absent from the beginning, as the

scalar field initially (and up to very recently) behaves as a

dark matter component.
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